
5 Operads and operadic algebras
in homotopy theory

by Michael A. Mandell

5.1 Introduction

Operads first appeared in the book Geometry of iterated loop spaces by J. P. May [194],
though Boardman and Vogt had earlier implicitly defined a mathematically equivalent
notion as a “PROP in standard form” [49, §2]. In those works, operads and operadic
algebra structures provide a recognition principle and a delooping machine for n-fold
loop spaces and infinite loop spaces. The basic idea is that an operad should encode
the operations in some kind of homotopical algebraic structure. For example, an n-fold
loop space ΩnX comes with n different multiplications (ΩnX)2→ΩnX, which can be
iterated and generalized to a space of m-ary maps Cn(m) (from (ΩnX)m to ΩnX); here
Cn is the Boardman–Vogt little n-cubes operad (see Construction 5.3.5 and Section 5.11
below). The content of the recognition theorem is that Cn specifies a structure that
is essentially equivalent to the structure of an n-fold loop space for connected spaces.
It was clear even at the time of introduction that operads were a big idea and in the
almost 50 years since then, operads have found a wide range of other uses in a variety
of areas of mathematics: a quick MathSciNet search for papers since 2015 with “operad”
in the title comes up with papers in combinatorics, algebraic geometry, nonassociative
algebra, geometric group theory, free probability, mathematical modeling, and physics,
as well as in algebraic topology and homological algebra.

Even the topic of operads in algebraic topology is too broad to cover or even summa-
rize in a single article. This expository article concentrates on what I view as the basic
topics in the homotopy theory of operadic algebras: the definition of operads, the defini-
tion of algebras over operads, structural aspects of categories of algebras over operads,
model structures on algebra categories, and comparison of algebra categories when
changing operad or underlying category. In addition, it includes two applications of the
theory: the original application to n-fold loop spaces, and an application to algebraic
models of homotopy types (chosen purely on the basis of personal bias). This leaves out
a long list of other topics that could also fit in this chapter, such as model structures on
operads, Koszul duality, deformation theory and Quillen (co)homology, multiplicative
structures in stable homotopy theory (for example, on Thom spectra, K-theory spectra,
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etc.), Deligne and Kontsevich conjectures, string topology, factorization homology,
construction of moduli spaces, and Goodwillie calculus, just to name a few areas.

Notation and conventions

Although we concentrate on operads and operadic algebras in topology, much of the
background applies very generally. Because of this and because we will want to discuss
both the case of spaces and the case of spectra, we will use neutral notation: let M
denote a symmetric monoidal category [145, §1.4], writing � for the monoidal product
and 1 for the unit. (We will uniformly omit notation for associativity isomorphisms
and typically omit notation for commutativity isomorphisms, but when necessary,
we will write cσ for the commutativity isomorphism associated to a permutation σ .)
Usually, we will want M to have coproducts and sometimes more general colimits,
which we will expect to commute with � on each side (keeping the other side fixed).
This exactness of � is automatic if the monoidal structure is closed [145, §1.5], i.e., if
for each fixed object X of M , the functor (−)�X has a right adjoint; this is often
convenient to assume, and when we do, we will use F(X,−) for the right adjoint. The
three basic classes of examples to keep in mind are:

(i) Convenient categories of topological spaces, including compactly generated weak
Hausdorff spaces [206]; then � is the categorical product, 1 is the final object
(one point space), and F(X,Y ) is the function space, often written Y X .

(ii) Modern categories of spectra, including EKMM S-modules [94], symmetric spectra
[133], and orthogonal spectra [178]; then � is the smash product, 1 is the sphere
spectrum, and F(−,−) is the function spectrum.

(iii) The category of chain complexes of modules over a commutative ring R; then
� is the tensor product over R, 1 is the complex R concentrated in degree zero,
and F(−,−) is the Hom-complex HomR(−,−).

We now fix a convenient category of spaces and just call it “the category of spaces”
and the objects in it “spaces”, ignoring the classical category of topological spaces.

In the context of operadic algebras in spectra (i.e., (ii) above), it is often technically
convenient to use operads of spaces. However, for uniformity of exposition, we have
written this article in terms of operads internally in M . The unreduced suspension
functor Σ∞+ (−) converts operads in spaces to operads in the given category of spectra.

Outline

The basic idea of an operad is that the pieces of it should parametrize a class of
m-ary operations. From this perspective, the fundamental example of an operad is the
endomorphism operad of an object X,

EndX(m) := F(X(m),X), X(m) := X � · · ·�X︸      ︷︷      ︸
m factors

,
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which parametrizes all m-ary maps from X to itself. Abstracting the symmetry and
composition properties leads to the definition of operad in [194]. We review this
definition in Section 5.2.

Section 5.3 presents some basic examples of operads important in topology, includ-
ing some A∞ operads, E∞ operads, and En operads.

May chose the term “operad” to match the term “monad” (see [191]), to show their
close connection. Basically, a monad is an abstract way of defining some kind of
structure on objects in a category, and an operad gives a very manageable kind of
monad. Section 5.4 reviews the monad associated to an operad and defines algebras
over an operad.

Section 5.5 gives the basic definition of a module over an operadic algebra and
reviews the basics of the homotopy theory of module categories.

Section 5.6 discusses limits and colimits in categories of operadic algebras. It
includes a general filtration construction that often provides the key tool to study
pushouts of operadic algebras homotopically in terms of colimits in the underlying
category. Section 5.7 discusses when categories of operadic algebras are enriched, and
in the case of categories of algebras enriched over spaces, discusses the geometric
realization of simplicial and cosimplicial algebras. Although these sections may seem
less basic and more technical than the previous sections, the ideas here provide the
tools necessary for further work with operadic algebras using the modern methods of
homotopy theory.

Model structures on categories of operadic algebras provide a framework for proving
comparison theorems and rectification theorems. Section 5.8 reviews some aspects of
model category theory for categories of operadic algebras. In the terminology of this
article, a comparison theorem is an equivalence of homotopy theories between categories
of algebras over different operads that are equivalent in some sense (for example,
between categories of algebras over different E∞ operads) or between categories
of algebras over equivalent base categories (for example, E∞ algebras in spaces
versus E∞ algebras in simplicial sets). A rectification theorem is a comparison theorem
where one of the operads is discrete in some sense: a comparison theorem for the
category of algebras over an A∞ operad and the category of associative algebras is an
example of a rectification theorem, as is the comparison theorem for E∞ algebras and
commutative algebras in modern categories of spectra. Section 5.9 discusses these and
other examples of comparison and rectification theorems. In both Sections 5.8 and 5.9,
instead of stating theorems of maximal generality, we have chosen to provide “Example
Theorems” that capture some examples of particular interest in homotopy theory and
stable homotopy theory. Both the statements and the arguments provide examples:
the arguments apply or can be adapted to apply in a wide range of generality.

The Moore space is an early rectification technique (predating operads and A∞
monoids) for producing a genuine associative monoid version of the loop space; the
construction applies generally to a little 1-cubes algebra to produce an associative
algebra that we call the Moore algebra. The concept of modules over an operadic
algebra leads to another way of producing an associative algebra, called the enveloping
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algebra. Section 5.10 compares these constructions and the rectification of A∞ algebras
constructed in Section 5.9.

Sections 5.11 and 5.12 review two significant applications of the theory of operadic
algebras. Section 5.11 reviews the original application: the theory of iterated loop
spaces and the recognition principle in terms of En algebras. Section 5.12 reviews
the equivalence between the rational and p-adic homotopy theory of spaces with the
homotopy theory of E∞ algebras.
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5.2 Operads and endomorphisms

We start with the definition of an operad. The collection of m-ary endomorphism
objects EndX(m) = F(X(m),X) provides the prototype for the definition, and we use
its intrinsic structure to motivate and explain it. Although the endomorphism objects
only make sense when the symmetric monoidal category is “closed” (which means that
function objects exist), the definition of operad will not require or assume function
objects, nor will the definition of operadic algebra in Section 5.4. To take in the picture,
it might be best just to take M to be the category of spaces, the category of vector
spaces over a field, or the category of sets on first introduction to this material.

In our basic classes of examples, and more generally as a principle of enriched
category theory, function objects behave like sets of morphisms: the counit of the
defining adjunction

F(X,Y )�X→ Y

is often called the evaluation map (and denoted ev). It allows “element-free” definition
and study of composition: iterating evaluation maps

F(Y ,Z)�F(X,Y )�X→ F(Y ,Z)�Y → Z

induces (by adjunction) a composition map

◦ : F(Y ,Z)�F(X,Y )→ F(X,Z).
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One can check just using the basic properties of adjunctions that this composition
is associative in the obvious sense. It is also unital: the identity element of M (X,X)
specifies a map 1X : 1→ F(X,X),

idX ∈M (X,X) �M (1�X,X) �M (1,F(X,X)),

where the first isomorphism is induced by the unit isomorphism; essentially by
construction, the composite

1�X
1X�idX−−−−−−−→ F(X,X)�X

ev−−→ X

is the unit isomorphism. It follows that the diagram

1�F(X,Y ) � //

1Y�idF(X,Y )

��

F(X,Y ) F(X,Y )�1
�oo

idF(X,Y )�1X
��

F(Y ,Y )�F(X,Y ) ◦
// F(X,Y ) F(X,Y )�F(X,X)◦

oo

commutes, where the top-level isomorphisms are the unit isomorphisms. More is true:
the function objects enrich the category M over itself, and the � ,F parametrized
adjunction is itself enriched [145, §1.5–6].

In the case when M is the category of spaces, the evaluation map is just the map
that evaluates functions on their arguments; thinking in these terms will make the
formulas and checks clearer for the reader not used to working with adjunctions. Since
in the category of spaces 1 is the one-point space, a map out of 1 just picks out an
element of the target space and the map 1→ F(X,X) is just the map that picks out
the identity map of X.

The basic compositions above generalize to associative and unital m-ary composi-
tions; now for simplicity and because it is the main case of interest here, we restrict to
considering a fixed object X. The m-ary composition takes the form

F(X(m),X)� (F(X(j1),X)� · · ·�F(X(jm),X))→ F(X(j),X),

where j = j1 + · · ·+ jm and (as in the introduction) X(m) denotes the m-th � power of
X; we think of the m-ary composition as plugging in the m ji-ary maps into the first
m-ary map; it is adjoint to the map

F(X(m),X)�F(X(j1),X)� · · ·�F(X(jm),X)�X(j) �

F(X(m),X)�F(X(j1),X)� · · ·�F(X(jm),X)�X(j1) � · · ·�X(jm)→ X

that does the evaluation map

F(X(ji ),X)�X(ji )→ X,

then collects the resulting m factors of X and does the evaluation map

F(X(m),X)�X(m)→ X.

In this double evaluation, implicitly we have shuffled some of the factors of X past
some of the endomorphism objects, but we take care not to permute factors of X
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among themselves or the endomorphism objects among themselves. This defines a
composition map

Γmj1,...,jm
: EndX(m)� EndX(j1)� · · ·� EndX(jm)→EndX(j).

The composition is associative and unital in the obvious sense (which we write out in
the definition of an operad, Definition 5.2.1, below).

We now begin systematically writing EndX(m) for F(X(m),X). We observe that
EndX(m) = F(X(m),X) has a right action by the symmetric group Σm induced by the
left action of Σm on X(m) corresponding to permuting the �-factors. In general, for a
permutation σ , we write cσ for the map that permutes �-factors and aσ for the action
of σ on EndX(m), i.e., the map that does cσ on the domain of EndX(m) = F(X(m),X).
We now study what happens when we permute the various factors in the formula for Γ
above. (As these are a bit tricky, we do the formulas out here and repeat them below
in the definition of an operad, Definition 5.2.1.)

First consider what happens when we permute the factors of X. We have nothing to
say for an arbitrary permutation of the factors of X, but in the composition Γmj1,...,jm ,
we can say something for a permutation that permutes the factors only within their
given blocks of size j1, . . . , jm, i.e., when the overall permutation σ of all j factors
is the block sum of permutations σ1 ⊕ · · · ⊕ σm with σi in Σji . By extranaturality,
performing the right action of σi on EndX(ji) and evaluating is the same as applying
the left action of σi on X(ji ) and evaluating. It follows that the composition Γmj1,...,jm
is (Σj1 × · · · ×Σjm )-equivariant where we use the Σji -actions on the EndX(ji)’s in the
source and block sum with the Σj -action on EndX(j) on the target.

Permuting the endomorphism object factors is easier to understand when we also
permute the corresponding factors of X. In the context of Γmj1,...,jm , for σ in Σm,
let σj1,...,jm ∈ Σj permute the blocks X(j1), . . . ,X(jm) as σ permutes 1, . . . ,m. So, for
example, if m = 3, j1 = 1, j2 = 3, j3 = 2, and σ = (23), then σ1,3,2 is the permutation

(23)1,3,2 =
{

1

��

2

��

3

��

4

��

5

��

6

��
1 5 6 2 3 4

}
= (25364).

In EndX(j1)� · · ·�EndX(jm)�X(j), if we apply σ to permute the endomorphism object
factors and σj1,...,jm to permute the X factors, then evaluation pairs the same factors
as with no permutation and the diagram

(EndX(j1)� · · ·� EndX(jm))�X(j) ev //

cσ�cσj1 ,...,jm
��

X(m)

cσ
��

(EndX(jσ−1(1))� · · ·� EndX(jσ−1(m)))�X
(j)

ev
// X(m)

commutes. This now tells us what happens with Γmj1,...,jm and the permutation action
on EndX(n): the composite of the right action of σ on EndX(m) with Γmj1,...,jm ,

EndX(m)� (EndX(j1)� · · ·� EndX(jm))
aσ� id
−−−−−−→ EndX(m)� (EndX(j1)� · · ·� EndX(jm))

Γmj1 ,...,jm−−−−−−→,EndX(j),
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is equal to the composite of the �-permutation cσ on the End(ji)’s, the composition
map Γmjσ−1(1),...,jσ−1(m)

, and the right action of σj1,...,jm on EndX(j) :

EndX(m)� (EndX(j1)� · · ·� EndX(jm))
id�cσ−−−−−−→ EndX(m)� (EndX(jσ−1(1))� · · ·� EndX(jσ−1(m)))

Γmj
σ−1(1) ,...,jσ−1(m)
−−−−−−−−−−−−−−→ EndX(j)

aσj1 ,...,jm−−−−−−−−→ EndX(j).

See Figure 5.2 on p. 191 for this equation written as a diagram.
Although we did not emphasize this above, we need to allow any of m, j1, . . . , jm, or

j to be zero, where we understand empty �-products to be the unit 1. The formulations
above still work with this extension, using the unit isomorphism where necessary. The
purpose of allowing these “zero-ary” operations is that it allows us to encode a unit
object into the structure: For example, in the context of spaces 1 is the one point
space ∗ and to describe the structure of a topological monoid, not only do we need
the binary operation X ×X→ X, but we also need the zero-ary operation ∗ → X for
the unit.

Rewriting the properties of EndX above as a definition, we get an element-free
version of the definition of operad of May [194, 1.2].1

Definition 5.2.1. An operad in a symmetric monoidal category M consists of a
sequence of objects O(m), m = 0,1,2,3, . . . , together with

(a) a right action of the symmetric group Σm on O(m) for all m,
(b) a unit map 1: 1→O(1), and
(c) a composition rule

Γmj1,...,jm
: O(m)�O(j1)� · · ·�O(jm)→O(j)

for every m, j1, . . . , jm, where j = j1 + · · · + jm, typically written Γ when m and
j1, . . . , jm are understood or irrelevant,

satisfying the following conditions:

(i) The composition rule Γ is associative in the sense that for any m, j1, . . . , jm and
k1, . . . , kj , letting j = j1 + · · ·+ jm, k = k1 + · · ·+ kj , ti = j1 + · · ·+ ji−1 (with t1 = 0),
and si = kti+1 + · · ·+ kti+ji , the equation

Γ
j
k1,...,kj

◦ (Γmj1,...,jm � idO(k1)� · · ·� idO(kj ))

= Γms1,...,sm ◦ (idO(m)� Γ
j1
k1,...,kj1

� · · ·� Γ jmktm+1,...,kj
) ◦ c

holds in the set of maps

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj )→O(k),

1 In the original definition, May required O(0) = 1 in order to provide O-algebras with units, which was
desirable in the iterated loop space context, but standard convention has since dropped this requirement
to allow non-unital algebras and other unit variants.
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O(j)�O(k1)� · · ·�O(kj )

Γ
j
k1 ,...,kj

��

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj )

Γmj1 ,...,jm
� id�···� id

//

c

��

O(k)

O(m)�

O(j1)�O(k1)� · · ·�O(kj1 )� · · ·

· · ·�O(jm)�O(ktm+1)� · · ·�O(kj )


id�Γ

j1
k1 ,...,kj1

�···�Γ jmktm+1 ,...,kj

// O(m)�O(s1)� · · ·�O(sm)

Γms1 ,...,sm

OO

Figure 5.1 The diagram for 5.2.1 (i). Here c is the �-permutation that shuffles O(k`)’s past
O(ji )’s as displayed, j = j1 + · · ·+ jm, ti = j1 + · · ·+ ji−1 (with t1 = 0), si = kti+1 + · · ·+ kti+ji ,
and k = k1 + · · ·+ kj = s1 + · · ·+ sm.

where c is the �-permutation

O(m)�O(j1)� · · ·�O(jm)�O(k1)� · · ·�O(kj )→

O(m)� (O(j1)�O(k1)� · · ·�O(kj1 ))� · · ·� (O(jm)�O(ktm+1)� · · ·�O(kj )).

that shuffles the O(k`)’s and O(ji)’s as displayed (see Figure 5.1 for the diagram).

(ii) The unit map 1 is a left and right unit for the composition rule Γ in the sense
that

Γ 1
m ◦ (1� id) : 1�O(m)

1� id−−−−−→O(1)�O(m)
Γ 1
m−−→O(m)

is the unit isomorphism and

Γm1,...,1 ◦ (id�1(m)) : O(m)�1(m) id�1(m)

−−−−−−−→O(m)�O(1)(m)
Γm1,...,1−−−−−→O(m)

is the iterated unit isomorphism for O(m) for all m.

(iii) The map Γmj1,...,jm is (Σj1 × · · · ×Σjm )-equivariant for the block sum inclusion of

Σj1 × · · · ×Σjm in Σj .

(iv) For any m, j1, . . . , jm and any σ ∈ Σm, the equation

Γmj1,...,jm
◦ (aσ � idO(j1)� · · ·� idO(jm)) = aσj1 ,...,jm ◦ Γ

m
jσ−1(1),...,jσ−1(m)

◦ (idO(m)�cσ )

holds in the set of maps

O(m)�O(j1)� · · ·�O(jm)→O(j),

where σj1,...,jm denotes the block permutation in Σj corresponding to σ on the
blocks of size j1, . . . , jm, a denotes the right action of (a), and cσ denotes the
�-permutation corresponding to σ (see Figure 5.2 for the diagram).
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O(m)�O(j1)� · · ·�O(jm)
aσ� id�···� id

//

id�cσ

��

O(m)�O(j1)� · · ·�O(jm)

Γmj1 ,...,jm
��

O(j)

O(m)�O(jσ−1(1))� · · ·�O(jσ−1(m))
Γmj
σ−1(1) ,...,jσ−1(m)

// O(j)

aσj1 ,...,jm

OO

Figure 5.2 The diagram for 5.2.1 (iv). Here σ ∈ Σm, cσ is the �-permutation corresponding
to σ , σj1,...,jm ∈ Σj is the block permutation performing σ on blocks of sizes j1, . . . , jm,
j = j1 + · · ·+ jm, and a denotes the Σm action on O(m) and the Σj -action on O(j).

A map of operads consists of a map of each object that commutes with the structure:

Definition 5.2.2. A map of operads ({O(m)},1,Γ ) → ({O′(m)},1′ ,Γ ′) consists of
Σm-equivariant maps φm : O(m)→O′(m) for all m such that

Γ ′mj1,...,jm ◦ (φm �φj1 � · · ·�φjm ) = φj ◦ Γmj1,...,jm
for all m, j1, . . . , jm and 1′ = φ1 ◦ 1; in commuting diagrams:

O(m)�O(j1)� · · ·�O(jm)
Γmj1 ,...,jm //

φm�φj1�···�φjm
��

O(j)

φj
��

O′(m)�O′(j1)� · · ·�O′(jm)
Γ ′mj1 ,...,jm

// O′(j)

1

1

��

1′

��

O(1)
φ1

// O′(1).

The endomorphism operad EndX gives an example of an operad in any closed
symmetric monoidal category (for any object X). Here are some additional important
examples.

Example 5.2.3 (The identity operad). Assume the symmetric monoidal categoryM
has an initial object ∅. If � preserves the initial object in each variable, ∅ � (−) �
∅ � (−)� ∅ (which is automatic in the closed case, i.e., when function objects exist),
we also have the example of the identity operad I , which has I (1) = 1 (with 1 the
identity) and I (m) the initial object for m , 1; this is the initial object in the category
of operads.

Example 5.2.4 (The commutative algebra operad). The operad Com exists in any
symmetric monoidal category:

Com(m) = 1

for all m with the trivial symmetric group actions and composition law Γ given by
the unit isomorphism; its category of algebras (see the next section) is isomorphic
to the category of commutative monoids for � in M (defined in terms of the usual
diagrams, i.e., [174, VII§3] plus commutativity); see Example 5.4.3.
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Example 5.2.5 (The associative algebra operad). If M has finite coproducts and �
preserves finite coproducts in each variable, then we also have the operad Ass:

Ass(m) =
∐
Σm

1

with symmetric group action induced by the natural (right) action of Σm on Σm and
composition law Γ induced by block permutation and block sum of permutations,

σ ∈ Σm, τ1 ∈ Σj1 , . . . , τm ∈ Σjm 7→ σj1,...,jm ◦ (τ1 ⊕ · · · ⊕ τm) ∈ Σj .

Its category of algebras is isomorphic to the category of monoids for � in M ; see
Example 5.4.4.

For operads like Ass, it is often useful to work in terms of non-symmetric operads,
which come without the permutation action.

Definition 5.2.6. A non-symmetric operad consists of a sequence of objects O(m),
m = 0,1,2,3, . . . , together with a unit map and composition rule as in 5.2.1 (b) and (c)
satisfying the associativity and unit rules of 5.2.1 (i) and (ii). A map of non-symmetric
operads consists of a map of their object sequences that commutes with the unit map
and the composition rule.

Forgetting the permutation action on Com gives a non-unital operad called Ass
that is the non-symmetric version of the operad Ass. In general, under the finite
coproduct assumption in Example 5.2.5, given a non-symmetric operad O, the product
O �Ass has the canonical structure of an operad; it is the operad associated to O. In
the category of spaces (or sets, but not in the category of abelian groups, the category
of chain complexes, or the various categories of spectra), an operad O comes from
a non-symmetric operad exactly when it admits a map to Ass: the corresponding
non-symmetric operad O has O(n) the subobject that maps to the identity permutation
summand of Ass, and there is a canonical isomorphism O � O �Ass (which depends
only on the original choice of map O→Ass).

5.3 A∞, E∞, and En operads

This section reviews some of the most important classes of examples of operads
in homotopy theory, the A∞, E∞, and En operads. We concentrate on the case of
(unbased) spaces, with notes about the appropriate definition of such operads in other
contexts. For example, in stable homotopy theory, the unbased suspension spectrum
functor Σ∞+ converts model En operads into operads in the various modern categories
of spectra. The universal role played by spaces in homotopy theory typically allows for
reasonable definitions of these classes of operads in any homotopy theoretic setting.

The terminology of A∞ space and the basic model of an A∞ operad, due to
Stasheff [282], preceded the definition of operad by several years.

Definition 5.3.1. An A∞ operad in spaces is a non-symmetric operad whose m-th
space is contractible for all m.
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Informally, an operad (with symmetries) is A∞ when there is an understood isomor-
phism to the operad associated to some A∞ operad. The definition of A∞ operad
usually has a straightforward generalization to other symmetric monoidal categories
with a notion of homotopy theory: contractibility corresponds to a weak equivalence
with the unit 1 of the symmetric monoidal structure, and we should add the require-
ment that the non-symmetric operad composition rule should be a weak equivalence
for all indexes (which is automatic in spaces). One wrinkle is that a flatness condi-
tion may be needed and should be imposed to ensure that the functor O(m)�X(m)

is weakly equivalent to X(m) (cf. Section 5.9); in the case of spaces, contractibility
implicitly includes such a condition. In symmetric spectra and orthogonal spectra, a
good flatness condition is to be homotopy equivalent to a cofibrant object; in EKMM
S-modules, a good flatness condition is to be homotopy equivalent to a semi-cofibrant
object (see [157, §6]).

We have already seen an example of an A∞ operad: the operad Ass. The associ-
ahedra K(m) of Stasheff [282, I.§6] have the structure of a non-symmetric operad
using the insertion maps [ibid.] for the composition rule, and this is an example of an
A∞ operad. The Boardman–Vogt little 1-cubes (non-symmetric) operad C1 described
below gives a third example.

Next we discuss E∞ operads. Recall that a free Σm-cell complex is a space built by
cells of the form (Σm ×Dn,Σm × Sn−1), where Dn denotes the unit disk in R

n. The
definition of E∞ operad asks for the constituent spaces to have the Σm-equivariant
homotopy type of a free Σm-cell complex and the non-equivariant homotopy type of
a point.

Definition 5.3.2. An operad E in spaces is an E∞ operad when for each m, its m-th
space is a universal Σm space: E(m) has the Σm-equivariant homotopy type of a free
Σm-cell complex and is non-equivariantly contractible.

Unlike the A∞ case, the operad Com is not E∞ as its spaces do not have free
actions. The Barratt–Eccles operad EΣ provides an example:

Example 5.3.3 (The Barratt–Eccles operad). Let EΣ(m) denote the nerve of the
category EΣm whose set of objects is Σm and which has a unique map between any
two objects. The symmetric group Σm acts strictly on the category and the nerve
EΣ(m) inherits a Σm-action; moreover, as the action of Σm on the simplices is free,
the simplicial triangulation of EΣ(m) has the structure of a free Σm-cell complex. It
is non-equivariantly contractible because every object of EΣm is a zero object. The
multiplication is induced by an operad structure on the sequence of categories using
block sums of permutations as in the operad structure on Ass. The resulting operad
is called the Barratt–Eccles operad .

Boardman and Vogt [49, §2] defined another E∞ operad, built out of linear isometries.

Example 5.3.4 (The linear isometries operad). The Boardman–Vogt linear isome-
tries operad L has its m-th space the space of linear isometries

(R∞)m = R
∞ ⊕ · · · ⊕R∞→R

∞
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(where R
∞ =

⋃
R
n), with operad structure defined as in the example of an endo-

morphism operad. The topology comes from the identification

L(m) = limk colimnI ((Rk)m,Rn)

for I ((Rk)m,Rn) the space of linear isometries (Rk)m→R
n (with the usual manifold

topology). The Σm-action induced by the action on the direct sum (R∞)m is clearly
free; each I ((Rk)m,Rn) is a Σm-manifold, and L(m) is homotopy equivalent to a free
Σm-cell complex. Since I ((Rk)m,Rn) is (n− km− 1)-connected, it follows that L(m)
is non-equivariantly contractible.

The Boardman–Vogt little ∞-cubes operad C∞ described below gives a third
example of an E∞ operad.

The requirement for freeness derives from infinite loop space theory. As we review
in Section 5.11, infinite loop spaces are algebras for the little ∞-cubes operad C∞. As
we review in Section 5.9, for any E∞ operad E in spaces, the category of E-algebras
has an equivalent homotopy theory to the category of C∞-algebras. On the other hand,
any algebra in spaces for the operad Com must be a generalized Eilenberg–Mac Lane
space, and the category of Com-algebras does not have an equivalent homotopy theory
to the category of C∞-algebras. In generalizing the notion of E∞ to other categories,
getting the right category of algebras is key. For symmetric spectra, orthogonal spectra,
and EKMM S-modules and for chain complexes of modules over a ring containing
the rational numbers, it is harmless to allow Com to fit the definition of E∞ operad
(cf. Examples 5.9.3, 5.9.4); in spaces and chain complexes of modules over a finite
field, some freeness condition is required. In general, the condition should be a
flatness condition on O(m) for (O(m)�X(m))/Σm as a functor of X (for suitable X)
(cf. Definition 5.9.1).

Unlike the definition of E∞ or A∞ operad, which are defined in terms of homotopical
conditions on the constituent spaces, the definition of En operads for other n depends
on specific model operads first defined by Boardman–Vogt [49] and called the little
n-cubes operads Cn.

Construction 5.3.5 (The little n-cubes operad). The m-th space Cn(m) of the little
n-cubes operad is the space of m ordered almost disjoint parallel axis affine em-
beddings of the unit n-cube [0,1]n in itself. So Cn(0) is a single point representing
the unique way to embed 0 unit n-cubes in the unit n-cube. A parallel axis affine
embedding of the unit cube in itself is a map of the form

(t1, . . . , tn) ∈ [0,1]n 7→ (x1 + a1t1, . . . ,xn + antn) ∈ [0,1]n

for some fixed (x1, . . . ,xn) and (a1, . . . , an) with each ai > 0, xi ≥ 0, and xi + ai ≤ 1; it
is determined by the point (x1, . . . ,xn) where it sends (0, . . . ,0) and the point

(y1, . . . , yn) = (x1 + a1, . . . ,xn + an)
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where it sends (1, . . . ,1). So Cn(1) is homeomorphic to the subspace

{((x1, . . . ,xn), (y1, . . . , yn)) ∈ [0,1]n × [0,1]n | x1 < y1,x2 < y2, . . . ,xn < yn}

of [0,1]n × [0,1]n. For m ≥ 2, almost disjoint means that the images of the open
subcubes are disjoint (the embedded cubes only intersect on their boundaries), and
Cn(m) is homeomorphic to a subset of Cn(1)m. The map 1 is specified by the element
of Cn(1) that gives the identity embedding of the unit n-cube. The action of the sym-
metric group is to re-order the embeddings. The composition law Γmj1,...,jm

composes
the j1 embeddings in Cn(j1) with the first embedding in Cn(m), the j2 embeddings in
Cn(j2) with the second embedding in Cn(m), etc., to give j = j1 + · · ·+ jm total embed-
dings. See Figure 5.3 for a picture in the case n = 2. Taking cartesian product with the
identity map on [0,1] takes a self-embedding of the unit n-cube to a self-embedding
of the unit (n + 1)-cube and induces maps of operads Cn → Cn+1 that are closed
inclusions of the underlying spaces. Let C∞(m) =

⋃
Cn(m); the operad structures on

the Cn fit together to define an operad structure on C∞.

The space Cn(m) has the Σm-equivariant homotopy type of the configuration space
C(m,Rn) of m (ordered) points in R

n, or equivalently, C(m, (0,1)n) of m points in
(0,1)n. To see this, since both spaces are free Σm-manifolds (non-compact, and with
boundary in the case of Cn(m)), it is enough to show that they are non-equivariantly
weakly equivalent, but it is in fact no harder to produce a Σm-equivariant homotopy
equivalence explicitly. We have a Σm-equivariant map Cn(m)→ C(m, (0,1)n) by taking
the center point of each embedded subcube. It is easy to define a Σm-equivariant
section of this map by continuously choosing cubes centered on the given configuration;
one way to do this is to make them all have the same equal side length of 1/2 of
the minimum of the distance between each of the points and the distance from each
point to the boundary of [0,1]n. A Σm-equivariant homotopy from the composite
map on Cn(m) to the identity could (for example) first linearly shrink all sides that
are bigger than their original length and then linearly expand all remaining sides
to their original length. In particular, Cn(1) is always contractible and Cn(2) is Σ2-
equivariantly homotopy equivalent to the sphere Sn−1 with the antipodal action. For

a b Γ 3
1,2,1(a;1,b,1)

Figure 5.3 Composition of little 2-cubes. Shown is the composition

Γ 3
1,2,1 : C2(3)×C2(1)×C2(2)×C2(1)→C2(4)

applied to elements a ∈ C2(3), 1 ∈ C2(1), b ∈ C2(2), 1 ∈ C2(1), with a and b as pictured.
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m > 2, the configuration spaces can be described in terms of iterated fibrations, and
their Borel homology was calculated by Cohen in [70] and [71, IV].

We can say more about the homotopy types in the cases n = 1, n = 2, and n =∞.
For n = 1, the natural order of the interval [0,1], gives a natural order to the embedded
sub-intervals (1-cubes); let C1(m) denote the subspace of C1(m) where the sub-intervals
are numbered in their natural order. The spaces C1(m) are contractible and form
a non-symmetric operad with C1 (canonically) isomorphic to the associated operad.
In other words, the map of operads C1→Ass that takes a sequence of embeddings
and just remembers the order they come in is a Σm-equivariant homotopy equivalence
at each level. In particular C1 is an A∞ operad.

For n = 2, the configuration space C(m,R2) is easily seen to be an Eilenberg–
Mac Lane space K(Am,1), where Am is the pure braid group (of braids with fixed
endpoints) on m strands (see, for example, [194, §4]).

For n =∞, C∞ is an E∞ operad; each C∞(m) is a universal Σm-space. To see this,
it is easier to work with

C(m,R∞) :=
⋃
C(m,Rn).

Choosing a homeomorphism (0,1) �R that sends 1/2 to 0, the induced homeomor-
phisms Cn(m)→ C(m,Rn) are compatible with the inclusions Cn(m)→Cn+1(m) and
C(m,Rn)→ C(m,Rn+1); as these inclusions are embeddings of closed submanifolds
(with boundary in the case of Cn(m)), the induced map

C∞(m) =
⋃
Cn(m)→

⋃
C(m,Rn) = C(m,R∞)

remains a homotopy equivalence. One way to see that C(m,R∞) is non-equivariantly
contractible is to start by choosing a homotopy though injective linear maps from
the identity on R

∞ to the shift map that on basis elements sends ei to ei+m. We then
homotope the configuration (which now starts with the first m coordinates all zero) so
that the i-th point has i-th coordinate 1 and the remainder of the first m coordinates
zero. Finally, we homotope the configuration to the configuration with i-th point at ei .

We use the operads Cn to define En operads:

Definition 5.3.6. An operad E in spaces is an En operad when there is a zigzag
of maps of operads relating it to Cn, each of which is a Σm-equivariant homotopy
equivalence on m-th spaces for all m.

This definition is standard, but a bit awkward, because it defines a property, whereas
a better definition would define a structure and ask for at least a preferred equivalence
class of zigzag.

As we review in Section 5.9, such maps induce equivalences of homotopy categories
of algebras (indeed, Quillen equivalences). We have implicitly given two different
definitions of E∞ operad; the following proposition justifies this.

Proposition 5.3.7. An operad E of spaces is E∞ in the sense of Definition 5.3.2 if and
only if it is E∞ in the sense of Definition 5.3.6.

Before reviewing the proof, we state a closely related proposition.
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Proposition 5.3.8. An operad E of spaces is E1 if and only if it is isomorphic to the
associated operad of an A∞ operad.

The previous two propositions (and their common proof) are the gist of the second
half of §3 of May [194]. In each case one direction is clear, since C1 and C∞ are A∞
and E∞ (respectively), and the conditions of Definitions 5.3.1 and 5.3.2 are preserved
by the zigzags considered in Definition 5.3.6. The proof of the other direction is to
exhibit an explicit zigzag:

Proof. Let E be the operad in question and assume it is either E∞ in the sense of
Definition 5.3.2 (for the first proposition) or A∞ in the sense of Definition 5.3.1 ff. (for
the second proposition). In the case of the first proposition, consider the product in
the category of operads C∞ ×E ; it satisfies

(C∞ ×E)(m) = C∞(m)×E(m)

with the diagonal Σm-action and the unit and composition maps the product of those
for C∞ and E . The projections

C∞←C∞ ×E → E

give a zigzag as required by Definition 5.3.6. For the second proposition, do the
same trick with the non-symmetric operads E and C1 and then pass to the associated
operads.

Definitions 5.3.1 and 5.3.2 mean that identifying A∞ and E∞ operads is pretty
straightforward. In unpublished work, Fiedorowicz [98] defines the notion of a braided
operad , which provides a good criterion for identifying E2 operads. For n > 2 (finite),
the spaces Cn(m) are not Eilenberg–Mac Lane spaces (for m > 1), and that makes
identification of such operads much harder; however, Berger [36, 1.16] proves a theorem
(which he attributes to Fiedorowicz) that gives a method to identify En operads that
seems to work well in practice; see [205, §14], [37, §1.6].

The work of Dunn [85] and Fiedorowicz–Vogt [97] is the start of an abstract
identification of En operads: The derived tensor product of n E1 operads is an En
operad. Here “tensor product” refers to the Boardman–Vogt tensor product of operads
(or PROPs) in [48, 2§3], which is the universal pairing subject to “interchange”, meaning
that an O⊗P -algebra structure consists of an O-algebra and a P -algebra structure on
a space where the O- and P -structure maps commute (see ibid. for more details on the
construction of the tensor product). This still essentially defines En operads in terms
of reference models, though in principle, it gives a wide range of additional models. (I
do not know an example where this is actually put to use, but [62] comes close.) The
concept of interchange makes sense in any cartesian symmetric monoidal structure, so
this also in principle tells how to extend the notion of En to other cartesian symmetric
monoidal categories with a homotopy theory of operads for which the Boardman–Vogt
tensor product is reasonably well-behaved. (Again, I know no examples where this is
put to use, but perhaps work by Barwick (unpublished), Gepner (unpublished), and
Lurie [164] on En structures is in a similar spirit.)
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In categories suitably related to spaces, En algebras are defined by a reference
model suitably related to Cn. For example, in the context of simplicial sets, the total
singular complex of the little n-cubes operad has the canonical structure of an operad
of simplicial sets, and we define En operads in terms of this reference model. In
symmetric spectra and orthogonal spectra, we have the reference model given by the
unbased suspension spectrum functor: an operad is an En operad when it is related
to Σ∞+ Cn by a zigzag of operad maps that are (non-equivariant) weak equivalences
on m-th objects for all m. For categories of chain complexes, we use the singular
chain complex of the little n-cubes operad to define the reference model. To make
the singular chains an operad, we use the Eilenberg–Mac Lane shuffle map to relate
tensor product of chains to chains on the cartesian product; the shuffle map is a lax
symmetric monoidal natural transformation

C∗(X)⊗C∗(Y )→ C∗(X ×Y ),

meaning that it commutes strictly with the symmetry isomorphisms

C∗(X)⊗C∗(Y ) � C∗(Y )⊗C∗(X) and C∗(X ×Y ) � C∗(Y ×X)

and makes the following associativity diagram commute:

C∗(X)⊗C∗(Y )⊗C∗(Z) //

��

C∗(X ×Y )⊗C∗(Z)

��

C∗(X)⊗C∗(Y ×Z) // C∗(X ×Y ×Z)

See, for example, [200, §29].
The fact that En operads need to be defined in terms of a reference model is

not entirely satisfactory, especially in homotopical contexts that are not topological.
Nevertheless, the definition for spaces, simplicial sets, or chain complexes seems to
suffice to cover all other contexts that arise in practice.2

5.4 Operadic algebras and monads

In the original context of iterated loop spaces and in many current contexts in homo-
topy theory and beyond, the main purpose of operads is to parametrize operations,
which is to say, to define operadic algebras. For a closed symmetric monoidal category,
there are three equivalent definitions, one in terms of operations, one in terms of
endomorphism operads, and one in terms of monads. This section reviews the three
definitions.

Viewing O(m) as parametrizing some m-ary operations on an object X means that
we have an action map

O(m)�X(m)→ X.

2 In theory, the definition for simplicial sets should suffice for all homotopical contexts, but this may
require changing models, which for a particular problem may be inconvenient or more complicated, or
make it less concrete.
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Since the right action of Σm on O(m) corresponds to reordering the arguments of the
operations, applying σ ∈ Σm to O(m) (and then performing the action map) should
have the same effect as applying σ to permute the factors in X(m). A concise way
of saying this is to say that the map is equivariant for the diagonal (left) action on
the source O(m)�X(m) and the trivial action on the target X (using the standard
convention that the left action σ on O(m) is given by the right action of σ−1). The
action map should also respect the composition law Γ , making Γ correspond to
composition of operations, and respect the identity 1, making 1 act by the identity
operation. The following gives the precise definition:

Definition 5.4.1. Let M be a symmetric monoidal category and O = ({O(m)},Γ ,1)
an operad in M . An O-algebra (in M ) consists of an object A in M together with
action maps

ξm : O(m)�A(m)→ A

that are equivariant for the diagonal (left) Σm-action on the source and the trivial Σm-
action on the target and that satisfy the following associativity and unit conditions:

(i) For all m, j1, . . . , jm,

ξm ◦ (idO(m)�ξj1 � · · ·� ξjm ) = ξj ◦ (Γmj1,...,jm � id(j)
A ),

i.e., the diagram

O(m)�O(j1)� · · ·�O(jm)�A(j)
Γmj1 ,...,jm

� id(j)
A
//

idO(m)�ξj1�···�ξjm
��

O(j)�A(j)

ξj

��

O(m)�A(m)
ξm

// A

commutes.
(ii) The map ξ1 ◦ (1� idA) : 1�A→ A is the unit isomorphism for �.

A map of O-algebras from (A, {ξm}) to (A′ , {ξ ′m}) consists of a map f : A→ A′ in M
that commutes with the action maps, i.e., that make the diagrams

O(m)�A(m) ξm //

idO(m)�f
(m)

��

A

f

��

O(m)�A′ (m)
ξ ′m

// A′

commute for all m. We write M [O] for the category of O-algebras.

Example 5.4.2. When M has an initial object and � preserves the initial object
in each variable, the structure of an algebra over the identity operad I is no extra
structure on an object of M .
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Per (ii) above and as illustrated in the previous example, the 1 in the structure of the
operad corresponds to the identity operation. In some contexts algebras have units;
when that happens, the unit is encoded in O(0) as in the examples of monoids and
commutative monoids. Recall that a monoid object for � inM (or �-monoid for short)
consists of an object M together with a multiplication map µ : M �M→M and unit
map η : 1→M satisfying the following associativity and unit diagrams

M �M �M
µ�id

//

id�µ
��

M �M

µ

��

M �M µ
// M

1�M
η� id

//

�
$$

M �M

µ

��

M �1
id�η
oo

�
zz

M

(where the diagonal maps are the unit isomorphisms inM ). The opposite multiplication
is the composite of the symmetry morphism c : M �M → M �M with µ, and a
�-monoid is commutative when µ = µ ◦ c.

Example 5.4.3. Given a Com-algebra A, defining η to be the action map ξ0

η : 1 = Com(0)
ξ0−−→ A

and µ to be the composite of the (inverse) unit isomorphism and the action map ξ2

µ : A�A � Com(2)�A�A
ξ2−−→ A

endows A with the structure of a commutative �-monoid: associativity follows from
the fact that the maps Γ 2

1,2 and Γ 2
2,1 are both unit maps for � so under the canonical

isomorphisms

A�A�A � Com(2)� (Com(1)� Com(2))� (A�A�A),

A�A�A � Com(2)� (Com(2)� Com(1))� (A�A�A),

both maps induce the same map A�A�A→ A. Likewise, the unit condition follows
from the fact that

Γ 2
0,1 : Com(2)� (Com(0)� Com(1))→Com(1),

Γ 2
1,0 : Com(2)� (Com(1)� Com(0))→Com(1)

are both unit maps. The multiplication is commutative because the action of the
symmetry map on 1 = Com(2) is trivial. Conversely, we can convert a commutative �-
monoid to a Com-algebra by taking ξ0 to be the unit η, ξ1 to be the unit isomorphism
for �, ξ2 to be induced by the unit isomorphism for � and the multiplication, and all
higher ξm’s induced by the unit isomorphism for � and (any) iterated multiplication.
This defines a bijective correspondence between the set of commutative �-monoid
structures and the set of Com-algebra structures on a fixed object and an isomorphism
between the category of commutative �-monoids and the category of Com-algebras.

For a non-symmetric operad, defining an algebra in terms of the associated operad
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or in terms of the analogue of Definition 5.4.1 without the equivariance requirement
produce the same structure.

Example 5.4.4. The constructions of Example 5.4.3 applied to the non-symmetric
operad Ass give a bijective correspondence between the set of �-monoid structures
and the set of Ass-algebra structures on a fixed object and an isomorphism between
the category of �-monoids and the category of Ass-algebras.

The monoid and commutative monoid objects in the category of sets (with the usual
symmetric monoidal structure given by cartesian product) are just the monoids and
commutative monoids in the usual sense. Likewise, in spaces, they are the topological
monoids and topological commutative monoids. In the category of abelian groups
(with the usual symmetric monoidal structure given by the tensor product), the monoid
objects are the rings and the commutative monoid objects are the commutative
rings. In the category of chain complexes of R-modules for a commutative ring R
(with the usual symmetric monoidal structure given by tensor product over R), the
monoid objects are the differential graded R-algebras and the commutative monoid
objects are the commutative differential graded R-algebras. In a modern category
of spectra, the monoid objects are called S-algebras or sometimes strictly associative
ring spectra. Some authors take the term “ring spectrum” to be synonymous with
S-algebra, but others take it to mean the weaker notion of monoid object in the
stable category (or even weaker notions). Work of Schwede–Shipley [265, 3.12.(3)]
shows that the homotopy category of monoid objects in any modern category of
spectra is equivalent to an appropriate full subcategory of the (mutually equivalent)
homotopy category of monoid objects in EKMM S-modules, symmetric spectra, or
orthogonal spectra (at least when “modern category of spectra” is used as a technical
term to mean a model category with a preferred equivalence class of symmetric
monoidal Quillen equivalence to the currently known modern categories of spectra);
cf. Example Theorem 5.9.6 below. The analogous result does not hold for commutative
monoid objects; see [151]. The term “commutative S-algebra” is typically reserved for
examples where the homotopy category of commutative monoid objects is equivalent
to an appropriate full subcategory of the (mutually equivalent) homotopy category of
commutative monoid objects in EKMM S-modules, symmetric spectra, or orthogonal
spectra. See Chapter 6 of this volume for more on commutative ring spectra.

Returning to the discussion of operadic algebras, in the case when M is a closed
symmetric monoidal category, adjoint to the action map

ξm : O(m)�A(m)→ A

is a map

φm : O(m)→ F(A(m),A) = EndA(m).

Equivariance for ξm is equivalent to equivariance for φm. Similarly, conditions (i)
and (ii) in the definition of O-algebra (Definition 5.4.1) are adjoint to the diagrams
in the definition of map of operads (Definition 5.2.2). This proves the following
proposition, which gives an alternative definition of O-algebra.
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Proposition 5.4.5. LetM be a closed symmetric monoidal category, let O be an operad in
M , and let X be an object inM . The adjunction rule ξm↔ φm above defines a bijection
between the set of O-algebra structures on X and the set of maps of operads O→ EndX .

In the case when M is (countably) cocomplete (has (countable) colimits) and �
preserves (countable) colimits in each variable (which includes the case when it is
closed), algebras can also be defined in terms of a monad. The idea for the underlying
functor is to gather the domains of all the action maps into a coproduct; since the
action maps are equivariant with target having the trivial action, they factor through
the coinvariants (quotient by the symmetric group action), and this goes into the
definition.

Notation 5.4.6. Let M be a symmetric monoidal category with countable colimits,
and let O be an operad in M . Define the endofunctor O of M (i.e., a functor
O : M →M ) by

OX =
∞∐
m=0
O(m)�Σm X

(m),

where O(m)�Σm X
(m) := (O(m)�X(m))/Σm.

(When we use other letters for operads, we typically use the corresponding letters
for the associated monad; for example, we write A for the monad associated to an
operad A, B for the monad associated to an operad B, etc.)

The action maps for an O-algebra A then specify a map ξ : OA→ A; the conditions
for defining an O-structure also admit a formulation in terms of this map. The basic
observation is that we have a canonical isomorphism

(OX)(m) �
∞∐
j1=0
· · ·

∞∐
jm=0

(O(j1)�Σj1X
(j1))� · · ·� (O(jm)�ΣjmX

(jm))

�
∞∐
j=0

∐
j1 ,...,jm∑
ji=j

(O(j1)� · · ·O(jm))�Σj1×···×Σjm X
(j),

using the symmetry isomorphism to shuffle like factors without permuting them. We
can use this isomorphism to give OX the canonical structure of an O-algebra, defining
the action map

µm : O(m)� (OX)(m)→OX

by commuting the coproduct past �, using the operad composition law, and passing
to the quotient by the full permutation group:

O(m)� (OX)(m) �
∞∐
j=0

∐
j1 ,...,jm∑
ji=j

O(m)� (O(j1)� · · ·O(jm))�Σj1×···×Σjm X
(j)

∐∐
Γmj1 ,...,jm

� id(j)
X

−−−−−−−−−−−−−−−→
∞∐
j=0
O(j)�Σj1×···×Σjm X

(j) −→
∞∐
j=0
O(j)�Σj X

(j) = OX.



5.4 Operadic algebras and monads 203

The pictured map is well-defined because of the (Σj1×· · ·×Σjm )-equivariance of Γmj1,...,jm
(5.2.1 (iii)). The other permutation rule (5.2.1 (iv)) implies that µm is Σm-equivariant.
The remaining two parts of the definition of operad show that the µm define an
O-algebra structure map: 5.2.1 (i)–(ii) imply 5.4.1 (i)–(ii), respectively. This O-algebra
structure then defines a map

µ : OOX→OX

as above, which is natural in X. The map 1�idX also induces a natural transformation

η : X→OX.

These two maps together give O the structure of a monad.

Proposition 5.4.7. Let M be a symmetric monoidal category with countable colimits
and assume that � commutes with countable colimits in each variable. For an operad O,
the functor O and natural transformations µ, η form a monad: the diagrams

OOOX
µ
//

Oµ

��

OOX

µ

��

OOX µ
//
OX

OX
η
//
OOX

µ

��

OX

commute (where the top map in the left-hand diagram is the map µ for the object OX).

The proof is applying 5.4.1 (i)–(ii) for OX.

Example 5.4.8. Under the hypotheses of the previous proposition, the monad asso-
ciated to the identity operad I is canonically isomorphic (via the unit isomorphism)
to the identity monad Id. The monad associated to the operad Com is canonically
isomorphic to the free commutative monoid monad

PX =
∞∐
j=0
X(j)/Σj .

The monad associated to the algebra Ass is canonically isomorphic to the free
monoid monad

TX =
∞∐
j=0
X(j).

An algebra over the monad O consists of an object A and a map ξ : OA→ A such
that the diagrams

OOA
µ
//

Oξ
��

OA

ξ

��

OA
ξ

// A

A
η
//
OA

ξ

��

A

commute. Given an O-algebra (A, {ξm}), the map ξ : OA→ A constructed as the
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coproduct of the induced maps on coinvariants then is an O-algebra action map.
Conversely, given an O-algebra (A,ξ), defining ξm to be the composite

O(m)�A(m)→OA
ξ
−→ A,

the maps ξm make A an O-algebra. This gives a second alternative definition of
O-algebra.

Proposition 5.4.9. Under the hypotheses of Proposition 5.4.7, for X an object ofM , the
correspondence {ξm} ↔ ξ above defines a bijection between the set of O-algebra structures
on X and the set of O-algebra structures on X and an isomorphism between the category of
O-algebras and the category of O-algebras.

5.5 Modules over operadic algebras

Just as an operad defines a category of algebras, an algebra defines a category of
modules. Because this chapter concentrates on the theory of operadic algebras, we
will only touch on the theory of modules. A complete discussion could fill a book and
many of the aspects of the theory of operads we omit in this chapter (including Koszul
duality, Quillen (co)homology, Deligne and Kontsevich conjectures) correspond to
statements about categories of modules; even an overview could form its own chapter.
We will just give a brief review of the definitions and the homotopy theory.

The original definition of modules over an operadic algebra seems to be due to
Ginzburg and Kapranov [104, §1.6].

Definition 5.5.1. For an operad O and an O-algebra A, an (O,A)-module (or just
A-module when O is understood) consists of an object M of M and structure maps

ζm : O(m+ 1)� (A(m) �M)→M

for m ≥ 0 such that the associativity, symmetry, and unit diagrams in Figure 5.4 com-
mute. A map of A-modules is a map of the underlying objects of M that commutes
with the structure maps.

Although the definition appears to favor A on the left, we obtain analogous right-
hand structure maps

O(m+ 1)� (M �A(m))→M

satisfying the analogous right-hand version of the diagrams in Figure 5.4 by applying
an appropriate permutation. Thus, an A-module structure can equally be regarded as
either a left or right module structure. The following example illustrates this point.

Example 5.5.2. When O = Ass, the (symmetric) operad for associative algebras,
and A is an O-algebra (i.e., �-monoid), an (O,A)-module in the sense of the previous
definition is precisely an A-bimodule in the usual sense: it has structure maps

λ : A�M→M and ρ : M �A→M
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O(j + 1)� (A(j) �M)

ζj

��

O(m+ 1)� (O(j1)� · · ·�O(jm)�1)� (A(j) �M)

(
Γm+1
j1 ,...,jm,1

◦ (id� ···� id�1)
)
� id
//

c

��

M

O(m+ 1)�

 (O(j1)�A(j1))� · · ·
· · ·� (O(jm)�A(jm))�M


id� (ξj1� ···�ξjm� id)

// O(m+ 1)� (A(m) �M)

ζm

OO

O(m+ 1)�A(m) �M

aσ−1�cσ�id

��

ζm

))

1�M

�

!!

1� id // O(1)�M

ζ0

��

M

O(m+ 1)�A(m) �M
ζm

55

M

Figure 5.4 The diagrams for Definition 5.5.1. In the first diagram, j = j1 + · · ·+ jm and c is the
�-permutation that shuffles the O(ji )’s past the M and A’s as displayed composed with the unit
isomorphism for �; ξi denote the O-algebra structure maps for A. In the second diagram, σ
is a permutation of {1, . . . ,m}, permuting the factors of A, viewed as an element of Σm+1 for
permutation action on O(m+ 1). In the third diagram, the diagonal isomorphism is the unit
isomorphism for �.

satisfying the following associativity, unity, and interchange diagrams:

A�A�M
µ� id

//

id�λ
��

A�M

λ
��

A�M
λ

// M

M �A�A
id�µ

//

ρ� id
��

M �A

ρ

��

M �A ρ
// M

A�M

λ
''

1�M �M �1

��

η� id
oo

id�η
// M �A

ρ
ww

M

A�M �A
λ� id //

id�ρ
��

M �A

ρ

��

A�M
λ

// M

where µ denotes the multiplication and η the unit for A and the unlabeled arrow is
the unit isomorphism for �.

Obtaining a theory of modules closer to the idea of a left module (or right module)
over an associative algebra requires working with non-symmetric operads.
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Definition 5.5.3. Let O be a non-symmetric operad and let A be an O-algebra.
A left (O,A)-module (or just left A-module when O is understood) consists of an
object M of M and structure maps

ζm : O(m+ 1)� (A(m) �M)→M

for m ≥ 0 such that the associativity and unit diagrams in Figure 5.4 commute (with
O in place of O). A map of left A-modules is a map of the underlying objects of M
that commutes with the structure maps.

We also have the evident notion of a right A-module defined in terms of structure
maps

ζm : O(m+ 1)� (M �A(m))→M

and the analogous right-hand associativity and unit diagrams.
Unlike in the case of operadic algebras, where working with a non-symmetric operad

and its corresponding symmetric operad results in the same theory, in the case of
modules, the results are very different.

Example 5.5.4. When O =Ass, the non-symmetric operad for associative algebras,
and A is an O-algebra (i.e., a �-monoid), a left (Ass,A)-module in the sense of the
previous definition is precisely a left A-module in the usual sense defined in terms
of an associative and unital left action map A�M →M . Likewise, a right (Ass,A)-
module is precisely a right A-module in the usual sense.

Under mild hypotheses, the category of (O,A)-modules is a category of modules for
a �-monoid called the enveloping algebra of A.

Construction 5.5.5 (The enveloping algebra). Assume that M admits countable
colimits and � preserves countable colimits in each variable. For an operad O and
an O-algebra A, let UOA (or UA when O is understood) be the coequalizer

∞∐
m=0
O(m+ 1)�Σm (OA)(m) //

//

∞∐
m=0
O(m+ 1)�Σm A

(m) // UOA,

where we regard Σm as the usual subgroup of Σm+1 of permutations that fix m+ 1.
Here one map is induced by the action map OA→ A and the other is induced by
the operadic multiplication

O(m+ 1)� (OA)(m) �
∐

j1,...,jm

O(m+ 1)� (O(j1)�A(j1))� · · ·� (O(jm)�A(jm))

�
∐

j1,...,jm

(
O(m+ 1)� (O(j1)� · · ·�O(jm)�1)

)
�A(j)

∐
Γm+1
j1 ,...,jm,1

� id
−−−−−−−−−−−−−→O(j + 1)�A(j)

(where we have omitted writing 1: 1 → O(1) and as always j = j1 + · · · + jm). Let
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η : 1 → UA be the map induced by 1: 1 → O(1) and the inclusion of the m = 0
summand and let µ : UA�UA→UA be the map induced from the maps

(O(m+ 1)�A(m))� (O(n+ 1)�A(n))→O(m+n+ 1)�A(m+n)

obtained from the map ◦m+1 : O(m + 1) �O(n + 1)→ O(m + n + 1) defined as the
composite

O(m+ 1)�O(n+ 1) � O(m+ 1)� (1� · · ·�1�O(n+ 1))
Γm+1
1,...,1,n+1−−−−−−−→O(m+n+ 1)

(where again we have omitted writing 1: 1 → O(1)). Associativity of the operad
multiplication implies that η and µ give UA the structure of an associative monoid
for � and the resulting object is called the enveloping algebra of A over O.

An easy argument from the definitions and universal property of the coequalizer
proves the following proposition.

Proposition 5.5.6. AssumeM admits countable coproducts and � preserves them in each
variable. Let O be an operad and let A be an O-algebra. For an object X of M , (O,A)-
module structures on X are in bijective correspondence with left UOA-module structures. In
particular, the category of (O,A)-modules is isomorphic to the category of left UOA-modules.

Similarly, in the case of non-symmetric operads, we can construct a left module

enveloping algebra UOA (denoted UA when O is understood) as the coequalizer

∞∐
m=0
O(m+ 1)� (OA)(m) //

//

∞∐
m=0
O(m+ 1)�A(m) // UOA (5.5.1)

with maps defined as in Construction 5.5.5. The analogous identification of module
categories holds.

Proposition 5.5.7. Assume M admits countable coproducts and � preserves them in
each variable. Let O be a non-symmetric operad and let A be an O-algebra. For an object
X ofM , left (O,A)-module structures on X are in bijective correspondence with left UA-
module structures. In particular, the category of left (O,A)-modules is isomorphic to the
category of left UA-modules.

We develop some tools to study enveloping algebras in the next section. In the
meantime, we can identify the enveloping algebra in some specific examples.

Example 5.5.8. For O =Ass and A an Ass-algebra (a �-monoid), UAssA is A�Aop,

the usual enveloping algebra for a �-monoid. Viewing A as an Ass-algebra, UAssA
is the �-monoid A. If A is a Com-algebra (a commutative �-monoid), then UComA
makes sense and is also the �-monoid A.

Example 5.5.9. Let L denote the Boardman–Vogt linear isometries operad of
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Example 5.3.4. For an L-algebra, the underlying space of ULA is the pushout

L(2)×L(1) L(0)

◦1

��

id×ξ0 // L(2)×L(1) A

��

L(1) // ULA

where ◦1 is the map induced by 1: ∗ → L(1) and Γ 2
0,1 (as in Construction 5.5.5)

and the right action on L(2) of L(1) � L(1) × ∗ is via Γ 2
1,1 ◦ (id×1). The inclusions

of the m = 0 and m = 1 summands induce the map from the pushout above to
the coequalizer defining ULA; the inverse isomorphism uses the “Hopkins’ Lemma”
[94, I.5.4] isomorphism

L(2)×L(1)×L(1) (L(i)×L(j)) � L(i + j) (HL)

for i, j ≥ 1. The pushout explicitly admits maps in from the m = 0 and m = 1
summands of the coequalizer, and for m > 1 we have the map

L(m+ 1)×Σm A
(m) � L(m+ 1)×Σm×L(1) (A(m) ×L(1))

�
(HL)
L(2)×L(1)×L(1) ((L(m)×Σm A

(m))×L(1))

id×(ξm×id)
−−−−−−−−−−→L(2)×L(1)×L(1) (A×L(1)) � L(2)×L(1) A.

The previous display also indicates how the multiplication of ULA works in the
pushout description: it is induced by the map

(L(2)×A)× (L(2)×A) � (L(2)×L(2))×A(2)

◦2×id
−−−−−→L(3)×A(2)→L(3)×Σ2

A(2)→L(2)×L(1) A,

where the last map is the m = 2 case of the map above. It turns out that the map
ULA→ A induced by the operadic algebra action maps is always a weak equivalence.
(The proof is not obvious but uses the ideas from EKMM, especially [94, I.8.5, XI.3.1]
in the context of the theory of L(1)-spaces, as in for example [28, §6], [44, §4.6], or
[45, §4.3].) If we forget the symmetries in L to create a non-symmetric operad L 6Σ,
then UL6ΣA �ULA. Even when A is just an L6Σ-algebra, UL6ΣA can still be identified
as the same pushout construction pictured above using the analogous comparison
isomorphisms with the coequalizer definition (5.5.1). Analogous formulations also hold
in the context of orthogonal spectra, symmetric spectra, and EKMM S-modules using
the operad Σ∞+ L in the respective categories. In the context of Lewis–May spectra,
these observations are closely related to the foundations of EKMM S-modules and
the properties of the smash product (∧L, ∧, and ∧A); this is the start of a much longer
story on monoidal products and balanced products for A∞ module categories (see,
for example, [184] and [47, §17-18]).

Although in both previous examples we had an isomorphism of enveloping algebras
for symmetric and non-symmetric constructions, this is not a general phenomenon,
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as can be seen, for example, by comparing UAss and UAss 6Σ , where Ass 6Σ is the
non-symmetric operad formed from Ass by forgetting the symmetry. (In this style of
notation, Ass = Com 6Σ.)

The left module enveloping algebra construction for the non-symmetric little 1-
cubes operad, UC1(−), also admits a concrete description [184, §2], which we review
in Section 5.10. It shares the feature with the previous two examples that for any
C1-algebra A, UC1A is weakly equivalent to A (see [184, 1.1] or Proposition 5.10.3).

Given Propositions 5.5.6 and 5.5.7, the homotopy theory of modules over operadic
algebras reduces to (1) the homotopy theory of modules over �-monoids and (2) the

homotopy theory of UOA (or UOA) as a functor of O (or O) and A. The latter first
requires a study of the homotopy theory of operadic algebras, which we review (in part)
in the next few sections, before returning to this question in Corollary 5.9.7. On the
other hand the homotopy theory of modules over �-monoids is very straightforward,
and we give a short review of the main results in the remainder of this section. We
discuss this in terms of closed model categories. (For an overview of closed model
categories as a setting for homotopy theory, we refer the reader to [91]. See also
Chapter 2 of this volume.) The following theorem gives a comprehensive result in
some categories of primary interest.

Theorem 5.5.10. Let (M ,� ,1) be the category of simplicial sets, spaces, symmetric
spectra, orthogonal spectra, EKMM S-modules, simplicial abelian groups, chain complexes,
or any category of modules over a commutative monoid object in one of these categories, with
the usual monoidal product and one of the standard cofibrantly generated model structures.
Let A be a monoid object inM . The category of A-modules is a closed model category with
weak equivalences and fibrations created inM .

The proof in all cases is much like the argument in [94, VII§4] or [267, 2.3].
Heuristically, whenever the small object argument applies and � behaves well with
respect to weak equivalences, pushouts, and sequential or filtered colimits, a version
of the previous theorem should hold. For an example of a more general statement,
see [267, 4.1].

A map of monoid objects A→ B induces an obvious restriction of scalars functor
from the category of B-modules to the category of A-modules. When M admits
coequalizers and � preserves coequalizers in each variable (as is the case in the exam-
ples in the previous theorem), the restriction of scalars functor admits a left adjoint
extension of scalars functor B�A (−) which on the underlying objects is constructed as
the coequalizer

B�A�M //
// B�M // B�AM,

where one map is induced by the A-action on M and the other by the A action on B
(induced by the map of monoid objects). When the categories of modules have closed
model structures with weak equivalences and fibrations created in the underlying
category M , this adjunction is automatically a Quillen adjunction, which implies
a derived adjunction on homotopy categories. When the map A → B is a weak
equivalence, we can often expect the Quillen adjunction to be a Quillen equivalence
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and induce an equivalence of homotopy categories; this is the case in the setting of
the previous theorem.

Theorem 5.5.11. LetM be one of the symmetric monoidal model categories of Theorem
5.5.10. A weak equivalence of monoid objects induces a Quillen equivalence on categories of
modules.

Again, significantly more general results hold; see, for example, [157], especially
Theorem 8.3 and the subsection of Section 1 entitled “Extension of scalars”.

5.6 Limits and colimits in categories of operadic algebras

Before going on to the homotopy theory of categories of operadic algebras, we say
a few words about certain constructions, limits and colimits in this section, and
geometric realization in the next section. While limits of operadic algebras are pretty
straightforward (as explained below), colimits tend to be more complicated and we
take some space to describe in detail what certain colimits look like.

We start with limits. Let D : D →M [O] be a diagram, i.e., a functor from a small
category D , where M is a symmetric monoidal category and O is an operad in M .
By neglect of structure, we can regard D as a diagram in M , and suppose the limit L
exists in M . Then for each d ∈D , we have the canonical map L→D(d), and using
the O-algebra structure map for D(d), we get a map

O(m)�L(m)→O(m)�D(d)(m)→D(d).

These maps satisfy the required compatibility to define a map

O(m)�L(m)→ L,

which together are easily verified to provide structure maps for an O-algebra structure
on L. This O-algebra structure has the universal property for the limit of D in M [O].

Proposition 5.6.1. For any symmetric monoidal categoryM , any operad O inM , and
any diagram of O-algebras, if the limit exists in M , then it has a canonical O-algebra
structure that gives the limit inM [O].

We cannot expect general colimits of operadic algebras to be formed in the
underlying category, as can be seen from the examples of coproducts of �-monoids
(Ass-algebras) or of commutative �-monoids (Com-algebras). The discussion of co-
limits simplifies if we assume that M has countable colimits and that � preserves
countable colimits in each variable, so that Proposition 5.4.9 holds and the category
of O-algebras is the category of algebras over the monad O. The main technical tool
in this case is the following proposition; because we have assumed in particular that
� preserves coequalizers in each variable, it follows that the m-th �-power functor
preserves reflexive coequalizers (see [94, II.7.2] for a proof) and the filtered colimits
that exist (by an easy cofinality argument).



5.6 Limits and colimits in categories of operadic algebras 211

Proposition 5.6.2. IfM satisfies the hypotheses of Proposition 5.4.7, then for any operad
O, the monad O preserves reflexive coequalizers inM and the filtered colimits that exist
inM .

Recall that a reflexive coequalizer is a coequalizer

X
a //

b
// Y

c // C

where there exists a map r : Y → X such that a ◦ r = idY and b ◦ r = idY ; r is called
a reflexion. The proposition says that if the above coequalizer exists in M and is
reflexive then the diagram obtained by applying O,

OX
Oa //

Ob
// OY

Oc //
OC ,

is also a (reflexive) coequalizer diagram in M . Now suppose that a and b are maps of
O-algebras. Then the diagrams

OX
Oa //

��

OY

��

X a
// Y

and

OX
Ob //

��

OY

��

X
b
// Y

commute (where the vertical maps are the O-algebra structure maps) and we get an
induced map

OC→ C.

Repeating this for OX //
// OY and the two maps OOX //

// OOY to OX //
// OY ,

we see that the map OC→ C constructed above is an O-algebra structure map and
an easy check of universal properties shows that C with this O-algebra structure is
the coequalizer in M [O]. This shows that if a pair of parallel arrows in M [O] has a
reflexion inM , then the coequalizer inM has the canonical structure of an O-algebra
and is the coequalizer in M [O].

We can turn the observation in the previous paragraph into a construction of
colimits of arbitrary shapes in M [O]. Given a diagram D : D →M [O], assume that
the colimit of the underlying functor to M exists, and denote it by colimMD . If
colimMOD also exits, then we get a pair of parallel arrows

O(colimMOD) //
// O(colimMD) , (5.6.1)

where one arrow is induced by the O-algebra structure maps OD(d)→D(d) and the
other is the composite

O(colimMOD)
Oi−−−→OO(colimMD)

µ
−→O(colimMD),

where µ is the monadic multiplication OO→O and

i : colimMOD→O(colimMD)
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is the map assembled from the maps OD(d)→O(colimMD) induced by applying O

to the canonical maps D(d)→ colimMD . We also have a reflexion

O(colimMD)→O(colimMOD)

induced by the unit map D(d)→OD(d). Thus, the coequalizer of (5.6.1) in M has
the canonical structure of an O-algebra which provides the coequalizer in M [O];
a check of universal properties shows that the coequalizer is the colimit inM [O] of D .

Proposition 5.6.3. AssumeM satisfies the hypotheses of Proposition 5.4.7. For any operad
O and any diagram D : D →M [O], if the colimit of D and the colimit of OD exist in
M , then the colimit of D exists inM [O] and is given by the coequalizer of the reflexive
pair displayed in (5.6.1).

For example, the coproduct AqM [O]B inM [O] can be constructed as the coequal-
izer

O(OAqOB) //
// O(AqB) // AqM [O] B.

When B = OX for some X in M , we can say more by recognizing that the category
of O-algebras under A is itself the category of algebras over an operad.

Construction 5.6.4 (The enveloping operad). For m ≥ 0, define U OA (m) by the
coequalizer diagram

∞∐
`=0
O(` +m)�Σ` (OA)(`) //

//

∞∐
`=0
O(` +m)�Σ` A

(`) // U OA (m),

where one arrow is induced by the operadic multiplication

Γ `+mj1,...,j` ,1,...,1
: O(` +m)�O(j1)� · · ·�O(j`)�1� · · ·�1→O(j +m)

and the other by the O-algebra action map OA→ A. We think of the ` factors of
A (or OA) as being associated with the first ` inputs of O(` +m), leaving the last
m inputs open. We then have a Σm-action induced from the Σm-action on O(` +m)
on the open inputs, unit map 1: 1 → U OA (1) induced by the unit map of O (on
the summand ` = 0), and operadic composition Γ induced by applying the operadic
multiplication of O using the open inputs.

This operad is called the enveloping operad of A and generalizes the enveloping
algebra UOA of Construction 5.5.5: for m = 1, U OA (1) is precisely the coequalizer
defining UOA and the operad unit and multiplication Γ 1

1 coincide with the �-monoid
unit and multiplication.

To return to the discussion of the category of O-algebras under A, we note that for
m = 0, the coequalizer in Construction 5.6.4 is

OOA //
// OA // U OA (0),

giving a canonical isomorphism A→U OA (0), and so a U OA -algebra T comes with a
structure map A→ T . Looking at the summands with ` = 0 above, we get a map
of operads O → U OA , giving T an O-algebra structure; the map A→ T is a map
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of O-algebras. On the other hand, given an O-algebra B and a map of O-algebras
A→ B, we have maps

O(` +m)�A(`) �B(m)→O(` +m)�B(`) �B(m)→ B

which together induce maps U OA (m)�B(m)→ B that are easily checked to provide U OA -
algebra structure maps. This gives a bijection between the structure of an O-algebra
under A and the structure of a U OA -algebra.

Proposition 5.6.5. Let M satisfy the hypotheses of Proposition 5.4.7. For an object X
ofM , the set of U OA -algebra structures on X is in bijective correspondence with the set of
ordered pairs consisting of an O-algebra structure on X and a map of O-algebras A→ X
for that structure.

As a consequence we have the following description of the coproduct of O-algebras
AqM [O]

OX, since AqM [O]
O(−) is the left adjoint of the forgetful functor from

O-algebras under A to M .

Proposition 5.6.6. WhenM satisfies the hypotheses of Proposition 5.4.7,

AqM [O]
OX �U

O
AX =

∞∐
m=0
U OA (m)�Σm X

(m)

(where the coproduct symbol undecorated by a category denotes coproduct inM ).

The decomposition above can be useful even without further information on U OA ,
but in fact we can be more concrete about what U OA looks like in the case when A is
built up iteratively from pushouts of free objects in M [O]. As a base case, an easy
calculation gives

U O
OX(m) =

∞∐
`=0
O(` +m)�Σ` X

(`).

Now suppose A′ = AqM [O]
OX OY for some maps X → A and X → Y in M ; we can

then describe U OA′ in terms of U OA and pushouts in M [O] as follows. (In particular,
the calculation of U OA′ (0) describes A′ in these terms and the calculation of U OA′ (1)
describes UA′ in these terms.) First, using the observations on colimits above, a little
work shows that the coequalizer defining U OA′ simplifies in this case to

∞∐
`=0
U OA (` +m)�Σ` (XqY )(`) //

//

∞∐
`=0
U OA (` +m)�Σ` Y

(`) // U OA′ (m)

where one map is induced by the map X → A (= U OA (0)) and the other is induced
by the map X→ Y . We then have a filtration on U OA′ (m) by powers of Y ; specifically,
define FkU OA′ (m) by the coequalizer

k∐
`=0
U OA (` +m)�Σ` (XqY )(`) //

//

k∐
`=0
U OA (` +m)�Σ` Y

(`) // FkU OA′ (m)
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Then colimk F
kU OA′ (m) = U OA′ (m). Comparing the universal properties for Fk−1U OA′ (m)

and FkU OA′ (m), we see that the following diagram is a pushout (in M ):

U OA (k +m)�Σk−1
(X �Y (k−1)) //

��

U OA (k +m)�Σk Y
(k)

��

Fk−1U OA′ (m) // FkU OA′ (m)

This describes U OA′ in terms of iterated pushouts in M , but we can do somewhat
better, as can be seen in the example where M is the category of spaces and X→ Y
is a closed inclusion. In the pushout above, the top horizontal map comes from the
map

Σk ×Σk−1
(X ×Y k−1)→ Y k

which fails to be an inclusion for k > 1 except in trivial cases; however, the image
of this map can be described as an iterated pushout, starting with Xk and gluing in
higher powers of Y . This works as well in the general case (which we now return to).

Let Qk0(X→ Y ) = X(k), an object ofM with a Σk-action and a Σk-equivariant map
to Y (k). Inductively, for i > 0, define Qki (X→ Y ) as the pushout

Σk ×Σk−i×Σi (X(k−i) �Qii−1(X→ Y )) //

��

Σk ×Σk−i×Σi (X(k−i) �Y (i))

��

Qki−1(X→ Y ) // Qki (X→ Y )

(5.6.2)

with the evident Σk-action and Σk-equivariant map

Qki (X→ Y )→ Y (k).

Then for all j > 0, we have a (Σj ×Σk)-equivariant map

X(j) �Qki (X→ Y )→Q
j+k
i (X→ Y )

induced by the map

X(j) �X(k−i) �Y (i) � X(j+k−i) �Y (i)→Q
j+k
i (X→ Y )

and the compatible (inductively defined) map

X(j) �Qki−1(X→ Y )→Q
j+k
i−1(X→ Y )→Q

j+k
i (X→ Y ),

which allows us to continue the induction. In the case when M is the category of
topological spaces and X→ Y is a closed inclusion, the maps

Qk0(X→ Y )→ ·· · →Qkk−1(X→ Y )→ Y (k)

are closed inclusions with Qki (X→ Y ) the subspace of Y k where at most i coordinates
are in Y \X. In the general case, an inductive argument shows that the map

Σk ×Σk−i×Σi (X(k−i) �Y (i))→Qki (X→ Y )
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is a categorical epimorphism and that the map

U OA (k +m)�Σk−1
(X �Y (k−1))→U OA (k +m)�ΣkQ

k
k−1(X→ Y )

is a categorical epimorphism. Since this factors the map

U OA (k +m)�Σk−1
(X �Y (k−1))→U OA (k +m)�Σk Y

(k),

we get the following more sophisticated identification of FkU OA′ (m) as a pushout:

U OA (k +m)�ΣkQ
k
k−1(X→ Y ) //

��

U OA (k +m)�Σk Y
(k)

��

Fk−1U OA′ (m) // FkU OA′ (m)

(5.6.3)

In practice, the map Qkk−1(X→ Y )→ Y (k) is some kind of cofibration when X→ Y is
nice enough; the above formulation is then useful for deducing homotopical informa-
tion in the presence of cofibrantly generated model category structures, as discussed
in Section 5.8.

5.7 Enrichment and geometric realization

Categories of operadic algebras in spaces or spectra come with a canonical enrichment
in spaces, i.e., they have mapping spaces and an intrinsic notion of homotopy. While
more abstract notions of homotopy, for example, in terms of model structures, now
play a more significant role in homotopy theory, the topological enrichment provides
some powerful tools, including and especially geometric realization of simplicial
objects.

We begin with a general discussion of enrichment of operadic algebra categories.
When M satisfies the hypotheses of Proposition 5.4.7, Proposition 5.4.9 describes the
maps in the category of O-algebras as an equalizer

M [O](A,B) // M (A,B) //
// M (OA,B) ,

where one arrow M (A,B)→M (OA,B) is induced by the action map OA→ A and
the other is induced by applying the functor O : M (A,B)→M (OA,OB) and then
using the action map OB→ B. When M is enriched over a complete symmetric
monoidal category (for example, when the mapping sets of M are topologized or
simplicial), then M [O] becomes enriched exactly when O has the structure of an
enriched functor, defining the enrichment of M [O] by the equalizer above. Clearly it
is not always possible for O to be enriched: ifM is the category of abelian groups and
O =Ass or Com, then O is not an additive functor so cannot be enriched over abelian
groups; this corresponds to the fact that the categories of rings and commutative rings
are not enriched over abelian groups. On the other hand, enrichments over spaces
and simplicial sets are usually inherited by algebra categories; the reason, as we now
explain, derives from the fact that spaces and simplicial sets are cartesian.
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For convenience, consider the case when M is a closed symmetric monoidal
category. Let E ,×,∗ be a symmetric monoidal category (which we will eventually
assume to be cartesian), and let L : E →M be a strong symmetric monoidal functor
that is a left adjoint; let R denote its right adjoint. For formal reasons R is then lax
symmetric monoidal and in particular RF provides an E-enrichment of M (where, as
always, F denotes the mapping object in M ). These hypotheses are not all necessary
but avoid some review of enriched category theory and concisely state a lot of
coherence data that more minimal hypotheses would force us to spell out. The iterated
symmetric monoidal product in M then gives a multivariable enriched functor

RF(A1,B1)× · · · ×RF(Am,Bm)→ RF(A1 � · · ·�Am,B1 � · · ·�Bm).

Now assume that × is a cartesian monoidal product, meaning that it is the categorical
product, the unit is the final object, and the symmetry and unit isomorphisms are
the universal ones. With this assumption, we have a natural diagonal map E→ E ×E,
which we can apply in particular to the object RF(A,B) to get a natural map

RF(A,B)→ RF(A,B)× · · · ×RF(A,B)→ RF(A(m),B(m)). (5.7.1)

This makes the m-th �-power into an E-enriched functor for m > 0. In the case m = 0,
we have the final map

RF(A,B)→ ∗→ R1
�−−→ RF(A(0),B(0)).

From here the rest is easy: the � ,F adjunction gives a natural (and E-natural) map

RF(A(m),B(m))→ RF(O(m)�A(m),O(m)�B(m))

and the composite to RF(O(m)�A(m),O(m)�ΣmB
(m)) admits a canonical factorization

RF(A,B)→ RF(O(m)�ΣmA
(m),O(m)�ΣmB

(m)),

since the target is a limit (in E ) that exists by right adjoint considerations when the
quotient O(m)�ΣmB

(m) = (O(m)�B(m))/Σm in M exists. When we assume that M
has countable coproducts, composing further into

RF(O(m)�Σm A
(m),OB),

the countable categorical product over m exists, giving an E-natural map

RF(A,B)→ RF(OA,OB)

which provides the E-enrichment of O. We state this as a theorem:

Theorem 5.7.1. LetM be a closed symmetric monoidal category with countable colimits,
and let O be an operad in M . Let E be a cartesian monoidal category and let E →M
be a strong symmetric monoidal functor with a right adjoint. RegardingM as E-enriched
over the right adjoint, the categoryM [O] of O-algebras has a canonical E-enrichment for
which the forgetful functorM [O]→M is E-enriched.
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We apply this now in the discussion of geometric realizations of (co)simplicial
objects. Let S denote either the category of spaces or of simplicial sets, and write
C(−,−) for the internal mapping objects in S . To avoid awkward circumlocutions,
we will refer to objects of S as spaces in either case for the rest of the section. We
now assume that M is closed symmetric monoidal and has countable coproducts and
that we have a left adjoint symmetric monoidal functor L from S to M , as above,
so that Theorem 5.7.1 applies. We write R for the right adjoint to L as above, so that
RF(−,−) provides mapping spaces for M . The category M then has tensors X ⊗ T
and cotensors T t Y , defined by the natural isomorphisms

RF(X ⊗ T ,−) � C(T ,RF(X,−)) (tensor),

RF(−,T t Y )) � C(T ,RF(−,Y )) (cotensor),

for spaces T and objects X and Y of M , constructed as follows.

Proposition 5.7.2. In the context of Theorem 5.7.1, tensors and cotensors with spaces
exist and are given by X ⊗ T = X �LT and T t Y = F(LT ,Y ) for a space T and objects
X,Y inM .

The proposition is an easy consequence of the formal isomorphism

RF(LT ,X) � C(T ,RX), (5.7.2)

natural in spaces T and objects X of M ; the isomorphism in the forward direction is
adjoint to the map

RF(LT ,X)× T → RF(LT ,X)×RLT → R(F(LT ,X)�LT )→ RX

and the isomorphism in the backwards direction is adjoint to the map LC(T ,RX)→
F(LT ,X) adjoint to the map

LC(T ,RX)�LT � L(C(T ,RX)× T )→ LRX→ X.

Let RFM [O](−,−) denote the mapping spaces constructed above for the category of
O-algebras; despite the suggestion of the notation, this is not typically a composite
functor. For an O-algebra A, F(−,A) does not typically carry a canonical O-algebra
structure, but for a space T , F(LT ,A) = T t A does: the structure map

O(n)� (T t A)(n)→ T t A

is adjoint to the map

O(n)� (T t A)(n) �LT = O(n)� (F(LT ,A))(n) �LT → A

constructed as the composite

O(n)� (F(LT ,A))(n) �LT →O(n)� (F(LT ,A))(n) � (LT )(n)→O(n)�A(n)→ A

using the diagonal map on the space T and the structure map on A. A check of
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universal properties then shows that T t A is the cotensor of A with T in the category
of O-algebras. Tensors in M [O] can be constructed as reflexive coequalizers

O(OA⊗ T ) //
// O(A⊗ T ) // A⊗M [O] T .

Writing ∆[n] for the standard n-simplex, we then have the standard definition of
geometric realization of simplicial objects in M and M [O] (without additional
assumptions) and geometric realization (often called “Tot”) of cosimplicial objects in
M and M [O] when certain limits exist. Given a simplicial object X• or a cosimplicial
object Y •, the degeneracy subobject sXn of Xn is defined as the colimit of the
degeneracy maps and the degeneracy quotient object sY n of Y n is defined as the limit
(if it exists) of the degeneracy maps. (In some literature, sXn is called the “latching
object” and sY n the “matching object”; see [124, §15.2].) The geometric realization of
X• in M or M [O] is then the sequential colimit of |X•|n, where |X•|0 = X0 and |X•|n
is defined inductively as the pushout

(sXn ⊗∆[n])∪(sXn⊗∂∆[n]) (Xn ⊗∂∆[n]) //

��

Xn ⊗∆[n]

��

|X•|n−1
// |X•|n

with both the tensor and the pushouts performed in M to define the geometric
realization in M or performed in M [O] to define the geometric realization in M [O].
The analogous, opposite construction defines the geometric realization of Y • when
all the limits exist. Because cotensors and limits (when they exist) coincide in M and
M [O], geometric realization of cosimplicial objects (when it exists) also coincides in
M and M [O]. Because pushouts generally look very different in M than in M [O],
one might expect that geometric realization of simplicial objects in M and in M [O]
would also look very different; this turns out not to be the case.

Theorem 5.7.3. Assume M satisfies the hypotheses of Theorem 5.7.1 for E either the
category of spaces or the category of simplicial sets.

(i) Let A• be a cosimplicial object inM [O]. If the limits defining the geometric realization
(Tot) exist in M , then that geometric realization has the canonical structure of an
O-algebra and is isomorphic to the geometric realization Tot inM [O].

(ii) Let A• be a simplicial object inM [O]. Then the geometric realization of A• inM has
the canonical structure of an O-algebra and is isomorphic to the geometric realization
of A• inM .

As discussed above, only (ii) requires additional argument. For clarity in the argu-
ment for the theorem, we will write | · | for geometric realization in M and | · |M [O] for
geometric realization in M [O]. Here is the key fact:

Lemma 5.7.4. For M as in the previous theorem, geometric realization in M is strong
symmetric monoidal.
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Proof. Although we wrote a more constructive definition of geometric realization
above, it can also be described as a coend

|X•| =
∫ ∆op

X• ⊗∆[•],

where ∆ denotes the category of simplexes (the category with objects [n] = {0, . . . ,n}
for n = 0,1,2, . . . , and maps the non-decreasing functions) and ∆[n] denotes the
standard n-simplex in spaces or simplicial sets. Because the symmetric monoidal
product � for M is assumed to commute with colimits in each variable, we can
identify the product of geometric realizations also as a coend

|X•|� |Y•| �
∫ ∆op×∆op

(X• �Y•)⊗ (∆[•]×∆[•]).

On the other hand,

|X• �Y•| =
∫ ∆op

diag(X• �Y•)⊗∆[•].

Next, we need a purely formal observation, which is an adjoint form of the Yoneda
lemma: if coproducts of appropriate cardinality exist in C , then given a functor
F : C →D , functoriality of F induces a natural isomorphism∫ c∈C

F(c)×C (c,−)
�−−→ F(−)

(where × denotes coproduct over the given set; this coend exists and the identification
holds with no further hypotheses on C or D ). Applying this to

F((• ,• )) = X• �Y• : ∆op ×∆op→M

and pre-composing with diag, we get an isomorphism

Xp �Yp �

∫ (m,n)∈∆op×∆op

(Xm �Yn)× (∆op(m,p)×∆(n,p))

of functors p ∈∆op→M . Commuting coends, we can reorganize the double coend

|X• �Y•| �
∫ p∈∆op(∫ (m,n)∈∆op×∆op

(Xm �Yn)× (∆op(m,p)×∆op(n,p))
)
⊗∆[p]

as ∫ (m,n)∈∆op×∆op

(Xm �Yn)⊗
(∫ p∈∆op

(∆op(m,p)×∆op(n,p))×∆[p]
)
.

In the latter formula, the expression in parentheses is the coend formula for the
geometric realization (in spaces) of the product of standard simplices (in simplicial sets)
∆[m]• ×∆[n]•, which is ∆[m]×∆[n] by the classic version of the lemma for geometric
realization in spaces. This then constructs the natural isomorphism |X•|�|Y•| � |X•�Y•|,
and a little more fiddling with coends shows that this natural transformation is
symmetric monoidal.
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Because of the previous lemma, we have a natural isomorphism O|X•| � |OX•|
that makes the appropriate diagrams commute, so that the geometric realization
(in M ) of a simplicial object A• in M [O] acquires the natural structure of an O-
algebra. Moreover, the canonical maps An ⊗∆[n]→ |A•| induce maps of O-algebras
An ⊗M [O] ∆[n]→ |A•| that assemble into a natural map of O-algebras

|A•|M [O]→ |A•|.

In the case when A• = OX•, under the identification of colimits |OX•|M [O] = O|X•|,
this map is the isomorphism O|X•| → |OX•| above. To see that it is an isomorphism
for arbitrary A•, write A• as a (reflexive) coequalizer

OOA•
//
// OA• // A•,

apply the functors, and compare diagrams.

5.8 Model structures for operadic algebras

The purpose of this section is to review the construction of model structures on some
of the categories of operadic algebras that are of interest in homotopy theory; we use
these in the next section in comparison theorems giving Quillen equivalences between
some of these categories. Constructing model structures for algebras over operads is a
special case of constructing model structures for algebras over monads; chapter VII of
EKMM [94] seems to be an early reference for this kind of result, but it concentrates
on the category of LMS-spectra and related categories. Schwede–Shipley [267] studies
the general case of monads in cofibrantly generated monoidal model categories, which
Spitzweck [280] specializes to the case of operads. Because less sharp results hold in
the general case than in the special cases of interest, we state the results on model
structures as a list of examples. This is an “example theorem” both in the sense that
it gives a list of examples, but also in the sense that it fits into the general rubric
of the kind of theorem that should hold very generally under appropriate technical
hypotheses with essentially the same proof outline. Some terminology and notation is
explained after the statement.

ExampleTheorem 5.8.1. LetM be a symmetric monoidal category with a cofibrantly
generated model structure and let O be an operad in M from one of the examples listed
below. Then the category of O-algebras inM is a closed model category with

(i) weak equivalences the underlying weak equivalences inM ,
(ii) fibrations the underlying fibrations inM , and
(iii) cofibrations the retracts of regular OI-cofibrations.

This theorem holds in particular in the examples:

(a) M is the category of symmetric spectra (of spaces or simplicial sets) with its positive
stable model structure or orthogonal spectra with its positive stable model structure or
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the category of EKMM S-modules with its standard model structure (with � the smash
product, 1 the sphere spectrum) and O is any operad inM . [68, 8.1]

(b) M is the category of spaces or simplicial sets (with � = ×, 1 = ∗), or simplicial
R-modules for some simplicial commutative ring R (with � = ⊗R, 1 = R) and O is
any operad.

(c) M is the category of (unbounded) chain complexes in R-modules for a commutative
ring R (with � = ⊗R, 1 = R) and either R ⊃ Q or O admits a map of operads
O →O⊗E which is a section for the map O ⊗E → O⊗Com � O, where E is any
E∞ operad that naturally acts on the normalized cochains of simplicial sets. [37, 3.1.3]

(d) M is a monoidal model category in the sense of [267, 3.1] that satisfies the Monoid
Axiom of [267, 3.3] and O is a cofibrant operad in the sense of [280, §3]. [280, §4,
Theorem 4]

The category of EKMM L-spectra [94, I§4] also fits into example (a) if we allow M
to be a “weak” symmetric monoidal category in the sense of [94, II.7.1]; the theorem
then covers categories of operadic algebras in LMS spectra for operads over the linear
isometries operad that have the form O ×L→L; see [68, 3.5].

In part (c), we note that for an operad that satisfies the section condition (or when
R ⊃Q), the functor O(n)×R[Σn] (−) preserves preserve exactness of (homologically)
bounded-below exact sequences of R-free R[Σn]-modules (for all n). For operads
that satisfy this more general condition but not necessarily the section condition, the
algebra category still has a theory of cofibrant objects and a good homotopy theory
for those objects; see, for example, [181, §2].

It is beyond the scope of this chapter to do a full review of closed model category
theory terminology, but we recall that a “cofibrantly generated model category” has a
set I of “generating cofibrations” and a set J of “generating acyclic cofibrations” for
which the Quillen small object argument can be done (perhaps transfinitely, but in the
examples of (a), (b), and (c), sequences suffice). Then

OI = {Of | f ∈ I}

is the set of maps of O-algebras obtained by applying O to each of the maps in I . The
point of OI is that a map of O-algebras has the left lifting property with respect to
OI in O-algebras exactly when the underlying map in M has the left lifting property
with respect to I . The same definition and observations apply replacing I with J .
The strategy for proving the previous theorem is to define the fibrations and weak
equivalences of O-algebras as in (i),(ii), and define cofibrations in terms of the left
lifting property (obtaining the characterization in (iii) as a theorem). The advantage of
this approach is that fibrations and acyclic fibrations are also characterized by lifting
properties: a map of O-algebras is a fibration if and only if it has the right lifting
property with respect to OJ and a map of O-algebras is an acyclic fibration if and
only if it has the right lifting property with respect to OI . For these lifting properties,
we can attempt the small object argument. We now outline the remaining steps in this
approach.

Recall that a regular OI-cofibration is a map formed as a (transfinite) composite of
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pushouts along coproducts of maps in OI . This is the generalization of the notion of
a relative OI -cell complex, which is the colimit of a sequence of pushouts of coproducts
of maps in OI ; in the case of examples (a), (b), and (c), in a regular OI-cofibration the
transfinite composite can always be replaced simply by a sequential composite and
so a regular OI-cofibration is a relative OI-cell complex. The small object argument
for I and J in M implies the small object argument for OI and OJ , which gives
factorization in O-algebras of a map as either a regular OI-cofibration followed by an
acyclic fibration or a regular OJ-cofibration followed by a fibration. (A small wrinkle
comes up in going from the small object argument in M to the small object argument
in M [O] in the topological examples of (a) and (b): we need to check that regular
OI-cofibrations are nice maps, for example, closed inclusions on the constituent
spaces; see the “Cofibration Hypothesis” of [94, VII§4] or [178, 5.3].)

This gets us most of the way to a model structure. Having defined a cofibration of O-
algebras as a map that has the left lifting property with respect to the acyclic fibrations,
the free-forgetful adjunction shows that regular OI-cofibrations are cofibrations;
moreover, it follows formally that any cofibration is the retract of a regular OI-
cofibration: given a cofibration f : A→ B, factor it as p ◦ i for i : A→ B′ a regular
OI-cofibration and p : B′→ B an acyclic fibration, then solving the lifting problem

A
i //

f
��

B′

p
��

B
g

??

id
// B

to produce a map g : B→ B′ exhibits f as a retract of i.

A
id //

f
��

A
id //

i
��

A

f
��

B g
// B′ p

// B

We can try the same thing with regular OJ-cofibrations; they have the left lifting
property with respect to all fibrations so are in particular cofibrations, but are they
weak equivalences? This is the big question and what keeps us from having a fully
general result for Theorem 5.8.1, especially in (c). If regular OJ-cofibrations are
weak equivalences, then the trick in the previous argument shows that every acyclic
cofibration is a retract of a regular OJ-cofibration, and the lifting property for acyclic
cofibrations follows as does the other factorization, proving the model structure.
(Conversely, if the model structure exists, because regular OJ-cofibrations have the
left lifting property for all fibrations, it follows that they are weak equivalences.)

In many examples, including examples (a) and (b) in the theorem above, the
homogeneous filtration on the pushout that we studied in Section 5.6 can be used to
prove that regular OJ-cofibrations are weak equivalences. Specifically, for X→ Y a

map in J , taking A′ = AqM [O]
OX OY , the case m = 0 of the filtration on the enveloping

operad for A gives a filtration on A′ by objects of M starting from A. Now from the
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inductive definition of Qkk−1(X→ Y ) in (5.6.2), it can be checked in examples (a) and

(b) that the map Qkk−1(X→ Y )→ Y (k) is an equivariant Hurewicz cofibration of the
underlying spaces or a monomorphism of the underlying simplicial sets as well as
being a weak equivalence. The pushout (5.6.3) then identifies the maps in the filtration
of A′ as weak equivalences as well. (This approach can also be used to prove versions
of the “Cofibration Hypothesis” of [94, VII§4] or [178, 5.3] that regular OI-cofibrations
are closed inclusions on the constituent spaces.)

Example (d) is similar, except that it uses a filtration argument on the construction
of a cofibrant operad; see [280, §4].

Example (c) fits into the case of the general theorem of Schwede–Shipley [267, 2.3],
where every object is fibrant and has a path object. To complete the argument here,
we need to show that every map f : A→ B factors as a weak equivalence followed by
a fibration:

A
' // A′ // // B.

We then get the factorization of an acyclic cofibration followed by a fibration by using
the factorization already established:

A //
' // A′′

' // // A′ // // B.

In the case of (c) where we hypothesize a map of operads O→O⊗E , this map gives
a natural O-algebra structure on B⊗C∗(−); the hypothesis that the composite map on
O is the identity implies that the canonical isomorphism

B � B⊗C∗(∆[0])

is an O-algebra map. Looking at the maps between ∆[0] and ∆[1], we get maps of
O-algebras

B→ B⊗C∗(∆[1])→ B×B

and the usual mapping path object construction

A
' // A×B (B⊗C∗(∆[1])) // // B

consists of maps of O-algebras and gives the factorization. In the case when R ⊃Q, the
polynomial de Rham functor A∗ reviewed in Section 5.12 is a functor from simplicial
sets to commutative differential graded Q-algebras, which can be used in the same
way to construct a factorization

A
' // A×B (B⊗

Q
A∗(∆[1])) // // B.

In the case of operadic algebras in spaces in example (b) and EKMM S-modules in
example (a), we have another argument taking advantage of the topological enrichment.
In these examples, the maps in J are deformation retractions, and so the maps in OJ
are deformation retractions in the category of O-algebras. It follows that regular OJ-
cofibrations are also deformation retractions and in particular homotopy equivalences.
Since homotopy equivalences are weak equivalences, regular OJ-cofibrations are weak
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equivalences in examples where this argument can be made. The specific examples
again fit into the case of [267, 2.3] where every object is fibrant and has a path object.

5.9 Comparison and rectification theorems for operadic algebras

This section discusses Quillen equivalences and Quillen adjunctions between the model
categories in Example Theorem 5.8.1. When we change from simplicial sets to spaces
or when we change the underlying symmetric monoidal category between the Quillen
equivalent modern categories of spectra, we get Quillen equivalences of categories
of operadic algebras under only mild technical hypotheses on the operad; this gives
several comparison theorems. We also consider Quillen adjunctions and Quillen
equivalences obtained by change of operads. In wide generality, the augmentation
map A→Ass for an A∞ operad induces a Quillen equivalence between categories
of algebras. Likewise, in the case of modern categories of spectra, the augmentation
map E → Com for an E∞ operad induces a Quillen equivalence between categories
of algebras. These comparison theorems are rectification theorems in that they show
that a homotopical algebraic structure can be replaced up to weak equivalence with a
strict algebraic structure.

We begin by reviewing the change of operad adjunction. Let f : A→B be a map of
operads in a symmetric monoidal categoryM . Such a map certainly gives a restriction
functor Uf from B-algebras to A-algebras, and under mild hypothesis, this functor
has a left adjoint. As in the discussion of colimits in Section 5.6, if we assume that M
satisfies the hypotheses of Proposition 5.4.7 then we can define Pf : M [A]→M [B]
by the reflexive coequalizer

B(AA) //
// BA→ Pf (A),

where A and B denote the monads associated to A and B, one arrow is induced by
the A-algebra structure on A, and the other arrow is the composite BA→BB→B

induced by the map of operads f and the monadic product on B. As a side remark,
not related to the rest of this section, we note that in this situation the category
B-algebras can be identified as the category of algebras for the monad Uf Pf inM [A]
(for a general formal proof, see [94, II.6.6.1]).

Now suppose thatM has a closed model structure andM [A] andM [B] are closed
model categories with fibrations and weak equivalences created in M . For a map of
operads f : A→B, we then get a Quillen adjunction

Pf : M [A] //
oo M [B] :Uf .

When can we expect it to be a Quillen equivalence? It is tempting to define an
equivalence of operads in M to be a map f such that derived adjunction induces
an equivalence of homotopy categories; then we have a tautological result that an
equivalence of operads induces a Quillen equivalence of model structures. Instead
we propose the following definition, which leads to a theorem with some substance



5.9 Comparison/rectification theorems for operadic algebras 225

(Example Theorem 5.9.5). It is the condition used in practice in proving comparison
and rectification theorems.

Definition 5.9.1. Let M be a closed model category with countable coproducts
and with a symmetric monoidal product that preserves countable colimits in each
variable. We say that a map f : A→B of operads inM is a derived monad equivalence
if the induced map AZ → BZ is a weak equivalence for every cofibrant object Z
in M .

Though we have not put enough hypotheses onM to ensure it, in practice countable
coproducts of reasonable objects in M will preserve and reflect weak equivalences
and then f will be a derived monad equivalence if and only if each of the maps

A(m)�Σm Z
(m)→B(m)�Σm Z

(m)

is a weak equivalence. In our examples of main interest, we have more intrinsic
sufficient conditions for a map of operads to be a derived monad equivalence.

Example 5.9.2. In the category of spaces (or more generally, any topological or
simplicial model category), a map of operads f : A→B that induces an equivariant
homotopy equivalence A(m) → B(m) for all m is a derived monad equivalence.
Indeed, the map AZ → BZ is a homotopy equivalence for all Z, and a homotopy
equivalence in a topological or simplicial model category is a weak equivalence. As a
special case, when A is a non-symmetric operad with A(m) contractible for all m,
the map of operads A→Ass is a derived monad equivalence.

Example 5.9.3. In the category of symmetric spectra (of spaces or simplicial sets)
with its positive stable model structure or the category of orthogonal spectra with
its positive model structure, a map of operads f : A → B that induces a (non-
equivariant) weak equivalence A(n) → B(n) is a derived monad equivalence. This
can be proved by generalizing the argument of [178, 15.5] (see [68, 8.3.(i)] for slightly
more details). In the case of EKMM S-modules, if f : A → B is a map of operads
of spaces that is a (non-equivariant) homotopy equivalence A(n)→ B(n) for all n,
then Σ∞+ f is a derived monad equivalence. This can be proved by generalizing the
argument of [94, III.5.1]. (See [68, 8.3.(ii)] for a more general statement.) In particular,
in these categories, the augmentation map E → Com for an E∞ operad (assumed to
come from spaces in the EKMM S-module case) is a derived monad equivalence.

Example 5.9.4. In the context of chain complexes of R-modules, a map of operads
A → B that is an R[Σn]-module chain homotopy equivalence A(n)→ B(n) for all
n is a derived monad equivalence. If the functors A(n) ⊗R[Σn] (−) and B(n) ⊗R[Σn]
(−) preserve exactness of (homologically) bounded-below exact sequences of R-free
R[Σn]-modules (for all n), then a weak equivalence A → B is a derived monad
equivalence. This occurs in particular for part (c) of Example Theorem 5.8.1 when A
and B both satisfy the stated operad hypotheses.

To go with these examples, we have the following example theorem.
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Example Theorem 5.9.5. Let M be a symmetric monoidal category and f : A→ B
a map of operads in M , where M , A, and B fall into one of the examples of Example
Theorem 5.8.1 (a)–(c). If f is a derived monad equivalence then the Quillen adjunction
Pf : M [A] //

oo M [B] :Uf is a Quillen equivalence.

Again, as in the previous section, this is an “example theorem” in that it gives an
example of the kind of theorem that holds much more generally with a proof that can
also be adapted to work much more generally. We outline the proof after the change
of categories theorem below, as the arguments for both are quite similar.

In terms of change of categories, one should expect comparison theorems of the
following form to hold quite generally:

Let L :M //
oo M ′ :R be a Quillen equivalence between monoidal model categories with

L strong symmetric monoidal, and let O be an operad inM . With some technical hypotheses,
the adjunction

L : M [O] //
oo M ′[LO] :R

on operadic algebra categories is also a Quillen equivalence.

A minimal technical hypothesis is that LO be “the right thing” and an easy way to
ensure this is to put some kind of cofibrancy condition on the objects O(n). In our
cases of interest, we could certainly state such a theorem, but it would not cover the
example in modern categories of spectra when O is the suspension spectrum functor
applied to an operad of spaces; for such an operad, the spectra O(n) will not be
cofibrant. On the other hand, in these examples the right adjoint preserves all weak
equivalences and not just weak equivalences between fibrant objects; in this setup
it seems more convenient to consider an operad O′ in M ′ and a map of operads
O→ RO′ (or equivalently, LO→O′ ) that induces a weak equivalence

OZ→ R(O′LZ)

for all cofibrant objects Z of M . We state such a theorem for our examples of interest.

ExampleTheorem 5.9.6. Let L :M //
oo M ′ :R be one of the Quillen adjunctions of

symmetric monoidal categories listed below. Let A be an operad inM , let B be an operad
inM ′ , and let f : A→ RB be a map of operads that induces a weak equivalence

AZ→ R(BLZ)

for all cofibrant objects Z ofM . Then the induced Quillen adjunction

PL,f : M [A] //
oo M ′[B] :UR,f

is a Quillen equivalence. This theorem holds in particular in the examples:

(a) M is the category of simplicial sets (with the usual model structure) or the category
of symmetric spectra of simplicial sets, M ′ is the category of spaces or the category of
symmetric spectra in spaces (respectively), and L,R is the geometric realization, singular
simplicial set adjunction.
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(b) M is the category of symmetric spectra,M ′ is the category of orthogonal spectra and
L,R is the prolongation, restriction adjunction of [178, p. 442].

(c) M is the category of symmetric spectra or orthogonal spectra, M ′ is the category of
EKMM S-modules, and L,R is the adjunction of [263] or [177, I.1.1].

As indicated in the paragraph above the statement, the statement takes advantage
of the fact that in the examples being considered in this section, the right adjoint
preserves all weak equivalences; a general statement for other examples should use
a fibrant replacement for BLZ in place of BLZ . The proof sketch below also takes
advantage of this property of the right adjoint. In generalizing the argument to the
case when fibrant replacement is required in the statement, the fibrant replacement of
the filtration can be performed in M ′ .

The proof of the theorems above uses the homogeneous filtration on a pushout

of the form A′ = AqM [O]
OX OY studied in Section 5.6. This is the m = 0 case of the

filtration on the enveloping operad U OA′ , and we will need to use the filtration on
the whole operad for an inductive argument even though we are only interested in
the m = 0 case in the end. We will use uniform notation in the sketch proof that
follows, taking M ′ =M with adjoint functors L and R to be the identity in the case
of Example Theorem 5.9.5. We use the notation I for the preferred set of generators
for the cofibrations of M (as in Section 5.8).

Because fibrations and weak equivalences in the algebra categories are created in the
underlying symmetric monoidal categories, the adjunction PL,f ,UR,f is automatically a
Quillen adjunction (as indicated already in the statements), and we just have to prove
that the unit of the adjunction

A→UR,f (PL,f A) (5.9.1)

is a weak equivalence for any cofibrant A-algebra A. Every cofibrant A-algebra is
the retract of an AI-cell A-algebra, and so it suffices to consider the case when A is
an AI-cell A-algebra; then A = colimAn where A0 =A(0) and each An+1 is formed
from An by cell attachment (of possibly an infinite coproduct of cells). As we shall
see below, the underlying maps An→ An+1 are nice enough that A is the homotopy
colimit (in M or M [A]) of the system of the finite stages An (this is the subject of
the “Cofibration Hypothesis” of [94, VII§4] mentioned parenthetically in the previous
section). Analogous observations apply for PL,f A, which is a cell BLI-algebra with
stages PL,f An. Thus, it will be enough to see that (5.9.1) is a weak equivalence for each
An. By the hypothesis of the theorem, we know that this holds for A0 (which is the
free A-algebra on the initial object of M ); moreover, as the enveloping operad of
A0 is A and the enveloping operad of PL,f A0 is B, we can assume as an inductive
hypothesis that

U
A
An
Z→U

B
PL,f An

LZ

is a weak equivalence for all cofibrant Z; in other words, we can assume by induc-
tion that the hypothesis of the theorem holds for the map of enveloping operads
UAAn→ R(UBPL,f An ). It then suffices to prove that the hypothesis of the theorem holds
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for the map of enveloping operads UAAn+1
→ R(UBPL,f An+1

); this is because in the cate-
gories M and M ′ of the examples, countable coproducts preserve and reflect weak
equivalences and the unit map An+1→UR,f (PL,f An+1) is the restriction of the map of
monads to the homogeneous degree zero summand (at least in the homotopy category
of M ).

To prove this, let X→ Y be the coproduct of maps in I such that An+1 = Anq
M [A]
AX

AY and consider the filtration on UAAn+1
(m) and UBPL,f An+1

(m) studied in Section 5.6.

We note that the induction hypothesis on An also implies that the map

UAAn(m)�Σm1×···×Σmi
(Z(m1)

1 � · · ·�Z(mi )
i )

→ R(UBPL,f An(m)�Σm1×···×Σmi
(LZ(m1)

1 � · · ·�LZ(mi )
i ))

is a weak equivalence for all cofibrant objects Z1, . . . ,Zi (where m =m1 + · · ·+mi ) as
this is a summand of the map

UAAn(m)�Σm (Z1q ·· ·qZi)(m)→ R(UBPL,f An(m)�Σm L(Z1q ·· ·qZi)(m)).

Looking at the pushout square (5.6.2) that inductively defines Qki (X → Y ), a bit of
analysis shows that in our example categories the maps Qki−1→Qki are Σk-equivariant
Hurewicz cofibrations (or in the simplicial categories, maps that geometrically realize
to such). It follows that for any cofibrant object Z, the maps

UAAn(k +m)�Σk×Σm (Qki−1(X→ Y )�Z(m))

→UAAn(k +m)�Σk×Σm (Qki (X→ Y )�Z(m))

are (or geometrically realize to) Hurewicz cofibrations (likewise in M ′ ) and that the
maps

UAAn(k +m)�Σk×Σm (Qki (X→ Y )�Z(m))

→ R(UBPL,f An(k +m)�Σk×Σm (Qki (LX→ LY )�LZ(m)))

are weak equivalences. Now the pushout square (5.6.3) shows that for any cofibrant
object Z, at each filtration level k, the map

Fk−1UAAn+1
(m)�Σm Z

(m)→ FkUAAn+1
(m)�Σm Z

(m)

is (or geometrically realizes to) a Hurewicz cofibration (likewise in M ′ ) and that the
maps

FkUAAn+1
(m)�Σm Z

(m)→ R(FkUBPL,f An+1
(m)�Σm LZ

(m))

are weak equivalences. The colimit is then weakly equivalent to the homotopy colimit
and we get a weak equivalence

UAAn+1
(m)�Σm Z

(m)→ R(UBPL,f An+1
(m)�Σm LZ

(m)),

completing the induction and the sketch proof of Example Theorems 5.9.5 and 5.9.6.
The argument above proved the comparison theorems by proving equivalences of
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enveloping operads. Since the unary part of the enveloping operad is the enveloping
algebra, we also get module category comparison results. We state this as the following
corollary, which says that as long as the algebras are cofibrant, changing categories
by Quillen equivalences and the algebras by derived monad equivalences results in
Quillen equivalent categories of modules.

Corollary 5.9.7. Let L : M //
oo M ′ :R be one of the Quillen adjunctions of symmetric

monoidal categories in Example Theorem 5.9.6 or the identity functor adjunction on one of
the categories in Example Theorem 5.9.5. Let f : A→ RB be a map of operads that induces
a weak equivalence AZ→ R(BLZ) for all cofibrant objects Z, and let g : A→ RB be a
weak equivalence of A-algebras for an A-algebra A and a B-algebra B. If A and B are
cofibrant (inM [A] andM ′[B], respectively), then f and g induce a Quillen equivalence
of the category of (A,A)-modules and the category of (B,B)-modules.

Sketch proof. The argument above shows that under the given hypotheses, the map of
�-monoids UAA→ R(UBB) is a weak equivalence. The left and right adjoint functors
in the Quillen adjunction on module categories are given by UBB�L(UAA) L(−) and
R, respectively. These both preserve coproducts, homotopy cofiber sequences, and
sequential homotopy colimits up to weak equivalence. It follows that the unit of
the adjunction X → R(UBB�L(UAA) LX) is a weak equivalence for every cofibrant
A-module X.

The analogous result also holds for modules over algebras on non-symmetric
operads, proved by essentially the same filtration argument: we have a non-symmetric
version UOA(m) of Construction 5.6.4. In this case, the resulting objects do not
assemble into an operad; nevertheless, UOA(1) still has the structure of a �-monoid
and coincides with the (non-symmetric) enveloping algebra UOA. The non-symmetric
analogue of (5.6.3) holds, and the filtration argument (under the hypotheses of the
previous corollary) proves that the map UAA → R(UBB) is a weak equivalence
of �-monoids. We conclude that the unit map X → R(UBB�LUAA LX) is a weak
equivalence for every cofibrant A-module X.

5.10 Enveloping algebras, Moore algebras, and rectification

In the special case of Example 5.9.2, Example Theorem 5.9.5 gives an equivalence of
the homotopy category of A∞ algebras (over a given A∞ operad) with the homotopy
category of associative algebras, in particular constructing an associative algebra
rectification of an A∞ algebra. We know another way to construct an associative
algebra from an A∞ algebra, namely the (non-symmetric) enveloping algebra. In the
case when the A∞ operad is the operad of little 1-cubes C1, there is also a classical
rectification called the Moore algebra. The purpose of this section is to compare these
constructions.

We first consider the rectification of Example Theorem 5.9.5 and the non-symmetric
enveloping algebra. Let O be a non-symmetric operad and ε : O → Ass a weak
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equivalence. Under the hypotheses of Example Theorem 5.9.5, the rectification (change
of operads) functor Pε associated to ε gives a �-monoid PεA and a map of O-algebras
A→ PεA that is a weak equivalence when A is cofibrant. As part of the proof of
Example Theorem 5.9.5, we get a weak equivalence of enveloping operads

U OA →U
Ass
PεA
.

As mentioned at the end of the previous section, the non-symmetric version of this
argument also works to give a weak equivalence of �-monoids

UOA→UAss(PεA).

Moreover, in the case of the associative algebra operad Ass, we have a natural
isomorphism of �-monoids UAssM→M for any �-monoid M . Putting this together,
we get:

Theorem 5.10.1. Let M be a symmetric monoidal category and O an A∞ operad that
fall into one of the examples of Theorem 5.8.1 (a)–(c). Write ε : O → Ass for the weak
equivalence identifying O as an A∞ operad. If A is a cofibrant O-algebra then the natural
maps

A→ PεA �U
AssPεA←UOA

are weak equivalences of O-algebras.

We now focus on A∞ algebras for the little 1-cubes operad C1, where we can
describe results both more concretely and in much greater generality. For the rest
of the section we work in the context of a symmetric monoidal category enriched
over topological spaces as in Section 5.7: Let M be a closed symmetric monoidal
category with countable colimits, and let L : S →M be strong symmetric monoidal
left adjoint functor (whose right adjoint we denote as R). Then, by Theorem 5.7.1, M
becomes enriched over topological spaces and we have a notion of homotopies and
homotopy equivalences in M , defined in terms of mapping spaces or equivalently in
terms of tensor with the unit interval. We also have LC1 as a non-symmetric operad in
M ; for an LC1-algebra A, we give a concrete construction of the enveloping algebra
UA, mostly following [184, §2]. We first write the formulas and then explain where
they come from.

Construction 5.10.2. [184, §2] Let D be the space of subintervals of [0,1] and let
D be the subspace of D of those intervals that do not start at 0. We have a canonical
isomorphism D � C1(1) (sending a subinterval to the 1-tuple containing it) that we
elide notation for. Under this isomorphism, the composition law Γ 1

1 defines a pairing
γ : D ×D→D that satisfies the formula

γ([x,y], [x′, y′]) = [x+ (y − x)x′, x+ (y − x)y′].

We note that γ restricts to a pairing D ×D → D, and that for formal reasons γ is
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associative:

γ(γ([x,y], [x′, y′]), [x′′, y′′]) = [x+(y−x)x′+(y−x)(y′−x′)x′′,x+(y−x)x′+(y−x)(y′−x′)y′′]
= γ([x,y],γ([x′, y′], [x′′, y′′])),

and unital:

γ([0,1], [x,y]) = [x,y] = γ([x,y], [0,1]),

making D a topological monoid and D a subsemigroup. Define α : D ×D → C1(2)
by

α([x,y], [x′, y′]) =
([

0,
x

x+ (y − x)x′

]
,
[

x
x+ (y − x)x′

,1
])
.

Let DA be the object of M defined by the pushout diagram

LD �1

��

// LD �A

��

LD �1 // DA

where the top map is induced by the composite of the isomorphism 1 � LC1(0) (from
the strong symmetric monoidal structure on L) and the LC1-action map LC1(0)→ A.
We use γ and α to define a multiplication on DA as follows. We use the map

(LD �A)� (LD �A)→ LD �A→DA

coming from the map

(LD �A)� (LD �A) � L(D ×D)� (A�A)→

L(D ×C1(2))� (A�A) � LD � (LC1(2)� (A�A))→ LD �A

induced by the map (γ,α) : D ×D → D × C1(2) and the LC1-action map on A. We
note that both associations

(LD �A)� (LD �A)� (LD �A)→ LD �A

coincide: both factor through the map

(LD �A)� (LD �A)� (LD �A) � L(D ×D ×D)�A(3)→ L(D ×C1(3))�A(3)

induced by the map D ×D ×D → D ×C1(3) given on the D factor as γ ◦ (γ × id) =
γ ◦ (1×γ) and on the C1(3) factor by the formula

[x,y], [x′, y′], [x′′, y′′] 7→ ([0, a], [a,b], [b,1]),

where

a =
x

x+ (y − x)(x′ + (y′ − x′)x′′)
, b =

x+ (y − x)x′

x+ (y − x)(x′ + (y′ − x′)x′′)
.

When restricted to maps

(LD �1)� (LD �A), (LD �A)� (LD �1)→DA,
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this map coincides with the map induced by just γ and the unit isomorphism of M
and so extends to compatible maps

(LD �1)� (LD �1)→DA,

(LD �1)� (LD �A)→DA,

(LD �A)� (LD �1)→DA,

and defines an associative multiplication on DA. The map 1→ DA induced by the
inclusion of the element [0,1] of D is a unit for this multiplication.

To understand the construction, it is useful to think of D as a subspace of C1(2)
rather than a subspace of C1(1), via the embedding

[x,y] 7→ ([0,x], [x,y]).

Then we have a map DA→UA sending LD�1 and LD�A to the 0 and 1 summands

LD �1 � LC1 �A
(0) and LD �A→ LC1(2)�A

in the coequalizer (5.5.1) for UA. We also have a map back that sends the summand
LC1(n+1)�A(n) (for n ≥ 1) to LD�A by remembering just the last interval and using
the rest to do the multiplication on A; specifically, for [x1, y1], . . . , [xn+1, yn+1], we use
the element of C1(n) corresponding to[

x1
xn+1

, y1
xn+1

]
, . . . ,

[
xn
xn+1

, yn
xn+1

]
for the map A(n) → A. It is straightforward to check that these maps give inverse
isomorphisms of objects of M ; see [184, 2.5].

The isomorphism of the previous paragraph then forces the formula for the multipli-
cation. Intuitively speaking, the first box in D (viewed as a subset of C1(2)) holds the
algebra (from the tensor) and the second box is a placeholder to plug in the module
variable; the complement D \D corresponds to the first box having length zero and
then only the unit of the algebra can go there. For the composition, the right copy
gets plugged into the second box of the left copy to give an element of C1(3) (i.e., the
operadic composition ` ◦2 r = Γ 2

1,2(`;1, r), where ` is the element of the left copy of D
and r is the element of the right copy of D); the first and second boxes are on the one
hand rescaled to an element of C1(2) that does the multiplication on the copies of A
and on the other hand joined to give with the third box the new element of D , viewed
as a subspace of C1(2). The associativity is straightforward to visualize in terms of
plugging in boxes when written down on paper. (See Section 2 of [184].) When one
of the elements comes from D \D, the corresponding copy of A is restricted to the
unit 1 and the first box of zero length also works like a unit.

Using the isomorphism of �-monoids UA �DA, we have the following comparison
theorem for the underlying objects of UA and A.

Proposition 5.10.3 ([184, 1.1]). The map of UA-modules UA � 1�UA→ A induced by
the map 1 � LC1(0)→ A is a homotopy equivalence of objects ofM .
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Proof. In concrete terms, the map in the statement is induced by the map

LD �A→ LC1(1)�A→ A

for the map D→C1(1) that sends [x,y] to ([0,x]), which is compatible with the map

LD �1→ 1→ A.

We can use any element of D to produce a map (in M ) from A to UA; a path to the
operad identity element 1 in C1(1) (which corresponds to [0,1] ⊆ [0,1]) then induces
a homotopy of the composite map A→ A to the identity map of A. We can construct
a homotopy from the composite to the identity on UA using a homotopy of self-maps
of C1(1) from the identity to the constant map on 1 (combined with the C1(1) action
map on A) and a homotopy of self-maps of the pair (D,D) from the constant map (on
the chosen element of D) to the identity map. For example, if the chosen element of
D corresponds to the subinterval [a,b] (with a , 0) then the linear homotopy

[x,y], t 7→ [xt + a(1− t), yt + b(1− t)]

is such a homotopy of self-maps of the pair.

In the context of spaces, J. C. Moore invented an associative version of the based
loop space by parametrizing loops with arbitrary length intervals. This idea extends
to the current context to give another even simpler construction of a �-monoid
equivalent (in M ) to an LC1-algebra A.

Construction 5.10.4. Define MA to be the object of M defined by the pushout
diagram

LR>0 �1

��

// LR>0 �A

��

LR≥0 �1 // MA

(where R
>0 ⊂R

≥0 are the usual subspaces of positive and non-negative real numbers,
respectively). We give this the structure of a �-monoid with the unit 1→MA induced
by the inclusion of 0 in R

≥0 and multiplication MA�MA→ MA induced by the
map

(LR>0 �A)� (LR>0 �A) � L(R>0 ×R>0)� (A�A)

→ L(R>0 ×C1(2))� (A�A) � LR>0 � (LC1(2)� (A�A))→ LR>0 �A

induced by the C1-action on A and the map

c : (r, s) ∈R>0 ×R>0 7→ (r + s, ([0, r
r+s ], [

r
r+s ,1])) ∈R>0 ×C1(2).

The idea is that the element of R>0 specifies a length (with the zero length only
available for the unit) and the multiplication uses the proportionality of the two lengths
to choose an element of C1(2) for the multiplication on A; the two lengths add to give
the length in the result. In the case when M is the category of spaces and A =ΩX
is the based loop space of a space X, MA is the Moore loop space. An element is
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specified by an element r of R≥0 together with an element of ΩX (which must be
the basepoint when r = 0) but can be visualized as a based loop parametrized by
[0, r] (or for r = 0 the constant length zero loop at the basepoint). The multiplication
concatenates loops by concatenating the parametrizations, an operation that is strictly
associative and unital.

We can compare the �-monoids MA and UA through a third �-monoid NA
constructed as follows. Let N = R

>0×R>0×R≥0, let N = R
≥0×R>0×R≥0, and define

NA by the pushout diagram

LN �1

��

// LN �A

��

LN �1 // NA

We have maps N ×N →N and N ×N →C1(2) defined by

((r, s, t), (r ′, s′, t′)) ∈N ×N 7→ (r + sr ′, ss′, st′ + t) ∈N,

((r, s, t), (r ′, s′, t′)) ∈N ×N 7→ c(t, st′) = ([0, r
r+sr ′] ,[

r
r+sr ′ ,1]) ∈ C1(2),

which we use to construct the multiplication on NA by the same scheme as above

(LN �A)� (LN �A) � L(N ×N )� (A�A)→ L(N ×C1(2))� (A�A)→ LN �A.

The unit is the map 1→NA induced by the inclusion of (0,1,0) in N .
The parametrizing space N = {(r, s, t)} generalizes D by allowing [r, s] to be a

subinterval of [0, r + s+ t] instead of [0,1], or from another perspective, generalizes
lengths in the definition on the Moore algebra by incorporating a scaling factor s and
padding of length t. In other words, we have maps

[x,y] ∈D 7→ (x,y − x,1− y) ∈N,

r ∈R≥0 7→ (r,1,0) ∈N.

These maps induce maps of �-monoids UA � DA→ NA and MA→ NA, respec-
tively, and the argument of Proposition 5.10.3 shows that these maps are homotopy
equivalences in M . We state this as a theorem, repeating the conventions of this part
of the section for easy reference.

Theorem 5.10.5. LetM be a closed symmetric monoidal category admitting countable
colimits and enriched over spaces via a strong symmetric monoidal left adjoint functor L.
Then for algebras over the little 1-cubes operad (LC1-algebras) the non-symmetric enveloping
algebra UA and the Moore algebra MA fit in a natural zigzag of �-monoids

UA→NA←MA,

where the maps are homotopy equivalences inM . Moreover, the canonical maps UA→ A
and MA→ A are homotopy equivalences inM .

To compare MA and A as A∞ algebras, we use a new A∞ operad C` defined as
follows.
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Construction 5.10.6. Let C`(0) = R
≥0 and for m > 0, let C`(m) be the set of ordered

pairs (S,r) with r a positive real number and S a list of m almost non-overlapping
closed subintervals of [0, r] in their natural order, topologized analogously as in the
definition of C1 (as a semilinear submanifold of R2m+1). The operadic composition is
defined by scaling and replacement of the subintervals: the basic composition

Γ 1
j ((([x,y]), r), (([x′1, y

′
1], . . . , [x′j , y

′
j ]), r

′)) =

(([x+ ax′1,x+ ay′1], . . . , [x+ ax′j ,x+ ay′j ]), r + a(r ′ − 1))

(with a := y − x) scales the interval [0, r ′] to length ar ′ and inserts that in place
of [x,y] ⊂ [0, r]; the resulting final interval then has size r − a + ar ′ . The general
composition Γmj1,...,jm does this operation on each of the m subintervals:

Γmj1,...,jm
: (([x0

1, y
0
1 ], . . . , [x0

m, y
0
m]), r1),

(([x1
1, y

1
1 ], . . . , [x1

j1
, y1
j1

]), r1), . . . , (([xm1 , y
m
1 ], . . . , [xmjm , y

m
jm

]), rm),

7→
(([x0

1 + a1x
1
1,x

0
1 + a1y

1
1 ], . . . , [sm−1 + x0

m + amx
m
jm
, sm−1 + x0

m + amy
m
jm

]), r0 + sm),

where ai := y0
i − x

0
i and si = a1(r1 − 1) + · · · + ai(ri − 1). When one of the ji is zero,

that ji contributes no subintervals but still scales the original subinterval [x0
i , y

0
i ] to

length airi (or removes it when ri = 0). The operad identity element is the element
(([0,1]),1) ∈ C`(1).

The maps C1(m)→C`(m) that include C1(m) as the length 1 subspace assemble to
a map of operads i : C1→C` . We also have a map of operads j : Ass→C` induced
by sending the unique element of Ass(m) to the element

(([0,1], [1,2], . . . , [m− 1,m]),m)

of C`(m). Using the map j , an LC`-algebra has the underlying structure of a �-monoid.
A straightforward check of universal properties proves the following proposition.

Proposition 5.10.7. The functor that takes a C1-algebra A to its Moore algebra MA
is naturally isomorphic to the functor that takes A to the underlying �-monoid of the
pushforward PLiA for the map of operads Li : LC1→ LC` .

The C`-action map LC`(m)� (MA)(m)→MA is induced by the map

C`(m)× (R>0)n→C`(m)×C`(1)n
Γm1,...,1−−−−−→ C`(m) �R

>0 ×C1(m)

that includes R>0 in C`(1) by r 7→ (([0, r]), r), where the isomorphism is the map that
takes an element (([x1, y1], . . . , [xm, ym]), r) of C`(m) to the element

(r,([ x1
r ,

y1
r ], . . . ,[ xmr ,

ym
r ]))

of R>0 ×C1(m).
The map of C1-algebras that is the unit of the change of operads adjunction

A→ PLiA is induced by the inclusion of 1 in R
>0 and is a homotopy equivalence by
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a (simpler) version of the homotopy argument of Proposition 5.10.3. I do not see how
to do a similar argument for the pushforward PLj from �-monoids to C`-algebras, so
we do not get a direct comparison of C1-algebras between A (or PLiA) and MA with
the C1-algebra structure inherited from its �-monoid structure without some kind
of rectification result (such as Example Theorem 5.9.5) comparing the category of
LC`-algebras with the category of Ass-algebras.

The argument in [184, 2.5] that identifies UC1A as DA generalizes to identify
UC

`
PLiA as NA; the maps in Theorem 5.10.5 can then be viewed as the natural maps

on enveloping algebras induced by maps of operads and maps of algebras.

5.11 En spaces and iterated loop space theory

The recognition principle for iterated loop spaces provided the first application for
operads. Although the summary here has been spiced up with model category notions
and terminology (in the adjoint functor formulation of [196, §8]), the mathematics has
not changed significantly from the original treatment by May in [194], except for the
improvements noted in the appendix to [71], which extend the results from connected
to grouplike En spaces. (En spaces = En algebras in spaces.)

The original idea for the little n-cubes operads Cn and the start of the relationship
between En spaces and n-fold loop spaces is the Boardman–Vogt observation that
every n-fold loop space comes with the natural structure of a Cn-algebra. The action
map

Cn(m)×ΩnX × · · · ×ΩnX→ΩnX

is defined as follows. We view Sn as [0,1]n/∂. Given an element c ∈ Cn(m), and
elements f1, . . . , fm : Sn→ X of ΩnX, let fc;f1,...,fn : Sn→ X be the function that sends
a point x in Sn to the basepoint if x is not in one of the embedded cubes; the i-th
embedded cube gets sent to X using the inverse of the embedding and the quotient
map [0,1]n → Sn followed by the map fi : Sn → X. This is a continuous based
map Sn→ X since the boundary of each embedded cube gets sent to the basepoint.
Phrased another way, c defines a based map

Sn→ Sn ∨ · · · ∨ Sn

with the i-th embedded cube mapping to the i-th wedge summand of Sn by collapsing
all points not in an open cube to the basepoint and rescaling; we then apply fi : Sn→
X to the i-th summand to get a composite map Sn→ X.

The construction of the previous paragraph factors Ωn as a functor from based
spaces to Cn-spaces (= Cn-algebras in spaces). It is clear that not every Cn-space arises
as ΩnX because π0Ω

nX is a group (for its canonical multiplication), whereas for the
free Cn-space CnX, π0CnX is not a group unless X is the empty set; for example,
π0CnX �N when X is path connected. We say that a Cn-space A is grouplike when
π0A is a group (for its canonical multiplication). The following is the fundamental
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theorem of iterated loop space theory; it gives an equivalence of homotopy theories
between n-fold loop spaces and grouplike Cn-spaces.

Theorem 5.11.1 (May [194], Boardman–Vogt [48, §6]). The functor Ωn from based
spaces to Cn-spaces is a Quillen right adjoint. The unit of the derived adjunction

A→ΩnBnA

is an isomorphism in the homotopy category of Cn-spaces if (and only if ) A is grouplike. The
counit of the derived adjunction

BnΩnX→ X

is an isomorphism in the homotopy category of spaces if (and only if ) X is (n−1)-connected;
in general it is an (n−1)-connected cover.

We have written the derived functor of the left adjoint in Theorem 5.11.1 as Bn,
suggesting an iterated bar construction. Although neither the point-set adjoint functor
nor the model for its derived functor used in the argument of Theorem 5.11.1 is
constructed iteratively, Dunn [86] shows that the derived functor is naturally equivalent
to an iterated bar construction.

As a consequence of the statement of the theorem, the unit of the derived adjunction
A→ΩnBnA is the initial map in the homotopy category of Cn-spaces from A to a
grouplike Cn-space and so deserves to be called “group completion”. Group completion
has various characterizations and for the purposes of sketching the ideas behind the
proof of the theorem, it works best to choose one of them as the definition and
state the property of the unit map as a theorem. One such characterization uses the
classifying space construction, which we understand as the Eilenberg–Mac Lane bar
construction (after converting the underlying C1-spaces to topological monoids) or the
Stasheff bar construction (choosing compatible maps from the Stasheff associahedra
into the spaces Cn(m)).

Definition 5.11.2. A map f : A → G of Cn-spaces is a group completion if G is
grouplike and f induces a weak equivalence of classifying spaces.

In the case n > 1 (and under some hypotheses if n = 1), Quillen [227] gives a
homological criterion for a map to be group completion: if G is grouplike, then a map
A→ G of Cn-spaces is group completion if and only if

H∗(A)[(π0A)−1]→H∗(G)

is an isomorphism. Counterexamples exist in the case n = 1 (indeed, McDuff [208]
gives a counterexample for every loop space homotopy type), but recent work of Braun,
Chuang, and Lazarev [59] gives an analogous derived category criterion in terms
of derived localization at the multiplicative set π0A. Using Definition 5.11.2 or any
equivalent independent characterization of group completion, we have the following
addendum to Theorem 5.11.1.

Addendum 5.11.3. The unit of the derived adjunction in Theorem 5.11.1 is group comple-
tion.
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The homotopical heart of the proof of Theorem 5.11.1 is the May–Cohen–Segal
Approximation Theorem ([194, §6–7], [70], [270]), which we now review. This theorem
studies a version of the free Cn-algebra functor C̃n whose domain is the category of
based spaces, where the basepoint becomes the identity element in the Cn-algebra
structure. This version of the free functor has the advantage that for a connected
space X, C̃X is also a connected space; May’s Approximation Theorem identifies
C̃X in this case as a model for ΩnΣnX. Cohen (following conjectures of May) and
Segal (working independently) then extended this to non-connected spaces: the group
completion of C̃X is a model for ΩnΣnX.

For a based space X, C̃nX is formed as a quotient of

CX =
∐
Cn(m)×Σm X

m

by the equivalence relation that identifies (c, (x1, . . . ,xi ,∗, . . . ,∗)) ∈ Cn(m) ×Xm with
(c′, (x1, . . . ,xi)) ∈ Cn(i) ×Xi for c′ = Γ (c;1, . . . ,1,0, . . . ,0) where 1 denotes the iden-
tity element in Cn(1) and 0 denotes the unique element in Cn(0). This is actu-
ally an instance of the operad pushforward construction: let Idbp be the operad
with Idbp(0) = Idbp(1) = ∗ and Idbp(m) = ∅ for m > 1. The functor associated to
Idbp is the functor (−)+ that adds a disjoint basepoint with the monad structure
((−)+)+ → (−)+ that identifies the two disjoint basepoints; the category of algebras
for this monad is the category of based spaces. The functor C̃n from based spaces
to Cn-algebras is the pushforward Pf for f the unique map of operads Idbp → Cn:
formally Pf is the coequalizer described in Section 5.9, that in this case takes the form

Cn(X+) //
// CnX //

C̃nX.

As mentioned in an aside in that section (or as can be seen concretely here using the
operad multiplication on Cn directly), the endofunctor C̃n on based spaces (i.e., Uf Pf )
has the structure of a monad, and we can identify the category of Cn-spaces as the
category of algebras over the monad C̃n.

The factorization of the functor Ωn through Cn-spaces has the formal consequence
of producing a map of monads (in based spaces)

C̃n→ΩnΣn.

Formally the map is induced by the composite

C̃nX
C̃nη−−−−→ C̃nΩ

nΣnX
ξ
−→ΩnΣnX,

where η is the unit of the Σn,Ωn-adjunction and ξ is the Cn-action map. This map
has the following concrete description: an element (c, (x1, . . . ,xm)) ∈ Cn(m)×Xm maps
to the element γ : Sn→ ΣnX of ΩnΣnX given by the composite of the map

Sn→ Sn ∨ · · · ∨ Sn

associated to c (as described above) and the map

Sn � Σn{xi}+ ⊂ ΣnX
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on the i-th factor of Sn. Either using this concrete description, or following diagrams
in a formal categorical argument, it is straightforward to check that this defines a map
of monads. We can now state the May–Cohen–Segal Approximation Theorem.

Theorem 5.11.4 (May–Cohen–Segal Approximation Theorem [194, 6.1], [70, 3.3], [270,
Theorem 2]).
For any non-degenerately based space X, the map of Cn-spaces C̃nX→ΩnΣnX is group
completion.

(“Non-degenerately based” means that the inclusion of the basepoint is a cofibration.
Both C̃n and ΩnΣn preserve weak equivalences in non-degenerately based spaces,
but for other spaces, either or both may have the wrong weak homotopy type.)

From here a sketch of the proof of Theorem 5.11.1 goes as follows. Since Ωn as a
functor from based spaces to based spaces has left adjoint Σn, a check of universal
properties shows that the functor from Cn-spaces to based spaces defined by the
coequalizer

ΣnC̃nA //
//
ΣnA // Σn ⊗

Cn
A

is the left adjoint to Ωn viewed as a functor from based spaces to Cn-spaces. (In
the coequalizer, one map is induced by the Cn-action map on A and the other is
adjoint to the map of monads C̃→ΩnΣn.) Because Ωn preserves fibrations and weak
equivalences, this is a Quillen adjunction.

The main tool to study the Σn ⊗
Cn

(−),Ωn-adjunction is the two-sided monadic bar
construction, invented in [194, §9] for this purpose. Given a monad T and a right action
of T on a functor F (say, to based spaces), the two-sided monadic bar construction
is the functor on T-algebras B(F,T ,−) defined as the geometric realization of the
simplicial object

Bm(F,T ,A) = FT · · ·T︸ ︷︷ ︸
m

A,

with face maps induced by the action map FT → F, the multiplication map TT → T

and the action map TA→ A, and degeneracy maps induced by the unit map Id→ T .
In the case when F = T , the simplicial object B•(T ,T ,A) has an extra degeneracy
and the map from B•(T ,T ,A) to the constant simplicial object on A is a simplicial
homotopy equivalence (in the underlying category for T , though not generally in the
category of T-algebras).

Because geometric realization commutes with colimits and finite cartesian products,
we have a canonical isomorphism

C̃nB(C̃n,C̃n,A)→ B(C̃nC̃n,C̃n,A)

and the multiplication map C̃nC̃n→ C̃n then gives B(C̃n,C̃n,A) the natural structure
of a Cn-algebra. (See Section 5.7 for a more general discussion.) For the same reason,
the canonical map

Σn ⊗
Cn
B(C̃n,C̃n,A)→ B(Σn ⊗

Cn
C̃n,C̃n,A) = B(Σn,C̃n,A)
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is an isomorphism. The latter functor clearly3 preserves weak equivalences of Cn-
spaces A whose underlying based spaces are non-degenerately based. (Besides being
a hypothesis of the May–Cohen–Segal Approximation Theorem, non-degenerately
based here also ensures that the inclusion of the degenerate subspace (or latching
object) is a cofibration.) As a consequence of Theorem 5.7.3 it follows that when the
underlying based space of A is cofibrant (which is the case in particular when A is
cofibrant as a Cn-space), then B(C̃n,C̃n,A) is a cofibrant Cn-space. Because Σn⊗

Cn
(−)

is a Quillen left adjoint, it preserves weak equivalences between cofibrant objects, and
looking at a cofibrant approximation A′→∼ A, we see from the weak equivalences

B(Σn,C̃n,A)←∼ B(Σn,C̃n,A
′) � Σn ⊗

Cn
B(C̃n,C̃n,A

′)→∼ Σn ⊗
Cn
A′

that B(Σn,C̃n,A) models the derived functor BnA of Σn ⊗
Cn

(−) whenever A is non-
degenerately based.

To complete the argument, we need the theorem of [194, §12] that Ωn commutes up
to weak equivalence with geometric realization of (proper) simplicial spaces that are
(n− 1)-connected in each level. Then for A non-degenerately based, we have that the
vertical maps are weak equivalences of Cn-spaces

B(C̃n,C̃n,A) //

��

B(ΩnΣn,C̃n,A)

��

A ΩnB(Σn,C̃n,A)

while by the May–Cohen–Segal Approximation Theorem, the horizontal map is group
completion. This proves that the unit of the derived adjunction is group completion.

For the counit of the derived adjunction, we have from the model above that Bn is
always (n− 1)-connected and the unit

ΩnX→ΩnBnΩnX

on ΩnX is a weak equivalence. Looking at Ωn of the counit,

ΩnBnΩnX→ΩnX,

the composite with the unit is the identity on ΩnX, and so it follows that Ωn of
the counit is a weak equivalence. Thus, the counit of the derived adjunction is an
(n− 1)-connected cover map.

5.12 E∞ algebras in rational and p-adic homotopy theory

In the 1960’s and 1970’s, Quillen [228] and Sullivan [284, 286] showed that the rational
homotopy theory of simply connected spaces (or simplicial sets) has an algebraic model

3 At the time when May wrote the argument, this was far from clear: some of the first observations about
when geometric realization of simplicial spaces preserves levelwise weak equivalences were developed
in [194, §11] precisely for this argument.
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in terms of rational differential graded commutative algebras or coalgebras. In the
1990’s, I proved a mostly analogous theorem relating E∞ differential graded algebras
and p-adic homotopy theory and a bit later some results for using E∞ differential
graded algebras or E∞ ring spectra to identify integral homotopy types. In this section,
we summarize this theory following mostly the memoir of Bousfield–Gugenheim [57],
and the papers [181]4 and [180]. In what follows k denotes a commutative ring, which
is often further restricted to be a field.

In both the rational commutative differential graded algebra case and the E∞
k-algebra case, the theory simplifies by working with simplicial sets instead of spaces,
and the functor is some variant of the cochain complex. Sullivan’s approach to rational
homotopy theory uses a rational version of the de Rham complex, originally due
to Thom (unpublished), consisting of forms that are polynomial on simplices and
piecewise matched on faces:

Definition 5.12.1.The algebra∇∗[n] of polynomial forms on the standard simplex ∆[n]
is the rational commutative differential graded algebra free on generators t0, . . . , tn
(of degree zero), dt0, . . . ,dtn (of degree one) subject to the relations t0 + · · · + tn = 1
and dt0 + · · ·+ dtn = 0 (as well as the differential relation implicit in the notation).

Viewing t0, . . . , tn as the barycentric coordinate functions on ∆[n] determines
their behavior under face and degeneracy maps, making ∇∗[•] a simplicial rational
commutative differential graded algebra.

Definition 5.12.2. For a simplicial set X, the rational de Rham complex A∗(X) is
the rational graded commutative algebra of maps of simplicial sets from X to ∇∗[•],
or equivalently, the end over the simplex category

A∗(X) := ∆opSet(X,∇∗[•]) =
∫

∆op
Set(Xn,∇∗[n]) =

∫
∆op

∏
Xn

∇∗[n]

(the last formula indicating how to regard A∗(X) as a rational commutative differential
graded algebra).

More concretely, A∗(X) is the rational commutative differential graded algebra
where an element of degree q consists of a choice of element of ∇q[n] for each non-
degenerate n-simplex of X (for all n) which agree under restriction by face maps, with
multiplication and differential done on each simplex. (When X is a finite simplicial
complex A∗(X) also has a Stanley–Reisner ring style description; see [284, G.i)].) The
simplicial differential graded Q-module ∇q[n] is a contractible Kan complex for each
fixed q (the extension lemma [57, 1.1]) and is acyclic in the sense that the inclusion of
the unit Q→∇∗[n] is a chain homotopy equivalence for each fixed n (the Poincaré
lemma [57, 1.3]). These formal properties imply that the cohomology of A∗(X) is
canonically naturally isomorphic to H ∗(X;Q), the rational cohomology of X (even

4 In the published version, in addition to several other unauthorized changes, the copy editors changed
the typefaces with the result that the same symbols are used for multiple different objects or concepts;
the preprint version available at https://pages.iu.edu/∼mmandell/papers/einffinal.pdf does not have these
changes and should be much more readable.
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uniquely naturally isomorphic, relative to the canonical isomorphism Q � A∗(∆[0])).
The canonical isomorphism can be realized as a chain map to the normalized cochain
complex C∗(X;Q) defined in terms of integrating differential forms; see [57, 1.4,2.1,2.2].

In the p-adic case, we can use the normalized cochain complex C∗(X;k) directly
as it is naturally an E∞ k-algebra. In the discussion below, we use the E∞ k-algebra
structure constructed by Berger–Fresse [37, §2.2] for the Barratt–Eccles operad E
(the normalized chains of the Barratt–Eccles operad of categories or simplicial sets
described in Example 5.3.3). Hinich–Schechtmann [123] and (independently) Smirnov
[279] appear to have been the first to explicitly describe a natural operadic algebra
structure on cochains; McClure–Smith [205] describes a natural E∞ structure that
generalizes classical ∪i product and bracket operations. The “cochain theory” theory
of [179] shows that all these structures are equivalent in the sense that they give
naturally quasi-isomorphic functors into a common category of E∞ k-algebras, as
does the polynomial de Rham complex functor A∗ when k = Q.

Both A∗(X) and C∗(X;k) fit into adjunctions of the contravariant type that send
colimits to limits. Concretely, for a rational commutative differential graded algebra A
and an E∞ k-algebra E, define simplicial sets by the formulas

T (A) :=C
Q

(A,∇∗[•]), U (E) := Ek(E,C
∗(∆[•])),

where C
Q

denotes the category of rational commutative differential graded algebras
and Ek denotes the category of E∞ k-algebras (over the Barratt–Eccles operad). An
easy formal argument shows that

A∗ : ∆opSet //
oo C

op
Q

:T , C∗ : ∆opSet //
oo E

op
k :U,

are adjunctions. As discussed in Section 5.8, both C
Q

and Ek have closed model struc-
tures with weak equivalences the quasi-isomorphisms and fibrations the surjections.
Because both A∗ and C∗ preserve homology isomorphisms and convert injections to
surjections, these are Quillen adjunctions. The main theorems of [57] and [181] then
identify subcategories of the homotopy categories on which the adjunction restricts to
an equivalence.

Before stating the theorems, first recall the H∗(−;k)-local model structure on sim-
plicial sets: this has cofibrations the inclusions and weak equivalences the H∗(−;k)
homology isomorphisms. When k is a field, the weak equivalences depend only on
the characteristic, and we also call this the rational model structure (in the case of
characteristic zero) or the p-adic model structure (in the case of characteristic p > 0);
we call the associated homotopy categories, the rational homotopy category and p-adic
homotopy category, respectively. As with any localization, the local homotopy category
is the homotopy category of local objects (that is to say, the fibrant objects): in the case
of rational homotopy theory, the local objects are the Kan complexes of the homotopy
type of rational spaces. In p-adic homotopy theory, the local objects are the Kan
complexes that satisfy a p-completeness property described explicitly in [54, §5,7–8].

We say that a simplicial set X is finite H∗(−;k)-type (or finite rational type when
k is a field of characteristic zero or finite p-type when k is a field of characteristic
p > 0) when H∗(X;k) is finitely generated over k in each degree (or, equivalently if
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k is a field, when H ∗(X;k) is finite dimensional in each degree). Similarly a rational
commutative differential graded algebra or E∞ k-algebra A is finite type when its
homology is finitely generated over k in each degree. It is simply connected when the
inclusion of the unit induces an isomorphism k→H0(A), H1(A) � 0, and Hn(A) � 0
for n < 0 (with the usual cohomological grading convention that Hn(A) := H−n(A)).
With this terminology, the main theorem of [57] is the following:

Theorem 5.12.3 ([57, Section 8, Theorem 9.4]). The polynomial de Rham complex
functor, A∗ : ∆opSet→C op

Q
, is a left Quillen adjoint for the rational model structure on

simplicial sets. The left derived functor restricts to an equivalence of the full subcategory
of the rational homotopy category consisting of the simply connected simplicial sets of
finite rational type and the full subcategory of the homotopy category of rational commuta-
tive differential graded algebras consisting of the simply connected rational commutative
differential graded algebras of finite type.

For the p-adic version below, we need to take into account Steenrod operations. For
k = Fp, the Steenrod operations arise from the coherent homotopy commutativity of
the p-fold multiplication, which is precisely encoded in the action of the E∞ operad.
Specifically, the p-th complex E(p) of the operad is a k[Σp]-free resolution of k, and
by neglect of structure, we can regard it as a k[Cp]-free resolution of k where Cp
denotes the cyclic group of order p. The operad action induces a map

E(p)⊗k[Cp] (C∗(X;k))(p)→E(p)⊗k[Σp] (C∗(X;k))(p)→ C∗(X;k).

The homology of E(p)⊗k[Cp] (C∗(X;k))(p) is a functor of the homology of C∗(X;k)
and the Steenrod operations P s are precisely the images of certain classes under this
map; see, for example, [198, 2.2]. This process works for any E∞ k-algebra, not just the
cochains on spaces, to give natural operations on the homology of E-algebras, usually
called Dyer–Lashof operations. The numbering conventions for these are opposite
those of the Steenrod operations: on the cohomology of C∗(X;Fp), the Dyer–Lashof
operation Qs performs the Steenrod operation P −s. If k is of characteristic p but not
Fp, the operations constructed this way are Fp-linear but satisfy Qs(ax) = φ(a)Qs(x)
for a ∈ k, where φ denotes the Frobenius automorphism of k.

The Fp cochain algebra of a space has the special property that the Steenrod
operation P 0 = Q0 is the identity operation on its cohomology; this is not true of
the zeroth Dyer–Lashof operation in general. Indeed for a commutative Fp-algebra
regarded as E∞ Fp-algebra, Q0 is the Frobenius. (That Q0 is the identity for the
Fp-cochain algebra of a space is related to the fact that it comes from a cosimplicial
Fp-algebra where the Frobenius in each degree is the identity.) So when X is finite
p-type, C∗(X;k) in each degree has a basis that is fixed by Q0. We say that a finite
type E∞ k-algebra is spacelike when in each degree its homology has a basis that is
fixed by Q0.

Theorem 5.12.4 ([181, Main Theorem, Theorem A.1]). The cochain complex with
coefficients in k, C∗(−;k) : ∆opSet→ E op

k , is a left Quillen adjoint for the H∗(−;k)-local
model structure on simplicial sets. If k = Q or k is characteristic p and 1−φ is surjective
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on k, then the left derived functor restricts to an equivalence of the full subcategory of the
H∗(−;k)-local homotopy category consisting of the simply connected simplicial sets of finite
H∗(−;k)-type and the full subcategory of the homotopy category of E∞ k-algebras consisting
of the spacelike simply connected E∞ k-algebras of finite type.

Given the Quillen equivalence between rational commutative differential graded
algebras and E∞ Q-algebras (Theorem 5.9.5) and the natural quasi-isomorphism
(zigzag) between A∗(−) and C∗(−;Q) [179, p. 549], the rational statement in Theorem
5.12.4 is equivalent to Theorem 5.12.3. The Sullivan theory in the latter often includes
observations on minimal models. A simply connected finite type rational commutative
differential graded algebra A has a cofibrant approximation A′→ A whose underlying
graded commutative algebra is free and such that the differential of every element is
decomposable (i.e., is a sum of terms, all of which have word length greater than 1 in
the generators); A′ is called a minimal model and is unique up to isomorphism. As a
consequence, simply connected simplicial sets of finite rational type are rationally
equivalent if and only if their minimal models are isomorphic. The corresponding
theory also works in the context of E∞ Q-algebras with the analogous definitions and
proofs. The corresponding theory does not work in the context of E∞ algebras in
characteristic p for reasons closely related to the fact that unlike the rational homotopy
groups, the p-adic homotopy groups of a simplicial set are not vector spaces.

The equivalences in Theorems 5.12.3 and 5.12.4 also extend to the nilpotent simpli-
cial sets of finite type, but the corresponding category of E∞ k-algebras does not have
a known intrinsic description in the p-adic homotopy case; in the rational case, the
corresponding algebraic category consists of the finite type algebras whose homology
is zero in negative cohomological degrees and whose H0 is isomorphic as a Q-algebra
to the cartesian product of copies of Q (cf. [182, §3]).

For other fields not addressed in the second part of Theorem 5.12.4, the adjunction
does not necessarily restrict to the indicated subcategories and even when it does, it is
never an equivalence. To be an equivalence, the unit of the derived adjunction would
have to be an H∗(−;k)-isomorphism for simply connected simplicial sets of finite type.
If k ,Q is characteristic zero, then the right derived functor of U takes C∗(S2;k) to a
simplicial set with π2 isomorphic to k; if k is characteristic p, then the right derived
functor of U takes C∗(S2;k) to a simplicial set with π1 isomorphic to the cokernel of
1−φ. See [181, Appendix A] for more precise results. Because the algebraic closure of
a field k of characteristic p does have 1−φ surjective, even when C∗(−;k) is not an
equivalence, it can be used to detect p-adic equivalences. This kind of observation
extends to the case k = Z:

Theorem 5.12.5 ([180, Main Theorem]). Finite type nilpotent spaces or simplicial sets X
and Y are weakly equivalent if and only if C∗(X;Z) and C∗(Y ;Z) are quasi-isomorphic
as E∞ Z-algebras.

Using the spectral version of Theorem 5.12.4 in [181, Appendix C], the proof of the
previous theorem in [180] extends to show that when X and Y are finite nilpotent
simplicial sets then X and Y are weakly equivalent if and only if their Spanier–
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Whitehead dual spectra are weakly equivalent as E∞ ring spectra. (This was the
subject of a talk by the author at the Newton Institute in December 2002.)

We use the rest of the section to outline the argument for Theorems 5.12.3 and 5.12.4,
using the notation of the latter. We fix a field k, which is either Q or is characteristic
p > 0 and has 1−φ surjective. We write C∗ for C∗(−;k) or when k = Q and we are
working in the context of Theorem 5.12.3, we understand C∗ as A∗. We also use C∗ to
denote the derived functor and write U for the derived functor of its adjoint. The idea
of the proof, going back to Sullivan, is to work with Postnikov towers, and so the first
step is to find cofibrant approximations for C∗(K(π,n)). For k = Q, this is easy since
H ∗(K(Q,n);Q) is the free graded commutative algebra on a generator in degree n.

Proposition 5.12.6. If k = Q then C∗(K(Q,n)) is quasi-isomorphic to the free (E∞ or
commutative differential graded) Q-algebra on a generator in cohomological degree n.

We use the notation Ek[n] to denote the free E∞ k-algebra on a generator in
cohomological degree n. When k is characteristic p, there is a unique map in the
homotopy category from Ek[n]→ C∗(K(Z/p,n)) that sends the generator xn to a
class in representing the image of the tautological element of Hn(K(Z/p,n);Z/p).
Unlike the characteristic zero case, this is not a quasi-isomorphism since Q0[in] = [in]
in H ∗(C∗(K(Z/p,n))), but Q0[xn] , [xn] in H ∗(Ek[n]). Let Bn be the homotopy
pushout of a map Ek[n] → Ek[n] sending the generator to a class representing
[xn] −Q0[xn] and the map Ek[n]→ k sending the generator to 0. Then the map
Ek[n]→ C∗(K(Z/p,n)) factors through a map Bn→ C∗(K(Z/p,n)). (The map in the
homotopy category turns out to be independent of the choices.) The following is a key
result of [181], whose proof derives from a calculation of the relationship between the
Dyer–Lashof algebra and the Steenrod algebra.

Theorem 5.12.7 ([181, 6.2]). Let k be a field of characteristic p > 0. Then

Bn→ C∗(K(Z/p,n))

is a cofibrant approximation.

(As suggested by the hypothesis, we do not need 1 − φ to be surjective in the
previous theorem; indeed, the easiest way to proceed is to prove it in the case k = Fp

and it then follows easily for all fields of characteristic p by extension of scalars.)
The two previous results can be used to calculate U(C∗(K(Q,n))) and

U(C∗(K(Z/p,n))). In the rational case,

U(C∗(K(Q,n))) 'U (EQ[n]) = Z(Cn(∆[•])),

the simplicial set of n-cocycles of C∗(∆[•];Q); this is the original model for K(Q,n),
and a straightforward argument shows that the unit map K(Q,n)→ K(Q,n) is a weak
equivalence (the identity map with this model). In the context of Theorem 5.12.3, the
same kind of argument is made in [57, 10.2]. In the p-adic case, we likewise have that
U (Ek[n]) is the original model for K(k,n), and so we get a fiber sequence

ΩK(k,n)→U(K(Z/p,n))→ K(k,n)→ K(k,n).
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The map K(k,n)→ K(k,n) is calculated in [181, 6.3] to be the map that on πn induces
1−φ. The kernel of 1−φ is Fp and the unit map K(Z/p,n)→U(C∗(K,Z/p,n)) is an
isomorphism on πn. As a consequence, when 1−φ is surjective (as we are assuming),
the unit map is a weak equivalence for K(Z/p,n).

The game now is to show that for all finite type simply connected (or nilpotent)
simplicial sets, the derived unit map X→UC∗(X) is a rational or p-adic equivalence.
The next result tells how to construct a cofibrant approximation for a homotopy
pullback; it is not a formal consequence of the Quillen adjunction, but rather a version
of the Eilenberg–Moore theorem.

Proposition 5.12.8 ([57, §3], [181, §3]). Let

W //

��

Y

��

Z // X

be a homotopy fiber square of simplicial sets. If X,Y ,Z are finite H∗(−;k)-type and X is
simply connected, then

C∗(X) //

��

C∗(Y )

��

C∗(Z) // C∗(W )

is a homotopy pushout square of E∞ k-algebras or rational commutative differential graded
algebras.

Since we can write K(Z/pm,n) as the homotopy fiber of a map

K(Z/pm−1,n)→ K(Z/p,n+ 1),

we see that the unit of the derived adjunction is a weak equivalence also for K(Z/pm,n)
(when k is characteristic p). Likewise, since products are homotopy pullbacks, we also
get that the unit of the derived adjunction is a weak equivalence for K(A,n) when A is
a Q vector space (when k = Q) or when A is a finite p-group (when k is characteristic
p). Although also not a formal consequence of the adjunction, it is elementary to see
that when a simplicial set X is the homotopy limit of a sequence Xj and the map
colimH ∗(Xj ;k)→H ∗(X;k) is an isomorphism, then C∗(X) is the homotopy colimit
of C∗(Xj ) and UC∗(X) is the homotopy limit of UC∗(Xj ). It follows that for K(Z∧p ,n),
the unit of the derived adjunction is a weak equivalence (when k is characteristic p).
For any finitely generated abelian group, the map K(A,n)→ K(A⊗Q,n) is a rational
equivalence and the map K(A,n)→ K(A∧p ,n) is a p-adic equivalence. Putting these
results and tools all together, we see that the unit of the derived equivalence is an
H∗(−;k) equivalence for any X that can be built as a sequential homotopy limit
holimXj where X0 = ∗, the connectivity of the map X→ Xj goes to infinity, and each
Xj+1 is the homotopy fiber of a map Xj → K(πj+1,n) for πj+1 a finitely generated
abelian group, or the rationalization (when k = Q) or p-completion (when k is
characteristic p) of a finitely generated abelian group. In particular, for a simply
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connected simplicial set, applying this to the Postnikov tower, we get the following
result.

Theorem 5.12.9. Assume k = Q or k is characteristic p > 0 and 1−φ is surjective. If
X is a simply connected simplicial set of finite H∗(−;k)-type, then the unit of the derived
adjunction X→UC∗(X) is an H∗(−;k)-equivalence.

The previous theorem formally implies that C∗ induces an equivalence of the
H∗(−;k)-local homotopy category of simply connected simplicial sets of finite H∗(−;k)-
type with the full subcategory of the homotopy category E∞ k-algebras or rational
commutative differential graded algebras of objects in its image. The remainder of
Theorems 5.12.3 and 5.12.4 is identifying this image subcategory. In the case when
k = Q, it is straightforward to see that a finite type simply connected algebra has a
cofibrant approximation that U turns into a simply connected principal rational finite
type Postnikov tower. The argument for k of characteristic p is analogous, but more
complicated; see [181, §7].




