
4 Stable homotopy theory via
∞-categories

by Clark Barwick

The task before us is to investigate stable homotopy theory — and stable homotopy
theories more generally — through the lens of ∞-category theory. Of necessity, this
chapter is somewhat ahistorical; we refer the reader to the historical discussions out-
lined in Chapter 3 for background on the development of modern categories of spectra.
However, the reader who is familiar with that story will have a keen appreciation for
the foundational problems that become much cleaner in this framework.

Let us assume familiarity with elementary ∞-category theory as presented by Jacob
Lurie in [169] — most particularly, the theory of limits, colimits, adjunctions, and
presentability. In particular, Chapter 5 of [169] will be frequently cited, but this is the
upper limit: nothing of the later chapters or of any more advanced text will be needed
here. We have tried to be systematic in our citations.

Our exposition is largely a gentle introduction to some of the material in [168] and
subsequent papers, and of course much of our understanding of spectra was informed
by this remarkable and beautiful text. We hope that this presentation will appeal to
mathematicians both within and without homotopy theory.

I offer my sincere thanks to Andrew Blumberg for his enormous assistance in
making my writing palatable.

4.1 Spectra

Let X be a pointed simplicial set. An old observation of Dan Kan provides a simple way
to extract the reduced homology of the geometric realisation |X | from X. Namely, we
let Z̃{X} be the simplicial abelian group in which Z̃{X}n = Z̃{Xn} is freely generated
by the pointed set Xn (so that the point of Xn becomes the zero element of Z̃{X}n).
One then has

H̃n(|X |,Z) � πnZ̃{X}.

More precisely, the simplicial abelian group Z̃{X} corresponds, under Dold–Kan, to
the chain complex C̃∗(|X |,Z).

Let us disregard the abelian group structure and regard Z̃{X} merely as a pointed
simplicial set. In fact, the functor X 7→ Z̃{X} preserves weak equivalences of pointed
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spaces, so we are entitled to think of this assignment as a functor from the ∞-category
of pointed spaces to itself. We can also deduce the following properties:

1. The functor X 7→ Z̃{X} is reduced. That is, if X is contractible, then so is the
simplicial abelian group Z̃{X}. Thus H̃i(∗) = 0.

2. The functor X 7→ Z̃{X} is unital. In other words, Z̃{S0} is the constant simplicial
set with value Z; under the Dold–Kan correspondence, it corresponds to the
complex Z[0] concentrated in degree 0. Thus H̃0(S0) = Z, and H̃i(S0) = 0 for
i > 0.

3. The functor X 7→ Z̃{X} is excisive: for any homotopy pushout

U V

W X

i

(e.g., any “honest” pushout in which i is a monomorphism of simplicial sets), the
square

Z̃{U } Z̃{V }

Z̃{W } Z̃{X}

is homotopy cartesian, so that one obtains a long exact sequence

· · ·→ H̃n(|U |,Z)→ H̃n(|V |,Z)⊕ H̃n(|W |,Z)→ H̃n(|X |,Z)→ H̃n−1(|U |,Z)→·· · .

One can prove this by reducing to the case in which i is an inclusion ∂∆n ↪→ ∆n

and verifying this case explicitly.

4. Finally, the functor X 7→ Z̃{X} is of finite presentation, in that it preserves filtered
colimits.

These four properties actually identify the functor X 7→ Z̃{X} uniquely, up to
canonical natural equivalence. This is the uniqueness of homology.

We may regard X 7→ Z̃{X} as a kind of categorified version of a line of slope 1. The
first two conditions describe the values of the functor on two objects — the one-point
space ∗ , which (as the unit for ∨ ) is our analogue of 0, and S0, which (as the unit
for ∧ ) is our analogue of 1. Under our analogy, we have insisted that f (0) = 0 and
f (1) = 1. The other two axioms declare that X 7→ Z̃{X} is linear. This linearity now
determines the values of this functor on all other objects.

Spectra

If we merely eliminate the “slope 1” condition (unitality), we arrive at the notion of a
spectrum. Here is the definition.
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Definition 4.1.1. Write S∗ for the∞-category of pointed spaces (the full subcategory
of Fun(∆1,S) spanned by those objects X→ Y in which X is contractible).

Then a functor E : S∗→ S∗ is called a linear functor or a spectrum if E is reduced,
excisive, and of finite presentation. That is:

1. The functor E is reduced : for any contractible pointed space P , the pointed space
E(P ) is also contractible.

2. The functor E is excisive: for any pushout square

U V

W X

in S∗, the induced square

E(U ) E(V )

E(W ) E(X)

is a pullback in S∗.

3. The functor E is of finite presentation: for any filtered diagram α 7→ Xα in S∗, the
natural map

colimα E(Xα)→ E(colimαXα)

is an equivalence.

This makes precise the sense in which spectra are said to “be” generalised homology
theories. But in order to come to grips with this definition, we must do some work to
unpack the axioms in turn.

Reduced functors

Reducedness is nothing profound. If one has a functor F : S∗→ S∗ that isn’t reduced,
one may “repair” it by passing to the reduction Fred, which carries a pointed space X
to the cofiber of the map F(∗)→ F(X).

Finitely presented functors

Finite presentability is also relatively straightforward. We say that a pointed space X
is finite if it can be expressed as a finite colimit of contractible pointed spaces. Every
pointed space is the filtered colimit of the finite spaces that map to it, so a functor
F : S∗ → S∗ is of finite presentation if and only if it is left Kan extended from its

restriction to the ∞-category S
fin
∗ of finite spaces.

So a finitely presented functor S∗→ S∗ is uniquely determined by its restriction to

S
fin
∗ . That is, the ∞-category of finitely presented functors S∗→ S∗ is equivalent to

the ∞-category of (arbitrary) functors S
fin
∗ → S∗.



154 Barwick: Stable homotopy theory via∞-categories

Excisive functors

The excision condition is where the rubber meets the road. An important special case
of a square in S∗ is when the corners are contractible spaces:

Y ∗

∗ X

(4.1.1)

If (4.1.1) is a pushout square, then X is the suspension ΣY ; since the forgetful functor
S∗→ S preserves pushouts, the pointing of Y is irrelevant. Dually, if (4.1.1) is a pullback
square in S∗, then Y is the loopspace ΩX; here, the pointing of X is important.

4.1.2. Suspension is left adjoint to loopspace:

Σ : S∗� S∗ :Ω.

In particular, we have the unit ε : id→ΩΣ and the counit η : ΣΩ→ id.

Now if F : S∗→ S∗ is a reduced functor, then we may apply it to the pushout square

Y ∗

∗ ΣY

to obtain a canonical map

σY : FY →ΩFΣY .

We may also write σFY whenever disambiguation is called for. It is clear that if F is
excisive, then the natural transformation σY is an equivalence. However, it is relatively
surprising that this condition suffices to ensure the excisiveness of F.

Lemma 4.1.3. Let F : S∗→ S∗ be a reduced functor. Then F is excisive if and only if, for
any pointed space Y , the map

σY : FY →ΩFΣY

is an equivalence.

Proof. The “only if” direction is trivial, so we focus on the “if” direction. For this,
suppose

U V

W X
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is a pushout square in S∗. We expand this square into a diagram

U V ∗

W X W/U ∗

∗ V /U ΣU ΣW

∗ ΣV ΣX

(4.1.2)

of S∗ in which every square is a pushout. When we apply F to this diagram, we obtain
a solid arrow square

F(U ) ΩF(ΣU )

F(W )×F(X) F(V ) ΩF(ΣV )×ΩF(ΣX)ΩF(ΣW )

λ (4.1.3)

in which both horizontal maps are, by assumption, equivalences. The universal
property of ΩF(ΣU ) supplies us with a dotted lift λ, and it follows that every map in
this square is an equivalence.

Notation 4.1.4. We write Fun fp,red(S∗,S∗) for the full subcategory of the∞-category
Fun(S∗,S∗) spanned by the reduced functors F of finite presentation, and we write
Sp ⊂ Fun fp,red(S∗,S∗) for the full subcategory spanned by the spectra.

4.1.5. Let E be a spectrum. Then we obtain a sequence of spaces

{Xn = E(Sn)}n≥0

along with equivalences {Xn −→∼ ΩXn+1}n≥0. Thus a spectrum gives rise to what
we might call a sequential spectrum. We will show that these are in fact equivalent
homotopy theories.

Exercise 4.1.6 . Show that Fun fp,red(S∗,S∗) is a presentable ∞-category:
For any finite pointed space X, denote by hX : S∗→ S∗ the functor corepresented

by X, so that hX(Y ) 'Map
S∗

(X,Y ). Observe that hX is a reduced functor of finite
presentation. For any pointed space Y , the counit ΣΩ→ id induces a map

dX(Y ) : ΣMap
S∗

(ΣX,Y ) ' ΣΩMap
S∗

(X,Y )→Map
S∗

(X,Y );

this is functorial in Y , whence we obtain a natural transformation dX : Σ◦hΣX → hX .
Show that a reduced finitely presented functor F is a spectrum if and only if it is local

with respect to the set of maps {dX : X ∈ S fin
∗ }. Thus Sp is the accessible localisation

of Fun fp,red(S∗,S∗), and the class of morphisms that are inverted by the localisation

is exactly the saturated class generated by {dX : X ∈ S fin
∗ }.

Deduce that Sp is a presentable∞-category, and the fully faithful inclusion functor
Sp ↪→ Fun fp,red(S∗,S∗) preserves limits and filtered colimits.
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Shifting

There is a nontrivial auto-equivalence of the loopspace or suspension of any space. If
X is a pointed space, then the universal property of the kernel product provides an
endomorphism

(−1) : ΩX = ∗ ×X ∗ → ∗×X ∗ =ΩX

obtained by exchanging the roles of the two points. The map (−1) is clearly an
auto-equivalence, and it is a nontrivial one, because it reverses the direction of the
(implicit) homotopy in the square

ΩX ∗

∗ X

The map (−1) is a natural auto-equivalence on the functor Ω. It is not homotopic
to id, but it is an involution in the sense that its composition (−1)2 with itself is
homotopic (in a canonical fashion) to id. This goes some way to justifying the notation.

Geometrically, each point of ΩX corresponds to a parametrised loop, and (−1)
takes each point to the point representing the same loop, parametrised in the reverse
direction. On π1X = π0ΩX, the auto-equivalence (−1) induces the assignment
γ 7→ γ−1.

In precisely the same manner, we obtain an involution

(−1) : Σ→ Σ

of the suspension functor.
These two involutions are compatible under the adjunction between suspension and

loopspace. Indeed, in a square

Y ∗

∗ X

reversing the direction of the implicit homotopy is at once tantamount to the compo-
sition of the map Y →ΩX with (−1) and to the composition of (−1) with the map
ΣY → X. (This point, silly as it is, is the origin of virtually all the signs throughout
stable homotopy theory and homological algebra.)

Warning 4.1.7. There are two ways to iterate the suspension maps σY , and they are
not homotopic; they differ by a sign. For any reduced functor F : S∗→ S∗, one has a
natural homotopy

−ΩσFΣ ' σΩFΣ (4.1.4)

between the two functors ΩFΣ→Ω2FΣ2.

Exercise 4.1.8 . Construct the homotopy (4.1.4) by contemplating the diagrams (4.1.2)
and (4.1.3) in the case in which both V and W are contractible.
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Notation 4.1.9. Let E : S∗→ S∗ be a reduced excisive functor. Then for any natural
numbers a ≤ b, the natural transformation

σΩ
b−1EΣb−1

· · ·σΩ
a+1EΣa+1

σΩ
aEΣa : ΩaEΣa→ΩbEΣb

is an equivalence, which induces, for any pointed space X, a natural isomorphism

πn+aEΣ
aX � πn+bEΣ

bX

for any integer n such that n ≥ −a. Consequently, we may define, for any integer n,
an abelian group

EnX = πn+aEΣ
aX

for some a such that a ≥max{2,−n}, secure in our knowledge that this abelian group
is canonically independent of the choice of a. We thus obtain a functor

E∗ : S∗→AbZ,

where the target is the 1-category of Z-graded abelian groups. This is the E-homology
functor.

If E is a spectrum, then we may define the suspension or shift by 1 of E as the
spectrum E[1] = E ◦Σ. In the other direction, we may define the loop or shift by −1
of E as the spectrum E[−1] = Ω ◦ E. Iterating these, we obtain shifts E[m] for any
m ∈Z, and we note that on homology theories,

E[m]n � En−m .

It is quite common in the literature to see En as a shorthand for the group En(S0).

Homology and cohomology

Let X be a pointed space, and let E be a spectrum. Then we define the E-homology
and E-cohomology of X as the groups

En(X) = πnE(X) and En(X) = π−nMap(X,E(S0)) .

4.2 Examples

Eilenberg–Mac Lane spectra

Our motivation for the definition of a spectrum was our contemplation of ordinary
homology. We therefore already have one class of examples in hand:

Example 4.2.1. The functor X 7→ Z̃{X} is a spectrum HZ : S∗ → S∗. This is the
Eilenberg–Mac Lane spectrum of Z. The groups (HZ)∗(X) are zero in negative degrees,
and in nonnegative degrees, they are the reduced homology groups H̃∗(X,Z) of X.

More generally, for any abelian group A, let us contemplate the functor X 7→ Ã{X},
which as a functor on pointed simplicial sets carries X to the pointed simplicial set
Ã{X}∗ = Z̃{X}∗ ⊗A. This is a spectrum HA : S∗→ S∗, called the Eilenberg–Mac Lane
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spectrum of A. The groups (HA)∗(X) are zero in negative degrees, and in nonnegative
degrees, they are the reduced homology groups H̃∗(X,A) of X.

The derivative

Just as one may often find a best linear approximation of a general (differentiable)
function by forming the derivative, we can construct the best linear approximation of
a general (reduced and finitely presented) functor. This provides us with a few more
useful examples.

Indeed, we have already seen that the full subcategory Sp ⊆ Fun fp,red(S∗,S∗) is a
localisation; that is, the inclusion admits a left adjoint D, which we call the derivative.
The bonus good news is that we can write a convenient formula for this D .

Construction 4.2.2. Let F : S∗ → S∗ be a reduced functor of finite presentation.
Then we may look at the sequence of reduced
functors of finite presentation

F ΩFΣ Ω2FΣ2 · · · ,σF σΩFΣ σΩ
2FΣ2

which is indexed on the natural numbers N.
We write DF = colimnΩ

nFΣn for the colimit
of this diagram of functors.

The assignment F 7→ DF comes equipped
with a natural transformation α : id→D .

Lemma 4.2.3. For any reduced functor

F : S∗→ S∗

of finite presentation, the functor DF : S∗→ S∗
is a spectrum.

Proof. Let Y be a pointed space, and consider
the morphism

σDFY : (DF)Y →Ω(DF)ΣY .

We represent σDFY as the filtered colimit of the
solid arrow sequence of morphisms, shown on
the diagram to the side. The dotted arrows
are all equivalences that make this diagram
commute, and thus in the colimit they define

FY ΩFΣY

ΩFΣY Ω2FΣ2Y

Ω2FΣ2Y Ω3FΣ3Y

Ω3FΣ3Y Ω4FΣ4Y

...
...

(DF)Y Ω(DF)ΣY

σFY

σFY ΩσFY Σ
id

−σΩFΣY

σΩFΣY ΩσΩFΣY Σ
(−1)

σΩ
2FΣ2

Y

σΩ
2FΣ2

Y ΩσΩ
2FΣ2

Y Σ
id

−σΩ3FΣ3
Y

σΩ
3FΣ3

Y ΩσΩ
3FΣ3

Y Σ(−1)

σDFYan inverse to σDFY .

We note that if F is already a spectrum, then αF : F → DF is in fact already an
equivalence. In fact, we now show that DF is the universal linear approximation to F.

Proposition 4.2.4. The natural transformation α exhibits D as a localisation functor
on Fun fp,red(S∗,S∗) whose essential image is precisely Sp.
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Proof. If E is a spectrum, then αE : E→DE is an equivalence. Thus Sp is the essential
image of D, and for any reduced functor F of finite presentation, αDF : DF→DDF
is an equivalence. We must also check that DαF : DF→DDF is an equivalence; for
this, it suffices to note that DσF : DF→D(ΩFΣ) is an equivalence.

Suspension spectra

Now let us use this construction to define some interesting examples of spectra.

Construction 4.2.5. Let S0 = Σ∞S0 be the spectrum Did. That is, for any point
space Y , we have

(Σ∞S0)Y = colimnΩ
nΣnY .

This is the sphere spectrum, which represents stable homotopy:

πsm(Y ) = (Σ∞S0)mY � colimnπm+nΣ
nY ;

by Freudenthal, one has πsm(Y ) � π2m+2(Σm+2Y ).
More generally, for any space X, consider the reduced, finitely presented functor

sX : S∗→ S∗ given by the assignment Y 7→ X ∧Y . We define

Σ∞X =DsX ;

this is the suspension spectrum of X. We therefore obtain

(Σ∞X)Y = colimnΩ
n(X ∧ΣnY ) ' colimnΩ

nΣn(X ∧Y ) ' (S0)(X ∧Y ) .

When X is a sphere, we write Sn = Σ∞Sn, and we observe that

S
n ' S0[n] .

The suspension spectrum is a functor Σ∞ : S∗ → Sp. In the other direction, we
have a functor Ω∞ : Sp→ S∗ that carries a spectrum E to the value E(S0). They are
related in the following manner:

Proposition 4.2.6. The functor Σ∞ is left adjoint to the functor Ω∞.

Exercise 4.2.7 . Verify this.

4.2.8. With the suspension functor in hand, we may define the E-cohomology of a
pointed space X as

En(X) = π−nMapSp(Σ∞X,E)

Spanier–Whitehead duals

It is also possible to generalise the sphere spectrum S0 in a dual manner. We will
study the phenomenon of Spanier–Whitehead duality in a structured manner soon.
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Example 4.2.9. Let X be a finite pointed space, and let hX : S∗→ S∗ be the functor
corepresented by X; that is, hX(Y ) = Map

S∗
(X,Y ). Since X is finite, hX is finitely

presented, and we obtain

(DhX )Y = colimnΩ
nMap

S∗
(X,ΣnY ) 'Map

S∗
(X,colimnΩ

nΣnY )

'Map
S∗

(X, (Σ∞S0)(Y )) .

The spectrum (Σ∞X)∨ =DhX is the Spanier–Whitehead dual of X.
The assignment X 7→ (Σ∞X)∨ is a contravariant functor from pointed finite spaces

to spectra.
Also, the Spanier–Whitehead dual of a finite pointed space may well have negative

homotopy groups. For example, when X is a sphere, we obtain an identification

(Σ∞Sn)∨ ' S0[−n] ,

whence we are compelled to define S−n = (Σ∞Sn)∨.

Exercise 4.2.10 . For any spectrum E and any finite pointed space X, exhibit a homo-
topy equivalence

MapSp((Σ∞X)∨,E) ' E(X) .

Thom spectra

Definition 4.2.11. Let X be a space. Then a local system of spectra on X is a functor
Xop → Sp; we write SpX = Fun(Xop,Sp) for the ∞-category of local systems of
spectra.

4.2.12. If we unpack the definitions a bit, a local system of spectra on a space X is
a functor Xop ×S∗→ S∗, written (x,T ) 7→ ζ(x)(T ), such that for any point x ∈ X, the
functor ζ(x) : S∗→ S∗ is a spectrum.

Example 4.2.13. For any spectrum E, we have a constant local system EX at E.

Example 4.2.14 (The J homomorphism).To any finite-dimensional real vector spaceV
we can attach the one-point compactification SV . This is a topologically enriched
functor from finite-dimensional real vector spaces and isomorphisms to topological
spaces. After passing to the attached∞-categories, we may compose this functor with
the suspension functor to obtain a local system∐

n≥0
BO(n)→ Sp .

This functor factors through the group completion Z×BO→ Sp. The J homomorphism
is then the restricted map

JO : BO ' {0} ×BO ⊂Z×BO→ Sp ,

which is a local system over BO. If X is a topological space with a real vector bundle
ν : X→ BO, one obtains a local system of spectra by composition with JO.
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In the same manner, we obtain a local system

JU : BU → Sp ,

and if X is a topological space with a complex vector bundle ν : X → BU , one
obtains a local system of spectra by composition with JU .

Definition 4.2.15. Let X be a space. A stable spherical fibration over X is a local
system of spectra ζ : Xop→ Sp such that, for each point x ∈ X, the spectrum ζ(x) is
(abstractly) equivalent to the sphere spectrum S0.

The Thom spectrum Xζ of a stable spherical fibration ζ is the colimit of the diagram

ζ : Xop→ Sp .

4.2.16. For any stable spherical fibration ζ over X, the Thom spectrum enjoys the
following universal property: for any spectrum E, we have a natural weak homotopy
equivalence

MapSp(Xζ ,E) 'MapSpX
(ζ,EX ) .

As a functor S∗→ S∗, the Thom spectrum Xζ carries a space T to the space

colimn→+∞Ω
n (colimx∈X Σ

nζ(x)(T )) .

Example 4.2.17. If ζ : Xop → Sp is a constant spherical fibration, then the Thom
spectrum Xζ is nothing more than Σ∞X+.

Example 4.2.18 (Cobordism). By taking the Thom spectra attached to the J homo-
morphism, we obtain

MO = (BO)JO and MU = (BU )JU .

These spectra are the real and complex cobordism spectra, respectively.
The homotopy of MO and MU are known — the former by Thom and the latter

by Milnor:

π∗MO �F2[xn : n ≥ 2,n , 2j − 1, |xn| = n];

π∗MU �Z[zn : n ≥ 1, |zn| = 2n] .

Example 4.2.19. If X is a topological space with a real vector bundle ν, then we may
abuse notation slightly and write Xν for the Thom spectrum X JOν . We may define
the Thom spectrum of a complex vector bundle in the same manner.

Example 4.2.20 (Atiyah duality). Let X be a compact manifold. For a sufficiently
general embedding of X into R

n, the Spanier–Whitehead dual (Σ∞X+)∨ is naturally
equivalent to Σ∞(Rn/(Rn −X))[−n], which in turn can be identified with the Thom
spectrum of the stable normal bundle of X.
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4.3 Smash products

One of the most important aspects of the theory of spectra is the presence of the
smash product, which provides Sp with a symmetric monoidal structure. We won’t
dive headlong into the details of the theory of symmetric monoidal structures on
∞-categories, but the setup of higher categories makes it possible to characterize the
smash product of spectra with a homotopy-coherent universal property.

Day convolution

Let E1, . . . ,En be a finite collection of reduced functors of finite presentation. Since

these can be regarded as functors S
fin
∗ → S∗, and since both source and target are

endowed with the smash product symmetric monoidal structure, we may form their
Day convolution: this is the functor

E1 ? · · · ? En : S fin
∗ → S∗

defined as the left Kan extension of the functor (K1, . . . ,Kn) 7→ E1K1 ∧ · · · ∧EnKn
along the functor (K1, . . . ,Kn) 7→ K1 ∧ · · · ∧Kn. In other words, we have, for any finite
pointed space Y , the formula

(E1 ? · · · ? En)Y = colimK1∧···∧Kn→Y E1K1 ∧ · · · ∧EnKn ,

where the colimit is taken over the ∞-category

(S fin
∗ × · · · ×S

fin
∗ )×

S
fin
∗

(S fin
∗ )/Y .

It is immediate from this formula that E1 ? · · · ? En is a reduced functor. When n = 0,

it’s immediate that the unit is the inclusion functor S
fin
∗ ↪→ S∗.

4.3.1. The Day convolution actually defines a symmetric monoidal structure on the
∞-category Fun fp,red(S∗,S∗), but we won’t concern ourselves with that now. For now,
we simply observe that ∗ is associative and symmetric up to homotopy in the most
naïve sense possible.

Let us note that, for any finite collection X1, . . . ,Xn of finite pointed spaces, the
natural morphism

hX1 ? · · · ? hXn → hX1∧···∧Xn

is an equivalence, and the Day convolution (E1, . . . ,En) 7→ E1 ? · · · ? En preserves
colimits separately in each variable.

The point here is that, since every reduced functor of finite presentation is a colimit
of corepresentables, the Day convolution is controlled by its behaviour on the corep-
resentables, where it mirrors the smash product of pointed spaces.
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Smash product

Now if E1, . . . ,En are spectra, we may form the smash product

E1 ∧ · · · ∧En =D(E1 ? · · · ? En) .

This gives us the explicit (but, in all honesty, not tremendously useful) formula

(E1 ∧ · · · ∧En)Y = colimmΩ
m(colimK1∧···∧Kn→ΣmY E1K1 ∧ · · · ∧EnKn) .

This is only a reasonable definition because of the following technical lemma, which
expresses a compatibility of the Day convolution with the derivative D . Here recall

the collection of natural transformations {dX : X ∈ S fin
∗ } from 4.1.6.

Lemma 4.3.2. For any finite space X and any finitely presented reduced functor F, the
natural transformation dX : ΣhΣX → hX induces a morphism

dX ∗ id : ΣhΣX ∗F→ hX ∗F

that lies in the strongly saturated class of morphisms of Fun fp,red(S∗,S∗) generated by

{dX : X ∈ S fin
∗ }.

Proof. Any finitely presented reduced functor F is a colimit of functors of the form
hY for Y a finite pointed space, so it suffices to assume that F = hY . In that case,
dX ∗ id is homotopic to the natural transformation

dX∧Y : ΣhΣX∧Y → hX∧Y .

This lemma will actually imply that Sp is symmetric monoidal under the smash
product, and the derivative D is symmetric monoidal. For now, we will make do with
the following less structured assertion:

Proposition 4.3.3. The smash product preserves colimits separately in each variable.
Additionally, D carries the convolution product to the smash product in the sense that if

E1, . . . ,En are reduced functors S
fin
∗ → S∗, then the canonical natural transformation on

Day convolutions αE1
? · · ·? αEn : E1 ? · · ·? En→DE1 ? · · ·?DEn induces an equivalence

D(E1 ? · · · ? En) 'DE1 ∧ · · · ∧DEn .

In particular, the sphere spectrum S0 is a unit for the smash product.

Proof. The first claim is formal. For the second, we observe that by the previous

lemma, αE1
? · · · ? αEn lies in the saturated class generated by {dX : X ∈ S fin

∗ }.

Many of the spectra we’ve been contemplating so far are obtained via the derivative.
This result shows that when we are smashing derivatives, we may delay the application
of the derivative to the last possible moment. We deduce the following pleasant
corollary:

Corollary 4.3.4. If X1, . . . ,Xn are pointed spaces, the natural map is an equivalence:

(Σ∞X1)∧ · · · ∧ (Σ∞Xn) ' Σ∞(X1 ∧ · · · ∧Xn) .
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4.3.5. The smash product also appears in the classical formula for the value of an
excisive functor. If E : S∗→ S∗ is a spectrum, then any map K1∧K2→ S0 induces a
map E(K1)∧K2 ∧X→ E(K1 ∧K2 ∧X)→ E(X), natural in X; together, these define
an equivalence

Ω∞(Σ∞X ∧E) −→∼ E(X) ,

natural in X.

Function spectra and duality

For any spectrum E, the functor E′′ 7→ E′′∧E preserves colimits, and since Sp is
presentable, it follows that there exists a right adjoint E′ 7→F(E,E′) thereto. This is
the function spectrum from E to E′ . As a functor on pointed spaces, it is given by the
assignment

X 7→MapSp((Σ∞X)∨ ∧E,E′) .

For any pointed finite space X and for any map f : K1 ∧K2→ Y of pointed finite
spaces, evaluation defines a map

f ◦ (ev∧id ) : Map(X,K1)∧X ∧K2→ K1 ∧K2→ Y .

Letting f and Y vary, we obtain a natural transformation hX ? sX → hS
0
. Applying D ,

we obtain a morphism of spectra

(Σ∞X)∨ ∧Σ∞X→ S
0 ,

which in turn specifies a map

δX : (Σ∞X)∨→F(Σ∞X,S0) ,

which turns out to be an equivalence. We therefore take this as motivation for the
following definition.

Definition 4.3.6. For any spectrum E, the dual of E is the spectrum

E∨ =F(E,S0) .

4.3.7. If E is a spectrum, then there is a morphism of spectra

E ∧E∨ ' E∨ ∧E→ S
0 ,

which corresponds to a morphism E→ E∨∨.

Let’s classify the finite objects of Sp. It turns out that finiteness in Sp is a far simpler
matter than in S; in effect, problems that the Wall finiteness obstruction catches in S
are finessed in Sp:

Theorem 4.3.8. Let E be a spectrum. The following are equivalent.

1. There exists a finite pointed space X, an integer n ∈ Z, and an equivalence E '
(Σ∞X)[n].
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2. The spectrum E can be expressed as a finite colimit of spectra of the form Sn for n ∈Z.

3. The spectrum E is compact as an object of Sp.

4. The natural morphism E→ E∨∨ is an equivalence.

Definition 4.3.9. A spectrum is said to be finite if it satisfies the conditions of 4.3.8.
We write Spfin ⊂ Sp for the full subcategory spanned by the finite spectra.

4.4 Stable∞-categories

A stable ∞-category is much like an abelian category, except that what is asked of
monomorphisms or epimorphisms in an abelian category is asked of all morphisms
of a stable ∞-category. In an abelian category, every monomorphism is the kernel of
its cokernel, and every epimorphism is the cokernel of its kernel. The definition of
stable ∞-category is rigged so that every morphism of a stable ∞-category is both the
kernel of its cokernel and the cokernel of its kernel.

Another way of thinking about stable ∞-categories is in relation to triangulated
categories. A central theme in modern mathematics is the idea of encoding geometric
structure in terms of a triangulated category of modules of some sort, such as the
derived category of a scheme, the stable module category of a finite group, or the
Fukaya category of a symplectic manifold. A lot of work (e.g., see [214]) permits the
use of triangulated categories as a setting for abstract stable homotopy theory. This is
explained by the connection to stable ∞-categories. The structure of a triangulated
category is, in a precise sense, the shadow of the structure of a stable ∞-category:
the homotopy category of a stable ∞-category is a triangulated category. However,
stable ∞-categories are much easier to work with. For one thing, the definition is
considerably more concise, as the axioms of a triangulated category immediately
become basic computations with kernels and cokernels. For another, a variety of
problems go away — notably, the formation of cokernels is functorial in a stable
∞-category, but it is almost never so in a triangulated category. As a result, there
are important invariants that require functorial cokernels, like algebraic K-theory,
that really only make sense for an ∞-category: they are capable of distinguishing two
stable ∞-categories with triangulated-equivalent homotopy categories (e.g., see [258]).

Definition 4.4.1. An ∞-category A is said to be stable if the following conditions
obtain.

1. There is a zero object — that is, an object that is both initial and terminal — in A.
2. The ∞-category A has all finite limits and all finite colimits.
3. A square

U V

W X

is a pushout if and only if it is a pullback.
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If A and B are stable ∞-categories, a functor f : A→ B is left exact (i.e., finite-
limit-preserving) if and only if it is right exact (i.e., finite-colimit-preserving). In this
case, we simply call f exact. The subcategory of Cat∞ whose objects are stable ∞-
categories and whose morphisms are exact functors is denoted Stab∞.

Example 4.4.2. Naturally, Sp is stable, as is Spfin. On the other hand, although

S∗ and S
fin
∗ have zero objects, finite limits, and finite colimits, they certainly aren’t

stable.

Example 4.4.3. For any small ∞-category C and any stable ∞-category A, the ∞-
category Fun(C,A) is stable. In particular, for any space X, the ∞-category SpX of
local systems of spectra on X is stable.

Example 4.4.4. If A is a stable ∞-category, then so is Aop.

Exercise 4.4.5 . Show that if A is a small stable ∞-category, then so is Ind(E).

Kernels and cokernels

Let A be an ∞-category with a zero object 0, and let f : X → Y be a morphism
thereof. We can form the kernel 1 or fibre or cocone i : K → X of f , which is the
pullback

K 0

X Y

i

f

and the cokernel or cofibre or cone p : Y → C of f , which is the pushout

X Y

0 C

f

p

In a stable ∞-category, pullback squares and pushout squares coincide, so f is both
the cokernel of i and the kernel of p. We can keep pushing and pulling with the aid of
the loopspace and the suspension:

Construction 4.4.6. If A has all finite colimits, then we have the endofunctors

X 7→ ΣX = 0∪X 0 and X 7→ΩX = 0×X 0 .

Note that the functors Σ and Ω each admit an involution −1 given by swapping the
zero objects.

These functors are adjoint, but if A is stable, they are also inverse to each other;

1 We have opted to keep the terms “kernel” and “cokernel” in circulation — even though this is uncommon
lingo in stable ∞-category literature — because we think the parallel to abelian categories is highlighted
clearly this way.



4.4 Stable∞-categories 167

that is, the unit id → ΩΣ and the counit ΣΩ → id are each equivalences. In that
case, we also may write

X[1] = ΣX and X[−1] =ΩX ,

and we call these the shift functors. In particular, for any object X, there is an
endomorphism −1: X→ X that arises from thinking of X as X[1][−1] or X[−1][1].

4.4.7. When A is stable, the kernel of the cokernel of our morphism f is f again,
and the cokernel of the kernel of f is f again. The kernel of the kernel of f is the
morphism −Ωp : Y [−1]→ C[−1] ' F, and the cokernel of the cokernel of f is the
morphism −Σi : C ' F[1]→ X[1]. If we continue to form kernels and cokernels, we
obtain a diagram

X[−1] Y [−1] 0

0 F X 0

0 Y C 0

0 X[1] Y [1]

−Ωf

−Ωp
i

f

p

−Σi

−Σf

(4.4.1)

in which every square is both a pushout and a pullback. In such a diagram, a shift of
a morphism changes sign precisely when it turns from horizontal to vertical or vice
versa.

4.4.8. If f : X → Y and g : Y → Z are morphisms of a stable ∞-category A, and
if η is a nullhomotopy of gf , that is, a homotopy between gf and the zero morphism
0: X → Z, which is the composite of the unique morphisms X → 0 and 0 → Z,
then we can ask whether η exhibits g is the cokernel of f . If it does, then there is a
further morphism h : Z → X[1], and one calls the sequence X → Y → Z → X[1] a
distinguished triangle or a fibre /cofibre sequence. The “triangle” here is the diagram

Y

X Z

gf

h

[1]

where the arrow marked [1] isn’t a morphism as shown but rather the morphism
h : Z→ X[1]. The value of drawing it this way is that it can be rotated:

Z

Y X[1]

hg

−f
[1]

or
X

Z[−1] Y

f−h[−1]

g
[1]
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The homotopy category hA, with shift functor X 7→ X[1] and distinguished triangles
as above, is in fact a triangulated category. The proof of this claim is Theorem 1.1.2.14
in [168]. However, working with a stable ∞-category is always preferable to — and
usually easier than — working with a triangulated category.

Universal property of Sp

The ∞-category Sp admits a universal property as an object of the ∞-category PrLst
of presentable stable ∞-categories and colimit-preserving functors. Precisely, Sp is
the free presentable stable ∞-category on one generator; that is, for any presentable
stable ∞-category E, evaluation at S0 defines an equivalence FunL(Sp,E) ' E, where
FunL is the category of colimit-preserving functors.

Though we won’t go into detail about symmetric monoidal structures on ∞-
categories, it is useful to note that PrLst has such a structure: for any pair of presentable
stable ∞-categories C and D, there exists a presentable stable ∞-category C ⊗D
such that FunL(C ⊗D,A) is equivalent to the ∞-category of functors C ×D→ A that
preserve colimits separately in each variable. In this symmetric monoidal structure,
the unit is Sp.

Since the ∞-category Sp is the unit for the symmetric monoidal structure PrLst that
we discussed above, it follows that Sp admits a unique symmetric monoidal structure
Sp×Sp→ Sp that preserves colimits separately in each variable. This gives a pleasant
universal characterisation of the smash product.

One consequence of the universal property of the ∞-category of spectra is the
following omnibus comparison result to the models of spectra considered in Chapter 3.

Theorem 4.4.9. The underlying ∞-categories of the categories of orthogonal spectra,
symmetric spectra, classical prespectra, and EKMM spectra with the stable equivalences are
all equivalent to the ∞-category of spectra.

Additivity

One point that we will address carefully is the presence of direct sums and the additivity
of a stable ∞-category.

Definition 4.4.10. If A is an ∞-category, we say that A admits direct sums if the
following conditions obtain.

1. The ∞-category A admits finite products and finite coproducts.
2. The natural morphism from the initial object to the terminal object is an equiva-

lence, so that there is a zero object in A.
3. For any objects X,Y ∈ A, the map

I =
(
id 0
0 id

)
: X tY → X ×Y

is an equivalence.
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In this case, we write X ⊕Y for the identified product and coproduct.
If A admits direct sums, then the homotopy category hA acquires an enrichment in

the category of commutative monoids: for any morphisms f ,g : X→ Y , one defines

f + g = (id id)
(
f 0
0 g

)(
id
id

)
: X→ X ⊕X→ Y ⊕Y → Y

One says moreover that A is additive if MaphA(X,Y ) is an abelian group.

The homotopy category hA of a stable ∞-category A is automatically enriched in
abelian groups, thanks to the natural equivalence MapA(S,T ) 'Ω2 MapA(S[−2],T ).
But in fact even more is true:

Proposition 4.4.11. Any stable ∞-category A is additive.

Proof. A contains a zero object, and it admits finite products and finite coproducts.
To see that these coincide, we claim that id× 0: X→ X ×Y and 0× id : Y → X ×Y
together exhibit X ×Y as the coproduct X tY . For any object Z, the induced map

MapA(X ×Y ,Z)→MapA(X,Z)×MapA(Y ,Z)

admits a homotopy inverse given by the formula (f ,g) 7→ (f × 0) + (0× g) (using the
enrichment of hA in abelian groups). Finally, the Eckmann–Hilton argument shows
that the commutative monoid enrichment of hA arising from the presence of direct
sums coincides with the abelian group enrichment of hA arising from the stability
of A.

Notation 4.4.12. If A is a stable∞-category and if X,Y ∈A, we obtain abelian groups

ExtnA(X,Y ) = MorhA(X[−n],Y ) 'MorhA(X,Y [n]) .

When n ≤ 0, we have

ExtnA(X,Y ) � π−nMapA(X,Y ) .

These abelian groups are the homotopy groups of mapping spectra associated to
objects X,Y ∈ A. In fact, in a precise sense the category of stable ∞-categories is
equivalent to the category of spectral categories (where equivalences are the “Morita
equivalences” of spectral categories, defined in terms of equivalences on associated
module categories). See for example [46, 4.23] for a discussion of this.

Loopspace and suspension

The argument of 4.1.3 works in general here, and it implies that, in order to verify
stability, it is enough to check that Σ and Ω are inverse:

Theorem 4.4.13. Let A be an ∞-category with a zero object, all finite limits, and all
finite colimits. If the functors Σ and Ω on A are inverse, then A is stable.

Example 4.4.14. If A is stable, then a stable subcategory is a full subcategory that is
stable under equivalences, contains the zero object, and is stable under finite limits
and colimits.
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Exercise 4.4.15 . Let C be an ∞-category with a zero object and all finite limits. Show
that the limit Spseq(C) in Cat∞ of the sequence

· · · C C CΩ Ω Ω

is stable. (Hint: the tricky point is to confirm that Spseq(C) admits all finite colimits.)
The “cartesian section” point of view on Spseq(C) is that its objects are sequences
{Xn}n≥0 of objects of C along with sequences of equivalences {Xn → ΩXn+1}n≥0.
This goes some way to explaining the notation. The equivalence with “true” spectra
will be addressed in the next section.

4.5 Generalisations

One may ask what happens when one has only part of the axioms of a stable ∞-
category. These ∞-categories often appear as subcategories of stable ∞-categories,
but they also arise directly from applications.

Prestable∞-categories

For example, the subcategory of connective spectra — those whose homotopy is confined
to nonnegative degrees — is only closed under suspension, but not loopspace. More
generally, we have the following subcategories of spectra:

Example 4.5.1. For any integer k, write Sp≥k ⊂ Sp for the full subcategory spanned
by the k-connective spectra, i.e., those spectra E such that En = 0 for n < k. Dually,
write Sp≤k ⊂ Sp for the full subcategory spanned by the k-coconnective spectra, i.e.,
those spectra E such that En = 0 for n > k.

The objects of the ∞-category Sp≥k are called the k-connective spectra, and the
objects of Sp≤k are called the k-truncated spectra.

We will study systems of subcategories like this in detail in Section 4.7. Here,
we are more interested in the intrinsic properties of the ∞-category Sp≥k . Right
away, we notice that the suspension of a k-connective spectrum remains k-connective,
but the loopspace of a k-connective spectrum is in general no longer k-connective.
Consequently, we are interested in situations in which we have “half” of our stability
conditions:

Definition 4.5.2. An∞-category A is said to be prestable if and only if the following
conditions obtain.

1. The ∞-category A admits a zero object.

2. The ∞-category A has all finite colimits.
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3. Every morphism f : X→ ΣY of A admits a kernel i : F→ X, and the square

F X

0 ΣY

i

f

exhibits f as the cokernel of i.

4.5.3. By the same argument as 4.1.3, we see that an∞-category that contains a zero
object and all finite limits and colimits is prestable if and only if the suspension Σ is
fully faithful.

4.5.4. As in Proposition 4.4.11, a prestable∞-category A is automatically additive. To
see this, note that we have the abelian group enrichment, thanks to the equivalence
MapA(S,T ) 'Ω2 MapA(S,T [2]). The rest of the argument is as in 4.4.11.

Example 4.5.5. For any k ∈ Z, the ∞-category Sp≥k of k-connective spectra is
prestable.

Derived∞-categories

The triangulated derived category D(R) of the category of R-modules has some
disadvantages:

– The formation of cones is not functorial; they are generally not unique, but rather
they are unique up to a noncanonical isomorphism in the derived category. This
is because diagrams in D(R) commute up to homotopy, but the data of such a
homotopy is not part of the data of such a diagram.

– In a similar vein, there is not a good theory of sheaves valued in D(R). For instance,
if {U,V ,W } is an open cover of a topological space X, and if F is a sheaf on
X valued in D(R), then the sheaf condition ensures that global sections can be
recovered from local sections that agree up to homotopy on double overlaps, but this
is true even without any compatibility for these homotopies on the triple overlap.

Consequently, it is often more convenient to work with the derived ∞-category of R.
Here is the construction:

Construction 4.5.6. Let E be an abelian category, which we shall regard as an
∞-category. Assume that E has enough projective objects. Write Eproj ⊆ E for the full
subcategory spanned by the projective objects.

We will construct the nonnegative derived ∞-category of E. It’s actually convenient
to start by defining the nonnegative derived ∞-category of Ind(E).

We write D≥0(Ind(E)) ⊆ Fun(Eop
proj ,S) for the full subcategory spanned by those

functors E
op
proj→ S∗ that carry finite direct sums to products.

One has the Yoneda embedding j : Eproj ↪→ D≥0(Ind(E)), which can be thought of
either as freely generating D≥0(Ind(E)) under sifted colimits (that is, filtered colimits
and geometric realisations) or as generating D≥0(Ind(E)) under all colimits, subject
to the condition that j preserve finite coproducts. That is:
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1. For any ∞-category C that admits all sifted colimits, the functor

j∗ : Fun(D≥0(Ind(E)),C)→ Fun(Eproj ,C)

restricts to an equivalence between the full subcategory of Fun(D≥0(Ind(E)),C)
spanned by those functors D≥0(Ind(E)) → C that preserve sifted colimits and
Fun(Eproj ,C).

2. If E admits all colimits, then j∗ restricts to an equivalence between the full
subcategory of Fun(D≥0(Ind(E)),C) spanned by those functors D≥0(Ind(E))→
C that preserve all colimits and the full subcategory of Fun(Eproj ,C) spanned by
those functors A→ E that preserve finite coproducts.

The ∞-category D≥0(Ind(E)) is called the nonnegative derived ∞-category of Ind(E).
We write D≥0(E) ⊆ D≥0(Ind(E)) for the smallest full subcategory that contains

Eproj and is closed under geometric realisations. Thus D≥0(E) is obtained from A
by freely adding geometric realisations; that is, for any ∞-category E that admits all
geometric realisations, the functor

j∗ : Fun(D≥0(E),E)→ Fun(Eproj ,E)

restricts to an equivalence between the full subcategory of Fun(D≥0(Ind(E)),E)
spanned by those functors D≥0(E) → E that preserve geometric realisations and
Fun(Eproj ,E).

The∞-category D≥0(E) is called the nonnegative derived∞-category of E. A functor
F : D≥0(E)→ E that preserves geometric realisations will be said to be the left derived
functor of j∗F.

4.5.7. There is no ambiguity in our notation. If E is an abelian category with enough
projectives and E′ = Ind(E), then E′ also has enough projectives, and our definition
of D≥0(E′) agrees with our definition of D≥0(Ind(E)): each freely adds sifted colimits
to Eproj.

Example 4.5.8. For any abelian category E with enough projectives, the∞-categories
D≥0(Ind(E)) and D≥0(E) are prestable. Indeed, the second universal property makes
it clear that D≥0(E) admits direct sums. To prove that the suspension on D≥0(Ind(E))
is fully faithful, let C : Eop

proj → S∗ be an object; then since products and geometric
realisations are computed objectwise in D≥0(Ind(E)), we may write ΣC as the functor
that carries an object X ∈ A to the geometric realisation of the bar construction

B∗(0,C(X),0) : n 7→ C(X)n .

This simplicial space is a grouplike Segal space, and so we have an equivalence
C(X) 'Ω|B∗(0,C(X),0)| 'ΩΣC(X).

Construction 4.5.9. Let E be an abelian category with enough projectives, and
let C : Eop

proj → S∗ be an object of D≥0(E). Then we obtain, for any integer n ≥ 0,
a functor

Hn(C) = πnC : Eop
proj→ Set∗
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that carries direct sums to products. In other words, Hn(C) ∈ Ind(E).
Let us quickly check that Hn(C) actually lies in E. For any object M ∈ E, one has

H0(j(M)) =M, and for n ≥ 1, Hn(j(M)) = 0. Furthermore, if C∗ is a simplicial object
of D≥0(E) with the property that Hn(Ck) ∈ E for every k,n ≥ 0, then the obvious
spectral sequence argument ensures that for every n ≥ 0, one has Hn|C∗| ∈ A.

We have thus defined the homology functors Hn : D≥0(E)→ E.

If E is an abelian category with enough projective objects, the homotopy category
hD≥0(E) can be shown to be the derived category of nonnegatively graded complexes
in Eproj . Under this equivalence, the homology functors above agree with the classically
defined functors, and the left derived functor of a functor E → E′ in our sense
coincides with the left derived functor in the classical sense.

Definition 4.5.10. For any abelian category E with enough projectives, we write
Fun⊕(Eop

proj,Sp) for the (stable)∞-category of functors E
op
proj→ Sp that preserve direct

sums. We then define D−(E) as the smallest stable full subcategory of Fun⊕(Eop
proj,Sp)

that contains the essential image of Σ∞j : Eproj→ Fun⊕(Eop
proj,Sp) and is closed under

geometric realisations. This is the right bounded derived ∞-category of E.

Exercise 4.5.11 . Verify that the functor Σ∞ : D≥0(E)→D−(E) is fully faithful.

4.5.12. Let E be an abelian category with enough projectives. If C : Eop
proj→ Sp is an

object of D≥0(E), then as in 4.5.9 we obtain, for any integer n ∈Z, a functor

Hn(C) = πnC : Eop
proj→ Set∗

that carries direct sums to products, so that Hn(C) ∈ Ind(E), and once again it turns
out that Hn(C) lies in E itself.

We have thus defined the homology functors Hn : D−(E)→ A.

Construction 4.5.13. If E is an abelian category with enough injective objects, then
we can define

D≤0(E) =D≥0(Eop)op and D+(E) =D−(Eop)op ;

we call D+(E) the left bounded derived ∞-category of E. We can also define the coho-
mology functors H−n =Hn.

4.5.14. An even more dramatic generalisation of the stable∞-categories is the notion
of an exact∞-category. These were introduced in [24] as a simultaneous generalisation
of the exact categories of Quillen and stable ∞-categories. Exact ∞-categories are a
natural setting for algebraic K-theory and Quillen’s Q construction.

4.6 Stabilisation

In this section, we give a machine for printing examples of stable ∞-categories. This
machine is really nothing more than a formal extension of our definition of spectra.
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Definition 4.6.1. Let C and D be ∞-categories. Assume that C admits all finite
colimits. We say that a functor F : C → D is reduced if it carries the initial object of
C to a terminal object of D, and we say that F is excisive if it carries any pushout
square in C to a pullback square in D .

We write Fun∗(C,D) ⊆ Fun(C,D) for the full subcategory spanned by the reduced
functors; Exc(C,D) ⊆ Fun(C,D) for the full subcategory spanned by the excisive
functors; and Exc∗(C,D)⊆Fun(C,D) for the full subcategory spanned by the reduced
excisive functors.

4.6.2. Let C, D, and F be as above. If C is stable, then F is reduced excisive if and
only if F is left exact. If D is stable, then F is reduced excisive if and only if F is right
exact.

If D admits all finite limits, then the argument of 4.1.3 applies again to ensure that
F is excisive if and only if, for any object X ∈ C, the natural map FX → ΩFΣX is
an equivalence.

Exercise 4.6.3 . Check that, if C is an ∞-category C with all finite colimits and D is
an ∞-category D with all finite limits, the ∞-category Exc∗(C,D) is stable.

Definition 4.6.4. For any ∞-category D with all finite limits, a spectrum in D is a
reduced excisive functor S

fin
∗ →D . We write Sp(D) = Exc∗(S

fin
∗ ,D), and we call this

∞-category the stabilisation of D .
Evaluation at S0 defines a functor Ω∞ : Sp(D)→D .

Example 4.6.5. Of course Sp ' Sp(S).

We haven’t got much of an excuse for the notation Ω∞ at the moment, but we will
explain it soon.

Universal property of stabilisation

Exercise 4.6.6 . For any∞-category D with all finite limits, show that Ω∞ : Sp(D)→D
is an equivalence if and only if D is stable.

4.6.7. Let C be an ∞-category with all finite colimits, and let D be an ∞-category
with all finite limits. Then a reduced excisive functor C → Sp(D) is the same thing
as a functor C ×S fin

∗ → D that is reduced and excisive separately in each variable.
This, in turn, is the same thing as a spectrum in the ∞-category Exc∗(C,D).

Proposition 4.6.8. Let C be an ∞-category with all finite colimits, and let D be an
∞-category with all finite limits. The functor Ω∞ : Sp(D)→D induces an equivalence

Exc∗(C,Sp(D)) ' Exc∗(C,D) .

Proof. The induced functor Sp(Exc∗(C,D)) ' Exc∗(C,Sp(D))→ Exc∗(C,D) is Ω∞,
which is an equivalence since Exc∗(C,D) is stable.

This result reveals a universal property of the stabilisation: if we look at the
subcategory Catlex

∞ whose objects are ∞-categories with all finite limits and whose
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morphisms are left exact functors, then the ∞-category Stab∞ is a full subcategory of
Catlex

∞ . Now the previous proposition reveals that the stabilisation is in fact the right
adjoint to the inclusion Stab∞ ↪→ Catlex

∞ . In other words, Stab∞ is a colocalisation of
Catlex

∞ .

Spectra and sequential spectra

Here is another perspective, which explains the notation Ω∞ and refers to the
construction of Spseq of 4.4.15:

Proposition 4.6.9. Let D be an∞-category with a zero object and all finite limits. Then
the functor

Spseq(D)→D

given informally by {Xn}n≥0 7→ X0 exhibits Spseq(D) as the stabilisation of D :

Sp(D) ' Spseq(D) .

Proof. One knows from (4.4.15) that Spseq(D) is stable. Therefore it suffices to prove
that for any stable ∞-category A, the induced functor

Exc∗(A,Spseq(D))→ Exc∗(A,D)

is an equivalence. But this functor is the limit of the sequence

· · · Exc∗(A,D) Exc∗(A,D) Exc∗(A,D) ,Ω Ω Ω

which is a diagram of equivalences over a weakly contractible ∞-category.

Complete derived∞-categories

We can apply the stabilisation process to the nonnegative derived ∞-category:

Definition 4.6.10. Let E be an abelian category with enough projective objects.
We write D−,∧ (E) for the stabilisation Sp(D≥0(E)). This is the right complete derived
∞-category of E.

Dually, if E is an abelian category with enough injective objects, we write D+,∧(E)
for the stabilisation Sp(D≥0(Eop))op. This is the left complete derived ∞-category of E.

In the next section, we will be able to characterise these ∞-categories in an intrinsic
manner.

4.7 t-structures

The most basic examples of triangulated categories possess additional structure
given by shift and truncation functors. For example, for the derived category of a
commutative ring, there are inverse auto-equivalences given by shifting complexes up
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and down, and it is often useful to study about truncated complexes that live entirely
in positive or negative degrees. This structure is axiomatized in terms of additional
data referred to as a t-structure, which specifies positive and negative subcategories
whose intersection is an abelian category known as the heart of the t-structure. There
is a natural generalisation of this theory to the setting of stable ∞-categories.

Definition 4.7.1. Let A be a stable ∞-category, and let A≥0,A≤0 ⊆ A be a pair of
full subcategories. We may shift these subcategories about:

A≥n = (A≥0)[n] and A≤n = (A≤0)[n] .

We say that the pair (A≥0,A≤0) constitute a t-structure on A if it enjoys the following
properties.

1. If X ∈ A≥0 and Y ∈ A≤−1, then the space MapA(X,Y ) is contractible.

2. The subcategory A≥0 is closed under positive shifts, and the subcategory A≤0 is
closed under negative shifts. So A≥1 ⊆ A≥0, and, dually, A≤−1 ⊆ A≤0 as well.

3. For every X ∈ A, there is a distinguished triangle

τ≥0X→ X→ τ≤−1X→ (τ≥0X)[1] ,

where τ≥0X ∈ A≥0 and (τ≤−1X)[1] ∈ A≤0.

4.7.2. For any object X, a distinguished triangle τ≥0X → X → τ≤−1X → (τ≥0X)[1]
exhibits τ≤−1X ∈ A≤−1 as a (A≤−1)-localisation of X. Consequently, τ≤−1 organises
itself into a left adjoint to the inclusion A≤−1 ↪→ A. One may shift to find that for any
n ∈Z, the functor τ≤n defined by

τ≤nX = (τ≤−1(X[−n]))[n]

exhibits the subcategory A≤n ⊆ A as a localisation.
Dually, the distinguished triangle τ≥0X → X → τ≤−1X → (τ≥0X)[1] exhibits

τ≥0X ∈ A≥0 as a (A≥0)-colocalisation of X, and for any n ∈ Z, the functor τ≥n
defined by

τ≥nX = (τ≥0(X[n]))[−n]

exhibits the subcategory A≥n ⊆ A as a colocalisation.

Example 4.7.3. We have already encountered the t-structure on the ∞-category Sp
of spectra. The spectra that lie in Sp≥0 are called connective.

Example 4.7.4. Let E be an abelian category with enough projectives. We have also
encountered the t-structure on right bounded derived ∞-category. Then D≤0(E),
regarded as a full subcategory of D−(E), is a t-structure.

This notion is compatible with the classical notion; if A is a stable ∞-category with
a t-structure in the sense above, then the homotopy category of A is a triangulated
category with a t-structure.
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Warning 4.7.5. Here we are following the homotopy theory convention of homolog-
ical indexing. This is mostly for the sake of compatibility with Lurie’s text.

However, one may expect to encounter cohomological indexing in the literature.
These should be written with superscripts rather than subscripts:

A≤n = A≥−n , A≥n = A≤−n , τ≤n = τ≥−n , τ≥n = τ≤−n .

Unfortunately, even when cohomological indexing is being employed, the truncation
functors are sometimes written with subscripts (notably, in [34]), so one must remain
vigilant.

We emphasise that the meaning of the shift functor X 7→ X[1] is always suspension.
So one has the formulas

A≤n = (A≤0)[−n] and A≥n = (A≥0)[−n] .

4.7.6. A t-structure on a stable ∞-category A is uniquely specified by giving, for
some n ∈Z, any one of the following pieces of data:

1. the full subcategory A≥n ⊆ A;
2. the full subcategory A≤n ⊆ A;
3. the functor τ≥n : A→ A; or
4. the functor τ≤n : A→ A.

4.7.7. For any n ∈ Z, the ∞-category A≥n is an exact ∞-category in which every
morphism is ingressive, and A≤n is an exact ∞-category in which every morphism is
egressive.

4.7.8. For integers a ≤ b, one may define A[a,b] = A≥a ∩ A≤b. The restriction of
τ≤b to A≥a is a left adjoint A≥a → A[a,b], and the restriction of τ≥a to A≤b is a left
adjoint A≤b → A[a,b]. A simple “five lemma” argument furnishes us with a natural
equivalence

τ≤bτ≥a ' τ≥aτ≤b : A→ A[a,b] ,

and we shall write τ[a,b] for this functor.
The ∞-category A[a,b] is an exact ∞-category in which the ingressive morphisms

are those morphisms that are ingressive in A≥a, and the egressive morphisms are
those morphisms that are egressive in A≤b.

As a special case, we write A♥ = A[0,0]; this is called the heart of the t-structure.
Note that the shift functor restricts to a specified equivalence A♥ ' A[n,n] for any
n ∈Z; we now define the homological functors attached to the t-structure:

πn = τ[n,n] : A→ A[n,n] ' A♥ .

We have chosen this notation again for the sake of compatibility with Lurie. Other
authors may write Hn for this functor, and those who use cohomological indexing
are liable to write Hn = τ [n,n].

Proposition 4.7.9. Let A be a stable ∞-category endowed with a t-structure. Then the
heart A♥ is (equivalent to the ∞-category corresponding to) an ordinary abelian category.
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Proof. If X,Y ∈ A♥, then for any n ≥ 1, one has

πnMapA(X,Y ) � Ext−nA (X,Y ) � 0 ,

whence A♥ is (equivalent to) a 1-category. We have already seen that A♥ is an exact
∞-category, whence it is an exact category in Quillen’s sense. To show that it is abelian,
one just has to note that the ingressives are precisely the monomorphisms, and the
egressives are precisely the epimorphisms.

Example 4.7.10. The heart Sp♥ is the category Ab of abelian groups. The homo-
logical functors attached to this t-structure are precisely the usual stable homotopy
group functors πn.

Example 4.7.11. Let E be an abelian category with enough projectives. Then the
heart D−(E)♥ is again E. The homological functors attached to this t-structure are
precisely the homology functors Hn.

Boundedness and completeness

The previous examples show that stable ∞-categories with t-structures are not deter-
mined by their hearts. There is, however, a special class of stable ∞-categories with
t-structures that are determined by their hearts. These are the derived ∞-categories
of abelian categories. To describe them, we must discuss some different kinds of
t-structures.

Definition 4.7.12. Let A be a stable ∞-category equipped with a t-structure. Define

A− =
⋃
m∈Z

A≥m , A+ =
⋃
n∈Z

A≤n , Ab = A+ ∩A− =
⋃

m,n∈Z
A[m,n] .

We call

1. the objects of A− bounded below,
2. the objects of A+ bounded above, and
3. the objects of Ab bounded.

We say that the t-structure is

4. right bounded if A = A−,
5. left bounded if A = A+, and
6. bounded if A = Ab.

Example 4.7.13. The t-structure on Spfin is right bounded.

Definition 4.7.14. Let A be a stable ∞-category equipped with a t-structure. We
define A∧,R ⊆ Fun(Zop,A) as the full subcategory spanned by those sequences X such
that X(m) ∈ A≥m for any m ∈ Z, and that the induced morphism X(n)→ τ≥nX(m)
is an equivalence for any m ≤ n. Dually, we define A∧,L ⊆ Fun(Zop,A) as the full
subcategory spanned by those objects X such that X(m) ∈ A≤m for any m ∈ Z, and
that the induced morphism τ≤mX(n)→ X(m) is an equivalence for any m ≤ n.
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We call

1. A∧,R the right completion of A with respect to its t-structure, and

2. A∧,L the left completion of A with respect to its t-structure.

We say that the t-structure is

3. right complete if the natural map A→ A∧,R is an equivalence,

4. left complete if the natural map A→ A∧,L is an equivalence, and

5. complete if it is both left and right complete.

4.7.15. If A is a stable ∞-category equipped with a t-structure, the right completion
of A− coincides with the right completion of A itself, and the bounded below objects
of the right completion A∧,R coincide with the bounded below objects of A itself.
It follows that there is an equivalence between the ∞-category of right bounded
t-structures and that of right complete t-structures.

Example 4.7.16. Let E be an abelian category. If E has enough projectives, then
the t-structure on D−(E) is right bounded (whence the notation!) and left complete.
Dually, if E has enough injectives, then the t-structure on D+(E) is left bounded and
right complete.

In the same vein, if E has enough projectives, then D−,∧(E) is complete, and
if E has enough injectives, then D+,∧(E) is complete. In fact, D−,∧(E) is the right
completion of D−(E), and D+,∧(E) is the left completion of D+(E).

It is a priori difficult to determine whether a t-structure is right or left complete.
Fortunately, there is a reasonable criterion for this.

Definition 4.7.17. Let A be a stable ∞-category equipped with a t-structure. We
define

A−∞ =
⋂
n∈Z

A≤n and A+∞ =
⋂
n∈Z

A≥n .

We say that the t-structure is

1. right separated if A−∞ = 0,

2. left separated if A+∞ = 0, and

3. separated if it is both left and right separated.

Proposition 4.7.18 ([168, Proposition 1.2.1.19]). Let A be a stable ∞-category with
countable coproducts. Let τ be a t-structure on A with the property that A≥0 is stable under
countable coproducts. Then τ is right complete if and only if it is right separated.

Exercise 4.7.19 . Use this criterion to check that the t-structure on Sp is complete.
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Derived∞-categories

Roughly speaking, the constructions E 7→D−(E) and E 7→D+(E) are left adjoint to
the construction A 7→ A♥. To make this precise, we must specify which ∞-category of
stable ∞-categories we will to use:

Definition 4.7.20. Let A and B be stable ∞-categories equipped with t-structures.
An exact functor f : A → B is said to be right t-exact if f (A≥0) ⊆ B≥0. Dually, an
exact functor f : A→ B is said to be left t-exact if f (A≤0) ⊆ B≤0. An exact functor
f : A→ B is said to be t-exact if it is both left and right t-exact.

Let us say that a right t-exact functor A→ B is left derived if it carries the projective
objects of A♥ into B♥. We write Funlder(A,B) ⊆ Fun(A,B) for the full subcategory
spanned by the left derived right t-exact functors A → B. Dually, let us say that a
left t-exact functor A → B is right derived if it carries the injective objects of A♥

into B♥. We write Funrder(A,B) ⊆ Fun(A,B) for the full subcategory spanned by the
right derived right t-exact functors A→ B.

Theorem 4.7.21. Let E be an abelian category with enough projectives, and let B be a
stable ∞-category equipped with a left complete t-structure. The construction F 7→ τ≤0F|E
is an equivalence of ∞-categories

Funlder(D−(E),B)→ Funrex(E,B♥) ,

where Funrex(E,B♥) ⊆ Fun(E,B♥) is the full subcategory spanned by the right exact
functors E→ B♥.

Dually, let E be an abelian category with enough injectives, and let B be a stable
∞-category equipped with a right complete t-structure. The construction G 7→ τ≥0G|E is an
equivalence of ∞-categories

Funrder(D+(E),B)→ Funlex(E,B♥) ,

where Funlex(E,B♥) ⊆ Fun(E,B♥) is the full subcategory spanned by the left exact functors
E→ B♥.

4.7.22. If E has enough projectives and B is a stable ∞-category equipped with
a left complete t-structure, then we call F : D−(E) → B the left derived functor of
f = τ≤0F|A, and we write Lf = F.

Dually, if E has enough injectives and B is a stable ∞-category equipped with a
right complete t-structure, then we call G : D+(E)→ B the right derived functor of
g = τ≥0G|E , and we write Rg = G.

Example 4.7.23. Since Sp♥ ' Ab, we obtain a t-exact functor H : D−(Ab)→ Sp,
which carries a chain complex C to the generalised Eilenberg–Mac Lane spectrum HC.

This result also allows us to recognise derived ∞-categories.

Corollary 4.7.24. Let A be a stable ∞-category equipped with a left complete t-structure.
Assume that A♥ has enough projectives. The unique t-exact functor K : D−(A♥)→ A is
fully faithful if and only if, for any projective object M ∈ A♥ and any object N ∈ A♥, the
groups Extn(M,N ) = 0 for any n ≥ 1. In this case, the essential image of K is A− ⊆ A.
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4.7.25. As a final comment, we observe that if E is a Grothendieck abelian category,
then there is also an unbounded derived ∞-category D(E) equipped with a t-structure.
Since E has enough injectives, we obtain a stable ∞-category D+(E). The previous
corollary ensures that the unique t-exact functor D+(E)→D(E) is fully faithful, and
it identifies D+(E) with the bounded above objects of D(E).

One might be therefore tempted to believe that D(E) coincides with the left com-
plete derived ∞-category D+,∧(E). We emphasise, however, that this is not generally
true: there are abelian categories E, such as the category of representations of Ga

over a field of positive characteristic, for which D(E) is not left complete.
If, however, countable products in E are exact, the criterion of 4.7.18 works to

ensure that D(E) is left complete. Then we can identify D(E) with D+,∧(E), and
so 4.7.21 furnishes us with a universal characterisation of D(E) in this case. The
author does not know a universal characterisation of D(E) for a general Grothendieck
abelian category.




