
3 Stable categories and spectra
via model categories

by Daniel Dugger

3.1 Introduction

The first popular model category of spectra was due to Bousfield–Friedlander [56], and
for many years it was the only one in common use (a previous model due to K. Brown
[61] never really caught on). But this category does not admit a suitable smash product
on the model category level. Following an early but limited attempt by Robinson [248],
in the late 1990s several new model categories of spectra appeared that fixed this
problem. These days a working topologist should know a little about each of these
models, and about their various advantages and disadvantages.

Here is a list of the main players:

(1) Bousfield–Friedlander spectra
(2) Symmetric spectra
(3) Orthogonal spectra
(4) EKMM spectra
(5) Γ -spaces (which only model connective spectra)
(6) W-spaces (generalizing “functors with smash product”)

While it would be nice to pick out one model and say this is the one everyone should
learn, life is not that simple. An algebraic topologist is likely to encounter each of the
above models at some point, and some will have advantages over others depending on
the context. For example, at this point there is a developing consensus that orthogonal
spectra work best for equivariant homotopy theory; but some constructions — like
Waldhausen K-theory — naturally produce a symmetric spectrum, not an orthogonal
one. Functors with smash product (FSPs) have largely disappeared from the stage,
being eclipsed by (2) and (3), but they are still worth a passing familiarity. In this
survey we concentrate on (1)–(4), with (5) and (6) only making a quick appearance at
the end.

To describe the organization of this survey, it is helpful to use an analogy from
daily life: the automobile. For most of us, an automobile is a box with wheels that has
certain behaviors when we turn the steering wheel or step on the pedals. That very
primitive level of understanding is sufficient for most day-to-day functioning, and it is
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rare that any of us have to actually look under the hood. To some extent, the same
holds true of spectra. Much of daily life can be covered just by knowing that there
exists a model category of spectra with a smash product satisfying a small list of basic
properties. This kind of superficial knowledge is fine for driving around town, but
unlike the automobile analogy my experience has been that nearly every trip on the
homotopy-theory highway requires one or two stops to mess around with the engine.
It bothers me that this is so, and I usually find myself cursing at the injustice when I
have to do it, but this seems to be the nature of the subject.

To continue beating our analogy to death, when one is messing around under the
hood there is simply no substitute for the technical manuals. For spectra these are
[94], [133], [178], [267], and [132]. The present survey cannot replace them. Instead, we
concentrate on two aims. The first is to give a kind of “driver’s manual” to the world
of stable model categories, monoidal model categories, and general properties that are
satisfied by all the commonly used model categories of spectra. This takes roughly the
first half of the chapter. The second goal is to give enough of a technical introduction
to the different categories that readers can confidently go open up the manuals and
feel that they have a fighting chance.

Before moving on let’s state the definitions of the basic objects:

1. A classical spectrum is a collection of pointed spaces Xn for n ≥ 0 together with
structure maps σn : S1∧Xn→ Xn+1. The notion of a spectrum originated with
Lima [158], but the first model structure was developed by Bousfield–Friedlander.
The phrase “Bousfield–Friedlander spectra” sometimes gets used for these objects,
even though the definition of the objects themselves came much earlier. They
are also sometimes called “prespectra”, mainly in the work of Peter May and his
collaborators. A suspension spectrum is a spectrum where the structure maps
are all identity maps, and an Ω-spectrum (read “omega spectrum”) is one where
the adjoints Xn→ΩXn+1 of the structure maps σn are weak equivalences.

2. A symmetric spectrum is a classical spectrum where each Xn comes equipped
with an action of the symmetric group Σn, and where each of the iterated structure
maps

σp : (S1)∧(p) ∧Xq→ Xp+q

is Σp ×Σq-equivariant. Here σp is actually a composite of associativity maps with
p different applications of σ , the Σp ×Σq-action on the domain is the evident one,
and the action on the target comes from the embedding of groups Σp×Σq ↪→ Σp+q
where the image consists of permutations that permute the first p elements and
last q elements without mixing the two blocks.

3. An orthogonal spectrum is an assignment that sends each finite-dimensional
real inner product space V to a pointed space XV equipped with an action of the
orthogonal group O(V ), together with structure maps σV ,W : SV ∧XW → XV⊕W
that are O(V )×O(W )-equivariant (with SV the one-point compactification of V ).
In addition, to any isometry V →W is assigned (continuously) a homeomorphism
XV → XW , and these must be compatible with all the previous structure. Finally,
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the structure maps must satisfy some evident unital and associativity conditions.
(If we drop the orthogonal group actions then the assignment V 7→ XV together
with the structure maps is often called a coordinate-free spectrum).

4. The definition of an EKMM spectrum cannot be given in a few lines, but the
following words at least give a rough idea. An EKMM spectrum is a coordinate-free
Ω-spectrum where the adjoints of the structure maps are all homeomorphisms,
together with an action of a certain linear isometries monad on this spectrum,
and satisfying an extra “S-unital” condition.

5. For each n ≥ 0 write n+ = {0,1, . . . ,n} for the pointed set with 0 as basepoint. Let
F be the category whose objects are all the n+ and whose morphisms are the
based maps. A Γ -space is simply a functor F→ Top∗.

6. LetW be the category of pointed spaces homeomorphic to finite CW -complexes.
Regard this as a category enriched over topological spaces. A W-space is just
an enriched functor Φ : W → Top∗ . Note that for every X and Y there is a
natural map X → Top∗(Y ,X ∧ Y ) (adjoint to the identity); composing with the
map Top∗(Y ,X ∧ Y )→ Top∗(Φ(Y ),Φ(X ∧ Y )) and taking the adjoint therefore
gives a family of natural structure maps

X ∧Φ(Y )→ Φ(X ∧Y ).

These maps are broad generalizations of the structure maps for classical spectra —
for example, we could get a classical spectrum by setting Φn = Φ(Sn) and letting
X = S1, or more generally by fixing Y and setting ΦYn = Φ(Sn ∧Y ). The notion
of W-space is roughly equivalent to that of “simplicial functor”, and the objects
classically called “functors with smash product” are the monoids in this category.

Remark 3.1.1 . What we here call “EKMM spectra” were called “S-modules” when
first introduced, and are often still called that. Unfortunately, both symmetric spectra
and orthogonal spectra are also S-modules, just in different contexts. So the phrase
“S-module” is now very ambiguous, whereas “EKMM spectrum” cannot be confused
with anything else.

From a historical perspective, the objects in (1) and (5) date to the 1960s and 1970s
and vastly predate all of the others in the list. The objects in (2), (3), (4), and (6)
all appeared in the 1990s, and their importance is that they admit a symmetric
monoidal smash product on the model category level (sometimes colloquially referred
to as the “point-set level”), rather than just on the associated homotopy category —
see Section 3.1.3 below for more discussion of this. (The objects in (6) actually first
appeared in the 1970s, but didn’t enter the limelight until the 1990s with the other
models).

Having such a point-set level smash product quickly led to a flurry of advances,
and nowadays this is a standard part of any algebraic topologist’s toolkit. But because
there are four models and not just one, learning to use the toolkit also means learning
what the different models do best, and how to navigate between them. The different
models come with their own advantages and disadvantages, or pros and cons. These
terms don’t feel quite right, though, because the pros and cons are so closely linked.
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If something good only happens because of something bad, is the “bad” thing really all
that bad? Rather than delve into this philosophical quagmire, we take the elementary-
school approach in the table below (focusing only on the three most commonly used
models):

Things that make us happy Things that make us sad

EKMM
spectra

All objects are fibrant. The unit is not cofibrant.

Weak equivalences are easy.

Plays well with the linear
isometries operad.

Definition of the category is
quite hard, with several layers
of machinery.

Symmetric
spectra

Easy definition of the objects. Weak equivalences are hard to
understand.

The unit is cofibrant. Need fibrant replacement, and
this can destroy other structure.

One can make a theory of
genuine G-spectra, but it feels
a bit unnatural.

Orthogonal
spectra

Works well for G-spectra. Need fibrant replacement.

Unit is cofibrant.

Weak equivalences are easy.

Objects are not as easy as
symmetric spectra, but not hard.

By “weak equivalences are easy” we mean that they coincide with the π∗-isomorphisms
on the underlying classical spectrum. The issue of whether every object is fibrant has
a surprisingly large simplifying effect on how one ends up handling certain monoidal
phenomena — we discuss this more in Section 3.3.2.

For the rest of this introduction I am going to do something a bit unusual.
Mathematical narratives tend to have two sides: one consists of the definitions and
theorems, and the other is the story behind those definitions and theorems (sometimes
called motivation). The latter might try to answer why a certain definition is the right
one, or why a certain theorem should be expected. It is an odd phenomenon that
these two sides of mathematical narration sometimes end up getting in the way of
each other.

To help try to combat this, for the rest of this introduction I am going to give a
series of mathematical vignettes that attempt to highlight various important issues or
ideas behind the “story” of spectra. These come in no particular order, and are also
by no means exhaustive. The hope is that a reader can get some basic picture from
the vignettes right away, even if they don’t make complete sense on first reading. Be
assured that we will return to each of these ideas in more formal ways later in the text.
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3.1.1 Why use model categories?

Let me begin by painting a picture. Somewhere up in the heavens is a wondrous
paradise where lives the homotopy theory of spectra. You are welcome to think of
this realm as an infinity-category if you like, but I will intentionally keep things more
vague. Regardless, it is a magical shangri-la where the theories of associative and
commutative ring spectra, their modules, equivariant analogs, and so forth all work
out easily and naturally. The gods who walk that land are happy and content, and can
do many fine things.

Most of us mortals cannot inhabit this kingdom directly, and so instead we gain
limited access by choosing a model. As with all attempts at creating paradise down
on earth, this doesn’t entirely succeed. These models are not canonical, different
models come with different pros and cons, and no one model seems to be completely
satisfactory for everything. But such is the price we pay for our mortality. Dan Kan
used to compare choosing a model to choosing coordinates on a manifold, and Jeff
Smith once remarked that model categories give a way of bringing infinity-categorical
phenomena down into the realm of 1-categories. These are good ways of thinking
about the situation.

As one reaches for more and more sophisticated structures, any fixed model seems
to inevitably run its course. Early models of spectra adequately capture the homotopy
category but fail to admit a point-set-level smash product. Other models capture the
smash product but fail to give an adequate theory of commutative ring spectra, or of
equivariant spectra. Recent work [221] suggests that none of the existing models can
handle coalgebra spectra correctly. The homotopy theorists’ version of Murphy’s Law
is that after choosing any particular model for spectra, a topologist will eventually
want to do something where the model seems to get in the way and make things
harder than they should be.

This picture so far gives a somewhat skewed view, because the heavenly paradise
is not always one’s main goal. Down here on earth we have concrete objects like
manifolds, chain complexes, and differential graded algebras, and often at the end
of the day we are trying to prove theorems about these concrete things. The more
one ascends into the heavens, the more blurred these objects become in their very
existence. It is not always clear what infinity-categorical theorems are actually saying
about our concrete objects, and this is another place where model categories turn out
to be helpful. In addition to giving us a view into heavenly realms, model categories
are also a tool for taking theorems from those realms and applying them down here
on earth.

3.1.2 Where do models come from?

There is no one answer to this question, but the following schema covers very many
cases. Recall that for any two objects X and Y in a “homotopy theory” there is a
homotopy mapping space hMap(X,Y ), well-defined up to weak homotopy equivalence.
If X and X ′ are related in some homotopy-theoretic sense, then there will be some
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corresponding relation between hMap(X,Y ) and hMap(X ′ ,Y ). The simplest example
is that if there is a map X→ X ′ then there should be an associated hMap(X ′ ,Y )→
hMap(X,Y ).

If C is a collection of “test objects” in our homotopy theory, we can attempt
to understand an object Y by remembering the collection of all function spaces
hMap(U,Y ) for U ∈ C. That is, we understand Y by remembering how all of our test
objects map into it. That’s the basic idea. If there are some relations between our test
objects, we should remember the corresponding relations between our mapping spaces.
In this way we are attempting to model our homotopy theory as certain functions
C → Top. Often C will be a category, and so we actually look at functors Cop→ Top.

For example, the homotopy theory of spectra should have objects S−n for n ≥ 0,
together with equivalences Σ(S−n) ' S−(n−1). If we take these as our test objects, then
a spectrum Y will be modeled by the collection of spaces Yn = hMap(S−n,Y ) together
with the relations ΩYn ' Yn−1. In this way we arrive at the classical definition of an
Ω-spectrum.

Instead of starting with the objects S−n we could just start with S−1 together with
the spectra In = (S−1)∧(n). The symmetric group Σn acts on In, and so there will be an
induced action on the function complexes Map(In,Y ). This perspective leads directly
to the notion of a symmetric spectrum.

Likewise, the fact that the orthogonal group O(n) acts on Sn might lead one to
believe that it should also act on S−n, in which case there would be an induced
action of O(n) on Yn = Map(S−n,Y ). Thus one is led to the notion of an orthogonal
spectrum.

3.1.3 The smash product

Let’s go back to the most basic model of a spectrum: a collection of pointed spaces
Xn for n ≥ 0 with structure maps σn : S1∧ Xn → Xn+1. Given spectra X and Y ,
how could we make a spectrum that deserves to be called X ∧ Y ? In level 0 there
is only one thing that makes sense, which is X0 ∧Y0. We will need a structure map
Σ(X0∧Y0)→ (X∧Y )1, and there are two obvious choices: we could use σX to get into
X1∧Y0, or we could use σY to get into X0 ∧Y1. There is no reason for choosing one
over the other, so let’s randomly choose (X∧Y )1 = X0∧Y1. Similar reasoning leads to
choices for (X∧Y )n for each n, and it’s not hard to believe that we will be fine as long
as we don’t keep making the same choice over and over again: that is, we should make
sure to use each of σX and σY infinitely many times. These considerations do indeed
produce a spectrum X ∧Y , but because of all the choices it is far from canonical. In
fact we have an uncountable collection of models for X ∧ Y . In the old days these
were called handcrafted smash products. One can prove that they all are homotopy
equivalent, thereby giving a well-defined smash product on the homotopy category,
but clearly this is not a very good state of affairs. Still, this at least shows immediately
that there is some kind of smash product around.

Rather than constructing X∧Y by making these arbitrary choices, another approach
is to build all the choices into the spectrum from the beginning. All the modern
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incarnations of the smash product involve some form of this, but let us start by
exploring the most naive. We still take (X ∧Y )0 = X0 ∧Y0, but now for (X ∧Y )1 we
might first make the guess (X0 ∧Y1)∨ (X1∧Y0). The suspension operators σX and
σY then take us into opposite wedge summands, which is no good, so we fix this by
identifying them in an appropriate way:

(X ∧Y )1 = pushout of [X0 ∧Y1 S1∧ (X0 ∧Y0)oo // X1∧Y0 ] ,

where the maps are the evident ones coming from σY and σX . Note that the left-
pointing map must involve the twist map, used to commute the S1 and the X0. We
leave the reader to derive the definition for (X ∧Y )n for n ≥ 2, along the same lines.

This definition does not give us what we want, but it is informative to see why. The
first problem one encounters is that the sphere spectrum S is not a unit (recall that
S is the suspension spectrum of S0). To see this, let us compute S ∧ S . One readily
checks that (S∧S)0 = S0 and (S∧S)1 = S1, but (S∧S)2 is the colimit of the diagram

(S0 ∧ S2) (S1∧ S1) (S2 ∧ S0)

S1∧ (S0 ∧ S1)

γ 44γhh

S1∧ (S1∧ S0)

−γjj γ 66

S1∧ S1∧ (S0 ∧ S0)

id∧γ 44id∧γjj

Replacing each parenthesized (S i∧Sj ) in the diagram with (Xi∧Yj ) gives the diagram
for (X∧Y )2 and helps one understand the various maps. Each map in the diagram uses
associativity, twist, and the structure maps from S in the evident way — for example,
the left map in the bottom row commutes the second S1 past the S0 and then uses
the structure map on the rightmost two terms. Upon analyzing these maps, one finds
that they are all canonical identifications (labeled γ in the diagram), except for one:
this last map involves the twist map on S1 and so ends up being −γ . Consequently,
the colimit of this diagram is the coequalizer of (id,−id) : S2⇒ S2, which is RP 2. So
we see that S ∧ S , S .

Exercise 3.1.2 . For an arbitrary spectrum Y , convince yourself that under the above
definition (S ∧Y )2 is the colimit of the following diagram:

S1∧ S1 ∧Y0

t∧id
��

id∧σ // S1∧Y1
σ // Y2

S1∧ S1∧Y0

id∧σ

88

Working through the simple example preceding Exercise 3.1.2 already suggests the
key for fixing the situation. The problem is that we are not keeping track of the “twists”
that occur when we apply our structure maps, so we need to build in some machinery
for doing so. This is what symmetric spectra do, by building in symmetric groups.
In symmetric spectra, (X ∧ Y )2 is made from X0 ∧ Y2, X2 ∧ Y0, and two copies of
X1∧Y1 (indexed by the elements of the symmetric group Σ2), and then one quotients
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by the same kind of relations we saw above. This fixes the problem. See Section 3.7.2
to find this worked out in detail.

Orthogonal spectra solve the problem in an even more elegant way (though secretly it
is really the same way). Here spectra are indexed on the category of finite-dimensional
inner product spaces, and the direct sum operation on this category already has twist
maps built into it. If X is an orthogonal spectrum then XV⊕W and XW⊕V are different
objects, though the twist t : V ⊕W →W ⊕V gives a homeomorphism between them.
The moral here is that indexing things on inner product spaces forces one to keep
track of the relevant twists in the very notation.

There is another way to see that symmetric groups should come into the picture.
Let us imagine that we have a homotopy theory of spectra (off in some shangri-la)
and we are attempting to model spectra X by the collection of mapping spaces
Xn = Map(I∧(n),X) where I is a model for S−1. We need to ask ourselves: if we have
all the {Xn} and all the {Yn}, what is the best we can do in terms of approximating the
spaces {(X ∧Y )n}? Clearly if p+ q = n we will have maps

Map(I∧(p),X)∧Map(I∧(q),Y )→Map(I∧(p+q),X ∧Y ) = Map(I∧(n),X ∧Y ) (3.1.4)

induced by the shangri-la smash product. However, this kind of process only gives
maps I∧(n)→ X ∧Y which send the first set of “coordinates” into X and the second
set into Y . Not all maps will look this way! Indeed, the action of Σn on I∧(n) induces
an action on Map(I∧(n),X ∧ Y ) and lets us scramble the “coordinates” any way
we want. This suggests, though, that if we use the maps in (3.1.4) together with a
superimposed symmetric group action, then we might get a sensible approximation to
Map(I∧(n),X ∧Y ). This leads us to write down the space[ ∨

p+q=n
(Σn)+ ∧Σp×Σq (Xp ∧Yq)

]/
∼

as a model for Map(I∧(n),X ∧ Y ), where the equivalence relation just comes from
thinking about the evident ways that the maps (3.1.4) interact with symmetric group
actions and the structure maps. We have just invented the smash product for symmetric
spectra!

3.1.5 Coordinate-free spectra

The world of classical spectra provides inverses (under the smash product) for the
standard spheres Sn. If V is a finite-dimensional real vector space then its one-point
compactification SV is isomorphic to SdimV , and so of course SV has an inverse in this
world as well. But this inverse is not canonical, because the isomorphism V �R

dimV

is not canonical. This might seem like a small point, but in some constructions (like
Pontryagin–Thom) it is very convenient to have a canonical inverse for SV .

A larger issue arises in the setting of G-equivariant homotopy theory. Here one has
different spheres SV for each finite-dimensional G-representation V , so to introduce
inverses for these it is not enough to just work with the standard spheres Sn. Thus, for
various reasons we are led to the need for a notion of “coordinate-free” spectra.
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The first idea of what a coordinate-free spectrum should be is an assignment
V 7→ XV that sends every finite-dimensional vector space to a pointed space. For
V ⊆W there should be structure maps S?? ∧XV → XW , but already one runs into
trouble as far as what sphere to put in the domain. This sphere should be related
to the complement of V in W , but there is no canonical such complement. To get
around this, we assume that the vector spaces have inner products on them so that we
can take orthogonal complements. If W −V denotes the orthogonal complement of V
in W , then our structure map should have the form SW−V ∧XV → XW .

Finally, since the collection of all finite-dimensional inner product spaces is not a
set, we prefer to set things up so that there is an intrinsic bound to where these live —
an underlying “universe”. To be precise, define a May universe to be a real inner
product space of countably infinite dimension. Any universe U is isometric to R

∞

with the dot product, but not canonically. Then a coordinate-free spectrum on U

is defined to be an assignment V 7→ XV for finite-dimensional V ⊆ U, together with
maps SW−V ∧XV → XW for every pair V ⊆W ⊆ U. These must satisfy some evident
unital and associativity conditions.

Example 3.1.3. The definitions of some familiar classical spectra immediately generalize
to give coordinate-free spectra:

(a) The sphere spectrum is V 7→ SV .
(b) If A is an abelian group, the Eilenberg–MacLane spectrum HA is the spectrum

V 7→ C(SV ;A) where for any pointed space X the space C(X;A) is the Dold–
Thom space of finite configurations of points on X labeled by elements of A.

(c) The real cobordism spectrum MO is V 7→ Th(EO(V ) ×O(V ) V → BO(V )),
where O(V ) is the group of isometries of V (with its natural topology) and
Th(E → B) is the Thom space. This is also commonly written in the form
V 7→ EO(V )+ ∧O(V ) S

V .

For orthogonal spectra, it is important that we are able to form the direct sum of our
inner product spaces. That is to say, if X is an orthogonal spectrum we need XV⊕W
to make sense when XV and XW do. For this reason we cannot restrict ourselves to
subspaces of a universe U anymore. To avoid set-theoretical issues we must either fix
a small skeletal subcategory of the category of finite-dimensional inner product spaces,
or else fix some Grothendieck universe at the very beginning. See Remark 3.5.4 for
more details.

3.1.6 Rings, modules, and algebras

Let (C,⊗,S) be a symmetric monoidal category. A monoid in C is an object R together
with a unit map S→ R and a product R⊗R→ R satisfying the evident associativity
and unital actions. A monoid in (Ab,⊗,Z) is just a ring, and for this reason we will
sometimes call monoids in other symmetric monoidal categories “rings” as well.

If R is a ring in C then one likewise has notions of left and right R-modules, and if
R is a commutative ring then one can talk about R-algebras. The definitions are all
the obvious ones.
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In the 1970s, after Boardman had constructed the symmetric monoidal structure
on Ho(Spectra), one could apply the above ideas and talk about ring- and module-
spectra. Nowadays these would probably be called “homotopy ring spectra”, or “naive
ring spectra”, to differentiate them from more rigid notions. Suppose that R is one of
these homotopy ring spectra and that f : M → N is a map of left R-modules. One
would like for the homotopy cofiber Cf to be again a left R-module in a canonical
way, but this doesn’t work out. Try it: there is a diagram in the homotopy category
that looks like

R∧M //

��

R∧N //

��

R∧Cf

M // N // Cf

and both rows are homotopy cofiber sequences, so there does indeed exist an extension
µ : R∧Cf → Cf (apply [−,Cf ] to the top cofiber sequence and use the resulting
long exact sequence). However, the homotopy class of µ is not unique and moreover
one cannot prove that µ satisfies the necessary associativity condition.

So this is a deficiency. Using the naive definitions of rings and modules in
Ho(Spectra) does not lead to a situation where we can do homotopy theory for
R-modules. The problem is the usual one: the homotopy category itself is not robust
enough for most purposes. The above problem with cofibers is coming from the fact
that the homotopy category doesn’t have colimits.

This was one of the motivations for desiring a symmetric monoidal smash product
on the model category level. Assuming that one has a model category Spectra with a
smash product that commutes with colimits in either variable, it follows at once that
colimits of left R-modules are again left R-modules in a canonical way. One would
hope that the adjoint functors

R∧ (−) : Spectra� R--Mod: U

would lift the model category structure on Spectra to a corresponding model structure
on the category of left R-modules. Similarly, if R is a commutative ring spectrum
then one might hope for a model category structure on R-algebras, and also one on
commutative R-algebras.

In short, the hope would be that the model structure on Spectra could be passed to
various categories of algebraic structures on spectra. This basically works out, but it
doesn’t work out for free. One approach was developed in [94] for topological model
categories where all objects are fibrant, which reduced things down to their so-called
“Cofibration Hypothesis”. For more general model categories another approach was
developed by Schwede–Shipley [267], who identified the need for a separate axiom
they called the “Monoid Axiom”. The Monoid Axiom is one of those things that is
safely left under the hood on regular days, but that one needs to be prepared to play
with when the car breaks down.

We discuss the Monoid Axiom and its applications to model categories of modules
and algebras in Section 3.3.2.
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3.1.7 The Lewis enigma

In 1991, before the advent of the modern categories of spectra, Lewis discovered
an argument showing that some of the expected properties of such categories were
mutually inconsistent [156]. It is worth understanding this argument not only to see
how the modern categories of spectra interface with it, but also because this same
argument explains some of the complications in various theories of commutative ring
spectra.

Let S be a category with the following properties:

(A1) There exists a symmetric monoidal functor ∧ : S× S→ S.
(A2) There exists an adjoint pair Σ∞ : Top∗� S : Ω∞.
(A3) There is a natural transformation

ηX,Y : Σ∞(X ∧Y )→ Σ∞X ∧Σ∞Y

that is compatible with the associativity and commutativity isomorphisms for
(Top∗,∧) and (S,∧).

(A4) Σ∞S0 is the unit for ∧, and η is compatible with the unital isomorphism.
(A5) There is a natural weak equivalence Ω∞Σ∞X 'QX, where as usual one defines

QX = hocolimnΩ
nΣnX.

Putting X =Ω∞E and Y =Ω∞F into (A3) and using the counit of the adjunction
gives a natural transformation εE,F : Ω∞E ∧Ω∞F→Ω∞(E ∧ F), and this will also
be compatible with the associativity and commutativity isomorphisms.

Given such a category, set S = Σ∞S0. The unit isomorphism S ∧ S → S makes
S into a commutative ring spectrum. Then ε : Ω∞S ∧Ω∞S → Ω∞S makes Ω∞S
into a commutative monoid. So its identity component is a generalized Eilenberg–
MacLane space. But this contradicts (A5), which says Ω∞S = Ω∞Σ∞S0 ' QS0. So
the conclusion is that (A1)–(A5) are mutually incompatible.

Symmetric and orthogonal spectra satisfy (A1)–(A4), but get around the problem
via the failure of (A5). Here Σ∞S0 is not fibrant and so Ω∞Σ∞S0 has the “wrong”
homotopy type; said differently, (A5) must be modified to say that Ω∞FΣ∞X 'QX,
where F is a fibrant replacement functor.

The EKMM setup gets around this problem by having two sets of adjoint functors,
called here (Σ∞S ,Ω

∞
S ) and (Σ∞,Ω∞) (see Section 3.9 for more details). There is a

natural transformation Σ∞S → Σ∞ that is a weak equivalence on cofibrant pointed
spaces, and there is its adjoint Ω∞ → Ω∞S . The pair (Σ∞S ,Ω

∞
S ) is the one with

homotopical meaning (it turns out to be a Quillen pair, with the right model category
structures), whereas (Σ∞,Ω∞) is the one with the good monoidal properties. So Σ∞

satisfies (A3) and (A4), but Ω∞Σ∞ does not satisfy (A5); whereas Ω∞S Σ
∞
S satisfies (A5),

but Σ∞S does not satisfy (A3) and (A4).
Returning to the simpler setting of symmetric spectra, replacing (A5) with its

derived version is not the end of the story. Even with this modified (A5), Lewis’s
argument shows that if R is a fibrant spectrum with a commutative and associative
product then Ω∞R (which is already appropriately derived) must be a generalized
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Eilenberg–MacLane space. This is obviously a matter of concern, since we would like
spectra such as S, K , MO, and MU to have models which are commutative ring
spectra on the nose. That is not prohibited, but such models cannot also be fibrant in
the usual model structure for symmetric (or orthogonal) spectra. The standard way
for dealing with this is to use a different model structure called the positive model
category structure. We will discuss this briefly in Section 3.10.5.

3.1.8 Organization of the chapter

We assume a basic familiarity with model categories, as provided by sources like [91],
[124], [130], and [229]. See also Chapter 2 of this volume. Specifically, we assume the
reader is familiar with the model category axioms, cylinder and path objects, the
homotopy category, Quillen functors, derived functors, the small object argument,
simplicial model categories, and the notion of cofibrant-generation.

We occasionally assume the reader has a passing acquaintance with the classical
aspects of spectra and their connection to (co)homology theories, as represented for
example in any of [1], [2, Part III], and [288].

We also assume the reader has a basic knowledge of closed symmetric monoidal
categories; MacLane’s book [174] is a good source. Finally, we use enriched categories
to a certain extent. Not much more is needed than the basic definition and the notion
of enriched functor, which are essentially obvious; but consult [148] for any needed
background here.

With homotopy-theoretic machinery, there is the usual issue of whether to take
as foundation simplicial sets or topological spaces. For the most part we have tried
to present results in a way that applies to either situation, but this is not always
convenient. To avoid having to constantly work in two situations at once, we choose
topological spaces as our main framework. The reader who prefers to work simplicially
should be able to make the necessary modifications to the exposition with little trouble.

3.1.9 Notation and terminology

When C is a category we write C(X,Y ) for HomC(X,Y ). If C is a category enriched
over some symmetric monoidal category V, we write C(X,Y ) for the corresponding
V-mapping object. We write Top∗ for the category of pointed topological spaces. We
fix S1 = I/∂I and define Sn = S1∧ (S1∧ (S1∧ (· · · ∧ S1))).
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3.2 Stable model categories

A model category is called stable when the suspension functor is a self-equivalence
on the homotopy category. The homotopy categories of stable model categories enjoy
several nice properties: they are additive, triangulated, and the notions of homotopy
cofiber and fiber sequences are the same. These simply stated facts take a nontrivial
amount of effort to set up and prove carefully. Most of Chapters 6 and 7 of [130] are
devoted to this. We aim to give a quick tour for those who are new to this machinery,
partly because the depth of the results in [130] make them a bit of a maze. We hope
the treatment here can serve as a guide through that material.

A category M is called pointed if it has an initial object, a terminal object, and the
two are isomorphic. Quillen [229, Chapter I.2] showed that if M is a pointed model
category then the homotopy category Ho(M) comes equipped with a special pair of
adjoint functors

Σ : Ho(M)�Ho(M) : Ω,

called suspension and loop functors. If X is a cofibrant object, factor X → ∗ as
X� CX −�∼ ∗. Then ΣX can be defined to be the pushout of ∗ ← X→ CX. Likewise,
if Z is a fibrant object then factor ∗ → Z as ∗�∼ P Z � Z and define ΩZ as the
pullback of ∗ → Z← P Z . It is easy to show that these homotopy types do not depend
on the choice of CX or P Z, and moreover that these definitions extend to give the
desired functors. (Note that “C” and “P ” stand for “cone” and “path object”).

Let X be cofibrant and consider the diagram

CX

'
��

Xoooo // // CX

∗ X // //oo CX

Taking pushouts gives a map CXqXCX→ ΣX, and the model category axioms force
this to be a weak equivalence (see [232, Corollary to Theorem B]). But collapsing X
gives CXqX CX→ ΣX ∨ΣX, and so we have constructed a map ΣX→ ΣX ∨ΣX
in Ho(M). A little work shows that this makes ΣX into a cogroup object in Ho(M),
and that Σ2X is a cocommutative cogroup object. Similarly, when Y is fibrant, ΩY is
a group object in Ho(M) and Ω2Y is a commutative group object. It follows that
[Σ2X,Z] and [A,Ω2Y ] have natural structures of abelian groups, where from now on
we will write [−,−] for maps in Ho(M).

Definition 3.2.1. A pointed model category M is called stable if the suspension
functor Σ : Ho(M)→Ho(M) is an equivalence of categories.

The (Σ,Ω) adjunction shows that it is equivalent to require thatΩ be an equivalence.
Moreover, when M is stable the functors Σ and Ω will be inverses. The following is
an easy exercise:

Proposition 3.2.2. Let M be a pointed model category. The following conditions are
equivalent:
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(a) M is stable.

(b) For all objects X and Y the maps ΣΩX→ X and Y →ΩΣY are isomorphisms in
Ho(M).

If M is a stable model category then every object in Ho(M) is a double suspension
(and a double loop space), and so the hom sets are all abelian groups and composition
is additive in both variables. The homotopy category inherits coproducts and products
from M, so Ho(M) is additive. In particular, it follows formally that the canonical
map i : A ∨ B → A × B is an isomorphism in Ho(M). We recall the brief proof:
If jA : A→ A∨B and πA : A×B→ A are the canonical inclusions and projections,
then jAπA + jBπB is a two-sided inverse to i.

When M is a pointed model category Quillen also showed that Ho(M) comes
equipped with special “triangles” called homotopy fiber and cofiber sequences. An
Ω-triangle is a diagram ΩC→ A→ B→ C in Ho(M) such that the composition of
any two maps is zero, and a Σ-triangle is a diagram A→ B→ C → ΣA with the
same property. A map of Ω-triangles is a commutative diagram

ΩC //

Ωh
��

A //

f
��

B //

g
��

C

h
��

ΩC′ // A′ // B′ // C′

and an isomorphism of Ω-triangles is a map where all the vertical maps are isomor-
phisms. We use similar notions for maps and isomorphisms of Σ-triangles.

Exercise 3.2.3 . Check that changing the signs of two maps in an Ω-triangle (or
Σ-triangle) produces an isomorphic triangle.

If p : X� Y is a fibration between fibrant objects, there exists a lifting in the square

∗ //
��

'
��

X

����

P Y

λ
==

// Y

and therefore an induced map ΩY → F, where F is the fiber of X� Y . We leave it
as an exercise to check that a different choice for λ gives the same map ΩY → F in
Ho(M). The Ω-triangle ΩY → F→ X→ Y is called the homotopy fiber sequence
corresponding to p. More generally:

Definition 3.2.4. An Ω-triangle is called a homotopy fiber sequence if it is iso-
morphic to the homotopy fiber sequence corresponding to some fibration between
fibrant objects p : X→ Y .

Remark 3.2.5 . It is a common abuse of terminology to say things like “F→ X→ Y
is a homotopy fiber sequence”, leaving the map ΩY → F implicit.

We leave the reader to write down the dual notion of a homotopy cofiber sequence,
which yields a special class of Σ-triangles.
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Remark 3.2.6 . In addition to the map ΩF→ Y we constructed above, one can show
that there is a map γ : ΩF×Y → Y giving an action of ΩF on Y in Ho(M). Our map
ΩF → Y is the restriction of γ along ΩF × ∗ →ΩF × Y . The notion of “homotopy
fiber sequence” should really include this map γ as part of the data. But when M

is stable ΩF ∨ Y → ΩF × Y is an equivalence, and the restriction of γ to the Y
summand is just the identity. So in this case there is no more information in γ than
in our map ΩF→ Y . We refer to [130, Chapter 6.3] or [229, Chapter I.3] for careful
studies of homotopy fiber and cofiber sequences in the unstable setting.

From now on assume that M is stable. The first result about homotopy cofiber and
fiber sequences is the following:

Proposition 3.2.7. Let M be a stable model category and let T be any object.

(a) For any homotopy fiber sequence ΩY → F→ X→ Y , the induced sequence of abelian
groups

[T ,ΩY ]→ [T ,F]→ [T ,X]→ [T ,Y ]

is exact at the two middle spots.

(b) For any homotopy cofiber sequence A→ B→ C→ ΣA, the induced sequence of abelian
groups

[ΣA,T ]→ [C,T ]→ [B,T ]→ [A,T ]

is exact at the two middle spots.

If X −→f Y −→g Z −→h ΣX is a homotopy cofiber sequence, we get associated maps

ΩZ −→Ωh ΩΣX � X and Y −→g Z � ΣΩZ,

where the two isomorphisms are the unit and counit of the Σ−Ω adjunction. One
might expect the evident sequence ΩZ→ X→ Y → ΣΩZ made from these maps to
be a homotopy cofiber sequence, but this is not correct — there is a sign issue. To get
a homotopy cofiber sequence one must negate one of the maps.

The following proposition gives several results of this form. Rather than give names
to all the maps, we adopt the convention that a minus sign by itself means “take the
negative of the evident map one would get by using Σ, Ω, and the adjunctions”.

Proposition 3.2.8. Let M be a stable model category.

(a) Given a diagram in Ho(M) of the form

A //

��

B //

��

C // ΣA

−
��

ΩZ // X // Y // Z

in which the top row is a homotopy cofiber sequence and the bottom row is a homotopy
fiber sequence, there is a map C→ Y making the diagram commute.
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(b) Given a diagram in Ho(M) of the form

A //

��

B // C //

��

ΣA

−
��

ΩZ // X // Y // Z

in which the top row is a homotopy cofiber sequence and the bottom row is a homotopy
fiber sequence, there is a map B→ X making the diagram commute.

(c) Given a diagram in Ho(M) of the form

A //

��

B //

��

C // ΣA

��

A′ // B′ // C′ // ΣA′

in which both rows are homotopy cofiber sequences, there is a map C→ C′ making the
diagram commute. The dual statement for homotopy fiber sequences holds as well.

(d) If any of the following Σ-triangles are homotopy cofiber sequences, then so are the others:

(i) X −→ Y −→ Z −→ ΣX, (ii) Y −→ Z −→ ΣX −→− ΣY

(iii) ΣX −→ ΣY −→ ΣZ −→− Σ2X, (iv) ΩZ −→− X −→ Y −→ ΣΩZ .

(e) If any of the following Ω-triangles are homotopy fiber sequences, then so are the others:

(i) ΩZ −→ X→ Y −→ Z, (ii) ΩY −→− ΩZ −→ X −→ Y ,

(iii) Ω2Z −→− ΩX −→ΩY −→ΩZ, (iv) ΩΣX −→− Y −→ Z −→ ΣX.

Reading this extensive list of results is a bit tedious, but having it around is very
useful. It captures several of the main points from [130, Chapter 6]. A good (but
challenging) exercise is to try to prove all of these facts from first principles yourself.
If you get stuck, parts (a) and (b) are the content of [130, Proposition 6.3.7], and (c)
is [130, Proposition 6.3.5]. The equivalence of (i) and (ii) in parts (d,e) is covered in
[130, Proposition 6.3.4], and the equivalence with (iii) comes from repeatedly applying
(i) ⇐⇒ (ii) and using Exercise 3.2.3. Finally, the equivalence with (iv) is an easy exercise
using the other parts.

Remark 3.2.9 . Although it is necessary to get the signs right in cofiber or fiber se-
quences, in practice one almost always passes at some point to a long exact sequence
of homotopy classes. In these long exact sequences, one can indiscriminately alter
the signs on the maps without changing exactness. This is why one can sometimes
get away with a cavalier attitude about some of these sign issues.

Part (c) of the following result is a lynchpin of the theory of stable model categories.
It is often phrased colloquially as saying that in a stable model category the classes of
homotopy fiber sequences and homotopy cofiber sequences are the same. We include
the proof here because of the key nature of the result, and because it takes a bit of
work to extract it from [130].

Proposition 3.2.10. Let M be a stable model category.
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(a) If X→ Y → Z→ ΣX is a homotopy cofiber sequence and T is any object, then

[T ,X]→ [T ,Y ]→ [T ,Z]→ [T ,ΣX]

is exact in the middle two spots.
(b) More generally, given a homotopy cofiber sequence X−→f Y −→g Z−→h ΣX and an object T,

· · · → [T ,ΩY ]→ [T ,ΩZ]→ [T ,X]→ [T ,Y ]→ [T ,Z]→ [T ,ΣX]→ ·· ·

is a long exact sequence, where each map is the obvious one obtained by applying Σ and
Ω to f , g , or h and (if necessary) using the unit and counit of the adjunction.

(c) The triangle ΩZ −→ X −→ Y −→ Z is a homotopy fiber sequence if and only if
ΩZ −→ X −→ Y −→− ΣΩZ is a homotopy cofiber sequence, or equivalently if and only
if X −→ Y −→ Z −→ ΣX is a homotopy cofiber sequence.

Proof. Denote the maps by X −→f Y −→g Z −→h ΣX. For (a), suppose u : T → Y is such
that gu = ∗ (we work always in the homotopy category). Rotate the cofiber sequence
and construct the following diagram:

Y
g
// Z

h // ΣX
−Σf
// ΣY

T

u

OO

// ∗ //

OO

ΣT
id // ΣT

Σu

OO

Both rows are homotopy cofiber sequences, so by Proposition 3.2.8(c) there is a fill-in
v : ΣT → ΣX. But Σ : [T ,X]→ [ΣT ,ΣX] is an isomorphism, so let v̄ be a preimage
of v. Then f ◦ v̄ = −u, so −v̄ is the desired lift of u in our sequence. Exactness at
[T ,Z] can be proven by rotating the homotopy cofiber sequence and then applying
what we just proved.

Part (b) is a direct consequence of (a) and stability. We can iteratively rotate the
homotopy cofiber sequence to get the Puppe sequence

X −→ Y −→ Z −→ ΣX −→− ΣY −→− ΣZ −→− Σ2X −→ ·· ·

(where each four terms are a homotopy cofiber sequence), and then apply [T ,−]. But
we can also apply [ΣT ,−] and then use both adjunction and stability to rewrite this as

[T ,ΩX]→ [T ,ΩY ]→ [T ,ΩZ]→ [T ,X]→ ·· ·

Similarly, we repeatedly extend the long exact sequence to the left by applying
[ΣNT ,−] to our Puppe sequence. The signs can be neglected because leaving them off
does not change exactness.

For (c) we just prove one direction as the other is similar. Assume given that
ΩZ −→ X −→ Y −→− ΣΩZ is a homotopy cofiber sequence. Let ΩZ→ F→ Y → Z
be a homotopy fiber sequence and consider the diagram

ΩZ //

id
��

X // Y
− //

id
��

ΣΩZ

−
��

ΩZ // F // Y // Z
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By Proposition 3.2.8(b) there is a fill-in u : X → F. Now let T be any object and
consider the diagram below:

[T ,ΩY ] //

id
��

[T ,ΩZ]

id
��

// [T ,X]

u∗
��

// [T ,Y ]

id
��

− // [T ,ΣΩZ]

− �
��

[T ,ΩY ] // [T ,ΩZ] // [T ,F] // [T ,Y ] // [T ,Z]

Here we have mostly just applied [T ,−] to our diagram in Ho(M), but we have used
(b) to extend the top sequence to the left by one term. The top row is exact by (b),
and the bottom row is exact by Proposition 3.2.7(a). The Five Lemma then implies
that u∗ is an isomorphism. Since this holds for all T we conclude that u itself was an
isomorphism.

Finally, consider the commutative diagram

ΩZ //

id
��

X //

u
��

Y //

id
��

Z

id
��

ΩZ // F // Y // Z

The bottom row was a homotopy fiber sequence by construction, and u is an isomor-
phism, so the top row is a homotopy fiber sequence as well.

For the last statement in (c), use Proposition 3.2.8(d).

We refer the reader to [297, Chapter 10.2] for the axioms of a triangulated category.
The culmination of the above line of work is the following:

Proposition 3.2.11. Let M be a stable model category. Then the suspension functor and
the class of homotopy cofiber sequences make Ho(M) into a triangulated category.

Proof. Axiom TR1 is routine, and TR2 is Proposition 3.2.8(d). Axiom TR3 is Proposi-
tion 3.2.8(c). So the only part that requires additional work is TR4, the Octahedral
Axiom. The main point of this final axiom is to relate the homotopy cofiber sequence
for a composition f g to the homotopy cofiber sequences for f and g . The reader can
find a proof of this axiom (in the unstable version) in [130, Proposition 6.3.6].

3.3 Monoidal machinery

This section concerns categorical (and model categorical) material that is not specific
to the theory of spectra, mostly centering around monoidal structures. We survey
some basic facts about monoidal categories and monoidal model categories, as well as
invertible objects.

3.3.1 Sufficiently combinatorial model categories

A common issue in model categories is that one wants to take a model structure on a
given category M and produce an associated model structure on a related category
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M′ . The first example is where M′ is diagrams (of a fixed shape) inside of M, but we
will see others as well. There are almost no general theorems along these lines; in most
cases some extra structure is required on M or M′ or both. These structures typically
take the form of sets of generating maps where the domains and codomains satisfy
certain smallness properties — whatever one needs to run the small object argument.

The first notion of this type is that of a cofibrantly generated model category; see
[124]. This notion works well for some purposes, but is too weak for others. Later
notions are that of a cellular model category (also in [124]), and Jeff Smith’s notion of a
combinatorial model category. A combinatorial model category is one that is cofibrantly
generated and where the underlying category is locally presentable; see [35] and [77]
for written accounts. The combinatorial setting is especially appealing, because here
all objects are small (with respect to large enough cardinals) and this property passes
to most associated categories.

Most model categories built in some way starting from sSet or Top are cofibrantly
generated, and the ones built from sSet are almost all combinatorial. Jeff Smith
observed that one can make combinatorial forms of Top-based model categories by
replacing Top with the category of ∆-generated spaces.

In this chapter we will sometimes want to phrase results in a way that applies both
to categories of spectra based on simplicial sets and those made from topological
spaces. The safe thing is to always assume the categories in question are combinatorial,
but this does not apply to the category of compactly generated spaces used in [94].
To cut the Gordian knot, we will use the phrase sufficiently combinatorial as an
intentionally imprecise stand-in for “assume enough hypotheses so that the smallness
conditions necessary for the arguments actually work”.

3.3.2 Monoids and models

Let (M,⊗, I) be a monoidal category (I is the unit). Recall that a monoid in this
category is an object R together with unit map I → R and multiplication R⊗R→ R
satisfying the evident axioms. The monoids in (Ab,⊗,Z) are usually called rings, and
in stable homotopy contexts the monoids are often called rings as well. For this reason
we will use the word “ring” as a synonym for “monoid”, although the latter is really
the correct term.

If R is a ring in M, a left R-module is an object X together with a map R⊗X→ X
satisfying the evident axioms. One similarly defines right-modules and bimodules.
By convention, we mean “left R-module” whenever we say “R-module” without
qualification. Recall that if M is a right R-module and N is a left R-module then
one defines M ⊗R N to be the coequalizer (if it exists) of the two action maps
M ⊗R⊗N ⇒M ⊗N .

When M is a symmetric monoidal category we can talk about commutative rings in
M, and for such rings there is an evident way of turning any left module into a right
module, and vice versa. If R is a commutative ring then we define an R-algebra to be
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a ring map f : R→W such that R is central in W , meaning that the diagram

R⊗W

t

��

f ⊗id
// W ⊗W µ

** W

W ⊗R
id⊗f

// W ⊗W µ

44

is commutative. Observe that if M has coproducts and the tensor distributes over
them, then we have the expected “tensor algebra” functor T : R--Mod→ R--Alg given
by T (V ) = Rq V q (V ⊗R V )q ·· · with the evident multiplication. This gives an
adjoint pair T : R--Mod� R--Alg: U , where U is the forgetful functor.

We will be interested in the question of when certain structures on M pass to the
category of R-modules. For example, if M is complete then so is R--Mod. To see
this, let {Mα} be a diagram of R-modules and write limαMα for the limit in M. The
canonical map R⊗ (limαMα)→ limα(R⊗Mα) makes limαMα into an R-module,
and one readily checks that this has the properties of the limit in the category R--Mod.
To say the same thing in fancier language, the forgetful functor U : R--Mod→M is
right adjoint to the free R-module functor X 7→ R⊗X and therefore preserves all limits.

The situation for colimits is a little more challenging. Here the canonical map
colimα(R⊗Mα)→ R⊗ colimαMα goes in the wrong direction, and so does not give
an R-module structure on colimαMα . However, in many cases the functor R⊗ (−)
is a left adjoint and hence preserves colimits; so in these cases the above map is an
isomorphism and everything works as before.

A symmetric monoidal category (M,⊗, I) is called closed if there exists a cotensor
(or “internal hom”) functor F : Mop ×M→M together with natural adjunctions

M(A⊗B,C) �M(A,F(B,C)).

Note that this implies that (−)⊗ (−) commutes with colimits in both variables.

Proposition 3.3.1. Suppose (M,⊗, I ,F) is a closed symmetric monoidal category. Then
both R--Mod and R--Alg are complete and cocomplete.

Proof. We have already discussed the situation for R--Mod. For R--Alg, limits are
created by the forgetful functor U in the adjoint pair T : R--Mod � R--Alg: U .
Colimits in R--Alg are more complicated, but by [53, Proposition 4.3.6] the category is
cocomplete provided that the tensor functor T (−) preserves filtered colimits. The latter
condition is immediate from the fact that ⊗ preserves colimits in each variable.

See Section 5.6 in Chapter 5 of this volume for a more detailed discussion of limits
and colimits in categories of operadic algebras.

We will next discuss the issue of compatibility between a monoidal structure and a
model structure.

Definition 3.3.2. A monoidal model category is a model category M equipped
with a monoidal structure (⊗, I) satisfying the following two axioms:
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(1) [Pushout-Product Axiom] For any two cofibrations f : A� B and j : K � L in
M, the induced map

f � j : (A⊗L)qA⊗K (B⊗K) −→ B⊗L

is a cofibration. Moreover, f � j is a weak equivalence if either f or j is a trivial
cofibration.

(2) [Unit Axiom] There exists a cofibrant replacement QI −→∼ I having the property
that for all cofibrant X the map QI ⊗X→ I ⊗X is a weak equivalence.

The notion of monoidal model category was introduced in [130]. The Pushout-
Product Axiom is analogous to one common form of Quillen’s SM7 axiom for simplicial
model categories; it is the standard axiom for compatibility of a tensor with the model
structure. In the presence of the Pushout-Product Axiom, the Unit Axiom is equivalent
to requiring that every cofibrant replacement QI −→∼ I has the stated property. This
axiom is automatically satisfied if the unit I is itself cofibrant.

It is an easy exercise to verify that in a monoidal model category the derived functor
of ⊗ descends to give a monoidal structure on the homotopy category.

By a closed symmetric monoidal model category we simply mean a monoidal
model category where the underlying monoidal category is symmetric and closed. It is
an easy exercise in adjoint functors to check the following:

Proposition 3.3.3. Let M be a closed symmetric monoidal model category. If f : A� B
and g : X� Y are maps in M then the induced map

F(B,X)→ F(A,X)×F(A,Y ) F(B,Y )

is a fibration, and moreover it is a weak equivalence if either f or g is so.

We next consider when a model category structure on M induces an associated
model structure for R--Mod and for R--Alg. Suppose given a model category M

together with an adjoint pair L : M� N : U . In good cases one can put a model
category structure on N where a map f is a weak equivalence (respectively, fibration)
if and only if Uf is a weak equivalence (respectively, fibration). The cofibrations are
forced to be the maps with the left lifting property with respect to the trivial fibrations,
but often this is about all one can say about them. When such a model structure on N

exists, one refers to it as the model structure created by the right adjoint U .
The main result on such structures is Kan’s Recognition Theorem [124, Theorem

11.3.2], which says that U creates a model structure on N if the following conditions
are satisfied:

(1) M is cofibrantly generated.
(2) The images under L of the generating cofibrations and trivial cofibrations permit

the small object argument.
(3) If J denotes the set of generating trivial cofibrations for M, then U takes all maps

in L̂J to weak equivalences, where L̂J is the class of maps obtained from L(J) by
taking cobase changes and transfinite compositions.
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Conditions (1) and (2) are technical conditions that are always satisfied in the cases of
interest; we will bundle them into the “sufficiently combinatorial” adjective. Condition
(3) is where the real content is.

Let M be a monoidal model category and let R be a monoid in M. Then we have
adjoint functors

M
FR // R--Mod
U

oo

where U is the forgetful functor and FR(X) = R⊗X. If we are lucky, then U will create
a model category structure on R--Mod. Here are some general conditions where this
happens:

Proposition 3.3.4. Let M be a sufficiently combinatorial monoidal model category.

(a) If R is cofibrant in M, then R--Mod has the model structure created by U .
(b) Start with the collection of maps f ⊗ idR : R⊗A→ R⊗ B, where f : A�∼ B is a

trivial cofibration. Let S be the collection of maps obtained from the original collection
using cobase change and transfinite composition. If every element of S is a weak
equivalence, then R--Mod has the model structure created by U .

Proof. In (b), the stated hypothesis exactly verifies condition (3) from Kan’s Recog-
nition Theorem. For (a), the point is that when R is cofibrant the functor R ⊗ (−)
preserves trivial cofibrations by the Pushout-Product Axiom. Since trivial cofibrations
are closed under cobase change and transfinite composition, the condition from (b) is
automatically satisfied.

Now assume that M is a closed symmetric monoidal model category. This allows
us to talk about commutative monoids in M. Let R be a commutative monoid and let
M and N be R-modules (we will identify left and right R-modules, as usual). Define

M ⊗RN = coeq(M ⊗R⊗N ⇒M ⊗N ),

where the two maps in the coequalizer come from the R-module structures on M
and N . Then ⊗R is a symmetric monoidal product on R--Mod with unit R. Likewise,
define

FR(M,N ) = eq(F(M,N )⇒ F(R⊗M,N )),

where the two maps in the equalizer are the adjoints to the two evident maps
F(M,N )⊗R⊗M→N (twist-evaluate-multiply and multiply-evaluate). It follows by
quite general considerations that these definitions give a closed symmetric monoidal
structure on R--Mod with unit R. We can hope that this makes R--Mod into a closed
symmetric monoidal model category.

Finally, let us turn to algebras. If R is a commutative monoid in M then we have
the adjoint functors TR : R--Mod� R--Alg: U . We can again hope that U creates a
model structure on R--Alg.

We now bundle all of these “hopes” into the following definition:
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Definition 3.3.5. Let M be a closed symmetric monoidal model category. We say
that M satisfies the Algebraic Creation Property if

(1) for every monoid R in M, the forgetful functor R--Mod→ M creates a model
structure on M;

(2) when R is a commutative monoid, ⊗R and FR(−,−) make R--Mod into a closed
symmetric monoidal model category; and

(3) when R is a commutative monoid, the forgetful functor R--Alg→ R--Mod creates
a model structure on R--Alg.

There are essentially two separate circumstances where the Algebraic Creation
Property is known to hold. The first is when all objects of M are fibrant, and a few
other conditions are satisfied — this kind of case was treated in [94, Chapter VII],
though some of the ideas go back as far as [229]. When it is not true that all objects
of M are fibrant, the situation is more delicate; it was first analyzed in [267]. The
following proposition, though somewhat awkward, brings together these different
threads.

Proposition 3.3.6. Let (M,⊗, I) be a symmetric monoidal model category that is suffi-
ciently combinatorial and consider the following hypotheses:

(1) For some cofibrant replacement QI −→∼ I and any object X, the map QI ⊗X→ I ⊗X
is a weak equivalence.

(2) All objects of M are fibrant, and M is a simplicial or topological model category.
(3) [The Monoid Axiom] For any trivial cofibration A� B and any object X, the map

A⊗X→ B⊗X is a weak equivalence. Additionally, all maps obtained from the class

{A⊗X→ B⊗X | A→ B is a trivial cofibration and X is any object}

by cobase change and transfinite composition are also weak equivalences.

Assume that (1) holds and that either (2) or (3) holds. Then M satisfies the Algebraic
Creation Property.

Remark 3.3.7 . Condition (1) is automatic if the unit is cofibrant. In general condition (1)
seems much too strong, but it is not clear how to weaken it. Condition (3) was isolated
by Schwede–Shipley [267] and christened by them.

Proof of Proposition 3.3.6. Condition (2) implies that the appropriate model structures
are created on R--Mod and R--Alg; this is by [267, Lemma 2.3(2)] and the fact that
the simplicial (or topological) structure on M gives canonical path objects on both
R--Mod and R--Alg. See also [267, Remark 4.5].

Condition (3) also implies that the appropriate model structures are created
on R--Mod and R--Alg. For R--Mod this is automatic, because the condition of
Proposition 3.3.4(b) is a special case of (3). For R--Alg this is a little more difficult, but
was worked out in [267, Theorem 4.1(3)].

It remains to prove that R--Mod is a monoidal model category. For the Pushout–
Product Axiom, as in [267, Theorem 4.1(2)] it suffices to check this on the generating
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cofibrations and trivial cofibrations of R--Mod. But these are of the form idR⊗f , where
f is a generating cofibration or trivial cofibration of M, and the pushout-product is
readily analyzed. The necessary condition follows at once from the Pushout–Product
Axiom on M.

The trouble arises with the Unit Axiom for R--Mod. This was not dealt with in [267].
Let QI → I be a cofibrant replacement in M. Hypothesis (1) implies that R⊗QI →
R⊗ I = R is a weak equivalence, and of course R⊗QI is cofibrant in R--Mod. So we
must check that for every cofibrant R-module M , the map (R⊗QI)⊗RM→ R⊗RM is
a weak equivalence. This is just the map QI⊗M→M , and so hypothesis (1) completes
the verification.

If we have model categories on R--Mod and R--Alg, we should of course be
concerned with the extent to which they depend on the homotopy type of R. If R→ T
is a map of monoids then there is an adjoint pair

T ⊗R (−) : R--Mod� T --Mod: V , (3.3.3)

where here the right adjoint V is restriction of scalars, and this will be a Quillen pair
if the categories have the model structures created by U (because V will preserve both
fibrations and trivial fibrations).

Similarly, if R→ T is a map of commutative monoids then T ⊗R (−) takes R-algebras
to T -algebras and we have a similar Quillen pair

T ⊗R (−) : R--Alg� T --Alg: V . (3.3.4)

In both cases, if R→ T is a weak equivalence one would hope that the above adjoint
pairs are Quillen equivalences. Unfortunately, this does not work out for free and is
not known without various unsatisfying extra hypotheses. To sweep some of these
under the rug, we make the following definition:

Definition 3.3.8. Let M be a symmetric monoidal model category that satisfies the
Algebraic Creation Property. Then M satisfies the Algebraic Invariance Property if
for every weak equivalence of monoids R→ T the Quillen pair of (3.3.3) is a Quillen
equivalence, and if for every weak equivalence of commutative monoids R→ T the
pair (3.3.4) is a Quillen equivalence.

The following result is basically Theorems 4.3 and 4.4 of [267]. It follows readily
from Quillen’s criterion for checking that an adjoint pair is a Quillen equivalence. The
proof is an easy exercise.

Proposition 3.3.9. Let M be a symmetric monoidal model category satisfying the Alge-
braic Creation Property. Suppose further that

(1) for every monoid R and every cofibrant R-module M, the functor (−)⊗RM preserves
all weak equivalences, and

(2) every cofibration R→ T in R--Alg is a cofibration in R--Mod as well.

Then M satisfies the Algebraic Invariance Property.
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The conditions in this proposition seem like a lot to check, and in some sense
they are. But they have been verified for all the modern model categories of spectra.
Condition (1) turns out to be surprisingly important, and deserves its own name:

Definition 3.3.10. Let M be a symmetric monoidal model category satisfying the
Algebraic Creation Property. Say that M satisfies the Strong Flatness Property if
for every monoid R in M and every cofibrant R-module M, the functor (−) ⊗RM
preserves all weak equivalences of right R-modules.

While this property seems somewhat unnatural from the perspective of model
category theory, it nevertheless is a crucial element of all the modern model categories
of spectra. It automatically implies condition (1) of Proposition 3.3.6, using the Unit
Axiom. One of the lessons of this whole section is that when it comes to model
structures on categories of modules and algebras in a monoidal model category, none
of the existing theory works out quite as naturally as one would like.

Remark 3.3.11 . Lewis and Mandell in [157] have some interesting things to say about
the Algebraic Invariance Property. Define an object C of M to be semi-cofibrant
if F(C,−) preserves fibrations and trivial fibrations; by adjointness this is equivalent
to saying that C ⊗ (−) preserves cofibrations and trivial cofibrations. Every cofibrant
object is semi-cofibrant, but the converse does not necessarily hold. Lewis–Mandell
prove that if one has a weak equivalence of monoids R→ T , where R and T are semi-
cofibrant, then the Quillen pair of (3.3.3) is a Quillen equivalence. The same paper
has many other interesting results about the homotopy theory of module categories.

Remark 3.3.12 . If T is a monad on M, one can consider the category of T -algebras
M[T ] and again ask whether the forgetful functor U : M[T ]→M creates a model
structure on M[T ]. This question generalizes the specific cases of R--Mod and R--Alg
we have considered in this section. While we will not address the general version here,
we refer the reader to [94, Chapter VII.4] for techniques that apply to the case where
M is a topological model category where all objects are fibrant. The task of creating
the model structures is essentially reduced to verifying two criteria, embodied in the
so-called “Cofibration Hypothesis” [94, Remark IV.4.12].

See also Section 5.8 in Chapter 5 of this volume for a detailed discussion of model
structures on operadic algebras more generally.

3.3.5 Invertible objects

If one had to describe the idea of spectra in a single sentence, one approach would
be to say that it is a modification of Top∗ that makes the spheres invertible in the
homotopy category. So it is good to know a little about the general theory of invertible
objects.

Let (C,⊗, I) be a symmetric monoidal category. An object X in C is invertible if
the functor X⊗ (−) : C → C is an equivalence of categories. This is equivalent to saying
that there exists an object Y and an isomorphism α : I −→� Y ⊗X, and here we say
that the pair (Y ,α) is an inverse for X. Note that α is not unique, since given one
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choice one can make others by precomposing with automorphisms of I . Likewise, Y
is unique up to isomorphism but not up to unique isomorphism. However, given an
inverse (Y ,αY ) and another inverse (Z,αZ ) it is easy to check that there is a unique
map f : Y → Z making the diagram

I
αY //

αZ ""

Y ⊗X

f ⊗id
��

Z ⊗X

commute, and moreover f is an isomorphism.
Note that the tensor product of invertible objects is again invertible.
In a symmetric monoidal category, the endomorphisms of the unit always form a

commutative monoid: this is an easy exercise using that if f and g are any two maps
then f ⊗ g = (f ⊗ id)(id ⊗ g) = (id ⊗ g)(f ⊗ id). Given any object X in C, there is a
map of monoids ΓX : End(I)→ End(X) that sends f : I → I to the composite

X
� // I ⊗X

f ⊗id
// I ⊗X � // X.

When X is invertible, the map ΓX is an isomorphism. So in particular, the endomor-
phisms of an invertible object are always commutative. One checks that if (Y ,α) is an
inverse to X and f : X→ X then Γ −1

X (f ) is the composite

I
α // Y ⊗X

id⊗f
// Y ⊗X α−1

// I.

Now let X be any object in C. For n ≥ 0 set X⊗n = X ⊗ (X ⊗ (X ⊗ · · · ⊗X)). Let
σ ∈ Σn and consider natural transformations

X1 ⊗ (X2 ⊗ (X3 ⊗ · · · ⊗Xn)) −→ Xσ−1(1) ⊗ (Xσ−1(2) ⊗ (Xσ−1(3) ⊗ · · · ⊗Xσ−1(n))),

where the domain and codomain are considered as functors C×n → C. MacLane’s
Coherence Theorem for symmetric monoidal categories says that all natural transfor-
mations of this form, made from composites of associativity and commutativity iso-
morphisms, are identical; see [174, Theorem XI.1.1]. So we have a canonical such trans-
formation. Evaluating at the case where all Xi equal X gives a map σ∗ : X⊗n→ X⊗n,
and one readily checks that this gives a group homomorphism Σn→ Aut(X⊗n). If X
is invertible then so is X⊗n, which means Aut(X⊗n) is abelian and therefore this map
factors through the abelianization of Σn (which is Z/2). In particular, every commu-
tator in Σn acts as the identity on X⊗n. The first interesting case is n = 3, where
the commutator subgroup is generated by the cyclic permutation (123). Moreover, via
block sum of permutations and conjugation this case generates the relations for all
higher n as well.

Proposition 3.3.13 (The cyclic permutation condition). If X is an invertible object in
a symmetric monoidal category then the composite

X⊗(X⊗X)
id⊗t
// X⊗(X⊗X) a // (X⊗X)⊗X t⊗id

// (X⊗X)⊗X a // X⊗(X⊗X)



3.3 Monoidal machinery 101

must equal the identity, where all maps labeled a and t are associativity and commutativity
isomorphisms, respectively.

The cyclic permutation condition seems to have first been identified by Voevodsky,
when attempting to construct symmetric spectra in motivic homotopy theory. See the
discussion preceding Theorem 4.3 in [294].

Invertible objects are, in particular, examples of dualizable objects. Self-maps of
dualizable objects have a trace. We will not recount the general theory here, but just
give a very streamlined version suitable for our present context. For the general theory,
see [155, Section III.1] or the survey in [76].

Assume X is invertible and (Y ,α) is a chosen inverse. Then there is a unique map
α̂ : X ⊗Y → I with the property that the composite

X
� // X ⊗ I id⊗α

// X ⊗ (Y ⊗X) a // (X ⊗Y )⊗X α̂⊗id
// I ⊗X � // X

equals the identity. If f : X → X then the trace of f is the element tr(f ) ∈ End(I)
defined by the composite

I
α // Y ⊗X

id⊗f
// Y ⊗X t // X ⊗Y α̂ // I.

Given f : X→ X we now have two ways to extract an element of End(I): via Γ −1
X (f )

and via tr(f ). These don’t always give the same element! The following results explain
the relation between them. They certainly must be classical, but see [76] for a written
account:

Proposition 3.3.14. Let X be an invertible object in a symmetric monoidal category, and
let τX = tr(idX ) ∈ End(I).

(a) τX = Γ −1
X⊗X(tX ) = tr(tX ) where tX : X ⊗X→ X ⊗X is the twist.

(b) τ2
X = id.

(c) For any f : X→ X, Γ −1
X (f ) = τX · tr(f ).

(d) If Y is another invertible object then τX⊗Y = τXτY .

The elements τX should be thought of as “generalized signs”. They appear as
control factors in commutation formulas involving X, in the same way that ±1 terms
appear in the standard formulas of topology.

Example 3.3.15. Fix a field k and consider the category of Z-graded vector spaces,
equipped with the graded tensor product, standard associativity isomorphism, and
the twist isomorphism that incorporates the Koszul sign rule. Write k[n] for the
graded vector space consisting of a single k in degree n and zero in all other degrees.
We identify k with End(k[0]) by letting x ∈ k correspond to multiplication by x.

The object k[1] is invertible. For an inverse we may choose k[−1] and the map
α : k[0]→ k[−1] ⊗ k[1] sending 1 to 1 ⊗ 1. The map α̂ : k[1] ⊗ k[−1]→ k[0] then
sends 1⊗1 to 1. If x ∈ k and ρx : k[1]→ k[1] is multiplication by x, we leave it as an
exercise to check that Γ −1

X (ρx) = x and tr(ρx) = −x. In particular, τk[1] = −1 here.
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3.4 Spectra for Sulu and Chekov

For many applications one needs a model category of spectra but doesn’t care much
about the inner workings, other than a few basic properties. In the words of one
eloquent topologist, “Sometimes one just needs to drive the Enterprise, not necessarily
be Mr. Scott.” The goal of this section is to supply a list of properties that are shared
by most of the existing models, and to give some standard examples of how they can
be used. These examples were all originally worked out in [94].

In this section we assume the existence of a pointed category Spectra equipped
with a closed symmetric monoidal smash product ∧ with unit S and cotensor F(−,−).
Additionally, we suppose given adjoint functors Σ∞ : Top∗ � Spectra : Ω∞ and a
stable model category structure on Spectra. We assume the following properties:

1. Σ∞ : Top∗� Spectra : Ω∞ is a Quillen pair.
2. The smash product makes Spectra into a monoidal model category. So we have

(a) the pushout-product axiom: given cofibrations f : A� B and g : C� D, the
induced map

f � g : (A∧D)qA∧C (B∧C)→ B∧D

is a cofibration, and additionally it is a weak equivalence if either f or g is so. And
(b): for every cofibrant object X and every cofibrant replacement QS −→∼ S, the
induced map QS ∧X→ S ∧X is a weak equivalence.

3. There exists a weak equivalence ε : Σ∞S0→ S and a natural transformation

η : Σ∞(X ∧Y )→ Σ∞X ∧Σ∞Y

that is oplax monoidal: this says that the evident associativity and unital squares
commute. Additionally, η is a weak equivalence when X and Y are cofibrant.

4. (Spectra,∧) satisfies the Algebraic Creation and Invariance Properties (see Defini-
tions 3.3.5 and 3.3.8).

5. (Spectra,∧) satisfies the Strong Flatness Condition of Definition 3.3.10. In particular,
for any cofibrant spectrum A and any weak equivalence of spectra X → Y , the
induced map A∧X→ A∧Y is a weak equivalence.

6. There is an equivalence of triangulated categories between Ho(Spectra) and the
homotopy category of Bousfield–Friedlander spectra that carries the spectra Σ∞(Sn)
to the standard n-sphere.

7. For any directed system X0 → X1 → X2 → ·· · in Spectra and any n ≥ 0, the
canonical map

colimk[Σ
∞(Sn),Xk]→ [Σ∞(Sn),hocolimkXk]

is an isomorphism, and similarly sequences indexed by other transfinite ordinals.

All these properties are satisfied by the categories of symmetric spectra, orthogonal
spectra, and W-spaces (all to be defined in subsequent sections). Actually (7) is a
consequence of (6) (using the smallness of spheres in Top), but is included separately
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here for emphasis. Note also that Γ -spaces are eliminated from the discussion because
they are not a stable model category, but except for this and the related property (6)
all the other properties are satisfied.

Remark 3.4.1 . EKMM spectra are a special case as they do NOT satisfy property
(3), although they satisfy all of the others. Instead, in EKMM spectra there are two
pairs of adjoint functors called (Σ∞S ,Ω

∞
S ) and (Σ∞,Ω∞) together with natural maps

Σ∞S X → Σ∞X which are weak equivalences whenever X is cofibrant as a pointed
space. The pair (Σ∞S ,Ω

∞
S ) satisfies (1), and the pair (Σ∞,Ω∞) satisfies (3). But if

we use the pair (Σ∞S ,Ω
∞
S ) for (1)–(7) then we can replace (3) above with (3′ ) stating

that there is a contractible space of choices for an η, giving an oplax symmetric
monoidal map in the homotopy category. Keeping this small variation in mind, all of
the arguments in the remainder of this section apply to EKMM spectra as well. (It
is unfortunate that the EKMM (Σ∞,Ω∞) notation conflicts with what we use above,
but we will just live with this).

3.4.1 Homotopy groups of spectra

Write S0 = Σ∞(S0) and S1 = Σ∞(S1). For p > 1 define the stable sphere Sp recursively
by Sp = S1∧ Sp−1, so that

Sp = S1∧ (S1∧ (S1∧ · · · ))).

Note that S1 is cofibrant by property (1), and then Sp is cofibrant by the Pushout–
Product Axiom. Also we see using property (3) that there is a canonical weak equiv-
alence η : Σ∞(Sp)→ Sp. Some authors prefer to adopt Σ∞(Sp) as the definition of
the stable sphere, but η shows that for homotopical purposes this is equivalent to our
approach.

Since Σ is an autoequivalence of the homotopy category, there exists a desuspension
of S0. Let S−1 be any chosen cofibrant spectrum for which there exists an isomorphism
α : S→ S−1 ∧ S1 in Ho(Spectra). For p ≥ 1 inductively define S−p = S−1 ∧ S1−p. Let
α̂ : S1 ∧ S−1 → S be the dual map to α in Ho(Spectra) as defined after Proposi-
tion 3.3.13.

Under these definitions, there are canonical isomorphisms in Ho(Spectra) of the
form

γ : Sk ∧ S l → Sk+l

for any k, l ∈ Z. If k, l > 0 then we define γ as a composite of associativity isomor-
phisms, and MacLane’s Coherence Theorem for monoidal categories says that all
choices for such associativity isomorphisms lead to the same map γ . Similar remarks
apply when k, l < 0. When k = 0 we use

S0 ∧ S l ε∧id // S ∧ S l � S l ,

which uses property (3) and also property (2) to know that the first map is an isomor-
phism. Likewise for l = 0. When k < 0 and l > 0 we use associativity isomorphisms
together with repeated applications of the map α−1 and the unit map. Again, one can
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prove that the exact choice of maps here does not affect the final composite. Finally,
when k > 0 and l < 0 we do the same thing but using α̂ instead of α.

It is a theorem that these specified isomorphisms are compatible, in the sense that
the evident pentagon containing Sk ∧ (S l ∧ Sn) and Sk+l+n is commutative in the
homotopy category. More generally, any two composites derived from these canonical
maps (but having the same domain and range) are identical (again, in the homotopy
category). See [76] for a complete discussion.

Here is why this tedious discussion is actually important. For any spectrum X we
write πp(X) for Ho(Spectra)(Sp,X). If X is a ring spectrum and f : Sp → X and
g : Sq→ X we may form the composite

Sp+q γ
// Sp ∧ Sq

f ∧g
// X ∧X

µ
// X,

and this determines a pairing πp(X)⊗πq(X)→ πp+q(X). Also, the composite map
S0 −→ε S→ X determines a special element 1 ∈ π0(X).

Lemma 3.4.2. When X is a ring spectrum, π∗(X) is a ring. If M is a left X-module then
π∗(M) is a left π∗(X)-module.

Proof. Left to the reader as an exercise, but note that the properties of the canonical
maps γ are important here. See [76] for details and generalizations.

3.4.2 Homotopy groups of tensors and cotensors

Let R be a commutative ring spectrum and let M and N be R-modules. We will
construct a spectral sequence of the form

Torπ∗Rp,q (π∗M,π∗N )⇒ πp+q(M ∧LR N ),

where ∧LR denotes the derived version of ∧R. When M = R∧X and N = R∧Y this
gives the Künneth spectral sequence Torπ∗R(R∗(X),R∗(Y ))⇒ R∗(X ∧Y ).

The following argument can be made almost entirely in the homotopy category
Ho(R--Mod), using only the triangulated structure. However, the model structure
on R--Mod is key to setting up this homotopy category to begin with. The model
structure also plays a small role in the following lemma:

Lemma 3.4.3. Let R be a commutative ring spectrum and let M be an R-module. Then
there exists an R-module F of the form F =

∨
i R∧ Sni together with a map F→M in

Ho(R--Mod) that is surjective on homotopy groups.

Proof. Let M → Mfib be a fibrant replacement in R--Mod. Choose a set of π∗R-
module generators αi ∈ π∗(M), together with representative maps αi : Sni →Mfib

in Spectra. We then get R-module maps R ∧ Sni → Mfib using the adjoint pair
Spectra� R--Mod. Let F =

∨
i R∧ Sni and let α : F→Mfib be the evident map.

Since α is a map of R-modules, π∗α is a map of π∗R-modules. So to see that π∗α
is surjective we only need argue that each αi is in the image. This follows from the
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commutative diagram

R∧ Sni
id∧αi // R∧Mfib

µ
// Mfib

S ∧ Sni
id∧αi //

OO

S ∧Mfib

OO

Sni

�

OO

αi // Mfib

�

OO

Let R be a commutative ring spectrum and let M be an R-module. The following
argument takes place entirely in the category Ho(R--Mod). Set X0 = M . Using
Lemma 3.4.3 choose an R-module F0 =

∨
i R∧ Sni and a map F0 → X0 that is a

surjection on π∗(−). Let X1→ F0→ X0 be a homotopy fiber sequence in Ho(R--Mod)
(see the discussion of fiber and cofiber sequences in Section 3.2, and in particular
Remark 3.2.5).

Repeat this process inductively to likewise construct homotopy fiber sequences
Xn→ Fn−1→ Xn−1 where Fn−1 is a wedge of suspensions of R and Fn−1→ Xn−1 is
surjective on homotopy groups. One way to present all this information is through the
diagram

· · · // F2
//

    

F1
//

    

F0

    

X2

>>

>>

X1

>>

>>

M

where double-headed arrows represent maps that induce surjections on homotopy
groups and tailed arrows represent maps that induce injections on homotopy groups.
Observe that the induced sequence π∗(F•) is a free π∗R-resolution of π∗M . (There
are some subtleties in justifying this last claim, which for the moment we leave for the
reader to try to uncover. But see Section 3.4.4 below.)

Our diagram can also be restructured as a diagram of homotopy fiber sequences.
We rotate the fiber sequence Xn→ Fn−1→ Xn−1 to become Xn−1→ ΣXn→ ΣFn−1
and suspend n− 1 times to get

ΣF0 Σ2F1

M X0
// ΣX1

OO

// Σ2X2
//

OO

· · ·

where every “layer” is a homotopy fiber sequence (note that we are being cavalier about
signs, but that will be okay for our application). Now apply the derived functor (−)∧LRN .
This is still taking place entirely within Ho(R--Mod), but observe that we know this
derived functor exists because of model category machinery. For convenience we will
drop the derived “L” in all smash products and write our new tower of homotopy
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fiber sequences as

ΣF0 ∧RN Σ2F1∧RN

M ∧RN X0 ∧RN // ΣX1∧RN

OO

// Σ2X2 ∧RN //

OO

· · ·

Every layer of this tower induces a long exact sequence in homotopy groups, because
homotopy fiber sequences of R-modules are also homotopy fiber sequences of spectra
(the forgetful functor from R-modules to spectra is a right adjoint and preserves all
weak equivalences, so is its own right derived functor). These long exact sequences
braid together to give a spectral sequence in the usual way, taking the form

E1
a,b = πa(Σ

b+1Fb ∧RN )⇒ πa−1(M ∧RN ), dr : Era,b→ Era−1,b−r

(and recall once more that all smash products are derived).
Finally, observe that Fb∧RN =

∨
i (R∧Sni )∧RN =

∨
i S

ni ∧N , and so π∗(Fb∧RN )
is a direct sum of shifted copies of π∗(N ). Said in the most canonical way possible,
for any R-module W we have a natural map

π∗(W )⊗π∗(R) π∗(N )→ π∗(W ∧RN )

and when W is R∧ Sn or a wedge of such things this map is an isomorphism. This
identifies the E1-term of our spectral sequence as π∗(F•)⊗π∗(R) π∗(N ), and a little
thought shows the d1 maps are the boundary maps in this complex. So the E2-term
is Torπ∗R(π∗M,π∗N ), as desired. Specifically, E2

a,b = Torπ∗Rb,a−b−1(π∗M,π∗N ) and this
converges to πa−1(M ∧RN ). Recoordinatizing the spectral sequence by setting b = p
and a− b − 1 = q yields the following:

Theorem 3.4.4. Let R be a commutative ring spectrum and let M and N be R-modules.
Then there is a spectral sequence

E2
p,q = Torπ∗Rp,q (π∗M,π∗N )⇒ πp+q(M ∧LR N )

with differentials of the form dr : Erp,q→ Erp−r,q+r−1.

The construction of a spectral sequence for π∗FR(M,N ) is entirely similar. Start
with the same tower of homotopy fiber sequences and apply FR(−,N ). The key part
of the calculation is that

FR(R∧ Sn,N ) ' F(Sn,N ) ' Σ−nN,

and so π∗(FR(Fq,N )) � Homπ∗R(π∗Fq,π∗N ). We leave the reader to work out the
details for the following:

Theorem 3.4.5. Let R be a commutative ring spectrum and let M and N be R-modules.
Write RF(M,N ) for the derived cotensor. Then there is a spectral sequence

E
p,q
2 = Extp,qπ∗R(π∗M,π∗N )⇒ π−(p+q)RFR(M,N )

with differentials of the form dr : Ep,qr → E
p+r,q−r+1
r .

For more about the above two spectral sequences, see [94, Chapter IV.4].



3.4 Spectra for Sulu and Chekov 107

3.4.3 Constructing Morava K-theory

For each prime p the n-th Morava K-theory spectrum is a certain ring spectrum
K(n) having the property that π∗K(n) = Z/p[v±1

n ], where |vn| = 2(pn −1). In addition
to those properties it can be characterized by the existence of a map MU → K(n)
having a prescribed behavior on homotopy groups (where MU is the usual complex
cobordism spectrum). As a demonstration of the model-category-theoretic tools we
have been describing, we show how they lead to a construction of the spectrum K(n)
starting with MU .

We start with the assumption that there is a commutative ring spectrum MU in
our category Spectra and a ring isomorphism π∗(MU ) �Z[x1,x2, . . .] with |xi | = 2i
for all i. Let MU → X be a fibrant replacement in the category of MU -modules, and
recall that this implies X is fibrant in Spectra.

Fix a prime p. Since π0(MU ) = Z and X is fibrant, there exists a map S0→ X that
represents the element p∈π0(MU ). Consider the compositeMU∧S0→MU∧X−→µ X,
and let MU1 be the homotopy cofiber in the category MU --Mod. This is also a
homotopy cofiber in Spectra: the forgetful functor from MU -modules to spectra
is its own right derived functor and therefore preserves homotopy fiber sequences,
and homotopy cofiber and fiber sequences are the same by Proposition 3.2.10(c).
The long exact sequence on homotopy groups immediately shows that π∗(MU1) =
Z/p[x1,x2, . . .]. (Note: There is a subtlety here! The reader may try to uncover it, or
see the end of Section 3.4.4.)

Now let MU1→ X1 be a fibrant replacement of MU -modules, and choose a map
S2→ X1 that represents x1. Let MU2 be the homotopy cofiber in MU --Mod of the
composite MU ∧ S2→MU ∧X1→ X1, and verify that π∗(MU2) = Z/p[x2,x3, . . .].

The only thing we are ever using is that we are quotienting by an element xi which is
a nonzerodivisor on homotopy groups, so we can continue to do this for whichever xi
we choose. Fix an n and successively kill off all the xi except for xpn−1. For convenience
set r = pn − 1. This produces a sequence in Ho(MU --Mod) of the form

MU =MU0→MU1→MU2→ ·· · →MUr−1→MUr+1→ ·· ·

Lift this to a directed system in MU --Mod, and let Z be the homotopy colimit in
MU --Mod. Then Z sits in a homotopy cofiber sequence

∨
nMUn→

∨
nMUn→ Z,

where the first map is the difference between the identity and the shift map. This
is also a homotopy fiber sequence, by Proposition 3.2.10(c), and that property is
preserved after applying the forgetful functor to Spectra. So Z is the homotopy colimit
of the MUn in Spectra, not just in MU --Mod. We then know by property (7) that
π∗(Z) = colimnπ∗(MUn), and so π∗(Z) �Z/p[xr ].

Now consider the composite map Z∧S2r −→ Z∧MU −→t MU ∧Z −→µ Z . This is a
map of left MU -modules, using that MU is commutative. Applying (−)∧ S−2r gives
a map of MU -modules Z → Z ∧ S−2r . On homotopy groups this is multiplication
by xr . Consider the sequence in Ho(MU --Mod)

Z→ Z ∧ S−2r → Z ∧ S−2r ∧ S−2r → ·· ·
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then lift it to MU --Mod, and let W be the homotopy colimit. It follows again from
property (7) that π∗(W ) = Z/p[x±1

r ].
In this way we have constructed an MU -module spectrum W whose homotopy

groups make it look like W is the n-th Morava K-theory spectrum. The construction
has also produced a map MU →W which does the right thing on homotopy groups,
so W really is Morava K-theory.

Note that we have not constructed W as a ring spectrum, only as an MU -module
spectrum. In Chapters V.3 and V.4 of [94] (see especially Theorem V.4.1) it is explained
how to construct a product W ∧W →W making W into a homotopy ring spectrum,
but this is much weaker than what is desired. To construct W as a ring spectrum one
seems to need the full force of A∞-obstruction theory, which we will not recount here.

Remark 3.4.6 (historical note). All of the arguments in this section first appeared in
[94]. They needed very little of the inner workings of EKMM-spectra, however, and
as we have seen here they work in any of the modern model categories of spectra.

3.4.4 Loose ends

In the course of the argument from Section 3.4.3 we had a homotopy cofiber sequence
MU ∧ S0 →MU →MU1 and wanted to compute the homotopy groups of MU1
using the long exact sequence. This required us to know π∗(MU ∧ S0) — but how
exactly do we know these groups? Recall that S0→ S is a cofibrant replacement, and
so it is tempting to use property (2) to say that MU ∧S0→MU ∧S =MU is a weak
equivalence. But that works only if MU is cofibrant as a spectrum, which we have not
assumed!

To try to get around this issue, let �MU −�∼ MU be a cofibrant replacement in
Spectra. We certainly know �MU ∧ S0 '�MU 'MU by property (2), so we know the
homotopy groups of �MU ∧ S0. We could go back to the beginning and try to do the
entire construction with �MU replacing MU , except we do not know that �MU is a
ring spectrum. The lifting diagram �MU

'
�����MU ∧�MU

33

// MU ∧MU // MU

produces a multiplication, but in general it will only be associative up to homotopy.
If �MU is only a homotopy ring spectrum we do not have a good homotopy theory of�MU -modules, so we are again defeated.

What saves us here is the amazing property (5). Since S0 is cofibrant this property
guarantees that �MU ∧ S0 → MU ∧ S0 is still an equivalence, and so we have
MU ∧ S0 '�MU ∧ S0 '�MU 'MU . This analysis is actually needed at each stage
of the construction, since at the n-th stage we need to know the homotopy groups
of MU ∧ S2n and it is only property (5) that allows these to be identified with the
homotopy groups of MU ∧L S2n (which we know are just a shifted version of the
homotopy groups of MU ).
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A similar subtle issue came up in §3.4.2. There we had a spectrum X =
∨
α(R∧Snα )

and wanted to conclude that π∗(X) �
⊕

απ∗−nα (R). Given cofibrant spectra Eα ,
general model category considerations show that

∨
α Eα is the homotopy colimit of a

directed system Eα1
→ Eα1

∨Eα2
→ ·· · (possibly indexed by an ordinal larger than

ω). So property (7) implies that π∗(
∨
α Eα) �

⊕
απ∗(Eα). The spectra R∧ Snα need

not be cofibrant, but if R̃→ R is a cofibrant replacement in Spectra then we can write

X =
∨
α

(R∧ Snα ) � R∧
(∨

α
Snα

)
' R̃∧

(∨
α
Snα

)
�

∨
α

(R̃∧ Snα )

where we have used property (5) for the weak equivalence in the middle. Since the
spectra R̃∧ Snα are cofibrant, we can use the previously mentioned result to see that
π∗(X) is as desired.

Though not necessarily the most important applications of property (5), these are
good examples of how that property can come to the rescue at key moments.

3.5 Diagram categories and spectra

With the exception of the EKMM model, all of the common model categories of spectra
are built on the foundation of diagram categories. It is perhaps not immediately
apparent from the classical definition, but a spectrum is a kind of diagram. The
goal of this section is to survey the general theory of model structures on diagram
categories, and then to explain how spectra can be regarded as diagrams. This whole
“diagrammatic” perspective is one of the main points of [178].

3.5.1 Model category structures on diagram categories

Let M be a category and let I be a small category. We write MI for the category whose
objects are the functors X : I →M and whose morphisms are natural transformations.
Such functors are also called I-diagrams in M. When M has a notion of weak
equivalence, MI can be equipped with the objectwise weak equivalences, namely
the maps X → Y such that Xi → Yi is a weak equivalence for every object i in I .
These are sometimes called levelwise weak equivalences as well.

If M has a model structure then one might expect there to be an associated model
structure on MI built around the objectwise weak equivalences, but unfortunately this
doesn’t seem to work out unless one assumes some extra hypotheses on M.

Theorem 3.5.1. Let M be a model category and let I be a small category.

(a) If M is cofibrantly generated then there is a model category structure on MI in which
a map f : X→ Y is a weak equivalence (resp., fibration) if and only if fi : Xi → Yi is
a weak equivalence (resp., fibration) for all objects i in I . This is called the projective
model structure on MI . The cofibrations are forced to be those maps satisfying the left
lifting property with respect to the trivial fibrations.

(b) If M is combinatorial (cofibrantly generated and locally presentable) then there is a
model category structure on MI in which a map f : X→ Y is a weak equivalence (resp.,
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cofibration) if and only if fi : Xi → Yi is a weak equivalence (resp., cofibration) for all
objects i in I . This is called the injective model structure on MI . The fibrations are
forced to be those maps satisfying the right lifting property with respect to the trivial
cofibrations.

Both parts (a) and (b) were proven by Heller [117, Theorem II.4.5] in the case
M = sSet, with (b) also following from work of Jardine in this case [135]. For part (a) in
the above generality, see [124, Theorem 11.6.1]. Part (b) in the above generality is due
to Jeff Smith; it follows from [35, Theorem 1.7 and Propositions 1.15, 1.18], using the
forgetful functor MI →

∏
i∈IM as the “detection functor” for Beke’s Proposition 1.18.

Let us say a little about how Theorem 3.5.1 is proven, since the main idea is easy
and also useful in a variety of situations. For each i in I there are adjoint functors

Fi : M�MI : Evi ,

where the right adjoint Evi is the “evaluation at i” functor. The diagram FiX is the
free diagram generated by starting with an X at spot i. One readily checks that for
each X in M and j in I ,

(FiX)(j) =
∐
I(i,j)

X.

That is, (FiX)(j) is a coproduct of copies of X indexed by I(i, j). For T a set it is
convenient to write T �X for the coproduct of copies of X generated by T , so that
(FiX)(j) = I(i, j)�X.

Start with sets {fα : Aα� Bα} and {f̃α : Ãα�
∼ B̃α} of generating cofibrations and

trivial cofibrations for M. The collections I = {Fi(fα)}i,α and J = {Fi(f̃α)}i,α are
potential sets of generating cofibrations and trivial cofibrations for MI : the maps with
the right lifting property with respect to I and J are clearly the objectwise trivial
fibrations and the objectwise fibrations, respectively. The only thing nontrivial in
setting up the projective model category structure is the factorization axiom, and this
can be proven by the small object argument — it works in MI as long as it worked in
M, which is the cofibrant-generation assumption. This proves (a).

Another way of describing the proof of (a) is to package all the pairs (Fi ,Evi) into a
single adjoint pair

F :
∏
i∈I

M�MI : Ev .

Kan’s Recognition Theorem [124, Theorem 11.3.2] immediately yields that the right
adjoint Ev creates the projective model structure on MI .

The proof of (b) works a little differently; it is a direct descendant of the classical
proof that categories of sheaves have enough injectives. Here one fixes a large cardinal
λ (depending on I and M) and looks at a skeletal set of all objectwise cofibrations
(or objectwise trivial cofibrations) where the domain and codomain are both λ-small.
The λ-small conditions guarantee that the isomorphism classes of such things actually
form a set and not a proper class. By choosing λ large enough, one can show that
these give generating cofibrations and trivial cofibrations for the desired injective
model structure.



3.5 Diagram categories and spectra 111

Remark 3.5.2 . The cofibrations in the projective model structure on MI are often
called “projective cofibrations”. For general I they are hard to identify explicitly, but
for some special classes of indexing categories I this can be done. One such class
consists of the “upwards-directed Reedy categories”, that is, categories whose objects
can be assigned a degree in N in such a way that all non-identity maps raise degree.
Maps of diagrams over such categories can be built inductively, degree by degree, and
this is what makes it easy to identify the projective cofibrations. See Corollary 3.5.8
below for an example, or [75, Section 14] for a detailed discussion.

Remark 3.5.3 (Comparing diagram categories). Suppose f : I → J is a functor be-
tween small categories. Then there is an induced “restriction” map f∗ : MJ → MI ,
obtained by precomposition with f . The functor f∗ has a left adjoint f ∗ given by left
Kan extension, and the pair (f ∗, f∗ ) is a Quillen pair between the projective model
structures (since f∗ clearly preserves objectwise fibrations and trivial fibrations). We
will often make use of this Quillen pair.

We will not have need of the following, but note that f∗ also has a right adjoint f!
given by right Kan extension, and the pair (f∗, f!) is a Quillen pair when MI and MJ

are given the injective model structures.

Remark 3.5.4 . We have assumed I is a small category, otherwise we run into set-
theoretic difficulties in constructing MI . However, in applications one often wants
to apply these ideas to non-small categories as well. One typical approach is to fix
a Grothendieck universe and to redefine “small” to mean “small with respect to the
universe”. Then one can still construct MI for non-small I , but at the expense of
passing to a larger universe.

If I0 ↪→ I is a small skeletal subcategory, the adjoint functors from Remark 3.5.3
give an equivalence between MI and MI0 . So one could instead just use MI0 as a
substitute for MI and thereby avoid passing to the larger universe.

In practice a combination of these two ideas is often used, mostly without expla-
nation. When I has a small skeletal subcategory one can stay on firm ground by using
MI0 , and common practice is to regard this as allowing one to use MI with impunity.

3.5.2 Enriched diagrams

If I is a category enriched over sSet and M is a simplicial model category, then one
can look at enriched diagrams X : I →M. These are collections of objects Xi for i ∈ I
together with maps of simplicial sets I(i, j)→M(Xi ,Xj ) that satisfy the evident unital
and associativity axioms. Here we will write MI for the category of enriched diagrams,
with the comment that in practice this abuse of notation never leads to any confusion.
The analog of Theorem 3.5.1 still holds for enriched diagrams, and the proof is the
same. The only modification is to realize that here one has (FiX)(j) = I(i, j) ⊗X,
where the simplicial tensor now replaces the previous � symbol.

Similar results hold when M is a model category enriched over Top (satisfying
the analog of SM7) and I is a Top-enriched category, or the same with Top replaced
by Top∗. This will be the case most relevant to spectra.
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3.5.3 Spectra and diagram categories

Classically, a spectrum is a sequence of pointed spaces Xn together with maps
ΣXn → Xn+1. Such an object does not manifestly suggest a diagram, but it turns
out that spectra are precisely certain enriched diagrams. The key here is to realize
that a map ΣXn→ Xn+1 corresponds under the usual adjunctions to a pointed map
S1→ Top∗(Xn,Xn+1) (where Top∗(A,B) denotes the space of maps from A to B).

Define a Top∗-enriched category Θ where the objects are non-negative integers n,
and where

Θ(k,n) =
{ ∗ if k > n,
(S1)∧(n−k) if k ≤ n.

The pairings Θ(l,n)∧Θ(k, l)→ Θ(k,n) are the canonical maps obtained from the
associativity isomorphisms for the smash product in Top∗, and the identity maps in
Θ(n,n) are given by the non-basepoint in S0. It is routine to check that this really is
a Top∗-enriched category. Here is a depiction of the first few levels of Θ:

0 S1
//

S1∧S1

??

S1∧(S1∧S1)

FF1

S1∧S1

��S1
// 2 S1

// 3 // · · ·

At this point it is an exercise to check that a classical spectrum is the same as an
enriched diagram Θ→ Top∗.

3.5.4 The level model structure on classical spectra

We are going to construct this model category in two ways: by brute force (as is
normally done) and then by the diagrammatic perspective. The two ways are really
the same, but it is informative to see that firsthand.

So for the moment let us pause and start from scratch. A spectrum X is a sequence
of pointed spaces Xn for n ≥ 0 together with structure maps σn : ΣXn→ Xn+1. A map
of spectra f : X → Y is a collection of pointed maps fn : Xn → Yn such that the
diagrams

ΣXn
σX //

fn
��

Xn+1

fn+1
��

ΣYn
σY // Yn+1

all commute. Let SpN denote the resulting category.
Let Evn : SpN→ Top∗ be the functor X 7→ Xn. This has a left adjoint which takes

a pointed space W , puts it in level n, and generates a spectrum from that information
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in the freest way possible. Specifically, one readily checks that

(FnW )k =
{ ∗ if k < n,
Σk−nW if k ≥ n,

with the evident structure maps.

Exercise 3.5.5 . Check that Evn also has a right adjoint In : Top∗→ SpN, that sends
a pointed space W to the spectrum with

(InW )k =
{
Ωn−kW if k ≤ n,
∗ if k > n,

again with the evident structure maps.

As another exercise with these adjoints, observe that there are canonical maps
Fn+1(ΣW )→ FnW and InW → In−1(ΩW ). The first is an isomorphism in degrees
larger than n, and the second is an isomorphism in degrees lower than n.

Theorem 3.5.6. There exists a model category structure on SpN in which a map
f : X→ Y is a weak equivalence (resp., fibration) if and only if fn : Xn→ Yn is a weak
equivalence (resp., fibration) for all n. This is called the projective, level model structure
on SpN.

Additionally, the adjoint pairs

Top∗
Fn // SpN

Evn
oo and SpN

Evn //
Top∗

In
oo

are Quillen pairs (with the left adjoint always drawn on top, going left to right).

Proof. We explain the proof in two ways. The first is to take the generating cofibrations
and trivial cofibrations in Top∗ and apply all the functors Fn to them, thereby getting
generating sets for SpN. The model structure then basically constructs itself, using
the small object argument. The second way, which says the same thing, is to use the
observation that SpN is secretly the category TopΘ∗ and then use Theorem 3.5.1(a).

For the statements about Quillen pairs, the right adjoints Evn and In clearly preserve
fibrations and trivial fibrations.

Remark 3.5.7 . Using Theorem 3.5.1(b) there is also a “level, injective” model category
structure on SpN, which is sometimes useful. However, the model structures derived
from the projective one end up having better properties when we get to symmetric
and orthogonal spectra. See Remark 3.7.8(2).

The category Θ acts like an upwards-directed Reedy category, in the sense that all
the interesting maps raise degree. As in Remark 3.5.2, this is a case where we can
explicitly identify the projective cofibrations:

Corollary 3.5.8. A map of spectra f : X → Y is a cofibration in the projective, level
model structure if and only if the evident maps

XnqΣXn−1
ΣYn−1 −→ Yn

are cofibrations for all n, where by convention we set X−1 = Y−1 = ∗ .
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Sketch of proof. Let W −�∼ Z be a levelwise trivial fibration of spectra, and suppose
given a square

X //

��

W

��

Y // Z

We will attempt to produce a lifting Y → W by constructing it inductively on the
levels. At level 0 we have the diagram

X0
//

��

W0

'
����

Y0
// Z0

and so get a lifting if X0→ Y0 is a cofibration. At level 1 we have a similar diagram, but
we can’t just take any lifting — because we need the map Y1→W1 to be compatible
with the already chosen Y0→W0. This compatibility is encoded by the diagram

X1qΣX0
(ΣY0)

��

// W1

'
����

Y1
// Z1

and we will get a lift provided the vertical map on the left is a cofibration. Continuing
inductively in the evident manner, one sees that a map satisfying the conditions
started in the corollary is a cofibration in the projective level model structure.

For the converse, assume X → Y is a projective cofibration and suppose given a
lifting diagram

XnqΣXn−1
ΣYn−1

//

��

W

'
����

Yn // Z

This adjoints over to a diagram

X //

��

InW

��

Y // InZ ×In−1(ΩZ) In−1(ΩW )

and the right vertical map is a levelwise trivial fibration by inspection, so there is a
lifting. Now adjoint back.

Remark 3.5.9 . The level model structure is a rather formal thing, not capturing
any kind of stabilization phenomenon. It treats spectra as mere diagrams, and not
as true stable objects. For example, a spectrum X and its truncation {∗ ,X1,X2, . . .}
should represent the same “stable object”, but the level model structure sees them
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as different. The suspension functor on SpN just applies suspension objectwise, and
clearly this is not an equivalence on the homotopy category level — so we do not have
a stable model category. In Section 3.6 we will see how to impose relations into the
level model structure that incorporate stability.

3.5.5 The level model structure on coordinate-free spectra

This is an easy modification of what we have already done. Fix a May universe U, as
in Section 3.1.5. For V ⊆W ⊆ U, write W −V for the orthogonal complement of V
in W . Define a coordinate-free spectrum to be an assignment V 7→ XV for V ⊆ U

a finite-dimensional subspace, together with maps SW−V ∧XV → XW for every pair
V ⊆W , subject to the evident unital and associativity conditions. Write SpU for the
evident category of coordinate-free spectra on U.

Define a Top∗-enriched category ΘU whose objects are the finite-dimensional
subspaces of U. Let the morphisms be given by

ΘU(V ,W ) =
{
SW−V if V ⊆W,

∗ otherwise.

For V ⊆W ⊆ Z , the evident isomorphism SZ−W∧SW−V → SZ−V gives a composition
map for Θ that is readily checked to be unital and associative. Observe that an enriched
diagram ΘU→ Top∗ is the same as a coordinate-free spectrum defined on U.

The projective model structure on the diagram category TopΘU
∗ is called the

projective, level model structure on SpU.
To compare this construction to classical spectra, pick an orthonormal basis e1, e2, . . .

for U and let Rn be the span of the first n basis elements. Consider the particular
linear map R → R

n+1 −Rn sending 1 to en+1, so that compactifying gives us a
preferred homeomorphism S1 � S(Rn+1−Rn). If X is a coordinate-free spectrum then
the assignment [n] 7→ X

R
n gives a classical spectrum. Let U : SpU → SpN denote

this forgetful functor. From the diagrammatic viewpoint we have described an embed-
ding j : Θ ↪→ ΘU and U is just restriction along this embedding. Category theory
automatically tells us that U has a left adjoint G: it sends a spectrum X : Θ→ Top∗
to its left Kan extension along j . Note that (GX)V is an appropriate (enriched) colimit
over the category of all Rn contained in V . One easy but important fact is that the
map Xn→ (UGX)n is an isomorphism, for all n.

It is formal that the pair G : SpN� SpU : U is a Quillen pair, since U preserves
fibrations and trivial fibrations. It is of course not a Quillen equivalence, because we
are using the levelwise model structures. This will change when we pass to the stable
model structures in the next section.

Remark 3.5.10 (Change of universe). Suppose that U and U′ are two May universes,
and f : U→ U′ is an isometry (which will necessarily be injective, but possibly not
surjective). Then there is an enriched functor ΘU→ ΘU′ that on objects behaves as
V 7→ f (V ) and on maps as SW−V 7→ Sf (W )−f (V ) (induced by f ). We therefore get
a restriction functor f∗ : Top

Θ′
U∗ → TopΘU

∗ and its left adjoint f ∗ as in Remark 3.5.3.
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Again, these are not Quillen equivalences — but their analogs will become Quillen
equivalences after stabilization.

3.6 Localization and the stable model structures on spectra

In this section we will see how to modify the level model structure on spectra in a way
that captures true stable phenomena. This uses a technique that is now called Bousfield
localization, although it of course did not have this name when it first appeared back
in [56]. Here we review the relevant model category theoretic techniques and then we
repeat the work of [56] to obtain the stable structure on spectra. This works in both
the classical and coordinate-free contexts. See also Chapter 7 of this volume for more
on Bousfield localization.

3.6.1 Homotopy mapping spaces

Let M be a model category. To any two objects X and Y in M one can associate
a homotopy mapping space M(X,Y ), also sometimes called a homotopy function
complex. This is a simplicial set, well defined up to weak homotopy equivalence, which
only depends on the weak homotopy types of X and Y . Given maps X → X ′ and
Y → Y ′ one can construct models for these function complexes that come with maps
M(X ′ ,Y )→M(X,Y ) and M(X,Y )→M(X,Y ′).

Here are four standard ways to construct models of M(X,Y ):

(1) Replace X by a cosimplicial resolution QX∗, choose a fibrant replacement Y →
RY , and use the simplicial set M(QX∗,RY ) obtained by applying M(−,RY ) to
QX∗.

(2) Choose a cofibrant replacement QX→ X, a simplicial resolution Y → RY∗, and
use the simplicial set M(QX,RY∗ ).

(3) Use nerves of categories of zig-zags from X to Y to form the so-called hammock
localization space LHM(X,Y ).

(4) When M is a simplicial model category, choose a cofibrant replacement QX→ X
and a fibrant replacement Y → RY and use the simplicial mapping space from
QX to RY .

See [124] and [130] for more on (1) and (2), and [88] or Chapter 2 of this volume
for (3). But all the model categories considered in this chapter are simplicial, so feel
free to focus on (4). Depending on the context one might also write Map(X,Y ) or
hMap(X,Y ) as a synonym for M(X,Y ).

3.6.2 Localization of model categories

Given a model category M and a collection of maps T in M, one sometimes wants
to construct a new model category structure that is obtained from M by adjoining
the maps in T to the already existing weak equivalences. This will likely force even
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more maps to be weak equivalences (at the very least one has to close up the set
under two-out-of-three), and at least one of the notions of cofibration/fibration will
have to change as well. The main technique for accomplishing this is called Bousfield
localization.

Definition 3.6.1. Let M be a model category and let T be a set of maps in M.

(a) An object X in M is T -local if, for all f : A → B in T , the induced map
M(B,X)→M(A,X) is a weak equivalence.

(b) A map f : A → B is a T -local equivalence if, for all T -local objects X, the
induced map M(B,X)→M(A,X) is a weak equivalence.

Briefly, an object X is T -local if it sees all the maps in T as weak equivalences,
where “see” amounts to looking at things from the perspective of M(− ,X). Likewise,
the T -local equivalences are the maps that are seen as weak equivalences by all the
T -local objects. So the T -local equivalences include all of T , but will usually include
other maps as well.

The following result is due to Hirschhorn [124] in the cellular case, and to Jeff Smith
in the combinatorial case (see [35] for a written account):

Theorem 3.6.2. Let M be a cellular or combinatorial model category, and let T be a
set of maps in M. Then there exists a new model structure T −1M on the same underlying
category as M such that

(i) the cofibrations in T −1M are the same as the cofibrations in M,
(ii) the weak equivalences in T −1M are the T -local equivalences,
(iii) the fibrations are the maps with the right lifting property with respect to cofibrations

that are T -local equivalences.

Moreover, an object X is fibrant in T −1M if and only if X is fibrant in M and X is
T -local. Finally, if X and Y are T -local then a map f : X→ Y is a weak equivalence in
T −1M if and only if it is a weak equivalence in M.

When it exists, the model category T −1M is called the left Bousfield localization
of M at the set T . A fibrant replacement functor in T −1M is called a T -localization
functor.

Remark 3.6.3 . It is useful to know a bit about how Theorem 3.6.2 is proven and
about the construction of the localization functor. For each map in T choose a model
f : A� B that is a cofibration. For each simplicial horn j : Λn,k ↪→ ∆n consider the
box product j � f , which is the map

j � f : (Λn,k ⊗B)q(Λn,k⊗A) (∆n ⊗A) −→ ∆n ⊗B.

Here the tensor refers to the simplicial tensor if M is a simplicial model category,
or more generally it refers to a version built using cosimplicial frames (see [124] for
details). Formally add these maps j � f (for every j and f ) to the set of generating
trivial cofibrations of M, and then repeat the small object argument using this new
set to get the required factorization. In particular, the localization functor is obtained
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as a transfinite composition of cobase changes of the generating trivial cofibrations
in M together with the maps j � f .

3.6.3 Bousfield–Friedlander spectra

If X is a spectrum and n ≥ 0, define the n-truncation τ≥nX to be the spectrum
{∗ ,∗ , . . . ,∗ ,Xn,Xn+1, . . .}. There is a natural map τ≥nX→ X. Our basic goal will be to
localize the level, projective model structure on spectra at the class {τ≥nX→ X | n,X}.
However, this class is not a set and so the first task is to pare it down somewhat. To
this end, define

T = {τ≥(n+1)Fn(Sk)→ Fn(Sk) | n,k ≥ 0}.

Observe that τ≥(n+1)Fn(X) is canonically isomorphic to Fn+1(ΣX), so we can also
describe the set as

T = {Fn+1(Sk+1)→ Fn(Sk) | n,k ≥ 0},

where the map in question is adjoint to the identity Sk+1→ Evn+1(FnSk).

Definition 3.6.4. The stable projective model structure on SpN is the localization
of the level projective model structure at the set T.

Let us analyze the T-local objects. Here the relevant observation is that

SpN

(
Fn(Sk),X

)
' Top∗(S

k ,Xn)

by adjoint functors. If f denotes our map Fn+1(Sk+1)→ Fn(Sk) then on mapping
spaces this is

SpN

(
FnS

k ,X
)

//

'
��

SpN

(
Fn+1S

k+1,X
)

'
��

Top∗(Sk ,Xn) // Top∗(Sk+1,Xn+1) Top∗(Sk ,ΩXn+1)

and one checks that the lower horizontal composite is induced by the structure map
Xn→ΩXn+1. So a spectrum X is T-local precisely when it is an Ω-spectrum.

Remark 3.6.5 . We only needed k = 0 to make this argument. So the maps in T where
k > 0 represent redundant information, and we could throw them out of T and still
get the same localization.

For the following result, recall that if X is a spectrum and n ∈Z then

πn(X) = colimkπn+k(Xk)

where the maps in the colimit system are induced by the structure maps of X.

Proposition 3.6.6. In the stable projective model structure on SpN,

(a) the fibrant objects are the levelwise fibrant Ω-spectra, and
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(b) a map f : X → Y is a weak equivalence if and only if it induces isomorphisms
πn(X)→ πn(Y ) for all n ∈Z.

Note that the levelwise fibrant condition is vacuous if we are defining spectra in
terms of topological spaces, but not if we are doing so in terms of simplicial sets.

Proof. We have already proven (a). For (b), first note that for a map of Ω-spectra
the notions of level weak equivalence, π∗-isomorphism, and stable equivalence all
coincide: level equivalence = stable equivalence by the last line of Theorem 3.6.2, and
level equivalence = π∗-isomorphism by inspection.

Next consider the map fn,k : Fn+1(Sk+1)→ Fn(Sk). This is an isomorphism in levels
n+1 and higher, so this same property passes to any cobase change. Hence any cobase
change of an fn,k is a π∗-isomorphism. Similarly, for any set of horns j : Λp,r ↪→ ∆p

the box product j � fn,k is also an isomorphism in levels n+ 1 and higher. It follows
that any map obtained from these box products by cobase changes and transfinite
compositions is a π∗-isomorphism. In particular, the fibrant replacement functors
X→ RX in the stable projective structure are made this way (see Remark 3.6.3) and
are therefore π∗-isomorphisms.

Finally, suppose given a map of spectra g : X→ Y and consider the square

X //

g
��

RX

Rg
��

Y // RY

The horizontal maps are both stable equivalences and π∗-isomorphisms. So g is a
stable equivalence (resp., π∗-isomorphism) if and only if Rg is so. But RX and RY are
Ω-spectra, so the conditions of Rg being a stable equivalence or π∗-isomorphism are
equivalent; hence, the same must hold for g .

In general, it can be very hard to give a nice description for the fibrations in a
Bousfield localization. In the present case one can actually do it, though. Note that
since there are more trivial cofibrations in T−1M than in M, there will be fewer
fibrations.

Proposition 3.6.7. For a spectrum X, let QX = hocolimnΩ
nXn. Then a map of spectra

X→ Y is a fibration in the projective stable structure on SpN if and only if it is a levelwise
fibration and for every n ≥ 0 the square

Xn //

��

QX

��

Yn // QY

is homotopy Cartesian.

Proof. See [56]. In that paper the projective stable category is not constructed
by Bousfield localization, but directly by brute force. The cofibrations and weak
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equivalences, however, match the ones in our structure, and fibrations are always
determined by the trivial cofibrations, so the two structures are in fact the same.

3.6.4 The coordinate-free setting

Recall the coordinate-free setting of Section 3.5.5. Here we localize at the maps
FW (SW−V ∧ Sk)→ FV (Sk) for all k and all pairs V ⊆W ⊆ U. The functor G from
Section 3.5.5 sends the maps in T to these kinds of maps, so by general localization
theory the adjoint pair (G,U ) descends to give Quillen functors between the resulting
stable model categories:

G : SpN

stable� SpU
stable : U.

By the same arguments that we have seen for SpN, the stable equivalences in SpU are
all π∗-isomorphisms. Since X→UGX is a levelwise isomorphism (see Section 3.5.5),
it follows at once that the above pair is a Quillen equivalence.

We leave the reader to think about change of universe in this setting, building off of
Remark 3.5.10.

3.7 Symmetric spectra

The definitions and basic results about symmetric spectra are very elegant and
beautiful. Understanding the details of what is going on beneath the surface is a
different matter. Our approach here will be to quickly survey the basic theory from
[133] and then go back and work on some motivation afterwards.

Definition 3.7.1. A symmetric sequence in a category C is a collection of objects
Xn together with group homomorphisms Σn→ Aut(Xn), for each n ≥ 0.

It will be convenient to have a more diagrammatic way of phrasing this definition.
Let ΣI be the subcategory of Set consisting of the objects n = {1,2, . . . ,n} for n ≥ 0
(with 0 = ∅) together with all automorphisms. A symmetric sequence in C is simply a
functor X : ΣI →C. As usual, we write CΣI for the category of all such functors.

Now assume that (C,⊗, I ,F) is closed symmetric monoidal and also cocomplete.
Given symmetric sequences X and Y , define a new symmetric sequence X ⊗Y by

(X ⊗Y )n =
∐

p+q=n
(Σn)+ �Σp×Σq (Xp ⊗Xq).

To explain the � notation, regard any group G as a groupoid with one object and G
as its endomorphism group. If H ≤ G and W is an object with a left H-action, then
G�H W is the left Kan extension in the diagram

H //
��

��

C

G

??
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Equivalently, one can write

G�H W = coeq
( ∐
G×H

W ⇒
∐
G
W

)
,

where the top map sends the copy of W indexed by (g,h) to the copy of W indexed
by g via left multiplication by h, and the bottom map sends the copy of W indexed
by (g,h) to the copy of W indexed by gh via the identity. The action of G on

∐
GW

by permutation of the factors descends to give a left action of G on G�H W .
There is a self evident, though tedious to write down, associativity isomorphism

X ⊗ (Y ⊗Z) � (X ⊗ Y )⊗Z . Define the twist isomorphism τX,Y : X ⊗ Y → Y ⊗X on
level n to be the coproduct of maps Σn�Σa×Σb (Xa⊗Yb)→ Σn�Σb×Σa (Yb⊗Xa) (where
a + b = n) sending [α,Xa ⊗ Yb] to [αρb,a,Yb ⊗Xa] via the twist map from C, where
ρb,a ∈ Σn is the evident (b,a)-shuffle. It is a good exercise to check that without ρb,a
in the formula this is not a well-defined map, as it does not exhibit the required
Σa×Σb-equivariance; indeed, check that one needs to include a permutation ρ having
the property that (βa |γb) ◦ ρ = ρ ◦ (γb |βa) for every βa ∈ Σa, γb ∈ Σb. The only
permutation that does the job is ρ = ρb,a. (For a general schema that helps one quickly
determine the correct permutation to use in situations like this, see Remark 3.7.9).

When C is complete one can also define a cotensor X,Y 7→ F(X,Y ) for symmetric
sequences. Before giving the definition, let us record the basic property it should have:

Lemma 3.7.2. Let X, Y , and Z be symmetric sequences in C. There are natural bijections
between the following three sets:

(1) CΣI (X ⊗Y ,Z);
(2) collections of Σp ×Σq-equivariant maps Xp ⊗Yq→ Zp+q for all p,q ≥ 0;
(3) CΣI (X,F(Y ,Z)).

Parts (2) and (3) of the lemma lead one directly to the definition of the cotensor. For
X and Y in CΣI define F(X,Y ) by

F(X,Y )n =
∏
q

F(Xq,Yn+q)
Σq ,

where the Σq action is as follows. If α ∈ Σq then we have maps αX : Xq → Xq and
(idn|α)Y : Yn+q → Yn+q, where (idn|α) ∈ Σn+q is the map that permutes the last q
elements according to α. Then α acts on F(Xq,Yn+q) via the composite

F(Xq,Yn+q)
((idn |α)Y )∗ // F(Xq,Yn+q)

(α−1
X )∗

// F(Xq,Yn+q).

This gives an action of Σq, and F(Xq,Yn+q)
Σq is the fixed object (the limit of the

corresponding functor Σq→C). The action of Σn on Yn+q coming from permutation

of the first block of n elements descends to an action of Σn on F(Xq,Yn+q)
Σq .

The following is a routine exercise:

Proposition 3.7.3. With the above associativity and twist isomorphisms, the tensor
product on CΣI is closed symmetric monoidal with unit I = {I,∅,∅, . . .} and cotensor
F(−,−).
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Now fix any object X in C. Recall from Section 3.3.5 that X⊗n is defined inductively
by X⊗n = X ⊗X⊗(n−1), and that there is a natural left action of Σn on X⊗n. Define X

to be the symmetric sequence Xn = X⊗n, and let I→X be the unique map that is
the identity in level 0.

The associativity maps give natural isomorphisms µa,b : Xa ⊗Xb→Xa+b. We use
these to define a pairing X⊗X→X that on level n is the coproduct of maps

Σn �Σa×Σb (X⊗a ⊗X⊗b)→ X⊗(a+b),

which on the summand [α,X⊗a ⊗X⊗b] equals α ◦µa,b. One readily checks that this is
well-defined and makes X into a commutative monoid. The category of left X-modules
then inherits a closed symmetric monoidal structure as in Section 3.3.2, where for
example the tensor is (−)⊗

X
(−).

Definition 3.7.4. A symmetric X-spectrum is a left X-module.

Unwinding the definitions, a left X-module M is a sequence of objects Mn in C
together with an action of Σn on Mn and structure maps

αp,q : X⊗p ⊗Mq→Mp+q

that are Σp ×Σq-equivariant. The unital condition says that α0,q is the identity, and
associativity says that for p = a + b one has αp,q = αa,b+q ◦ (id ⊗ αb,q); that is, the
diagram

X⊗a ⊗ (X⊗b ⊗Mq)
id⊗αb,q

//

�
��

X⊗a ⊗Mb+q
αa,b+q

// Ma+b+q

(X⊗a ⊗X⊗b)⊗Mq
� // X⊗(a+b) ⊗Mq

αp,q

66

is commutative. This implies that the maps αp,q with p > 1 can be built up from the
α1,∗ maps.

So at the end of the day, a symmetric X-spectrum is a collection of objects Mn in C
equipped with a left Σn-action and structure maps α : X ⊗Mn→Mn+1 having the
property that the iterated structure maps

X⊗p ⊗Mn→Mn+p

are Σp ×Σn-equivariant, for all n,p ≥ 0. Here “iterated structure map” means an
evident composition of associativity maps with the structure maps α.

3.7.1 The model category of symmetric spectra

We now specialize to the case where C is Top∗ and X = S1. The spectrum X =
{S0,S1,S2, . . .} is called the sphere spectrum and denoted simply by S . So symmetric
spectra are just left S-modules. Write SpΣ for the category of symmetric spectra.

The evaluation map Evn : SpΣ→ Top∗ has a left adjoint Fn given by

(FnX)k =
{ ∗ if k < n,
Σk �Σk−n (Sk−n∧X) if k ≥ n,
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where in the second line Σk−n sits in Σk as permutations of the front (k−n)-block.
Note that there are canonical maps

Fn+1(S1∧X)→ Fn(X)

that are equal to the identity in level n+ 1. (Warning: Unlike the case of Bousfield–
Friedlander spectra, these maps are not isomorphisms in degrees larger than n+ 1.
See the discussion below for an example.)

Proposition 3.7.5. There is a model category structure on SpΣ where the weak equiva-
lences and fibrations are objectwise. This is called the level, projective model structure.

Proof. One can do this directly using the functors Fn and Kan’s Recognition Theorem,
just as we did for Bousfield–Friedlander spectra. Alternatively, one can realize that
symmetric spectra are just certain enriched functors and use Theorem 3.5.1(a). See
Section 3.7.4 below for more on this perspective.

Definition 3.7.6. The projective stable model structure on SpΣ is the left Bous-
field localization of the projective level model category structure at the set of maps
{Fn+1(S1∧ Sk)→ Fn(Sk) | n,k ≥ 0}.

Say that a symmetric spectrum is an Ω-spectrum if its underlying classical spectrum
is an Ω-spectrum. Here is the main foundational result about symmetric spectra,
pulling together various statements from [133]:

Theorem 3.7.7.

(a) The projective stable model structure on SpΣ is a stable, closed symmetric monoidal
model category satisfying the Monoid Axiom as well as the Algebraic Creation and
Invariance Properties.

(b) The fibrant objects are the objectwise fibrant Ω-spectra.
(c) The forgetful functor U : SpΣ → SpN has a left adjoint G, and the adjoint pair

G : SpN � SpΣ : U is a Quillen equivalence between the projective stable model
structures.

Remarks 3.7.8 .

(1) Part (b) is automatic from the way we choose the maps to localize, just as for
Bousfield–Friedlander spectra.

(2) In (a) it suffices to verify the Pushout-Product Axiom for box products of generat-
ing cofibrations and trivial cofibrations. This is where it is finally important that
we started with the projective level structure and not the injective level structure.
In the former, the generating maps are well understood and it is easy to analyze
their box products. In the latter, there are far too many cofibrations and in fact
the Pushout-Product Axiom does not hold.

(3) The Quillen equivalence in part (c) is not unexpected, but it is not as easy as
one might think. The left adjoint just comes as in Remark 3.5.3, and the fact
that it is a Quillen pair is easy. But the equivalence part takes a bit of work. See
Section 3.10.3 for further discussion.
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(4) The precise references for the different parts of Theorem 3.7.7 are these: monoidal
model category, [133, 5.3.8] ; monoid axiom, [133, 5.4.1] ; Algebraic Creation Property,
[133, 5.4.2 and 5.4.3] ; Algebraic Invariance Property, [133, 5.4.5] ; Strong Flatness
Property, [133, 5.4.4] ; Quillen equivalence with SpN, [133, 4.2.5].

The derived functors of the Quillen equivalence from Theorem 3.7.7(c) give an
equivalence of categories

Ho(SpN)

LG
**

Ho(SpΣ).

RU

hh

A common misconception is to confuse RU and U . That is, if E is a symmetric
spectrum, it is tempting to believe that the image of E in Ho(SpN) is represented
by the underlying classical spectrum UE. This is false in general — an example is
E = F1(S1), discussed below. Two other related issues are these:

(1) The functor U does not preserve all stable weak equivalences.

(2) If X is a symmetric spectrum then define

πnaive
n (X) = πn(UX) = colimkπn+k(Xk).

It is not true that all stable weak equivalences induce isomorphisms on πnaive
∗ (−).

In particular, the groups πnaive
∗ (X) are not guaranteed to be the “correct” homo-

topy groups unless X is fibrant.

One source of confusion here is that πnaive
∗ (X) sometimes are the correct homotopy

groups even when X is not fibrant. The paper [261] gives a detailed discussion of
which spectra X are well-behaved in this regard.

The following example from [133, Example 3.1.10] demonstrates (1) and (2) above. It
is worth examining in some detail. Consider the canonical map f : F1(S1)→ F0(S0)
that is the identity in level 1. This is one of the maps we localized to form the stable
model structure, so it is a stable weak equivalence by definition. Note that F0(S0) is just
the sphere spectrum S . For X any pointed space, (F1X)n = Σn �Σn−1

((S1)∧(n−1) ∧X)
for n ≥ 1; in particular, (F1S

1)n = Σn �Σn−1
Sn. As a space, this is a wedge of n

copies of Sn, and the copies may be regarded as indexed by the set of permutations
Tn = {Id, (1n), (2n), . . . , (n−1,n)} (these are coset representatives for Σn/Σn−1). Our
map f takes the form

S0 S1 S2 S3 · · ·

∗

OO

S1

=

OO

∨
T2

(S1∧ S1)

OO

∨
T3

(S1∧ S1∧ S1)

OO

· · ·

where in each level the component indexed by α ∈ Tn is mapped into Sn via the
canonical identification followed by α.
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Of course we know πnaive
0 (S) = Z. The colimit system for πnaive

0 (F1S
1) is

0→Z ↪→Z
2 ↪→Z

3 ↪→Z
4 ↪→ ·· · ,

where in each case the group includes into the next as a direct summand. So
πnaive

0 (F1S
1) is an infinite direct sum of copies of Z. In particular, we see that

Uf is not a stable equivalence and (equivalently) that f does not induce isomor-
phisms on πnaive

∗ (−). Note that πnaive
∗ (−) gives the “correct” answer for S, but not

for F1S
1.

3.7.2 Understanding the smash product

Let us open up the definition of the smash product and look inside. If X and Y are
symmetric spectra (left S-modules) recall that X ∧ Y (also known as X ∧S Y ) is the
coequalizer of X ⊗ S ⊗ Y ⇒ X ⊗ Y . Note that here X is being implicitly converted
from a left S-module into a right S-module via the twist map. Looking level by level,
we find that (X ∧Y )n is the coequalizer of∨

a+b+c=n

Σn �Σa×Σb×Σc (Xa ∧ (S1)⊗b ∧Yc)⇒
∨
p+q=n

Σn �Σp×Σq (Xp ∧Yq).

This looks scary, but we can tame things a bit by adopting a more algebraic notation,
which we now pause to explain.

If a+ b + c + d + e = n write ρa[b]c[d]e for the permutation in Σn that interchanges
the b-block and the d-block and otherwise maintains the internal order within all 5
blocks. When a or c or e is zero we will drop them from the notation. Also, if α ∈ Σp
and β ∈ Σq write α |β ∈ Σp+q for the permutation that is α on the front p-block and
β on the back q-block.

Let us denote elements of symmetric groups by Greek letters, elements of (S1)∧n

by capital Roman letters, and elements of X∗ and Y∗ by lowercase Roman letters.
In addition, we write subscripts xn to denote elements of degree n, e.g., xn ∈ Xn.
Denote the iterated structure map (S1)∧n ∧Xp→ Xp+n by (An,xp) 7→ Anxp, and the
Σn action on Xn by (αn,xn) 7→ αnxn. Observe that the equivariance of the structure
map is the relation

(αnAn)(βpxp) = (αn|βp)(Anxp). (3.7.3)

We claim that the spaces (X ∧Y )n consist of all elements αn[xp ∧ yq] for p+ q = n
subject to the following relations:

(1) (αn(βp |γq))[xp ∧ yq] = αn[βpxp ∧γqyq] for p+ q = n.

(2) Ak[xr ∧ ys] = Akxr ∧ ys = ρ[r][k]s[xr ∧Akys].

(3) (αkAk)(γr+s[xr ∧ ys]) = (αk |γr+s)(Akxr ∧ ys) = (αk |γr+s)ρ[r][k]s[xr ∧Akys]

Relation (2) is a special case of (3); we have listed it separately because it is easier to
absorb in this simpler form. Also, relation (3) is really just relation (2) plus equivariance.
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Remark 3.7.9 . There is a procedure for determining the permutations ρ appearing in
formulas like the ones above. For an equation of the form “ρ(formula P )= formula Q”,
regard each subscript u in P as a block of u symbols. Then ρ is the permutation
that rearranges the blocks as listed in P into the order listed in Q. For example, in
equation (2) consecutive blocks of length r, k, and s must be reordered by bringing
the k-block in front of the r-block.

As an example of how to use the above notation, we work out X ∧ Y in the first
three levels. Level 0 is easy, as there are no relations: (X ∧Y )0 = X0 ∧Y0. Level 1 has
(X∧Y )1 = [(X0∧Y1)∧(X1∧Y0)] /∼, where the relation is A1(x0∧y0) = (A1x0)∧y0 =
x0 ∧ (A1y0). If desired we can translate this back into categorical language and say
that (X ∧Y )1 is the pushout of the diagram

S1∧X0 ∧Y0
f2

&&

f1

xx

X1∧Y0 X0 ∧Y1

with f1(A1,x0, y0) = A1x0 ∧ y0 and f2(A1,x0, y0) = x0 ∧A1y0.
In general, for (X ∧ Y )n one writes down a big wedge of Xp ∧ Yq (with extra

symmetric groups out front) and then quotients by relations coming from structure
maps out of lower levels. So for n = 2 we start with

(X2 ∧Y0)∨ (X1∧Y1)∨ (12)(X1∧Y1)∨ (X0 ∧Y2),

where (12) is the generator of Σ2 and appears here as a bookkeeping factor. The
relations are

(A2x0)∧ y0 = x0 ∧A2y0, A1x0 ∧ y1 = x0 ∧A1y1, A1x1∧ y0 = ρ[1],[1]x1∧A1y0.

Translating again to categorical language, (X ∧Y )2 is the colimit of a diagram

S1∧X1∧Y0

�� &&

S2 ∧X0 ∧Y0

ss **

S1∧X0 ∧Y1

��yy

X2 ∧Y0 (12)(X1∧Y1) X1∧Y1 X0 ∧Y2

where the maps are easily written down from the algebraic relations. As an exercise,
check that when Y = S this colimit gives exactly X2. Note that this fixes the problem
we saw in our naive attempt back in Section 3.1.3, where the factors X1∧ Y1 and
(12)(X1∧Y1) were compressed into a single term.

This discussion also leads to the following useful fact:

Proposition 3.7.10. Let X, Y , and Z be symmetric spectra. To give a map of symmetric
spectra X ∧Y → Z is equivalent to giving maps Xp ∧Yq→ Zp+q for all p,q ≥ 0 that are
Σp ×Σq-equivariant and satisfy the identities

Ak(xp · yq) = Akxp · yq = ρ[p],[k],q(xp ·Akyq).
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A pairing X ∧X→ Z is commutative if it also satisfies the identity

xp · x′q = ρ[q],[p](x
′
q · xp).

Proof. For the first claim, note that relation (3) is a consequence of the listed relations
and the equivariance of the structure maps in Z . The second claim is routine.

This would be a good moment to see some examples of symmetric ring spectra,
but most of the standard examples are also examples of orthogonal ring spectra and
it is clearer to discuss them in that context. The curious reader might wish to look
ahead at Section 3.8.8.

3.7.4 Symmetric spectra and diagram categories

Let C be a closed symmetric monoidal category and let X be an invertible object
in C. Let X∗ and α : I −→� X∗ ⊗X be a choice for inverse, and recall the dual map
α̂ : X ⊗X∗→ I from Section 3.3.5. The adjoint of α̂ is a map X→ F(X∗, I), and more
generally we get canonical maps

X⊗(k)→ F
(
(X∗ )⊗(n+k), (X∗ )⊗(n)

)
(3.7.5)

adjoint to the map X⊗(k) ⊗ (X∗ )⊗(n+k)→ (X∗ )⊗(n) that reverses the order of the tensor
factors in X⊗(k) and then uses α̂ repeatedly to eliminate adjacent factors of X and X∗

(note that there are various associativity isomorphisms as well, but we are ignoring
them). This leads to the following picture of elements in C and canonical “maps”
between them, where an arrow from A to B labeled Z means a map Z→ F(A,B) and
Σn acts on the right of (X∗ )⊗(n) by permutation of the factors:

I X∗
Xoo X∗ ⊗X∗Xoo

X⊗(2)

bb

Σ2

��

X∗ ⊗X∗ ⊗X∗Xoo

Σ3

��

X⊗(2)

ff

X⊗(3)

]] · · ·oo (3.7.6)

Remark 3.7.11 . There are canonical isomorphisms (X∗ )⊗(k) → F(X⊗(k), I) induced
by the tensoring operation F(A,B) ⊗ F(C,D) → F(A ⊗ C,B ⊗ D), and the above
descriptions might make more sense if one uses these isomorphisms to replace every
appearance of the domain by the codomain. The usual left action of Σn on X⊗(n) (see
Section 3.3.5) gives a right action on F(X⊗(n), I), and the maps in (3.7.5) were set up
so that the adjoints generalize the evaluations X⊗(k) ⊗F(X⊗(k), I)→ I .

To capture the picture in (3.7.6) more formally, define a category Σ
op
X enriched over

C as follows (apologies for the mysterious “op” but it will become clear in a moment).
Σ
op
X has one object [n] for every n ≥ 0, and

Σ
op
X ([n], [k]) =

{∅ if k > n,
X⊗(n−k) �Σn−k Σn if k ≤ n.
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In the last line, Σn−k sits in Σn as permutations of the first n− k elements, and the
notation means the evident analog of Σn �Σn−k X

⊗(n−k) obtained by reversing left and
right. To define this as a category we need to explain how to compose maps, and we
will do this using algebraic notation as in the last section. If maps from [n] to [k] are
written B1 . . .Bn−kβn then the rule is

(B1 . . .Bk−lβk)(C1 . . .Cn−kγn) = C1 . . .Cn−kB1 . . .Bk−l(idn−k |βk)γn (3.7.7)

(the switching of the B’s and C’s seems annoying but works itself out when we move
from Σ

op
X to ΣX ). This rule comes from reading off how compositions work in (3.7.6).

For example, pretend X is a one-dimensional vector space and α̂ is evaluation. The
left-hand side of (3.7.7) takes a tensor product of functionals φ1 ⊗ · · · ⊗ φn on X,
permutes them into the new tensor φγ(1) ⊗ · · · ⊗φγ(n), evaluates the first n − k of
these on the C’s to get [φγ(1)(C1)φγ(2)(C2) · · · ] ·φγ(n−k+1) ⊗ · · · ⊗φγ(n), permutes the
remaining functionals according to β, and then evaluates the first k − l of these at the
B’s. One readily verifies that the right-hand side of (3.7.7) does the same thing.

So we have a category Σ
op
X and (3.7.6) amounts to the observation that our choice

of (X∗, α̂) determines a canonical (enriched) functor Σ
op
X →C sending [n] to (X∗ )⊗(n).

This in turn means that if Z is any object in C then we get an (enriched) functor
ΣX →C by [n] 7→ F((X∗ )⊗(n),Z).

A brief amount of thought reveals that enriched functors ΣX → C are precisely
symmetric X-spectra. Note that in ΣX rule (3.7.7) becomes instead

γ−1
n C1 · · ·Cn−k ◦ β−1

k B1 · · ·Bk−l = γ−1
n (idn−k |β−1

k )C1 · · ·Cn−1B1 · · ·Bk−l

which could be made prettier by removing all of the inverses.
To paraphrase this discussion, the category Σ

op
X in some sense encodes the universal

structure an inverse of X would have in C. Symmetric X-spectra arise by “remembering”
how all the inverses of X map into some given object. This is how one could re-invent
the notion of symmetric spectra, if one were trapped on a desert island and forgot
how it all worked.

Let us push these ideas a little further. The subcategory of C pictured in (3.7.6) is
symmetric monoidal, and this structure can be lifted back to Σ

op
X . Define the tensor

by [k] ⊗ [l] = [k + l], let the associativity isomorphism be the identity, and let the
symmetry isomorphism t : [k]⊗ [l]→ [l]⊗ [k] be the permutation ρ[k],[l]. We also have
to define the tensor product of maps, and this is done using the formula

A1 . . .Akαs ⊗B1 . . .Blβt = A1 . . .AkB1 . . .Blρk,[s−k],[l],t−l(αs |βt). (3.7.8)

This formula is again easily derived by thinking about vector spaces and functionals.
The left-hand side is the operation that takes functions φ1, . . . ,φs,µ1, . . . ,µt , permutes
the first set according to α and the second set according to β, then successively
evaluates the first part of each set at the A’s and B’s in order (with the first A getting
plugged into the first φ, and so forth). The right-hand side also does the α and β
scrambling but then moves the first group of µ’s in front of the last group of φ’s,
before plugging in the A’s and B’s. These are clearly the same operation.

It is a good exercise to check that Σ
op
X , thus defined, is indeed symmetric monoidal.
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The symmetric monoidal structure on Σ
op
X yields a corresponding structure on

ΣX , and then this passes to a symmetric monoidal structure on the functor cate-
gory F(ΣX ,C) through a process called Day convolution. Briefly, given two functors
Y ,Z : ΣX →C one forms the diagram

ΣX ×ΣX
⊗
��

Y×Z // C ×C ⊗
// C

ΣX

Y⊗Z

55

(3.7.9)

and Y ⊗Z is the (enriched) left Kan extension. The fact that the tensors on ΣX and C
are both symmetric monoidal yields that the tensor product of functors is symmetric
monoidal as well.

To summarize this discussion, we could have defined symmetric spectra as follows:

Definition 3.7.12 (Symmetric spectra, approach #2). Let Σ denote the category ΣS1 ,
as defined above. This is a category enriched over Top∗. A symmetric spectrum is
simply an enriched functor Σ→ Top.

This approach provides a useful perspective on the difference between classical
spectra and symmetric spectra. Classical spectra are diagrams indexed by the evident
subcategory NS1 of ΣS1 . The monoidal structure on ΣS1 does not descend to this
subcategory: to define the tensor product of two maps one needs the ρ-permutations
as in (3.7.8), and these are not available in NS1. This seems to be the core reason
that classical spectra do not have a smash product at the model category level.

3.8 Orthogonal spectra

The development of orthogonal spectra proceeds along lines very similar to what
we did for symmetric spectra, and so we will be able to cover it fairly quickly. We
describe the two (equivalent) approaches, one going through S-modules and the other
via enriched diagrams. In each case there are some annoying technicalities to be
dealt with at the beginning, but after that everything works much as for symmetric
spectra. Certain formulas that were a little complicated in symmetric spectra — because
they required an introduction of a permutation — have an easier counterpart in the
orthogonal case, because the machinery in some sense keeps track of the permutation
for us. The theory of orthogonal spectra was developed in [178].

Very briefly, an orthogonal spectrum assigns to each finite-dimensional inner product
space V a pointed space XV , and to every linear isometric inclusion f : V ↪→W a
natural structure map σf : SW−f (V )∧XV → XW , where W − f (V ) is the orthogonal
complement of f (V ) in W . The extra complication is that these structure maps
must be continuous in f in an appropriate sense. Some other things are as expected:
if f is an isomorphism then by naturality the structure map will be an isomorphism
XV −→� XW , in particular showing that the orthogonal group O(V ) of self-isometries
will act on each XV .
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Why bother with orthogonal spectra? There are at least three reasons. As mentioned,
the theory works out a bit more naturally, with simpler formulas. Secondly, orthogonal
spectra adapt easily to the setting of equivariant spectra (see [177] or Appendix A of
[120]). Finally, unlike symmetric spectra, orthogonal spectra have the nice property that
the weak equivalences are just the maps inducing isomorphisms on stable homotopy
groups.

In this section we will in fact discuss four types of spectra, interrelated thus:

1: symmetric spectra // 2: generalized symmetric spectra

3: coordinatized orthogonal spectra // 4: orthogonal spectra.

(3.8.1)

(Types 2 and 3 on the anti-diagonal seem to lack standard names; these are our own.)
Our development will proceed in the order 1 −→ 2 −→ 4 −→ 3, although other orders
of navigation are also possible.

3.8.2 Prelude: generalized symmetric spectra

The generalized symmetric spectra we are about to introduce do not typically get
much airtime, as there is little payoff for the extra work and they are not truly
“coordinate-free”. But they are a useful prelude to orthogonal spectra, and only a slight
modification of the symmetric spectra story we saw in Section 3.7. They come up, for
example, in Remark 2.1.5 of [133].

For any finite set T consider the real vector space R〈T 〉 with basis T , together with
its one-point compactification ST = SR〈T 〉. Let Σ(T ) denote the group of permutations
of T ; it acts naturally on ST . Write n for the set {1,2, . . . ,n}, so that Σn = Σ(n).

A generalized symmetric spectrum should be, in part, a functor T 7→ XT defined on
the category of finite sets with isomorphisms, taking values in the category of pointed
spaces. Functoriality will give each XT a Σ(T )-action. In addition, the spectrum should
assign to every subset inclusion T ⊆U a structure map

σT ,U : SU−T ∧XT → XU

that is Σ(U − T )×Σ(T )-equivariant, with the assignment being compatible with the
isomorphisms XJ � XJ ′ for J � J ′ . By restricting to the special sets n and inclusions
n ↪→ k for n ≤ k, we get a (classical) symmetric spectrum X̃. If |T | = n then every
bijection T → n induces a homeomorphism XT → Xn, and one can check that there
is really no more information in X than in X̃. But what we have accomplished here
is to produce a notion of symmetric spectrum that avoids any dependence on the
particular choice of finite sets n, which after all are a bit unnatural.

Remark 3.8.1 . In fact the above yields structure maps for any inclusion f : T ↪→ U ,
of the form

σf : SU−f (T ) ∧XT → XU ,
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via composition:

SU−f (T ) ∧XT
id∧Xf

// SU−f (T ) ∧Xf (T )
σf (T ),U

// XU .

Just as for symmetric spectra, we can follow two approaches for setting up the
generalized version. Let ΣI denote the category of finite sets and isomorphisms.

Approach #1: Define a ΣI-sequence to be a functor ΣI→ Top∗. Define the tensor
product of ΣI-sequences X and Y by

(X ⊗Y )U =
∨
T⊆U

XT ∧YU−T . (3.8.3)

For the Σ(U )-action, an α ∈ Σ(U ) maps the summand XT ∧YU−T to Xα(T )∧Yα(U−T )
via Xα|T ∧Xα|U−T . The twist map in the symmetric monoidal structure carries the
summand XT ∧YU−T (indexed by T ⊆U ) to YU−T ∧XT (indexed by U − T ⊆U ) via
the usual twist map from Top∗.

The sphere spectrum S is the ΣI-sequence T 7→ ST , which can be checked to
be a commutative monoid. We define a generalized symmetric spectrum to be an
S-module.

Unfortunately, because ΣI is not a small category we cannot form the category
of ΣI-sequences without running into set-theoretic issues. See Remark 3.5.4 for the
common ways to get around this: for example, we can choose a skeletal subcategory
ΣIskel ↪→ΣI together with a retraction r, and then transplant all the definitions for
ΣI-sequences to ΣIskel-sequences. One choice for skeletal subcategory is precisely
the category ΣI from Section 3.7, leading to the previous (ungeneralized) notion of
symmetric spectra.

The monoidal product on ΣI-sequences is another example of Day convolution
(see (3.7.9)): the category ΣI has the symmetric monoidal structure q given by disjoint
union, and X ⊗Y is the left Kan extension in the diagram

ΣI×ΣI
��

q
��

X∧Y // Top∗

ΣI

X⊗Y

::

The most natural formula for this left Kan extension is

(X ⊗Y )(U ) = colim[AqB→U ]XA ∧YB,

where the indexing category consists of triples (A,B,f : AqB→U ) for f a map in
ΣI and therefore an isomorphism. The maps between triples are the evident ones.
This indexing category is not small, but again it has a small skeleton and so the
colimit still exists. By associating the triple (A,B,f ) with the image f (A) ⊆ U , one
readily identifies the above colimit with the expression in (3.8.3).

Approach #2: For finite sets A and B define a category [A,B] whose objects are sets
C such that A ⊆ C and |C| = |B|; morphisms C→ C′ are bijections g : C→ C′ which
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are the identity on A. Next define a category Σ enriched over Top∗ whose objects are
the finite sets and where the morphisms are given by

Σ(A,B) = colim[A,B]

[
Isom(C,B)+∧ SC−A

]
(and Isom(C,B) is the set of bijections from C to B). The category [A,B] indexing the
colimit consists only of isomorphisms, and so the colimit can be identified with the
co-invariants of the group of automorphisms acting on any spot of the diagram. In
particular, for any subset A ⊆ C such that |C| = |B| one has

Σ(A,B) � Isom(C,B)+ ∧Σ(C−A) S
C−A.

We can also regard Σ(A,B) as the subset of Hom(A,B)+ ∧ SB consisting of all pairs
(f ,x) where f is an injection and x ∈ SB−f (A); it is easy to check that the above
colimit maps to this space in the evident way. If we do this, the composition is easy to
describe: Σ(B,C)×Σ(A,B) −→Σ(A,C) is the map

((g,y), (f ,x)) 7→ (gf ,y ∧ g(x)).

In this approach, a generalized symmetric spectrum is simply an enriched functor
Σ→ Top∗. Just as in Approach #1, one runs into the difficulty that Σ is not a small
category — and one way of dealing with this is to replace Σ with a skeletal subcategory,
such as the category Σ from Definition 3.7.12.

3.8.4 Orthogonal spectra

Generalized symmetric spectra were built around the vector spaces R〈A〉, where A
ranged over all finite sets. So these are vector spaces with a choice of basis, and
one is naturally led to wonder about a basis-free approach. That is essentially what
orthogonal spectra are. The role of the symmetric groups Σ(A) is instead played by
orthogonal groups O(V ).

Let OI be the category of finite-dimensional real inner product spaces, with linear
isometric isomorphisms for the maps. This category only has maps from V to W
when dimV = dimW , and all such maps are isomorphisms. We regard OI as being
enriched over Top, with OI(V ,W ) having the usual subspace topology induced by
the compact-open topology on the space of all continuous maps W V . For W ∈ obOI
define O(W ) = OI(W,W ) to be the space of isometries from W to itself. If V ⊆W
write W −V for the orthogonal complement of V in W . Then we have a canonical
inclusion O(V ) ↪→ O(W ): isometries of V extend to W by having them act as the
identity on W −V . We will write Isom(U,V ) for space of linear isometric inclusions
from U into V , so when dimU = dimV we have Isom(U,V ) = OI(U,V ).

Approach #1: An OI-sequence is simply an enriched functor OI → Top∗. The
symmetric monoidal structure ⊕ on OI induces a symmetric monoidal structure on
OI-sequences by Day convolution. Specifically, if X and Y are OI-sequences then
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X ⊗Y is the (enriched) left Kan extension

OI ×OI

⊗
��

X×Y // Top∗ ×Top∗
∧ // Top∗

OI
X⊗Y

44

and can be given by the (enriched) colimit formula

(X ⊗Y )W = colimA⊕B→W (XA ∧YB). (3.8.5)

Here the indexing category has objects consisting of tuples (A,B,f : A⊕ B→ W ),
where f is a map in OI , and the evident morphisms (once again this is not a small
category, but has a small skeleton). The enriched colimit is the coequalizer in Top of
the two evident arrows∐

A,B,A′ ,B′ Isom(A,A′)× Isom(B,B′)× Isom(A⊕B,W )× (XA ∧YB)

����∐
A,B Isom(A⊕B,W )× (XA ∧YB)

and so in particular the topology on (X ⊗ Y )W comes from the topology on both
Isom(A⊕B,W ) and on XA ∧YB. As a set (ignoring the topology) we can write

(X ⊗Y )W =
∨
V⊆W

XY ∧YW−V . (3.8.6)

by associating to every isometric isomorphism f : A⊕B→W the subspace f (A) ⊆W
(but this precisely ignores the topology on Isom(A⊕B,W )). Note that in this picture
an isometry h : W →W ′ acts on this wedge by sending the summand XV ∧ YW−V
to Xh(V ) ∧Yh(W−V ) using the maps X(h|V ) and Y (h|W−V ). The description in (3.8.5)
readily gives the continuity of the maps

OI(W,W ′)× (X ⊗Y )W → (X ⊗Y )W ′ .

The indexing category for the colimit in (3.8.5) has the property that all maps are
isomorphisms; it follows formally that the colimit can be identified with the wedge of
the co-invariants of the groups of automorphisms corresponding to every connected
component of the category. So if we choose one Vp ⊆W of dimension p for every
0 ≤ p ≤ dimW then we can write

(X ⊗Y )W �
∨
p

O(W )+ ∧O(Vp)×O(W−Vp) [XVp ∧YW−Vp ]. (3.8.7)

This is correct as topological spaces but is non-canonical because of the choices
of Vp. The bijection from (3.8.7) to (3.8.6) sends a tuple (α, x∧y ∈ XVp ∧YW−Vp ) to
α∗(x)∧α∗(y) ∈ Xα(Vp) ∧Yα(W−Vp).

This tensor gives a closed symmetric monoidal product on the category of OI-
sequences, where the symmetry isomorphism t : X⊗Y → Y ⊗X sends x∧y ∈ XA∧YB
to y ∧ x ∈ YB ∧XA, using the description of (3.8.5).
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Let S denote the OI-sequence defined by V 7→ SV . It is easy to check that the
maps SV ∧ SW → SV⊕W make S into a commutative monoid in the category of
OI-sequences. Define an orthogonal spectrum to be a left S-module. If X and Y
are orthogonal spectra then their smash product is X ∧Y = X ⊗S Y .

We will write SpO for the category of orthogonal spectra.

Remark 3.8.2 . In wanting to consider all enriched functors OI → Top∗ as a category,
we run into the usual problem that OI is not small. To circumvent this using a
small skeletal subcategory, as in Remark 3.5.4, we can take for such a subcategory
the Euclidean spaces (Rn, ·) with standard dot product, for each n ≥ 0. This leads
to a spectrum being an assignment n 7→ Xn, where Xn is a pointed space with an
O(n)-action, together with structure maps S1∧ Xn → Xn+1 such that the iterated
maps Sp∧Xn→ Xn+p are O(p)×O(n)-equivariant. Such an object could be called a
“coordinatized orthogonal spectrum”, and completes our tour of the square (3.8.1).

Approach #2: Here we define a Top∗-enriched category O having the same objects
as OI and where O(V ,W ) is supposed to parameterize the various suspension
maps from XV to XW in a spectrum X. Recall that for every isometry f : V →W
(which will necessarily be injective) we are supposed to have a suspension map
σf : SW−f (V ) ∧XV → XW . The tricky part here is that there is not one single sphere
involved in these maps: the sphere varies continuously with f . So to this end, let
Isom(V ,W ) be the space of isometries from V into W and let W −V → Isom(V ,W )
denote the bundle whose fiber over f : V→W is W − f (V ). Define

O(V ,W ) = Th(W −V → Isom(V ,W )),

the Thom space of the bundle W − V . Note that if |V | > |W | then Isom(V ,W ) is
empty and this Thom space is a single point.

A point in O(V ,W ) can be represented by a pair (f ,x) consisting of an isom-
etry f : V → W and x ∈ SW−f (V ). Using this notation, if (g,y) ∈ O(W,Z) then
composition in O is given by the formula

(g,y) ◦ (f ,x) = (gf ,g(x) + y),

the sum-of-vectors map (g(W )− gf (V ))× (Z − g(W ))→ Z − gf (V ) being extended
to the one-point compactifications in the usual way.

We can make the following identifications:

O(V ,W ) =


O(W )+ ∧O(W−V ) S

W−V if V ⊆W ,
Isom(V ,W ) if dimV = dimW,

Isom(U,W )+ ∧O(U−V ) S
U−V if dimV ≤ dimW and V ⊆U �W ,

∗ if dimW < dimV .

The first two lines are actually special cases of the third, but are included separately for
pedagogical purposes. For the third line use the map Isom(U,W )+∧O(U−V ) S

U−V →
Th(W −V ) given by (h,x) 7→ (h|V ,h(x)).

The point to remember in the above descriptions is that when dimV = dimW we
have exactly Isom(V ,W ) as the space of maps from V to W . When V ⊆W we put
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an SW−V into the space of maps from V to W , and then allow post-compositions
with our O(W ) maps from W to itself — this accounts for the O(W )+∧O(W−V ) S

W−V

term. When V and W are incomparable we choose U ⊇ V such that dimU = dimW
and allow compositions between our SU−V maps from V to U and our Isom(U,W )
maps from U to W , accounting for the Isom(U,W )+ ∧O(U−V ) S

U−V term.
In this approach an orthogonal spectrum is simply an enriched functor O→ Top∗ .

Unraveling this definition, an orthogonal spectrum X consists of

– a functor X : OI → Top∗, and
– for every pair V ⊆W a structure map

σV ,W : SW−V ∧XV → XW

that is O(W −V )×O(V )-equivariant.

These structure maps must satisfy unital and associativity conditions that are easy to
work out.

We leave the reader to justify the following analog of Proposition 3.7.10. Note that
the isometry ρ that appears here is naturally forced upon us, since the second equality
does not even make sense without it. In this sense the situation is a bit simpler than
for symmetric spectra.

Proposition 3.8.3. Let X, Y , and Z be orthogonal spectra. Giving a pairing X∧Y → Z
is equivalent to giving a collection of maps XV ∧YW → ZV⊕W that are O(V )×O(W )-
equivariant and satisfy the identities

AU (xV yW ) = (AUxV )yW = ρ(xV · (AUyW )),

where ρ is the evident isometry V ⊕ (U ⊕W )→ (U ⊕V )⊕W that is natural in the three
variables. (Here we are using the algebraic notation from (3.7.2), adapted in the obvious
way to the present context.) A pairing X ∧X → Z is commutative if it also satisfies the
identities xV · yW = ρ(yW · xV ), where ρ is the twist isometry W ⊕V → V ⊕W .

3.8.8 Examples

We now give several standard examples of orthogonal and symmetric ring spectra.

(a) Let R be a ring and let HR be the spectrum V 7→ R〈SV 〉, where the latter is
the free R-module on the set SV with an appropriate topology (and where the
basepoint is equal to zero). It is convenient to think of points in R〈SV 〉 as finite
configurations on SV with labels in R, written formally as

∑
i rixi with ri ∈ R, xi ∈ SV .

The maps SW ∧ R〈SV 〉 → R〈SW⊕V 〉 send (x,
∑
riyi) →

∑
ri(x ∧ yi). The product

maps R〈SV 〉 ∧R〈SW 〉 → R〈SV⊕W 〉 send (
∑
rixi ,

∑
sjyj )→

∑
i,j risj [xi ∧ yj ], and the

unit maps SW → R〈SW 〉 send x 7→ 1 · x.
(b) Let MO be the spectrum V 7→MOV = EO(V )+ ∧O(V ) S

V . Here we take EG to be
the geometric realization of the standard simplicial space [n] 7→ Gn+1 with projections
as face maps. Note that this comes with canonical maps EH → EG for H → G and
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EG1 ×EG2 −→� E(G1 ×G2), and that G acts on EG from both the left and the right
via its diagonal action on the Gn+1 terms. The O(V ) action on MOV comes from the
left action on EO(V ).

The maps SW ∧MOV →MOW⊕V are (x, (α,y)) 7→ (α,x∧ y), where by abuse we
write α for both an element of EO(V ) and its image in EO(W ⊕V ). It is informative
to check the O(W ) ×O(V )-equivariance. The O(V )-equivariance is clear, but the
O(W )-equivariance looks wrong at first. One must use that O(W ) and O(V ) commute
inside of O(W ⊕V )!

The pairings MOV ∧MOW → MOV⊕W are the evident ones: (α,x)∧ (β,y) 7→
(αβ,x∧y), where αβ refers to the pairing EO(V )×EO(W )→ EO(V ⊕W ). The unit
maps SV →MOV send x to (IdV ,x). We leave the reader to check the necessary
relations to see that this is indeed a commutative ring spectrum.

(c) Constructing MU as an orthogonal ring spectrum is a little tricky. One can mimic our
construction of MO using complexifications and unitary groups and write MU (V ) =
EU (V

C
)+ ∧U (V

C
) S

V
C , where V

C
is the complexification of V , but then one only gets

suspension operators by SWC
−V

C when one wants SW−V . So this doesn’t quite work.
To explain the fix, if W is a Hermitian inner product space define

MUHerm
W = EU (W )+ ∧U (W ) S

W .

This has a left U (W )-action coming from the left action on EU (W ). This construction
satisfies all the analogous properties to (b) above, but only for Hermitian spaces. For
a real inner product space V define MUV = Map(S iV ,MUHerm

V
C

), where iV is the
imaginary part of V

C
. Note that O(V ) acts on S iV in the evident way, on MUHerm

V
C

through the map O(V )→U (V
C

), and then on the mapping space via conjugation.
It is an easy exercise to check that one gets natural maps SV ∧MUW →MUV⊕W

making MU into an orthogonal Ω-spectrum. Moreover, smashing of maps gives the
pairings

MUV ∧MUW Map(S iV ,MUHerm
V
C

)∧Map(S iW ,MUHerm
W

C

)

(f ,g) 7→f ∧g
��

Map(S iV⊕iW ,MUHerm
V
C

∧MUHerm
W

C

)

��

Map(S iV⊕iW ,MUHerm
(V⊕W )

C

) MUV⊕W

which make MU into an orthogonal commutative ring spectrum.

(d) Real K-theory was written down as a symmetric commutative ring spectrum by Joachim
[136]. It is not completely obvious how to do this, but Joachim found a way using spaces
of Fredholm operators. The Σn-actions come from the action on a tensor product of
Hilbert spaces H⊗n. This construction can be adapted to complex K-theory using
techniques similar to those in (c), but it does not immediately yield an orthogonal
spectrum.
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(e) (Waldhausen K-theory). Let C be an exact category in the sense of [224] (or alternatively,
a category with cofibrations and weak equivalences in the sense of Waldhausen).
Waldhausen’s S•-construction produces a spectrum K(C) called the Waldhausen
K-theory spectrum of C. Geisser and Hesselholt observed in [102, Section 6] that
if one sets things up carefully then this construction actually produces a symmetric
spectrum, and that if C has a well-behaved tensor product then K(C) is in fact a
symmetric ring spectrum. While it would take us too far afield to give a rigorous
development of these ideas, by doing a bit of handwaving we can nevertheless give
the general idea. In this example we work entirely simplicially, mostly just to avoid the
excess step of needing to apply geometric realization constantly.

The S•-construction applied to C gives a simplicial set [n] 7→ SnC, where an element
of SnC is, roughly speaking, a filtered object A1 ↪→ A2 ↪→ ·· · ↪→ An in C together
with a particular choice for every quotient Ai /Aj with j ≤ i. We will refer to this as
a “filtered object with quotient data”. For i ≥ 1 the face map di omits Ai from the
filtration, whereas d0 sends the filtered object to A2 /A1 ↪→ A3 /A1 ↪→ ·· · ↪→ An /A1.
Note that S0C = ∗ by convention, and S1C is the set of objects in C.

Define K(C)0 = ∗ and K(C)1 = S•C. We will extend this to a generalized symmetric
spectrum (as discussed in Section 3.8.2) by defining K(C)Q for every finite set Q. To
do this we need the notion of a Q-simplicial set. Recall that ∆ denotes the simplicial
indexing category, and define ∆Q to be the product category

∏
Q∆— a product

of copies of ∆ indexed by the set Q. An object in ∆Q is a Q-tuple n = (nq)q∈Q,
or equivalently a function Q → N. We define a Q-simplicial set to be a functor
(∆Q)op → Set. If |Q| = k, a Q-simplicial set is the same as a k-fold multi-simplicial
set, but we think of the different simplicial directions as being indexed by Q.

If X is a Q-simplicial set, define diag(X) to be the simplicial set [n] 7→ X(n,n,...,n) ,
where the subscript indicates the constant Q-tuple whose value is n. We will also need
the notion of skeleton: if T ⊆ Q and r ≥ 0, define the (T ,r)-skeleton of X to be the
Q-simplicial set given by

(sk(T ,r)X)(n) = X(n′), where n′q =
{
nq if q < T ,
min{nq, r} if q ∈ T .

Despite the cumbersome definition, this just says that whenever q ∈ T we replace the
simplicial q-direction of X by its usual r-skeleton.

Let SQ be the smash product of copies of S1 = ∆1/∂∆1 indexed by the set Q. In
simplicial degree k the set (SQ)k consists of k + 1 elements, which correspond to the
basepoint together with the k possible degeneracies of the 1-simplex [01].

The following strange result turns out to be the key to producing our desired
symmetric spectrum.

Proposition 3.8.4. Let Q and Q′ be finite sets, and let X be a QqQ′-simplicial set.
Assume that sk(Q′ ,0)X = ∗ . Then there is a natural map of simplicial sets

SQ
′
∧diag(sk(Q′ ,1)X) −→ diag(X).

Proof. This is a combinatorial exercise left to the reader. The main point is that the
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non-basepoint elements of (SQ
′
)k can be thought of as exactly corresponding to the k

different ways of applying degeneracies in the Q′-directions to move from simplicial
degree 1 up to simplicial degree k. The desired map is defined to consist exactly of
these degeneracy maps.

With these tools in hand, we return to Waldhausen K-theory. Recall that every [n] in
∆ may be regarded as a category, in which there is a unique map from i to j whenever
i < j . Filtered objects of length n in C may be identified with functors [n]→ C that
send 0 to the zero object of C. Likewise, we associate the tuple n = (nq)q∈Q to the
product category [n] =

∏
q∈Q[nq], and define an n-filtered object to be a functor

[n] → C which sends every tuple containing 0 to the zero object. For example, a
(1,1)-filtered object is the same as an object of C, and a (2,3)-filtered object is a
diagram of the form

X11
//

��

X12

��

// X13

��

X21
// X22

// X23

For each finite set Q, define SQ• C to be the Q-simplicial set which in multidegree (n)
consists of all n-filtered objects of C satisfying certain cofibration conditions together
with particular choices for various quotient objects (again, we are being intentionally
vague and only giving the basic idea). Define K(C)Q = diag(SQ• C). Note that Σ(Q)
acts naturally on this construction, by permutation of the factors.

Observe that sk(Q′ ,1)(S
QqQ′
• C) = SQ• C. So Proposition 3.8.4 gives maps

SQ
′
∧K(C)Q→ K(C)QqQ′

which are readily checked to be Σ(Q′)×Σ(Q)-equivariant. Thus, we have a generalized
symmetric spectrum. Note that there does not seem to be any obvious approach for
producing an orthogonal spectrum here.

If in addition C has a well-behaved tensor product — one that preserves cofibrations
and exactness — then we can take an (nq)q∈Q-filtered object X and an (ks)s∈Q′ -filtered
object Y and tensor them together to get a (nq k)QqQ′ -filtered object X ⊗ Y . This
yields maps

K(C)Q ∧K(C)Q′ → K(C)QqQ′

making K(C) into a symmetric ring spectrum.
We again refer to [102, Section 6.1] for a detailed treatment of this material.

3.8.9 Model structures for orthogonal spectra

We now turn to the development of the commonly used model category structures for
orthogonal spectra. By now the following series of results will be very familiar.

Proposition 3.8.5. There exists a model category structure on SpO where the weak equiv-
alences and fibrations are levelwise. This is called the level, projective model structure.
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Proof. Direct application of Theorem 3.5.1(a) in the setting of enriched diagrams.

The evaluation functors EvV : SpO→ Top∗ have left adjoints FV given by

(FVX)W = Th
(
W −V → Isom(V ,W )

)
∧X

�


O(W )+ ∧O(W−V ) (SW−V ∧X) if V ⊆W,

OI(U,W )+ ∧O(U−V ) (SU−V ∧X) if V ⊆U and dimU = dimW,

∗ if dimW < dimV .

If V ⊆W there is a canonical map FW (SW−V ∧X)→ FV (X).

Definition 3.8.6. The stable projective model structure on SpO is the Bousfield
localization of the level projective model category structure at the set of maps{

FW (SW−V ∧ S0)→ FV (S0)
∣∣∣V ⊆W }

.

There is a simple comparison map between orthogonal spectra and symmetric
spectra. Let e1, . . . , en be the standard basis for Rn, so that we have the usual inclusion
R
n ⊆R

n+1. The choice of vector en+1 gives a map R→R
n+1−Rn (sending 1 to en+1)

and therefore an induced homeomorphism S1 → S(Rn+1−Rn). Permutation of basis
elements gives a group map Σn→O(Rn).

There is a forgetful functor U : SpO → SpΣ that sends an orthogonal spectrum
X to the symmetric spectrum [n] 7→ X

R
n , where the Σn-action on X

R
n comes from

restricting the O(Rn)-action and the structure maps come from those in X via the
identification S1 � S(Rn+1−Rn).

The following results are all proven in [178]:

Proposition 3.8.7.

(a) The stable projective structure on SpO is a stable, closed symmetric monoidal model
category satisfying the Monoid Axiom, the Algebraic Creation and Invariance Properties
and the Strong Flatness Property.

(b) The fibrant objects in SpO are the levelwise fibrant Ω-spectra, meaning orthogonal
spectra for which the adjoints to the structure maps XV →ΩW−VXW are all weak
equivalences for V ⊆W .

(c) The forgetful functor U : SpO→ SpΣ has a left adjoint G and the pair (G,U ) is a
Quillen equivalence.

(d) A map f : X→ Y in SpO is a stable weak equivalence if and only if Uf is a weak
equivalence in SpN (slightly abusing our use of U here).

Proof. The precise references for the different parts are: model structure, [178, 9.2];
monoidal properties, [178, 12.1 (take R = S)]; Algebraic Creation Property, [178, 12.1(i)];
Algebraic Invariance, [178, 12.1vi,vii]; Strong Flatness, [178, 12.3, 12.7]; Quillen Equiva-
lence, [178, 10.4]; U detects stable weak equivalences, [178, 8.7].

Statement (d) is something of a surprise, as this is not true when orthogonal spectra
are replaced with symmetric spectra. The topology of the orthogonal groups turns
out to be what makes this work, as we now explain. If X is an orthogonal spectrum
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define πk(X) = colimnπn+k(XR
n ). These are precisely the homotopy groups of the

underlying Bousfield–Friedlander spectrum. One might think to include other XV
in the colimit system, but there is no point as X

R
n � XV when dimV = n. Part (d)

of Proposition 3.8.7 is equivalent to the statement that the stable equivalences of
orthogonal spectra are just the π∗-isomorphisms.

The key to understanding this is to look at the map Fn+1(S1∧A)→ Fn(A), where
we now write Fn as short for F

R
n . We claim this is a π∗-isomorphism (the analog was

false for symmetric spectra). In level n+ k this map is

O(n+ k)+ ∧O(k−1) (Sk−1 ∧ S1∧A) −→O(n+ k)+ ∧O(k) (Sk ∧A).

The A comes out on both sides as a smash factor, so we might as well throw it away.
Also, we won’t change the stable homotopy groups (except for a shift) if we smash
both sides with Sn, and this gives

O(n+ k)+ ∧O(k−1) S
n+k −→O(n+ k)+ ∧O(k) S

n+k .

Now, if X is a left G-space and H ≤ G then

G+∧H X � G+∧H (G+∧GX) � (G+∧H G+)∧GX � (G/H+∧G+)∧GX � G/H+∧X.

In our case O(n+ k) acts on Sn+k , so the map simplifies to

O(n+ k)/O(k − 1)+ ∧ Sn+k →O(n+ k)/O(k)+ ∧ Sn+k .

Since O(k)/O(k − 1) � Sk−1, the map O(n+ k)/O(k − 1)→ O(n+ k)/O(k) is (k − 1)-
connected and so the smash with Sn+k is (n + 2k − 1)-connected. As this goes to
infinity with k, we have our isomorphism on stable homotopy groups.

3.9 EKMM spectra

Unpacking the definitions of [94] takes time and energy. There are several layers
to unravel, with quite a bit of intricate mathematics. Anything close to a complete
account would involve reproducing a big chunk of the book [94]. Since our aim is
only to survey this material, we will content ourselves with a very incomplete account,
outlining the main steps but omitting the details behind them.

We first explain the basic idea. Start with the notion of a spectrum defined on a
May universe U. This is basically the idea of Bousfield–Friedlander spectra, but done
in a coordinate-free way. If M and N are two such spectra, then the smash product
M∧N seems to be most naturally defined as a spectrum on the universe U⊕U. To get
a spectrum on U we can choose an isomorphism U � U⊕U, but this involves a choice.
The space of all choices is contractible, so in some sense the choice doesn’t matter.
But if we want a smash product that is commutative and associative on the point-set
level, we can’t afford to make a single choice.

To get around this, one adopts a definition that builds all the choices in from the
beginning. An EKMM-spectrum is (approximately) a coordinate-free spectrum that
comes bundled together with its images under all possible changes of universe. The
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smash product of two such things gives a “bundle” (in a very non-technical sense)
of spectra on U⊕U, and then changing back to U in all possible ways just creates
another bundle. No choices have been made, but at the expense of introducing extra
complexity into the objects themselves.

It is informative to contrast symmetric (or orthogonal) spectra with EKMM-spectra.
For the former, the category itself is fairly concrete and easy to understand. The
complexities appear in the model structure, where the fibrant objects and weak
equivalences are complicated. With EKMM-spectra all the complexity is built into the
objects themselves. They are “flabby” enough to all be fibrant in the model structure,
and the weak equivalences are quite simple to understand.

3.9.1 Outline for the EKMM approach

Fix a May universe U, by which we mean a real inner product space isomorphic to
R
∞ with the dot product. For subspaces V ⊆W ⊆ U write W −V for the orthogonal

complement of V in W . Let SV be the one-point compactification of V , and for X a
pointed space write ΩVX for the pointed function space F∗(SV ,X).

It is important to understand that the machinery we describe below was developed
over a long time in the works of May and his collaborators. We note especially [155],
[93], and [94], but there are plenty of precursors in [63] and [199] as well.

(1) A prespectrum is an assignment V 7→ EV that sends finite-dimensional subspaces
of U to pointed spaces, together with suspension maps SW−V ∧EV → EW for every
pair V ⊆W . These maps must satisfy an associativity condition and be the identity
when V =W . Write PU for the category of prespectra on U, with the evident maps.

(2) A spectrum is a prespectrum where the adjoints EV → ΩW−V EW are homeo-
morphisms. Write SU for the category of spectra on U.

(3) There are adjoint functors L : PU� SU : i where the right adjoint i is the evident
inclusion. The functor L is called “spectrification”. (This functor is more mysterious
than one might first guess, and having control over colimits in SU is entirely dependent
on having a good working knowledge of L, as provided by Lewis in [155, Appendix].)

(4) For universes U, U′ there is an external smash product ∧pre : SU× SU′→ P(U⊕U′)
defined as follows. For M and N in SU, define

(M ∧pre N )(V ⊕V ′) =MV ∧NV ′ .

This only defines M ∧pre N on subspaces of U⊕U of the form V ⊕V ′ , but these are
cofinal amongst all subspaces; so extend M ∧pre N to all subspaces in any reasonable
way. For example, this can be done inductively on the dimension: given an arbitrary
finite-dimensional subspace W ⊆ U, choose V and V ′ with W ⊆ V ⊕V ′ and define

(M ∧pre N )(W ) =Ω(V⊕V ′)−W (MV ∧NV ′ ).

Finally, define the external smash product ∧ext : SU× SU′→ S(U⊕U′) by

M ∧ext N = L(M ∧pre N ).
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The choices involved in the definition of M∧preN get ironed out by the spectrification
functor L, and one can check that M ∧ext N is well-defined.

(5) [Change of universe] By an isometry f : U→ U′ we mean a linear isometric embedding,
not necessarily surjective. Given an isometry f : U→ U′ and a spectrum M on U′ ,
there is an induced spectrum f ∗M given by V 7→Mf (V ). The functor f ∗ : SU′→ SU

has a left adjoint f∗, defined as follows. For W ⊆ U′ write Wf = W ∩ im(f ). For a

spectrum E defined on U, define a prespectrum f
pre
∗ E by

(f pre∗ E)(W ) = SW−Wf ∧Ef −1(Wf ).

We leave the reader the pleasant exercise of working out the structure maps. Then
define f∗M = L(f pre∗ M). See [155, II.1] for more details.

(6) Let I (U,U′) denote the space of linear isometries from U to U′ . This is a contractible
space. One would therefore hope that if f ,g ∈ I (U,U′) and E is a spectrum on U then
f∗E and g∗E are weakly equivalent spectra on U′ . This is not known in general, but
there is a special class of spectra for which it does hold. Define a spectrum E to be
Σ-cofibrant if the structure maps SW ∧EV → EV⊕W are all cofibrations, and define
E to be tame if it is homotopy equivalent to a Σ-cofibrant spectrum. It is known that
if E is tame then f∗E and g∗E are homotopy equivalent [94, I.2.5]. We will need to
study all these different pushforwards at once.

(7) Given a space A, a map α : A → I (U,U′), and a spectrum E on U, there is a
construction A n E which is a spectrum on U′ . It is called the “twisted half-smash
product”. It depends on α, but this is omitted from the notation. Loosely speaking,
A n E contains all the ways of constructing a pushforward of E from U to U′ , as
parameterized by the map α, all bundled together. When A is contractible and E is
tame, this has the same homotopy type as the simple pushforwards f∗E.

(8) Write L(j) = I (Uj ,U) where U
j is the direct sum of j copies of U. The spaces L(j)

together form an operad L, called the linear isometries operad.

(9) Let L : SU→ SU denote the monad L(E) = L(1) n E. Then the composition map
L(1) × L(1) → L(1) induces the natural transformation µ : LLE → LE, and the
identity element id ∈ L(1) induces the unit η : E→ LE.

(10) An L-spectrum is an L-algebra: that is, an L-spectrum is a spectrum X together
with a map LX→ X making the usual diagrams commute.

(11) Given L-spectra M and N , we define the smash product by

M ∧LN = L(2)nL(1)×L(1) (M ∧ext N ).

Note that M ∧ext N is a spectrum on U2. The object on the right in this definition is
a coequalizer of certain evident maps coming from the L-algebra structures on M
and N and the operad maps in L. The smash product ∧L turns out to be associative
and symmetric (see [94, I.5]), but not unital.

(12) The sphere spectrum S is the spectrification of the prespectrum V 7→ SV . It turns out
that S is an L-algebra in a natural way, and that for any L-spectrum M there is a
natural map λM : S ∧LM→M . Define an EKMM-spectrum to be an L-spectrum
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M for which λM is an isomorphism. Denote the category of EKMM-spectra by
EKMMS . The spectrum S is itself an EKMM spectrum.

Remark. EKMM-spectra are called “S-modules” in [94]. While not a terrible name, it
conflicts with the notions of S-modules that one has in other categories like symmetric
spectra and orthogonal spectra. The name “EKMM-spectra” seems to lead to less
confusion.

(13) The smash product of EKMM-spectra M and N is defined as M ∧S N = M ∧LN .
This gives a symmetric monoidal smash product on EKMMS with unit S .

(14) Now suppress the universe and abbreviate SU to just S. There are adjunctions

S
L(−)

// (L−Spectra)
S∧L(−)

//

U

oo EKMMS
FL(S,−)
oo

where U is the forgetful functor and the left adjoints both point left to right.

(15) For each V ⊆ U, the evaluation map EvV : S→ Top∗ has a left adjoint, denoted FV .
We also write Σ∞ for the functor F0.

(16) For a map f in S, say that f is a weak equivalence if f is a π∗-isomorphism on
underlying spectra. Since the objects of S are all Ω-spectra, we can also characterize
the weak equivalences as maps inducing objectwise weak equivalences in Top∗ on
application of EvV (for all V ).

If i : EKMMS ↪→ L−Spectra denotes the inclusion then for any M in EKMMS

there is a canonical map iM→ FL(S,M) and this map is always a weak equivalence.
So up to homotopy the functors i and FL(S,−) are really the same; as a consequence,
a map in EKMMS is a weak equivalence if and only if FL(S,−) is a weak equivalence.

Say that f is a fibration if it has the right lifting property with respect to all maps
Fn(Ik × {0})→ Fn(Ik ∧ I+), for all n and k.

Then S has a model category structure with the weak equivalences and fibrations
defined above, and the right adjoints U and FL(S,−) create induced model category
structures on L−Spectra and EKMMS . Note that since all objects are fibrant in Top∗,
the same holds in each of the categories S, L−Spectra, and EKMMS .

Moreover, the two pairs of adjoint functors from (14) are both Quillen equivalences.

(17) For any pointed space X we define

Σ∞S X = S ∧LL(Σ∞X).

This is just the composite of the left adjoints in the diagram

Top∗
Σ∞ // S
Ev0

oo

L(−)
// (L−Spectra)

S∧L(−)
//

U

oo EKMMS
FL(S,−)
oo

and so in particular is a left Quillen functor. Write Ω∞S for the composition of the
right adjoints in the above diagram. For n ≥ 0 write

SnS = Σ∞S (Sn) = S ∧L (L(Σ∞Sn)).
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We regard SnS as a “stable n-sphere”, and from this we can define the notion of
CW -spectra for EKMMS in the usual way. Such spectra will all be cofibrant.

(18) Now we come to a major point. We have the object S = Σ∞S0, which is an EKMM-
spectrum (see (12)) and the unit for the smash product. But we also have the stable
0-sphere S0

S = Σ∞S S
0 = S ∧L LS . The L-algebra structure on S is a map LS → S,

which induces the canonical map

S0
S = S ∧LLS→ S ∧L S = S.

This map is a weak equivalence, but it is not an isomorphism. In fact it turns out that
S is not cofibrant in EKMMS , and so S0

S is a cofibrant replacement for S .
The fact that S is not cofibrant, and the distinction between S0

S and S , is one of the
major differences between EKMM-spectra and symmetric (or orthogonal) spectra.

(19) For any pointed space X, the spectrum Σ∞X (from (15) above) turns out to be an
L-spectrum in a natural way and also an EKMM-spectrum. So we can think of Σ∞

as a functor Top∗→ EKMMS . It has a right adjoint Ω∞. It is dangerous to confuse
Σ∞S and Σ∞. The first is a left Quillen functor, but the second is not. We have the
comparison map

Σ∞S X = S ∧LL(Σ∞X) −→ S ∧L Σ∞X � Σ∞X,

with the middle map coming from the L-structure on Σ∞X, and the last isomorphism
being because Σ∞X is an S-module. This comparison map is a weak equivalence
whenever X is nondegenerately based (i.e., ∗ → X is a cofibration).

The functor Σ∞ has good monoidal properties, such as a natural isomorphism
Σ∞(X ∧ Y ) � (Σ∞X) ∧S (Σ∞Y ) compatible with associativity and commutativity
isomorphisms.

The work in [94] shows the following:

Theorem 3.9.1. The category EKMMS is a stable, closed symmetric monoidal model
category satisfying the Algebraic Creation and Invariance Properties as well as the Strong
Flatness Property. As a model category it is Quillen equivalent to the stable projective model
structure on SpN.

Proof. We sketch a proof here, since there seems to be no simple reference where this
can be just looked up. Let Fn : Top∗→ EKMMS be the functor Fn(X) = S∧LLFn(X).

In [94] the closed symmetric monoidal structure is established, as well as the model
structure. The latter comes with the set {Fm(Sn)→ Fm(Dn+1) |m,n ≥ 0} of generating
cofibrations and the set {Fm(Dn) → Fm(Dn ∧ I+) | m,n ≥ 0} of generating trivial
cofibrations (see [94, VII.5.6–5.8]).

To prove the Pushout-Product Axiom, it suffices to check it on generating cofibra-
tions and trivial cofibrations. So we need to analyze the box product of Fm(f ) and
Fn(g) for f : A� B and g : C�D cofibrations in Top∗. The key point is then that
a choice of homeomorphism U2 � U induces a homeomorphism L(2) � L(1) and
thus an identification Fm(f )�Fn(g) � Fm+n(f � g); the Pushout-Product Axiom then
follows. (See [45, 4.21] for a version of this argument in the context of spaces.)
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There is a canonical map LS→ S , and the induced map α : S∧LLS→ S∧LS � S
is a cofibrant-approximation in EKMMS . Note that the domain is Σ∞S (S0). We must
show for anyM in EKMMS that (S∧LLS)∧SM→ S∧SM =M is a weak equivalence.
Remembering that ∧S = ∧L, consider the diagram

S ∧LLS ∧LM
µ
LS∧idM

//

��

LS ∧LM

��

g
// M

S ∧L S ∧LM
�

µS∧idM
// S ∧LM

�

88

The diagonal map is an isomorphism by the definition of EKMMS . The map g is a
weak equivalence by [94, I.6.2], and µ

LS ∧ idM is a weak equivalence by [94, I.8.5(iii)].
It follows that every map in the diagram is a weak equivalence, and this verifies the
Unit Axiom in the definition of monoidal model category. It also verifies condition (1)
in Proposition 3.3.6.

Condition (2) of Proposition 3.3.6 also holds, since EKMMS is a topological model
category where all objects are fibrant. So Proposition 3.3.6 yields the Algebraic
Creation Property.

The Strong Flatness Property follows from [94, III.3.8] together with the fact that
every cofibrant R-module is a retract of a cell-module. For the Algebraic Invariance
Property we verify the conditions of Proposition 3.3.9: condition (1) is the Strong
Flatness Property, and condition (2) is [94, VII.6.2].

For the Quillen equivalence between EKMMS and SpN, it is easiest to go through
SpO or SpΣ. The Quillen equivalence with SpO is in [177], and the equivalence with
SpΣ is in [262].

3.10 Afterthoughts

One of the drawbacks of a survey like this is that there is never enough time or space
to say everything that one would like. This final section will give a blitz treatment of
various topics that are important and should not go unmentioned.

3.10.1 Functors with smash product

This was an early attempt at a strict model for ring spectra, due to Bökstedt and used
by him in his work on topological Hochschild homology [52]. In modern times these
have been eclipsed by ring objects in either symmetric or orthogonal spectra, but it is
still good to know the basic idea.

Let W be the category of pointed spaces that are homeomorphic to a finite CW -
complex, Regard W as a Top∗-enriched category. A W-sequence is an enriched
functor W→ Top∗ (these are also called W-spaces sometimes). Day convolution, as in
(3.7.9), gives a symmetric monoidal product on W-sequences.

There is a “sphere sequence” S given by the inclusion W ↪→ Top∗ , and this is a
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commutative monoid. We define a W-spectrum to be a left S-module. Unraveling
this, a W-spectrum is an enriched functor Φ : W → Top∗ together with structure
maps X ∧Φ(Y )→ Φ(X ∧Y ) satisfying unital and associativity conditions. However,
these extra structure maps do not provide new information — they are an automatic
consequence of being an enriched functor, as was explained back in Section 3.1. So in
this case W-sequences and W-spectra are the same thing.

There is a functor OI →W given by V 7→ SV , and restriction along this functor
takes W-spectra to orthogonal spectra. One can restrict further along the composite
ΣI →OI →W to get a symmetric spectrum.

The model category story works out in the same way as for orthogonal spectra.
See [178].

A “functor with smash product” (FSP) is a monoid in the category of W-spectra.
This amounts to an enriched functor Φ : W→ Top∗ equipped with maps X→ Φ(X)
and Φ(X)∧Φ(Y )→ Φ(X ∧Y ) satisfying various properties that are not hard to work
out.

Remark 3.10.1 . We saw in Section 3.1.2 that the notion of a classical spectrum comes
from the idea of “remembering” the mapping spaces En = Map(S−n,E) for a fantasy
stable object E. In a similar vein, a pointed finite CW-complex X should give rise to a
stable object Σ∞X, which should have a Spanier–Whitehead dual (Σ∞X)∗. The idea
of W-spectra is that they “remember” the mapping spaces E(X) = Map((Σ∞X)∗,E).

We remark that the notion of W-sequence is essentially equivalent (homotopically
speaking) to the notion of a simplicial functor from sSet to sSet. The connection
between these kinds of functors and spectra was initially raised by Anderson [3].
Lydakis [171] first produced (in the simplicial setting) a model category structure
as well as the symmetric monoidal product, showed the Quillen equivalence with
Bousfield–Friedlander spectra, and identified the ring objects with Bökstedt’s FSPs.

3.10.2 Γ -spaces

Let Γ op be the category of finite based sets n+ = {0,1, . . . ,n} (based at 0) and based
maps. A functor Γ op → Top∗ is called a Γ -space. The smash product of based sets
induces a symmetric monoidal product on Γ op : specifically, we identify m+ ∧n+ with
(m ·n)+ using the lexicographic ordering. Day convolution then gives a monoidal
structure on the category of Γ -spaces.
Γ -spaces were introduced by Segal [268], who showed that the homotopy category

is equivalent to the full subcategory of the stable homotopy category consisting of
the connective spectra. The first model category structure on Γ -spaces goes back to
Bousfield–Friedlander [56] (note that no such model category could be stable, given
that the suspension functor on the homotopy category is not an equivalence). Lydakis
[172] introduced the symmetric monoidal product on Γ -spaces and showed that it
models the smash product of spectra, and [264] produced a model category structure
on the ring objects. See also the discussion in [178].

The idea behind Γ -spaces comes from considerations similar to those made in
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Remark 3.10.1. In any homotopy theory of spectra we would have objects Σ∞T for every
pointed set T (this will just be a wedge of copies of the sphere spectrum S, indexed
by the non-basepoints in T ). Therefore we would also have Spanier–Whitehead duals
(Σ∞T )∗. The assignment T 7→ (Σ∞T )∗ would be a contravariant functor defined on
Γ op, and for a stable object E the assignment T 7→Map((Σ∞T )∗,E) would therefore
be a Γ -space.

If T = [n] then Σ∞T =
∨n
i=1S, and so (Σ∞T )∗ can be identified with the product∏n

i=1S (using that S∗ = S). So another way to say the above is that a Γ -space comes
from remembering what a spectrum looks like through the eyes of the finite products
∗, S, S × S, S × S × S, and so forth. That is to say, if E is a spectrum we remember
[n] 7→ En = Map(S×n,E). As finite products are weakly equivalent to finite wedges in
spectra, it’s clear that this data can only remember the connective part of a spectrum.

In fact, since
∏n
i=1S '

∨n
i=1S we would additionally have the relations

En = Map
( n∏
i=1
S,E

)
'Map

( n∨
i=1
S,E

)
'

n∏
i=1

Map(S,E) =
n∏
i=1
E1.

This suggests that what we really care about are Γ -spaces X such that a canonical
map Xn→

∏n
i=1X1 is an equivalence (and when n = 0 this should be interpreted as

X0 ' ∗). These were called “special” Γ -spaces in [56]. This turns out to equip π0(X1)
with the structure of an abelian monoid via the multiplication

π0(X1)×π0(X1)←−� π0(X2) −→µ π0(X1),

where µ is induced by the map [2]+→ [1]+ sending 1,2 7→ 1. But if X1 = Map(S,E)
then we should have X1 'Ω2 Map(S−2,E), which means π0(X1) would actually be an
abelian group. Adding on this condition yields what [56] called “very special” Γ -spaces.
The pleasant surprise is that there are no further “relations” that one has to keep
track of here: that is, the model category structure on Γ -spaces is set up so that the
fibrant objects are precisely these very special Γ -spaces, and this is enough to get the
Quillen equivalence with connective spectra. See also [79, Example 5.7] for another
perspective on these “relations”.

The inclusion of categories Γ op ↪→W, regarding every pointed set as a discrete
topological space, yields comparison functors between W-spaces and Γ -spaces in the
usual way. See Remark 3.5.3.

Segal introduced Γ -spaces in [268] because they were a natural receptor for a certain
version of algebraic K-theory. We outline this briefly. Let C be a category with finite
coproducts. For a finite set T write P(T ) for the category whose elements are the
subsets of T and whose maps are subset inclusions. Let C(T ) be the category whose
objects are functors F : P(T )→C having the property that whenever A1, . . . ,An ⊆ T
are disjoint the set of maps {F(Ai)→ F(∪iAi)} induces an isomorphism∐

i
F(Ai) −→� F

(⋃
i
Ai

)
.

When n = 0 this property implies that F(∅) is an initial object in C.
If T is a pointed set, let (KC)(T ) = BC(T − ∗ ), where B(−) denotes the usual

classifying space of a small category (that is, the geometric realization of the nerve).
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If f : T →U is a map of pointed sets, there is an induced map P(U − ∗ )→ P(T − ∗ )
sending A 7→ f −1(A)∩ (T −∗ ), and this in turn induces a functor C(T −∗ )→C(U −∗ ).
So KC is a Γ -space. (The basepoint is playing the role of a “sink” here, in the sense
that pointed maps f : T → U are the same as pairs (A ⊆ T , A→ U ), where in the
correspondence one has T −A = f −1(∗ ). The reader is advised to work out the maps
in KC where T and U are {0,1} and {0,1,2}— in either order — to get a feeling for
what is happening here.)

Note that an object in C(T ) can be thought of as a T -indexed collection of objects
in C together with consistent choices of coproducts for all subsets of T . Compare the
description of Waldhausen K-theory from Section 3.8.8.

3.10.3 Spectra in other settings

Let M be a symmetric monoidal model category and let K be a cofibrant object.
Just as spectra stabilize Top∗ under the operation of smashing with S1, one might
want to stabilize M under the operation of tensoring with K . Under mild “sufficiently
combinatorial” hypotheses on M, this works out just fine. Hovey [132] showed that
one can form both Bousfield–Friedlander and symmetric spectra in this generalized
setting, and all the basic model structures work out just as expected.

Standard applications include stabilizing the model category of G-spaces along a
representation sphere SV , or stabilizing a model category of motivic spaces along the
motivic sphere S2,1.

Hovey in fact showed that the Bousfield–Friedlander construction is really about
inverting a functor G : M→M, whereas (as discussed in Section 3.7.4) the symmetric
spectrum construction is about making an object invertible in the symmetric monoidal
sense. This difference has consequences for the comparison of the two constructions
SpN,∧K and SpΣ,K . In the latter, the suspension spectrum of K is an invertible object
and so must satisfy the cyclic permutation condition (3.3.13). In the former, where we
are only inverting the functor (−)∧K and don’t necessarily have a monoidal product
around anymore, there is no guarantee that this holds. So there is no reason to suspect
a Quillen equivalence here: in general, SpΣ,K has more “relations” than SpN,∧K .
Hovey [132] has some results showing that in the presence of the cyclic permutation
condition these two constructions are Quillen equivalent, but he also observes that
the results are perhaps not as general as one would like.

A version of W-spaces (or simplicial functors) for model categories satisfying certain
technical hypotheses has also been developed, by Dundas–Röndigs–Østvaer [84].

3.10.4 G-spectra

Let G be a compact Lie group, but feel free to think only of a finite group if desired.
There should of course be a model category of genuine G-spectra, where one stabilizes
with respect to all finite-dimensional representation spheres. The associated homotopy
category was first developed in [155], and is nicely summarized in [190].

To construct an appropriate model category via symmetric spectra, one could pick
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representatives V1,V2, . . . ,Vn for all finite-dimensional irreducible G-representations
and set V = V1⊕· · ·⊕Vn. Performing the symmetric spectra construction on G-spaces
using the object SV makes a perfectly good model category of genuine G-spectra.
Although this is fine for some purposes, it is a little unnatural. The fact that all
finite-dimensional G-representations aren’t inherently built into the machinery can
make some things more trouble than they should be.

The construction of orthogonal spectra works right out of the box for G-spaces,
requiring only the obvious modifications. See [177] or [120, Appendix A] for details.
Currently this is the preferred setting for G-equivariant spectra.

The equivariant version of EKMM spectra is developed in [177]. One starts with a
G-universe U that is “complete” in the sense that it contains infinitely many copies of
every irreducible representation. One of the surprises is that there are two naturally
arising model category structures on G-equivariant EKMM-spectra, both having the
same notion of stable weak equivalence. One has cofibrations built from cellular
inclusions based on cells of the form Fn(G/H+ ∧ Sk) for n,k ≥ 0, and the other
has cofibrations built from cells of the form FV (G/H+ ∧ Sk) with k ≥ 0 and V a G-
representation. These model structures are Quillen equivalent, but different. We refer
to [177, Chapter IV.2] for details.

When G is finite, versions of equivariant symmetric spectra have been produced
by Mandell [183] and Hausmann [115]. Ostermayr [218] developed a model structure
for equivariant Γ -spaces. A model category structure for an equivariant version of
W-spaces is developed in [84] (see also [43]).

3.10.5 Model categories for commutative algebras

Let (Spectra,∧,S) be a closed symmetric monoidal model category of spectra that
satisfies the Algebraic Creation Property. Let R be a commutative ring spectrum, and
write R--ComAlg for the category of commutative R-algebras. The forgetful functor
U : R--ComAlg→ R--Mod has a left adjoint Sym given by the symmetric algebra
functor

Sym(M) = R∨M ∨ (M ∧RM)/Σ2 ∨ (M ∧RM ∧RM)/Σ3 ∨ · · · .

We can ask if the forgetful functor creates a model structure on R--ComAlg.
In EKMMS , this works with no trouble — in part because all objects are fibrant.

See [94, VII.4.7–4.10]. In contrast, for symmetric and orthogonal spectra there is a
difficulty and such a model structure cannot exist in general. For example, it cannot
exist when R = S : as we saw in Section 3.1.7, there cannot exist a commutative ring
spectrum that is weakly equivalent to S and whose underlying spectrum is fibrant.

One solution to this problem is via the positive model structure on symmetric (or
orthogonal) spectra, suggested originally by Jeff Smith. Basically, go back and mimic
the development of the level and stable structures but remove all references to what
happens in level 0. Change the levelwise weak equivalences to maps that are weak
equivalences in levels greater than zero, and so forth. The fibrant objects in the positive
stable model structure are then spectra X with the property that Xn→ΩXn+1 is a
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weak equivalence for all n ≥ 1 (these are called “positive Ω-spectra”). This model
structure is Quillen equivalent to the one we already had, and it is also monoidal and
satisfies all the nice properties we are used to.

The adjoint to the Σ∞ functor is Ev0 as always, but note that Ev0 no longer has the
behavior of Ω∞ for fibrant objects. So there is no problem with having a model for S
that is a commutative ring spectrum and is fibrant in the positive model structure.

The positive model structures on symmetric and orthogonal spectra are developed
in [178], which also shows that if one uses these structures the forgetful functor does
create a model structure on R--ComAlg for any commutative ring spectrum R.

For more work related to these issues, including yet another model structure on
symmetric spectra, see [274].

As another application, the positive model structure on SpΣ is used in [262] to get
a monoidal Quillen equivalence between SpΣ and EKMMS .

Commutative ring spectra are discussed in more detail in Chapter 6 of this volume.

3.10.6 Stable categories and categories of modules

This is only a very brief remark, but if you want to better understand stable model
categories in general and how they interact with the modern monoidal categories of
spectra, go read [266]. That paper provides a basic technique that is pervasive in how
we approach these categories.


