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2.1 The history of homotopical categories

A homotopical category is a category equipped with some collection of morphisms
traditionally called “weak equivalences” that somewhat resemble isomorphisms but
fail to be invertible in any reasonable sense, and might in fact not even be reversible:
that is, the presence of a weak equivalence X ∼−→ Y need not imply the presence of a
weak equivalence Y ∼−→ X. Frequently, the weak equivalences are defined as the class of
morphisms in a category K that are “inverted by a functor” F : K→ L, in the sense of
being precisely those morphisms in K that are sent to isomorphisms in L. For instance:

– Weak homotopy equivalences of spaces or spectra are those maps inverted by the
homotopy group functors π∗ : Top→ GrSet or π∗ : Spectra→ GrAb.

– Quasi-isomorphisms of chain complexes are those maps inverted by the homology
functor H∗ : Ch→ GrAb.

– Equivariant weak homotopy equivalences of G-spaces are those maps inverted by
the homotopy functors on the fixed point subspaces for each compact subgroup
of G.

The term used to describe the equivalence class represented by a topological
space up to weak homotopy equivalence is a homotopy type. Since the weak homotopy
equivalence relation is created by the functor π∗ , a homotopy type can loosely be
thought of as a collection of algebraic invariants of the space X, as encoded by the
homotopy groups π∗X. Homotopy types live in a category called the homotopy category
of spaces, which is related to the classical category of spaces as follows: a genuine
continuous function X → Y certainly represents a map (graded homomorphism)
between homotopy types. But a weak homotopy equivalence of spaces, defining an
isomorphism of homotopy types, should now be regarded as formally invertible.

In their 1967 manuscript Calculus of fractions and homotopy theory, Gabriel and
Zisman [100] formalized the construction of what they call the category of fractions
associated to any class of morphisms in any category together with an associated
localization functor π : K→ K[W−1] that is universal among functors with domain K

that invert the class W of weak equivalences. This construction and its universal
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property are presented in §2.2. For instance, the homotopy category of spaces arises
as the category of fractions associated to the weak homotopy equivalences of spaces.

There is another classical model of the homotopy category of spaces that defines
an equivalent category. The objects in this category are the CW-complexes, spaces
built by gluing disks along their boundary spheres, and the morphisms are now
taken to be homotopy classes of maps. By construction the isomorphisms in this
category are the homotopy equivalences of CW-complexes. Because any space is weak
homotopy equivalent to a CW-complex and because Whitehead’s theorem proves that
the weak homotopy equivalences between CW-complexes are precisely the homotopy
equivalences, it can be shown that this new homotopy category is equivalent to the
Gabriel–Zisman category of fractions.

Quillen introduced a formal framework which draws attention to the essential
features of these equivalent constructions. His axiomatization of an abstract “homotopy
theory” was motivated by the following question: When does it make sense to invert a
class of morphisms in a category and call the result a homotopy category, rather than
simply a localization? In the introduction to his 1967 manuscript Homotopical Algebra
[229], Quillen reports that Kan’s theorem that the homotopy theory of simplicial groups
is equivalent to the homotopy theory of connected pointed spaces [143] suggested to
Quillen that simplicial objects over a suitable category A might form a homotopy
theory analogous to classical homotopy theory in algebraic topology. In pursuing this
analogy he observed that

there were a large number of arguments which were formally similar to well-known ones in
algebraic topology, so it was decided to define the notion of a homotopy theory in sufficient
generality to cover in a uniform way the different homotopy theories encountered. [229, pp. 1–2]

Quillen named these homotopy theories model categories, meaning “categories of
models for a homotopy theory.” He entitled his explorations “homotopical algebra,” as
they describe both a generalization of and a close analogy to homological algebra — in
which the relationship between an abelian category and its derived category parallels
the relationship between a model category and its homotopy category. We introduce
Quillen’s model categories and his construction of their homotopy categories as a
category of “homotopy” classes of maps between sufficiently “fat” objects in §2.3. A
theorem of Quillen proven as Theorem 2.3.29 below shows that the weak equivalences
in any model category are precisely those morphisms inverted by the Gabriel–Zisman
localization functor to the homotopy category. In particular, in the homotopical
categories that we will most frequently encounter, the weak equivalences satisfy a
number of closure properties, to be introduced in Definition 2.3.1.

To a large extent, homological algebra is motivated by the problem of constructing
derived versions of functors between categories of chain complexes that fail to preserve
weak equivalences. A similar question arises in Quillen’s model categories. Because
natural transformations can point either to or from a given functor, derived functors
come with a “handedness”: either left or right. In §2.4, we introduce dual notions of
left and right Quillen functors between model categories and construct their derived
functors via a slightly unusual route that demands a stricter (but in our view improved)
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definition of derived functors than the conventional one. In parallel, we study the ad-
ditional properties borne by Quillen’s original model structure on simplicial sets, later
axiomatized by Hovey [130] in the notion of a monoidal or enriched model category,
which derives to define monoidal structures or enrichments on the homotopy category.

These considerations also permit us to describe when two “homotopy theories”
are equivalent. For instance, the analogy between homological and homotopical
algebra is solidified by a homotopical reinterpretation of the Dold–Kan theorem as an
equivalence between the homotopy theory of simplicial objects of modules and chain
complexes of modules presented in Theorem 2.4.33.

As an application of the theory of derived functors, in §2.5 we study homotopy
limits and colimits, which correct for the defect that classically defined limit and
colimit constructions frequently fail to be weak equivalence invariant. We begin by
observing that the homotopy category admits few strict limits. It does admit weak ones,
as we shall see in Theorem 2.5.3, but their construction requires higher homotopical
information which will soon become a primary focus.

By convention, a full Quillen model structure can only be borne by a category
possessing all limits and colimits, and hence the homotopy limits and homotopy
colimits introduced in §2.5 are also guaranteed to exist. This supports the point of
view that a model category is a presentation of a homotopy theory with all homotopy
limits and homotopy colimits. In a series of papers from 1980 [89, 87, 88], Dwyer
and Kan describe more general “homotopy theories” as simplicial localizations of
categories with weak equivalences, which augment the Gabriel–Zisman category of
fractions with homotopy types of the mapping spaces between any pair of objects. The
hammock localization construction described in §2.6 is very intuitive, allowing us to re-
conceptualize the construction of the category of fractions not by imposing relations
in the same dimension, but by adding maps in the next dimension — “imposing
homotopy relations” if you will.

The hammock localization defines a simplicially enriched category associated to
any homotopical category. A simplicially enriched category is a non-prototypical
exemplification of the notion of an (∞,1)-category, that is, a category weakly enriched
over ∞-groupoids or homotopy types. Model categories also equip each pair of their
objects with a well-defined homotopy type of maps, and hence also present (∞,1)-
categories. Before exploring (∞,1)-categories in a systematic way, in §2.7 we introduce
the most popular model, the quasi-categories first defined in 1973 by Boardman and
Vogt [48] and further developed by Joyal [140, 141] and Lurie [169].

In §2.8 we turn our attention to other models of (∞,1)-categories, studying six
in total: quasi-categories, Segal categories, complete Segal spaces, naturally marked
quasi-categories, simplicial categories, and relative categories. The last two models
are strictly-defined objects, which are quite easy to define, but the model categories in
which they live are poorly behaved. By contrast, the first four of these models live in
model categories that have many pleasant properties, which are collected together in
a new axiomatic notion of an ∞-cosmos.

After introducing this abstract definition, we see in §2.9 how the ∞-cosmos axiom-
atization allows us to develop the basic theory of these four models of (∞,1)-categories
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model-independently, that is, simultaneously and uniformly across these models.
Specifically, we study adjunctions and equivalences between (∞,1)-categories and
limits and colimits in an (∞,1)-category to provide points of comparison for the
corresponding notions of Quillen adjunction, Quillen equivalence, and homotopy
limits and colimits developed for model categories in §2.4 and §2.5. A brief epilogue,
§2.10, contains a few closing thoughts and anticipates future chapters in this volume.
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2.2 Categories of fractions and localization

In one of the first textbook accounts of abstract homotopy theory [100], Gabriel and
Zisman construct the universal category that inverts a collection of morphisms together
with accompanying “calculi-of-fractions” techniques for calculating this categorical
“localization.” Gabriel and Zisman prove that a class of morphisms in a category with
finite colimits admits a “calculus of left fractions” if and only if the corresponding
localization preserves them, which then implies that the category of fractions also
admits finite colimits [100, §1.3]; dual results relate finite limits to their “calculus of
right fractions.” For this reason, their calculi of fractions fail to exist in the examples
of greatest interest to modern homotopy theorists, and so we will not introduce them
here, focusing instead in §2.2.1 on the general construction of the category of fractions.

2.2.1 The Gabriel–Zisman category of fractions

For any class of morphisms W in a category K, the category of fractions K[W−1]
is the universal category equipped with a functor ι : K→ K[W−1] that inverts W ,
in the sense of sending each morphism to an isomorphism. Its objects are the same
as the objects of K and its morphisms are finite zigzags of morphisms in K, with
all “backwards” arrows finite composites of arrows belonging to W , modulo a few
relations which convert the canonical graph morphism ι : K→ K[W−1] into a functor
and stipulate that the backwards copies of each arrow in W define two-sided inverses
to the morphisms in W .

Definition 2.2.1 (category of fractions [100, 1.1]). For any class of morphisms W in a
category K, the category of fractions K[W−1] is a quotient of the free category on
the directed graph obtained by adding backwards copies of the morphisms in W to
the underlying graph of the category K modulo certain relations:
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– Adjacent arrows pointing forwards can be composed.

– Forward-pointing identities may be removed.

– Adjacent pairs of zigzags

x y xs s or y x ys s

indexed by any s ∈W can be removed.1

The image of the functor ι : K→ K[W−1] is comprised of those morphisms that can
be represented by unary zigzags pointing forwards.

The following proposition expresses the 2-categorical universal property of the
category of fractions construction in terms of categories Fun(K,M) of functors and
natural transformations:

Proposition 2.2.2 (the universal property of localization [100, 1.2]). For any cate-
gory M, restriction along ι defines a fully faithful embedding

Fun(K[W−1],M) Fun(K,M)

Fun
W7→�

(K,M)
�

−◦ι

defining an isomorphism

Fun(K[W−1],M) � Fun
W7→�

(K,M)

of categories onto its essential image, the full subcategory spanned by those functors that
invertW .

Proof. As in the analogous case of rings, the functor ι : K→ K[W−1] is an epimor-
phism and so any functor F : K→M admits at most one extension along ι. To show
that any functor F : K→M that inverts W does extend to K[W−1], we define a graph
morphism from the graph described in Definition 2.2.1 to M by sending the backwards
copy of s to the isomorphism (Fs)−1 and thus a functor from the free category gener-
ated by this graph to M. Functoriality of F ensures that the enumerated relations are
respected by this functor, which therefore defines an extension F̂ : K[W−1]→M as
claimed.

The 2-dimensional aspect of this universal property follows from the 1-dimensional
one by considering functors valued in arrow categories [146, §3].

Example 2.2.3 (groupoid reflection). When all the morphisms in K are inverted, the
universal property of Proposition 2.2.2 establishes an isomorphism Fun(K[K−1],M) �
Fun(K,coreM) between functors from the category of fractions of K to functors valued
in the groupoid core, which is the maximal subgroupoid contained in M. In this

1 It follows that adjacent arrows in W pointing backwards can also be composed whenever their
composite in K also lies in W .
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way, the category of fractions construction specializes to define a left adjoint2 to the
inclusion of groupoids into categories:

Cat Gpd

fractions

core
⊥
⊥

The universal property of Proposition 2.2.2 applies to the class of morphisms
inverted by any functor admitting a fully faithful right adjoint [100, 1.3]. In this case,
the category of fractions defines a reflective subcategory of K, which admits a variety
of useful characterizations, one being as the local objects orthogonal to the class of
morphisms being inverted [238, 4.5.12, 4.5.vii, 5.3.3, 5.3.i]. For instance, if R→ R[S−1]
is the localization of a commutative ring at a multiplicatively closed set, then the
category of R[S−1]-modules defines a reflective subcategory of the category of R-
modules [238, 4.5.14], and hence the extension of scalars functor R[S−1]⊗R − can be
understood as a Gabriel–Zisman localization.

However, reflective subcategories inherit all limits and colimits present in the larger
category [238, 4.5.15], which is not typical behavior for categories of fractions that are
“homotopy categories” in a sense to be discussed in §5.8. With the question of when a
category of fractions is a homotopy category in mind, we now turn our attention to
Quillen’s homotopical algebra.

2.3 Model category presentations of homotopical categories

A question that motivated Quillen’s introduction of model categories [229] and also
Dwyer, Kan, Hirschhorn, and Smith’s later generalization [92] is: When is a category
of fractions a homotopy category? Certainly, the localization functor must invert some
class of morphisms that are suitably thought of as “weak equivalences.” Perhaps these
weak equivalences coincide with a more structured class of “homotopy equivalences”
on a suitable subcategory of “fat” objects that spans each weak equivalence class —
such as given in the classical case by Whitehead’s theorem that any weak homotopy
equivalence between CW complexes admits a homotopy inverse — in such a way that
the homotopy category is equivalent to the category of homotopy classes of maps in
this full subcategory. Finally, one might ask that the homotopy category admit certain
derived constructions, such as the loop and suspension functors definable on the
homotopy category of based spaces. On account of this final desideratum, we will
impose the blanket requirement that a category that bears a model structure must be
complete and cocomplete.

2 More precisely, this left adjoint takes values in a larger universe of groupoids, since the category of
fractions K[K−1] associated to a locally small category K need not be locally small. Toy examples
illustrating this phenomenon are easy to describe. For instance, let K be a category with a proper class of
objects whose morphisms define a “double asterisk”: each non-identity morphism has a common domain
object and for each other object there are precisely two non-identity morphisms with that codomain.
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Consider a class of morphisms W , denoted by “ ∼−→”, in a category M. Such mor-
phisms might reasonably be referred to as “weak equivalences” if they somewhat
resemble isomorphisms, aside from failing to be invertible in any reasonable sense.
The meaning of “somewhat resembling isomorphisms” may be made precise via any
of the following axioms, all of which are satisfied by the isomorphisms in any category.

Definition 2.3.1. The following hypotheses are commonly applied to a class of “weak
equivalences” W in a category M:

– The two-of-three property: for any composable pair of morphisms if any two of
f , g , and gf is in W then so is the third.

– The two-of-six property: for any composable triple of morphisms

•

• •

•

hg∼f

gf
∼

hgf

g
h

if gf ,hg ∈W then f ,g,h,hgf ∈W .
– The classW is closed under retracts in the arrow category: given a commutative

diagram

• • •

• • •
t so t

if s is in W then so is its retract t.
– The class W might define a wide subcategory, meaning that W is closed under

composition and contains all identity morphisms.
– More prosaically, it is reasonable to suppose that W contains the isomorphisms.
– At a bare minimum, one might insist that W contains all of the identities.

Lemma 2.3.2. LetW be the class of morphisms in M inverted by a functor F : M→ K.
ThenW satisfies each of the closure properties just enumerated.

Proof. This follows immediately from the axioms of functoriality.

In practice, most classes of weak equivalences arise as in Lemma 2.3.2. For instance,
the quasi-isomorphisms are those chain maps inverted by the homology functor H•
from chain complexes to graded modules, while the weak homotopy equivalences are
those continuous functions inverted by the homotopy group functors π•. Rather than
adopt a universal set of axioms that may or may not fit the specific situation at hand,
we will use the term homotopical category to refer to any pair (M,W ) comprised of
a category and a class of morphisms and enumerate the specific properties we need
for each result or construction. When the homotopical category (M,W ) underlies a
model category structure, to be defined, Theorem 2.3.29 below proves W is precisely
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the class of morphisms inverted by the Gabriel–Zisman localization functor and hence
satisfies all of the enumerated closure properties.

The data of a model structure borne by a homotopical category is given by two
additional classes of morphisms — the cofibrations C denoted “�”, and the fibrations
F denoted “�” — satisfying axioms to be enumerated. In §2.3.1, we present a modern
reformulation of Quillen’s axioms that more clearly highlights the central features of a
model structure borne by a complete and cocomplete category. In §2.3.2, we discuss
the delicate question of the functoriality of the factorizations in a model category with
the aim of justifying our view that this condition is harmless to assume in practice.

In §2.3.3, we explain what it means for a parallel pair of morphisms in a model
category to be homotopic; more precisely, we introduce distinct left homotopy and
right homotopy relations that define a common equivalence relation when the domain
is cofibrant and the codomain is fibrant. The homotopy relation is used in §2.3.4
to construct and compare three equivalent models for the homotopy category of a
model category: the Gabriel–Zisman category of fractions M[W−1] defined by formally
inverting the weak equivalences, the category hMcf of fibrant-cofibrant objects in M

and homotopy classes of maps, and an intermediary HoM which has the objects of
the former and hom-sets of the later, designed to facilitate the comparison. Finally,
§2.3.5 presents a fundamental example: Quillen’s model structure on the category of
simplicial sets.

2.3.1 Model category structures via weak factorization systems

When Quillen first introduces the definition of a model category in the introduction
to “Chapter I. Axiomatic Homotopy Theory” [229], he highlights the factorization
and lifting axioms as being the most important. These axioms are most clearly
encapsulated in the categorical notion of a weak factorization system, a concept which
was codified later.

Definition 2.3.3. A weak factorization system (L,R) on a category M is com-
prised of two classes of morphisms L and R such that:

(i) Every morphism in M may be factored as a morphism in L followed by a mor-
phism in R.

• •
•

f

L3` r∈R

(ii) The maps in L have the left lifting property with respect to each map in R
and the maps in R have the right lifting property with respect to each map in
L: that is, any commutative square

• •

• •
L3` r∈R

admits a diagonal filler as indicated, making both triangles commute.
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(iii) The classes L and R are each closed under retracts in the arrow category: given
a commutative diagram

• • •

• • •
t s t

if s is in that class then so is its retract t.

The following reformulation of Quillen’s definition [229, I.5.1] was given by Joyal
and Tierney [142, 7.7], who prove that a homotopical category (M,W ), with the weak
equivalences satisfying the two-of-three property, admits a model structure just when
there exist classes C and F that define a pair of weak factorization systems:

Definition 2.3.4 (model category). A model structure on a homotopical category
(M,W ) consists of three classes of maps — the weak equivalencesW denoted “ ∼−→”,
which must satisfy the two-of-three property,3 the cofibrations C denoted “�”, and
the fibrations F denoted “�” — so that (C,F ∩W ) and (C ∩W ,F ) each define
weak factorization systems on M.

Remark 2.3.5 (on self-duality). Definitions 2.3.3 and 2.3.4 are self-dual: if (L,R)
defines a weak factorization system on M then (R,L) defines a weak factorization
system on Mop. Thus the statements we prove about the left classes C of cofibrations
and C∩W of trivial cofibrations “ ∼−−→� ” will have dual statements involving the right
classes F of fibrations and F ∩W of trivial fibrations “ ∼−−→→ ”.

Axiom 3 of Definition 2.3.3 was missing from Quillen’s original definition of a model
category; he referred to those model categories that have the retract closure property
as “closed model categories.” The importance of this closure property is that it implies
that the left class of a weak factorization system is comprised of all maps that have
the left lifting property with respect to the right class and dually, that the right class is
comprised of all of those maps that have the right lifting property with respect to the
left class. These results follow as a direct corollary of the famous “retract argument”:

Lemma 2.3.6 (retract argument). Suppose f = r ◦ ` and f has the left lifting property
with respect to its right factor r . Then f is a retract of its left factor `.

Proof. The solution to the lifting problem displayed on the left

• • • • •

• • • • •
f

`

r f ` f
t

t r

defines the retract diagram on the right.

3 The standard definition of a model category also requires the weak equivalences to be closed under
retracts, but this is a consequence of the axioms given here [142, 7.8].
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Corollary 2.3.7. Either class of a weak factorization system determines the other: the left
class consists of those morphisms that have the left lifting property with respect to the right
class, and the right class consists of those morphisms that have the right lifting property
with respect to the left class.

Proof. Any map with the left lifting property with respect to the right class of a weak
factorization system lifts against its right factor of the factorization guaranteed by
axiom 1 of Definition 2.3.3 and so belongs to the left class by axiom 3.

It follows that the trivial cofibrations can be defined without reference to either the
cofibrations or weak equivalences as those maps that have the left lifting property with
respect to the fibrations, and dually the trivial fibrations are precisely those maps that
have the right lifting property with respect to the cofibrations.

Exercise 2.3.8 . Verify that a model structure on M, if it exists, is uniquely determined
by any of the following data:

(i) The cofibrations and weak equivalences.
(ii) The fibrations and weak equivalences.
(iii) The cofibrations and fibrations.

By a more delicate observation of Joyal [141, E.1.10] using terminology to be introduced
in Definition 2.3.14, a model structure is also uniquely determined by

(iv) The cofibrations and fibrant objects.
(v) The fibrations and cofibrant objects.

As a further consequence of the characterizations of the cofibrations, trivial cofibra-
tions, fibrations, and trivial fibrations by lifting properties, each class automatically
enjoys certain closure properties.

Lemma 2.3.9. Let L be any class of maps characterized by a left lifting property with
respect to a fixed class of maps R. Then L contains the isomorphisms and is closed under
coproduct, pushout, retract, and (transfinite) composition.

Proof. We prove the cases of pushout and transfinite composition to clarify the
meaning of these terms, the other arguments being similar. Let k be a pushout of a
morphism ` ∈ L as in the left square below, and consider a lifting problem against a
morphism r ∈ R as presented by the right square:

• • •

• • •
L3`

a

p
k

u

r∈R

b

s

b

t

Then there exists a lift s in the composite rectangle and this lift and u together define
a cone under the pushout diagram, inducing the desired lift t.

Now let ¸ denote any ordinal category. The transfinite composite of a diagram
¸→M is the leg `α of the colimit cone from the initial object in this diagram to its
colimit. To see that this morphism lies in L under the hypothesis that the generating
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morphisms `i in the diagram do, it suffices to construct the solution to any lifting
problem against a map r ∈ R.

• • • • •

• •

`0

`α

`1 `2 · · ·

r∈R

By the universal property of the colimit object, this dashed morphism exists once
the commutative cone of dotted lifts do, and these may be constructed sequentially
starting by lifting `0 against r .

Exercise 2.3.10 . Verify that the class of morphisms L characterized by the left lifting
property against a fixed class of morphisms R is closed under coproducts, closed
under retracts, and contains the isomorphisms.

Definition 2.3.11. Let J be any class of maps. A J -cell complex is a map built as
a transfinite composite of pushouts of coproducts of maps in J , which may then be
referred to in this context as the basic cells.

• • • •

• • • • •

• •

∐
j∈J

p

∐
j∈J

p

∈J -cell∐
j∈J

x

Lemma 2.3.9 implies that the left class of a weak factorization is closed under the
formation of cell complexes.

Exercise 2.3.12 . Explore the reason why the class of morphisms L characterized by
the left lifting property against a fixed class of morphisms R may fail to be closed
under coequalizers, formed in the arrow category.4

2.3.2 On functoriality of factorizations

The weak factorization systems that arise in practice, such as those that define
the components of a model category, tend to admit functorial factorizations in the
following sense.

Definition 2.3.13. A functorial factorization on a category M is given by a functor
M2→M3 from the category of arrows in M to the category of composable pairs of
arrows in M that defines a section to the composition functor ◦ : M3 → M2. The

4 Note, however, that if the maps in L are equipped with specified solutions to every lifting problem posed
by R and if the squares in the coequalizer diagram commute with these specified lifts, then the
coequalizer inherits canonically defined solutions to every lifting problem posed by R and is
consequently in the class L.
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action of this functor on objects in M2 (which are arrows, displayed vertically) and
morphisms in M2 (which are commutative squares) is displayed below:

X Z

Y W

f

u

g

v

7→

X Z

Ef Eg

Y W

f

u

Lf Lg

g
E(u,v)

Rf Rg

v

This data is equivalently presented by a pair of endofunctors L,R : M2 ⇒ M2 sat-
isfying compatibility conditions relative to the domain and codomain projections
dom,cod: M2⇒M, namely that

domL = dom, codR = cod, and E := codL = domR

as functors M2→M.

The functoriality of Definition 2.3.13 is with respect to (horizontal) composition of
squares and is encapsulated most clearly by the functor E which carries a square (u,v)
to the morphism E(u,v) between the objects through which f and g factor. Even
without assuming the existence of functorial factorizations, in any category with a
weak factorization system (L,R), commutative squares may be factored into a square
between morphisms in L on top of a square between morphisms in R

X Z

Y W

f

u

g

v

7→

X Z

E F

Y W

f

u

`∈L L3`′

ge

r∈R R3r ′

v

with the dotted horizontal morphism defined by lifting ` against r ′ . These factor-
izations will not be strictly functorial because the solutions to the lifting problems
postulated by axiom 2 of 2.3.3 are not unique. However, for either of the weak fac-
torizations systems in a model category, any two solutions to a lifting problem are
homotopic in a sense defined by Quillen, appearing below as Definition 2.3.19. As
homotopic maps are identified in the homotopy category, this means that any model
category has functorial factorizations up to homotopy, which suffices for most pur-
poses.5 Despite the moral sufficiency of the standard axioms, for economy of language
we henceforth tacitly assume that our model categories have functorial factorizations
and take comfort in the fact that it seems to be exceedingly difficult to find model
categories that fail to satisfy this condition.

5 While the derived functors constructed in Corollary 2.4.10 make use of explicit point-set level functorial
factorizations, their total derived functors in the sense of Definition 2.4.4 are well-defined without strict
functoriality.
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2.3.3 The homotopy relation on arrows

Our aim now is to define Quillen’s homotopy relation, which will be used to construct
a relatively concrete model hMcf for the homotopy category of the model category M,
which is equivalent to the Gabriel–Zisman category of fractions M[W−1] but provides
better control over the sets of morphisms between each pair of objects. Quillen’s key
observation appears as Proposition 2.3.23, which shows that the weak equivalences
between objects of M that are both fibrant and cofibrant, in a sense to be defined
momentarily, are more structured, always admitting a homotopy inverse for a suitable
notion of homotopy. The homotopy relation is respected by pre- and post-composition,
which means that hMcf may be defined simply to be the category of fibrant-cofibrant
objects and homotopy classes of maps. In this section, we give all of these definitions.
In §2.3.4, we construct the category hMcf sketched above and prove its equivalence
with the category of fractions M[W−1].

Definition 2.3.14. An object X in a model category M is fibrant when the unique
map X→ ∗ to the terminal object is a fibration and cofibrant when the unique map
∅→ X from the initial object is a cofibration.

Objects that are not fibrant or cofibrant can always be replaced by weakly equivalent
objects that are, by factoring the maps to the terminal object or from the initial object,
as appropriate.

Exercise 2.3.15 (fibrant and cofibrant replacement). Assuming the functorial factor-
izations of §2.3.2, define a fibrant replacement functor R : M→M and a cofibrant
replacement functor Q : M→M equipped with natural weak equivalences

η : idM R∼ and ε : Q idM.
∼

Applying both constructions, one obtains a fibrant-cofibrant replacement of any
object X as either RQX or QRX. In the diagram

∅

QX QRX

X

RQX RX

∗

Qη
∼

η o
ε
∼

εo
η∼

Rε
∼

the middle square commutes because its two subdivided triangles do, by naturality
of the maps η and ε of Exercise 2.3.15. This induces a direct comparison weak
equivalence RQX

∼−→QRX by lifting ηQX against εRX .
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Exercise 2.3.16 . Show that any map in a model category may be replaced, up to a
zigzag of weak equivalences, by one between fibrant-cofibrant objects that moreover
may be taken to be either a fibration or a cofibration, as desired.6

The reason for our particular interest in the subcategory of fibrant-cofibrant objects
in a model category is that between such objects the weak equivalences become more
structured, coinciding with a class of “homotopy equivalences” in a sense we now
define.

Definition 2.3.17. Let A be an object in a model category. A cylinder object for A
is given by a factorization of the fold map

AqA A

cyl(A)
(i0,i1)

(1A,1A)

∼
q

into a cofibration followed by a trivial fibration. Dually, a path object for A is given
by any factorization of the diagonal map

path(A)

A A×A

(p0,p1)j
∼

(1A,1A)

into a trivial cofibration followed by a fibration.

Remark 2.3.18 . For many purposes it suffices to drop the hypotheses that the maps
in the cylinder and path object factorizations are cofibrations and fibrations, and
retain only the hypothesis that the second and first factors, respectively, are weak
equivalences. The standard terminology for the cylinder and path objects defined
here adds the accolade “very good.” But since “very good” cylinder and path objects
always exist, we eschew the usual convention and adopt these as the default notions.

Definition 2.3.19. Consider a parallel pair of maps f ,g : A⇒ B in a model category.
A left homotopy H from f to g is given by a map from a cylinder object of A to B
extending (f ,g) : AqA→ B:

A cyl(A) A

B

i0

f
H

i1

g

in which case one writes f ∼` g and says that f and g are left homotopic.
A right homotopy K from f to g is given by a map from A to a path object for B

6 Exercise 2.3.16 reveals that the notions of “cofibration” and “fibration” are not homotopically
meaningful: up to isomorphism in M[W−1], any map in a model category can be taken to be either a
fibration or a cofibration.
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extending (f ,g) : A→ B×B:

A

B path(B) B

f g
K

p0 p1

in which case one writes f ∼r g and says that f and g are right homotopic.

Exercise 2.3.20 . Prove that the endpoint inclusions i0, i1 : A⇒ cyl(A) into a cylinder
object are weak equivalences always and also cofibrations if A is cofibrant. Conclude
that if f ∼` g then f is a weak equivalence if and only if g is. Dually, the projections
p0,p1 : path(B)⇒ B are weak equivalences always and also fibrations if B is fibrant,
and if f ∼r g then f is a weak equivalence if and only if g is.

A much more fine-grained analysis of the left and right homotopy relations is
presented in the classic expository paper “Homotopy theories and model categories”
of Dwyer and Spalinski [91]. Here we focus on the essential facts for understanding
the homotopy relation on maps between cofibrant and fibrant objects.

Proposition 2.3.21. If A is cofibrant and B is fibrant then left and right homotopy define
equivalence relations on the set Hom(A,B) of arrows and moreover these relations coincide.

In light of Proposition 2.3.21, we say that maps f ,g : A ⇒ B from a cofibrant
object to a fibrant one are homotopic and write f ∼ g to mean that they are left or
equivalently right homotopic.

Proof. The left homotopy relation is reflexive and symmetric without any cofibrancy
or fibrancy hypotheses on the domains or codomains. To prove transitivity, consider
a pair of left homotopies H : cyl(A)→ B from f to g and K : cyl′(A)→ B from g to
h, possibly constructed using different cylinder objects for A. By cofibrancy of A and
Exercise 2.3.20, a new cylinder object cyl′′(A) for A may be constructed by factoring
the map from the following pushout C to A:

A A A

cyl(A) cyl′(A)

C

cyl′′(A)

A

i0∼ i1
∼

y

i0∼ i1
∼

∼

∼

∼

∼

o

o

The homotopies H and K define a cone under the pushout diagram inducing a
map H ∪A K : C→ B. By fibrancy of B, this map may be extended along the trivial
cofibration C ∼−−→� cyl′′(A) to define a homotopy cyl′′(A)→ B from f to h. This proves
that left homotopy is an equivalence relation.
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Finally we argue that if H : cyl(A)→ B defines a left homotopy from f to g then
f ∼r g . The desired right homotopy from f to g is constructed as the restriction of
the displayed lift

A B path(B)

A cyl(A) B×B

i0 o

f ∼

(p0,p1)

i1

∼
(f q,H)

along the endpoint inclusion i1. The remaining assertions are dual to ones already
proven.

Moreover, the homotopy relation is respected by pre- and post-composition:

Proposition 2.3.22. Suppose f ,g : A⇒ B are left or right homotopic maps and consider
any maps h : A′ → A and k : B→ B′ . Then kfh,kgh : A′ ⇒ B′ are again left or right
homotopic, respectively.

Proof. By lifting the endpoint inclusion (i0, i1) : A′ qA′� cyl(A′) against the pro-
jection cyl(A) ∼−−→→ A— or by functoriality of the cylinder construction in the sense
discussed in §2.3.2 — there is a map cyl(h) : cyl(A′)→ cyl(A). Then, for any left homo-
topy H : cyl(A)→ B from f to g , the horizontal composite defines a left homotopy
kf h ∼` kgh:

A′ qA′ AqA

cyl(A′) cyl(A) B B′

A′ A

hth

(f ,g)

cyl(h)

o o
H

k

h

Proposition 2.3.23. Let f : A→ B be a map between objects that are both fibrant and
cofibrant. Then f is a weak equivalence if and only if it has a homotopy inverse.

Proof. For both implications we make use of the fact that any map between fibrant-
cofibrant objects may be factored as a trivial cofibration followed by a fibration through
an object that is again fibrant-cofibrant:

P

A B

p

f

j∼

If f is a weak equivalence then p is a trivial fibration. We argue that any trivial
fibration p between fibrant-cofibrant objects extends to a deformation retraction:
admitting a right inverse that is also a left homotopy inverse. A dual argument proves
that the trivial cofibration j admits a left inverse that is also a right homotopy inverse.
These homotopy equivalences compose in the sense of Proposition 2.3.22 to define a
homotopy inverse for f .
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If p is a trivial fibration, then cofibrancy of B implies that it admits a right inverse i.
The homotopy constructed in the lifting problem

∅ P P q P P

B B cyl(P ) P B

p

(1P ,ip)

poi

∼ p

proves that ip ∼ 1P as desired.
For the converse we suppose that f admits a homotopy inverse g . To prove that f is

a weak equivalence it suffices to prove that p is a weak equivalence. A right inverse i
to p may be found by lifting the endpoint of the homotopy H : f g ∼ 1B :

B A P

B cyl(B) B

g

i0o

j

p

i1
∼

H

and then restricting this lift along i1. By construction this section i is homotopic to jg .
The argument of the previous paragraph applies to the trivial cofibration j to prove
that it has a left inverse and right homotopy inverse q. Composing the homotopies
1P ∼ jq, i ∼ jg , and gf ∼ 1A we see that

ip ∼ ipjq = ifq ∼ jgfq ∼ jq ∼ 1P

By Exercise 2.3.20 we conclude that ip is a weak equivalence. But by construction p
is a retract of ip :

P P P

B P B

p ipo p

i p

so it follows from the retract stability of the weak equivalences [142, 7.8] that p is a
weak equivalence, as desired.

2.3.4 The homotopy category of a model category

In this section, we prove that the category of fractions M[W−1], defined by formally
inverting the weak equivalences, is equivalent to the category hMcf of fibrant-cofibrant
objects and homotopy classes of maps. Our proof appeals to the universal property
of Proposition 2.2.2, which characterizes those categories that are isomorphic to the
category of fractions. For categories to be isomorphic, they must have the same object
sets, so we define a larger version of the homotopy category HoM, which has the same
objects as M[W−1] and is equivalent to its full subcategory hMcf.

Definition 2.3.24. For any model category M, there is a category hMcf

– whose objects are the fibrant-cofibrant objects in M and
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– in which the set of morphisms from A to B is taken to be the set of homotopy
classes of maps

[A,B] := Hom(A,B)/∼.

Proposition 2.3.22 ensures that composition in hMcf is well-defined.

Definition 2.3.25. The homotopy category HoM of a model category M is defined
by applying the (bijective-on-objects, fully faithful) factorization to the composite
functor

M Mcf hMcf

HoM

RQ

bij obj
γ

π

f+f
ν (2.1)

That is, the objects in HoM are the objects in M and

HoM(A,B) := M(RQA,RQB)/∼.

Exercise 2.3.26 (HoM ' hMcf).

(i) Verify that the category hMcf defined by Definition 2.3.24 is equivalent to the
full subcategory of HoM spanned by the fibrant-cofibrant objects of M.

(ii) Show that every object in M is isomorphic in HoM to a fibrant-cofibrant object.
(iii) Conclude that the categories HoM and hMcf are equivalent.

Theorem 2.3.27 (Quillen). For any model category M, the category of fractions M[W−1]
obtained by formally inverting the weak equivalences is isomorphic to the homotopy category
HoM.

Proof. We will prove that γ : M→ HoM satisfies the universal property of Proposition
2.2.2 that characterizes the category of fractions M[W−1]. First we must verify that
γ inverts the weak equivalences. The functor RQ carries weak equivalences in M to
weak equivalences between fibrant-cofibrant objects. Proposition 2.3.23 then implies
that these admit homotopy inverses and thus become isomorphisms in hMcf. This
proves that the composite horizontal functor of (2.1) inverts the weak equivalences. By
fully-faithfulness of ν, the functor γ : M→ HoM also inverts the weak equivalences.

It remains to verify that any functor F : M→ E that inverts the weak equivalences
factors uniquely through γ :

M E

HoM

F

γ F̄

Since γ is identity-on-objects, we must define F̄ to agree with F on objects. Recall that
the fibrant and cofibrant replacement functors come with natural weak equivalences
εX : QX ∼−→ X and ηX : X ∼−→ RX. Because F inverts weak equivalences, these natural
transformations define a natural isomorphism α : F⇒ FRQ of functors from M to E.
By the definition HoM(X,Y ) := M(RQX,RQY )/∼, the morphisms from X to Y in
HoM correspond to homotopy classes of morphisms from RQX to RQY in M. Choose
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any representative h : RQX→ RQY for the corresponding homotopy class of maps
and define its image to be the composite

F̄h : FX FRQX FRQY FY .
αX Fh α−1

Y

This is well-defined because if h ∼ h′ then there exists a left homotopy such that Hi0 =
h and Hi1 = h′ , where i0 and i1 are both sections to a common weak equivalence
(the projection from the cylinder). Since F inverts weak equivalences, Fi0 and Fi1 are
both right inverses to a common isomorphism, so it follows that Fi0 = Fi1 and hence
Fh = Fh′ .

Functoriality of F̄ follows immediately from naturality of α and functoriality of
FRQ. To see that F̄γ = F, recall that for any f : X → Y in M, γ(f ) is defined to
be the map in HoM(X,Y ) represented by the homotopy class RQf : RQX→ RQY .
By naturality of α, F̄γ(f ) = Ff , so that the triangle of functors commutes.

Finally, to verify that F̄ is unique observe that from the following commutative
diagram in M any map h ∈ HoM(X,Y ), the leftmost vertical arrow, is isomorphic in
HoM to a map in the image of γ , the vertical arrow on the right:

RQX QRQX RQRQX

RQY QRQY RQRQY

h

ηQRQX

Qh

εRQX

RQh=γ(h)
ηQRQYεRQY

Since the image of F̄ on the right vertical morphism is uniquely determined and the
top and bottom morphisms are isomorphisms, the image of F̄ on the left vertical
morphism is also uniquely determined.

Remark 2.3.28 . The universal property of hMcf is slightly weaker than the universal
property described in Proposition 2.2.2 for the category of fractions M[W−1]. For
any category E, restriction along γ : M → hMcf defines a fully faithful embedding
Fun(hMcf,E) ↪→ Fun(M,E) and equivalence onto the full subcategory of functors
from M to E that carry weak equivalences to isomorphisms. The difference is that a
given homotopical functor on M may not factor strictly through hMcf but may only
factor up to natural isomorphism. In practice, this presents no serious difficulty.

As a corollary, it is now easy to see that the only maps inverted by the localization
functor are weak equivalences. By Lemma 2.3.2, this proves that the weak equivalences
in a model category have all of the closure properties enumerated at the outset of this
section.

Theorem 2.3.29 ([229, 5.1]). A morphism in a model category M is inverted by the
localization functor

M→M[W−1]

if and only if it is a weak equivalence.

Proof. Cofibrantly and then fibrantly replacing the map it suffices to consider a map
between fibrant-cofibrant objects. By Theorem 2.3.27 we may prove this result for



24 Riehl: Homotopical categories: from model categories to (∞,1)-categories

Mcf→ hMcf instead. But now this is clear by construction: since morphisms in hMcf
are homotopy classes of maps, the isomorphisms are the homotopy equivalences,
which coincide exactly with the weak equivalences between fibrant-cofibrant objects
by Proposition 2.3.23.

2.3.5 Quillen’s model structure on simplicial sets

We conclude this section with a prototypical example. Quillen’s original model struc-
ture is borne by the category of simplicial sets, presheaves on the category ´ of
finite non-empty ordinals [n] = {0 < 1 < · · · < n} and order-preserving maps. A
simplicial set X : ´op → Set is a graded set {Xn}n≥0 — where elements of Xn are
called “n-simplices” — equipped with dimension-decreasing “face” maps Xn→ Xm
arising from monomorphisms [m]� [n] ∈ ´ and dimension-increasing “degeneracy”
maps Xm→ Xn arising from epimorphisms [n]� [m] ∈ ´. An n-simplex has n+ 1
codimension-one faces, each of which avoids one of its n+ 1 vertices.

There is a geometric realization functor | − | : sSet→ Top that produces a topo-
logical space |X | from a simplicial set X by gluing together topological n-simplices
for each non-degenerate n-simplex along its lower-dimensional faces. The simplicial
set represented by [n] defines the standard n-simplex ∆n. Its boundary ∂∆n is the
union of its codimension-one faces, while a horn Λnk is the further subspace formed
by omitting the face opposite the vertex k ∈ [n].

Theorem 2.3.30 (Quillen). The category sSet admits a model structure whose

– weak equivalences are those maps f : X→ Y that induce a weak homotopy equivalence
f : |X | → |Y | on geometric realizations,

– cofibrations are monomorphisms, and
– fibrations are the Kan fibration, which are characterized by the left lifting property

with respect to the set of all horn inclusions:

Λnk X

∆n Y

o

All objects are cofibrant. The fibrant objects are the Kan complexes, those sim-
plicial sets in which all horns can be filled. The fibrant objects are those simplicial
sets that most closely resemble topological spaces. In particular, two vertices in a Kan
complex lie in the same path component if and only if they are connected by a single
1-simplex, with may be chosen to point in either direction. By Proposition 2.3.23 a
weak equivalence between Kan complexes is a homotopy equivalence where the notion
of homotopy is defined with respect to the interval ∆1 using ∆1 ×X as a cylinder
object or X∆

1
as a path object.

Quillen’s model category of simplicial sets is of interest because, on the one hand, the
category of simplicial sets is very well behaved and, on the other hand, the geometric
realization functor defines an “equivalence of homotopy theories”: in particular, the
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homotopy category of simplicial sets gives another model for the homotopy category of
spaces. To explain this, we turn our focus to derived functors and derived equivalences
between model categories, the subject of §2.4.

2.4 Derived functors between model categories

Quillen’s model category axioms allow us to conjure a homotopy relation between
parallel maps in any model category, whatever the objects of that category might be.
For this reason, model categories are often regarded as “abstract homotopy theories.”
We will now zoom out to consider functors comparing such homotopy theories.

More generally, we might consider functors between homotopical categories equipped
with weak equivalences that at least satisfy the two-of-three property. A great deal
of the subtlety in “category theory up to weak equivalence” has to do with the fact
that functors between homotopical categories need not necessarily preserve weak
equivalences. In the case where a functor fails to preserve weak equivalence the next
best hope is that it admits a universal approximation by a functor that does, where
the approximation is either “from the left” or “from the right.” Such approximations
are referred as left or right derived functors.

The universal properties of left or right derived functors exist at the level of
homotopy categories though the derived functors of greatest utility, and the ones that
are most easily constructed in practice, can be constructed at the “point-set level.”
One of the selling points of Quillen’s theory of model categories is that they highlight
classes of functors — the left or right Quillen functors — whose left or right derived
functors can be constructed in a uniform way making the passage to total derived
functors pseudofunctorial. However, it turns out a full model structure is not necessary
for this construction; morally speaking, all that matters for the specification of derived
functors is the weak equivalences.

In §2.4.1, we give a non-standard and in our view greatly improved presentation of
the theory of derived functors guided by a recent axiomatization of Dwyer–Hirschhorn–
Kan–Smith [92] paired with a result of Maltsiniotis [176]. The key point of difference
is that we give a much stronger definition of what constitutes a derived functor than
the usual one. In §2.4.2 we introduce left and right Quillen functors between model
categories and show that such functors have a left or right derived functor satisfying
this stronger property. Then, in §2.4.3, we see that the abstract theory of this stronger
class of derived functors is considerably better than the theory of the weaker ones. A
highlight is an efficient expression of the properties of composite or adjoint derived
functors proven by Shulman [277] and reproduced as Theorem 2.4.15.

In §2.4.4, we extend the theory of derived functors to allow functors of two variables,
with the aim of proving that the homotopy category of spaces is cartesian closed,
inheriting an internal hom defined as the derived functor of the point-set level mapping
spaces. Implicit in our approach to the proof of this statement is a result promised at
the end of §2.3.5. In §2.4.5, we define a precise notion of equivalence between abstract
homotopy theories encoded by model categories, which specializes to establish an
equivalence between the homotopy theory of spaces and the homotopy theory of
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simplicial sets. Finally, in §2.4.6 we briefly sketch the connection between homotopical
algebra and homological algebra by considering suitable model structures appropriate
for a theory of derived functors between chain complexes.

2.4.1 Derived functors and equivalence of homotopy theories

As a warning to the reader, this definition of a derived functor is stronger than the
usual one in two ways:

– We explicitly require our derived functors to be defined “at the point-set level”
rather than simply as functors between homotopy categories.

– We require the universal property of the corresponding “total derived functors”
between homotopy categories to define absolute Kan extensions.

Before defining our derived functors we should explain the general meaning of
absolute Kan extensions.

Definition 2.4.1. A left Kan extension of F : C→ E along K : C→ D is a functor
LanKF : D→ E together with a natural transformation η : F⇒ LanKF ·K such that
for any other such pair (G : D→ E, γ : F⇒ GK), γ factors uniquely through η:7

C E C E C E

D D D

F

K
⇓η

F

K
⇓γ =

F

K

⇓η
LanKF G

LanKF

∃!⇓
G

Dually, a right Kan extension of F : C→ E along K : C→ D is a functor RanKF :
D→ E together with a natural transformation ε : RanKF ·K ⇒ F such that for any
(G : D→ E,δ : GK ⇒ F), δ factors uniquely through ε:

C E C E C E

D D D

F

K
⇑ε

F

K
⇑δ =

F

K

⇑ε
RanKF G

RanKF

∃!⇑
G

A left or right Kan extension is absolute if for any functor H : E→ F, the whiskered
composite (HLanKF : D → E, Hη) or (HRanKF : D → E, Hε) defines the left or
right Kan extension of HF along K .

A functor between homotopical categories is a homotopical functor if it preserves
the classes of weak equivalences, or carries the weak equivalences in the domain to
isomorphisms in the codomain in the case where no class of weak equivalences is
specified. Derived functors can be understood as universal homotopical approximations
to a given functor in a sense we now define.

Definition 2.4.2 (derived functors). Let M and K be homotopical categories with
weak equivalences satisfying the two-of-three property and with localization functors
γ : M→ HoM and δ : K→ HoK.

7 Writing α for the natural transformation LanKF⇒ G, the right-hand pasting diagrams express the
equality γ = αK · η, i.e., that γ factors as F LanKF ·K GK.

η αK
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– A left derived functor of F : M → K is a homotopical functor LF : M → K

equipped with a natural transformation λ : LF ⇒ F such that δLF and δλ :
δLF⇒ δF define an absolute right Kan extension of δF along γ :

M K

F

LF

⇑λ !
M K

HoM HoK

⇑δλ

F

γ δ

δLF

– A right derived functor of F : M → K is a homotopical functor RF : M → K

equipped with a natural transformation ρ : F ⇒ RF such that δRF and δρ :
δF⇒ δRF define an absolute left Kan extension of δF along γ :

M K

F

RF

⇓ρ !
M K

HoM HoK

⇓δρ

F

γ δ

δRF

Remark 2.4.3 . Absolute Kan extensions are in particular “pointwise” Kan extensions,
these being the left or right Kan extensions that are preserved by representable func-
tors. The pointwise left or right Kan extensions are those definable as colimits or
limits in the target category [238, §6.3], so it is somewhat surprising that these con-
ditions are appropriate to require for functors valued in homotopy categories, which
have few limits and colimits.8

As a consequence of Proposition 2.2.2, the homotopical functors

δLF,δRF : M⇒ HoK

factor uniquely through γ and so may be equally regarded as functors

δLF,δRF : HoM⇒ HoK,

as appearing in the displayed diagrams of Definition 2.4.2.

Definition 2.4.4 (total derived functors). The total left or right derived functors
of F are the functors

δLF,δRF : HoM⇒ HoK,

defined as absolute Kan extensions in Definition 2.4.2 and henceforth denoted by

LF,RF : HoM⇒ HoK.

There is a common setting in which derived functors exist and admit a simple
construction. Such categories have a subcategory of “good” objects on which the
functor of interest becomes homotopical and a functorial reflection into this full
subcategory. The details are encoded in the following axiomatization introduced
in [92] and exposed in [276], though we diverge from their terminology to more
thoroughly ground our intuition in the model categorical case.

8 With the exception of products and coproducts, the so-called “homotopy limits” and “homotopy
colimits” introduced in §2.5 do not define limits and colimits in the homotopy category.
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Definition 2.4.5. A left deformation on a homotopical category M consists of an
endofunctor Q together with a natural weak equivalence q : Q =⇒∼ 1.

The functor Q is necessarily homotopical. Let Mc be any full subcategory of
M containing the image of Q. The inclusion Mc → M and the left deformation
Q : M → Mc induce an equivalence between HoM and HoMc. As our notation
suggests, any model category M admits a left deformation defined by cofibrant
replacement. Accordingly, we refer to Mc as the subcategory of cofibrant objects,
trusting the reader to understand that when we have not specified any model structures,
Quillen’s technical definition is not what we require.

Definition 2.4.6. A functor F : M → K between homotopical categories is left
deformable if there exists a left deformation on M such that F is homotopical on an
associated subcategory of cofibrant objects.

Our first main result proves that left deformations can be used to construct left
derived functors. The basic framework of left deformations was set up in [92] while
the fact that such derived functors are absolute Kan extensions was observed in [176].

Theorem 2.4.7 ([92, 41.2-5], [176]). If F : M→ K has a left deformation q : Q =⇒∼ 1,
then LF = FQ is a left derived functor of F.

Proof. Write δ : K→ HoK for the localization. To show that (FQ,Fq) is a point-set
left derived functor, we must show that the functor δFQ and natural transforma-
tion δFq : δFQ ⇒ δF define a right Kan extension. The verification makes use of
Proposition 2.2.2, which identifies the functor category Fun(HoM,HoK) with the
full subcategory of Fun(M,HoK) spanned by the homotopical functors. Suppose
G : M→ HoK is homotopical and consider α : G⇒ δF. Because G is homotopical
and q : Q⇒ 1M is a natural weak equivalence, Gq : GQ⇒ G is a natural isomorphism.
Using naturality of α, it follows that α factors through δFq as

G GQ δFQ δF .
(Gq)−1 αQ δFq

To prove uniqueness, suppose α factors as

G δFQ δF .
β δFq

Naturality of β provides a commutative square of natural transformations:

GQ δFQ2

G δFQ

βQ

Gq δFQq

β

Because q is a natural weak equivalence and the functors G and δFQ are homotopical,
the vertical arrows are natural isomorphisms, so β is determined by βQ. This restricted
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natural transformation is uniquely determined: qQ is a natural weak equivalence
between objects in the image of Q. Since F is homotopical on this subcategory, this
means that FqQ is a natural weak equivalence and thus δFqQ is an isomorphism, so
βQ must equal the composite of the inverse of this natural isomorphism with αQ.

Finally, to show that this right Kan extension is absolute, our task is to show that
for any functor H : HoK → E, the pair (HδFQ,HδFq) again defines a right Kan
extension. Note that (Q,q) also defines a left deformation for HδF, simply because
the functor H : HoK → E preserves isomorphisms. The argument just given now
demonstrates that (HδFQ,HδFq) is a right Kan extension, as claimed.

2.4.2 Quillen functors

We’ll now introduce important classes of functors between model categories that will
admit derived functors.

Definition 2.4.8. A functor between model categories is

– left Quillen if it preserves cofibrations, trivial cofibrations, and cofibrant objects,
and

– right Quillen if it preserves fibrations, trivial fibrations, and fibrant objects.

Most left Quillen functors are “cocontinuous,” preserving all colimits, while most
right Quillen functors are “continuous,” preserving all limits; when this is the case
there is no need to separately assume that cofibrant or fibrant objects are preserved.
Importantly, cofibrant replacement defines a left deformation for any left Quillen
functor, while fibrant replacement defines a right deformation for any right Quillen
functor, as we now demonstrate:

Lemma 2.4.9 (Ken Brown’s lemma).

(i) Any map between fibrant objects in a model category can be factored as a right inverse
to a trivial fibration followed by a fibration:

P

A B

p

q
∼

f

j∼ (2.2)

(ii) Let F : M→ K be a functor from a model category to a category with a class of weak
equivalences satisfying the two-of-three property. If F carries trivial fibrations in M

to weak equivalences in K, then F carries all weak equivalences between fibrant
objects in M to weak equivalences in K.

Proof. For (i), given any map f : A→ B factor its graph (1A, f ) : A→ A × B as a
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trivial cofibration j followed by a fibration r :

B

A P A×B 1

A

f

j
∼

p

q
∼

r

πB

πA

y

Since A and B are fibrant, the dual of Lemma 2.3.9 implies that the product projections
are fibrations, and thus the composite maps p and q are fibrations. By the two-of-three
property, q is also a weak equivalence.

To prove (ii) assume that f : A→ B is a weak equivalence in M and construct the
factorization (2.2). It follows from the two-of-three property that p is also a trivial
fibration, so by hypothesis both Fp and Fq are weak equivalences in K. Since Fj is
right inverse to Fq, it must also be a weak equivalence, and thus the closure of weak
equivalences under composition implies that Ff is a weak equivalence as desired.

Specializing Theorem 2.4.7 we then have:

Corollary 2.4.10. The left derived functor of any left Quillen functor F exists and is
given by LF := FQ, while the right derived functor of any right Quillen functor G exists
and is given by RG := GR, where Q and R denote any cofibrant and fibrant replacement
functors, respectively.

2.4.3 Derived composites and derived adjunctions

Left and right Quillen functors frequently occur in adjoint pairs, in which case the left
adjoint is left Quillen if and only if the right adjoint is right Quillen:

Definition 2.4.11. Consider an adjunction between a pair of model categories.

M N

F

⊥
G

(2.3)

Then the following are equivalent, defining a Quillen adjunction.

(i) The left adjoint F is left Quillen.

(ii) The right adjoint G is right Quillen.

(iii) The left adjoint preserves cofibrations and the right adjoint preserves fibrations.

(iv) The left adjoint preserves trivial cofibrations and the right adjoint preserves
trivial fibrations.

Exercise 2.4.12 . Justify the equivalence of the properties in the definition by proving:
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(i) In the presence of any adjunction (2.3) the lifting problem displayed below left in
N admits a solution if and only if the transposed lifting problem displayed below
right admits a solution in M.

FA X A GX

FB Y B GY

F`

f ]

r

f [

` Gr

g]

k] k[

g[

(ii) Conclude that if M has a weak factorization system (L,R) and N has a weak
factorization system (L′ ,R′) then F preserves the left classes if and only if G
preserves the right classes.

Importantly, the total left and right derived functors of a Quillen pair form an
adjunction between the appropriate homotopy categories.

Theorem 2.4.13 (Quillen [229, I.3]). If

M N

F

⊥
G

is a Quillen adjunction, then the total derived functors form an adjunction

HoM HoN

LF

⊥

RG

A particularly elegant proof of Theorem 2.4.13 is due to Maltsiniotis. Once the
strategy is known, the details are elementary enough to be left as an exercise:

Exercise 2.4.14 ([176]). Use the fact that the total derived functors of a Quillen pair
F a G define absolute Kan extensions to prove that LF aRG. Conclude that Theorem
2.4.13 applies more generally to any pair of adjoint functors that are deformable in
the sense of Definition 2.4.6 [92, 44.2].

A double categorical theorem of Shulman [277] consolidates into a single statement
the adjointness of the total derived functors of a Quillen adjunction, the pseudo-
functoriality of the construction of total derived functors of Quillen functors, and one
further result about functors that are simultaneously left and right Quillen. A double
category is a category internal to Cat: it has a set of objects, a category of horizontal
morphisms, a category of vertical morphisms, and a set of squares that are composable
in both vertical and horizontal directions, defining the arrows in a pair of categories
with the horizontal and vertical morphisms as objects, respectively [147].

For instance, Cat is the double category of categories, functors, functors, and
natural transformations inhabiting squares and pointing southwest. There is another
double category Model whose objects are model categories, whose vertical morphisms
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are left Quillen functors, whose horizontal morphisms are right Quillen functors, and
whose squares are natural transformations pointing southwest. The following theorem
and a generalization, with deformable functors in place of Quillen functors [277, 8.10],
is due to Shulman.

Theorem 2.4.15 ([277, 7.6]). The map that sends a model category to its homotopy category
and a left or right Quillen functor to its total left or right derived functor defines a double
pseudofunctor Ho : Model→Cat.

The essential content of the pseudofunctoriality statement is that the composite
of the left derived functors of a pair of left Quillen functors is coherently naturally
weakly equivalent to the left derived functor of their composite. Explicitly, given a
composable pair of left Quillen functors M L KF G , the map

LG ◦LF := GQ ◦FQ
GεFQ−−−−−→ GFQ =: L(GF)

defines a comparison natural transformation. Since Q : M→ Mc lands in the sub-
category of cofibrant objects and F preserves cofibrant objects, εFQ : QFQ⇒ FQ
is a weak equivalence between cofibrant objects. Lemma 2.4.9(ii) then implies that
GεFQ : GQFQ→ GFQ defines a natural weak equivalence LG ◦LF→ LGF. Given
a composable triple of left Quillen functors, there is a commutative square of natural
weak equivalences LH ◦LG ◦LF→ L(H ◦G ◦F). If we compose with the Gabriel–
Zisman localizations to pass to homotopy categories and total left derived functors,
these coherent natural weak equivalences become coherent natural isomorphisms,
defining the claimed pseudofunctor.

Quillen adjunctions are encoded in the double category Model as “conjoint”
relationships between vertical and horizontal 1-cells; in this way Theorem 2.4.15
subsumes Theorem 2.4.13. Similarly, functors that are simultaneously left and right
Quillen are presented as vertical and horizontal “companion” pairs. The double
pseudofunctoriality of Theorem 2.4.15 contains a further result: if a functor is both
left and right Quillen, then its total left and right derived functors are isomorphic.

2.4.4 Monoidal and enriched model categories

If M has a model structure and a monoidal structure it is natural to ask that these
be compatible in some way, but what sort of compatibility should be required? In the
most common examples, the monoidal product is closed — that is, the functors A⊗−
and −⊗A admit right adjoints9 and consequently preserve colimits in each variable
separately. This situation is summarized and generalized by the notion of a two-
variable adjunction, which we introduce using notation that will suggest the most
common examples.

Definition 2.4.16. A triple of bifunctors

K× L ⊗−→M , Kop ×M
{ ,}
−−→ L , Lop ×M

Map
−−−−→ K

9 Very frequently a monoidal structure is symmetric, in which case these functors are naturally
isomorphic, and a single right adjoint suffices.
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equipped with a natural isomorphism

M(K ⊗L,M) � L(L, {K,M}) � K(K,Map(L,M))

defines a two-variable adjunction.

Example 2.4.17. A symmetric monoidal category is closed just when its monoidal
product −⊗− : V×V→ V defines the left adjoint of a two-variable adjunction

V(A⊗B,C) � V(B,Map(A,C)),V(A,Map(B,C)),

the right adjoint Map : Vop ×V→ V defining an internal hom.

Example 2.4.18. A category M that is enriched over a monoidal category is tensored
and cotensored just when the enriched hom functor Map : Mop ×M→ V is one of
the right adjoints of a two-variable adjunction

M(V ⊗M,N ) �M(M, {V ,N }) � V(V ,Map(M,N )),

the other two adjoints defining the tensor V ⊗M and cotensor {V ,N } of an object
V ∈ V with objects M,N ∈M.10

A Quillen two-variable adjunction is a two-variable adjunction in which the left
adjoint is a left Quillen bifunctor while the right adjoints are both right Quillen bifunc-
tors, any one of these conditions implying the other two. To state these definitions,
we must introduce the following construction. The “pushout-product” of a bifunctor
−⊗− : K× L→M defines a bifunctor − ⊗̂ − : K2 × L2→M2 that we refer to as the
“Leibniz tensor” (when the bifunctor ⊗ is called a “tensor”). The “Leibniz cotensor”
and “Leibniz hom”�{−,−} : (K2)op ×M2→ L2 and M̂ap(−,−) : (L2)op ×M2→ K2

are defined dually, using pullbacks in L and K respectively.

Definition 2.4.19 (the Leibniz construction). Given a bifunctor − ⊗ − : K × L→ M

valued in a category with pushouts, the Leibniz tensor of a map k : I → J in K and
a map ` : A→ B in L is the map k ⊗̂ ` in M induced by the pushout diagram on the
left:

I ⊗A I ⊗B {J,X}

J ⊗A • • {I,X}

J ⊗B {J,Y } {I,Y }

I⊗`

k⊗A
p k⊗B

{k,X}

{J,m}

�{k,m}

J⊗`

k⊗̂`
y

{I,m}

{k,Y }

10 As stated, this definition is a little too weak: one needs to ask in addition that (i) the tensors are
associative relative to the monoidal product in V, (ii) dually that the cotensors are associative relative to
the monoidal product in V, and (iii) that the two-variable adjunction is enriched in V. Any of these three
conditions implies the other two.
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In the case of a bifunctor {−,−} : Kop ×M→ L contravariant in one of its variables
valued in a category with pullbacks, the Leibniz cotensor of a map k : I → J in
K and a map m : X → Y in M is the map �{k,m} induced by the pullback diagram
above right.

Proposition 2.4.20. The Leibniz construction preserves:

(i) structural isomorphisms: a natural isomorphism

X ∗ (Y ⊗Z) � (X ×Y )�Z

between suitably composable bifunctors extends to a natural isomorphism

f ∗̂ (g ⊗̂ h) � (f ×̂ g) �̂ h

between the corresponding Leibniz products;
(ii) adjointness: if (⊗, { , },Map) define a two-variable adjunction, then the Leibniz

bifunctors (⊗̂, {̂ , },M̂ap) define a two-variable adjunction between the corresponding
arrow categories;

(iii) colimits in the arrow category: if ⊗ : K× L→M is cocontinuous in either variable,
then so is ⊗̂ : K2 × L2→M2;

(iv) pushouts: if ⊗ : K× L→M is cocontinuous in its second variable, and if g ′ is a
pushout of g , then f ⊗̂ g ′ is a pushout of f ⊗̂ g ;

(v) composition, in a sense: the Leibniz tensor f ⊗̂ (h · g) factors as a composite of a
pushout of f ⊗̂ g followed by f ⊗̂ h:

I ⊗A I ⊗B I ⊗C

J ⊗A • •

J ⊗B •

J ⊗C

f ⊗A

I⊗g

p

I⊗h

p
f ⊗C

J⊗g
f ⊗̂g

p
f ⊗̂(h·g)

J⊗h
f ⊗̂h

(vi) cell complex structures: if f and g may be presented as cell complexes with cells fα
and gβ , respectively, and if ⊗ is cocontinuous in both variables, then f ⊗̂ g may be
presented as a cell complex with cells fα ⊗̂ gβ .

Proofs of these assertions and considerably more details are given in [245, §4-5].

Exercise 2.4.21 . Given a two-variable adjunction as in Definition 2.4.16 and classes of
maps A in K, B in L, and C in M, prove equivalences between the lifting properties:

A⊗̂B� C ⇔ B� �{A,C} ⇔ A� M̂ap(B,C).

Here A ⊗̂ B � C, for instance, asserts that maps in C have the right lifting property
with respect to each map in A⊗̂B.
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Exercise 2.4.21 explains the equivalence between the following three definitions of a
Quillen two-variable adjunction.

Definition 2.4.22. A two-variable adjunction

V×M ⊗−→ N, Vop ×N
{−,−}
−−−−→M, Mop ×N

Map
−−−−→ V

between model categories V, M, and N defines a Quillen two-variable adjunction
if any, and hence all, of the following equivalent conditions are satisfied:

(i) The functor ⊗̂ : V2 ×M2 → N2 carries any pair comprised of a cofibration in
V and a cofibration in M to a cofibration in N, and this cofibration is a weak
equivalence if either of the domain maps are.

(ii) The functor �{−,−} : (V2)op×N2→M2 carries any pair comprised of a cofibration
in V and a fibration in N to a fibration in M, and this fibration is a weak
equivalence if either of the domain maps are.

(iii) The functor M̂ap : (M2)op×N2→ V2 carries any pair comprised of a cofibration
in M and a fibration in N to a fibration in V, and this fibration is a weak
equivalence if either of the domain maps are.

Exercise 2.4.23 . Prove that if −⊗− : V×M→ N is a left Quillen bifunctor and V ∈ V
is cofibrant then V⊗− : M→ N is a left Quillen functor.

Quillen’s axiomatization of the additional properties enjoyed by his model structure
on the category of simplicial sets has been generalized by Hovey [130, §4.2].

Definition 2.4.24. A (closed symmetric) monoidal model category is a (closed
symmetric) monoidal category (V,⊗, I) with a model structure so that the monoidal
product and hom define a Quillen two-variable adjunction and furthermore so that
the maps

QI ⊗ v→ I ⊗ v � v and v ⊗QI → v ⊗ I � v (2.4)

are weak equivalences if v is cofibrant.11

Definition 2.4.25. If V is a monoidal model category a V-model category is a
model category M that is tensored, cotensored, and V-enriched in such a way that
(⊗, { , },Map) is a Quillen two-variable adjunction and the maps

QI ⊗ m→ I ⊗ m �m

are weak equivalences if m is cofibrant.

Exercise 2.4.26 . In a locally small category M with products and coproducts the hom
bifunctor is part of a two-variable adjunction:

− ∗− : Set×M→M, {−,−} : Setop ×M→M, Hom : Mop ×M→ Set.

Equipping Set with the model structure whose weak equivalences are all maps, whose
cofibrations are monomorphisms, and whose fibrations are epimorphisms, prove that

11 If the monoidal product is symmetric then of course these two conditions are equivalent and if it is
closed then they are also equivalent to a dual one involving the internal hom [130, 4.2.7].
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(i) Set is a cartesian monoidal model category.
(ii) Any model category M is a Set-model category.

Example 2.4.27. Quillen’s model structure of Theorem 2.3.30 is a closed symmetric
monoidal model category. The term simplicial model category refers to a model
category enriched over this model structure.

Exercise 2.4.28 . Show that if M is a simplicial model category then the full simplicial
subcategory Mcf is Kan-complex enriched.

The conditions (2.4) on the cofibrant replacement of the monoidal unit are implied
by the Quillen two-variable adjunction if the monoidal unit is cofibrant and are
necessary for the proof of Theorem 2.4.29, which shows that the homotopy categories
are again closed monoidal and enriched.

Theorem 2.4.29 ([130, 4.3.2,4]).

(i) The homotopy category of a closed symmetric monoidal model category is a closed
monoidal category with tensor and hom given by the derived adjunction

(L⊗,RMap,RMap) : HoV×HoV→ HoV

and monoidal unit QI .
(ii) If M is a V-model category, then HoM is the underlying category of a HoV-enriched,

tensored, and cotensored category with enrichment given by the total derived two-
variable adjunction

(L⊗,R{ , },RMap) : HoV×HoM→ HoM.

In particular:

Corollary 2.4.30. The homotopy category of spaces is cartesian closed. If M is a simplicial
model category, then HoM is enriched, tensored, and cotensored over the homotopy category
of spaces.

2.4.5 Quillen equivalences between homotopy theories

Two model categories present equivalent homotopy theories if there exists a finite
sequence of model categories and a zigzag of Quillen equivalences between them, in a
sense we now define. A Quillen adjunction defines a Quillen equivalence just when the
derived adjunction of Theorem 2.4.13 defines an adjoint equivalence: an adjunction
with invertible unit and counit. There are several equivalent characterizations of this
situation.

Definition 2.4.31 ([229, §I.4]). A Quillen adjunction between a pair of model cate-
gories

M N

F

⊥
G
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defines a Quillen equivalence if any, and hence all, of the following equivalent
conditions are satisfied:

(i) The total left derived functor LF : HoM→ HoN defines an equivalence of cate-
gories.

(ii) The total right derived functor RG : HoN → HoM defines an equivalence of
categories.

(iii) For every cofibrant object A∈M and every fibrant object X∈N, a map f ] : FA→X
is a weak equivalence in N if and only if its transpose f [ : A→ GX is a weak
equivalence in M.

(iv) For every cofibrant object A ∈ M, the composite A → GFA → GRFA of the
unit with fibrant replacement is a weak equivalence in M, and for every fibrant
object X ∈ N, the composite FQGX → FGX → X of the counit with cofibrant
replacement is a weak equivalence in N.

Famously, the formalism of Quillen equivalences enables a proof that the homotopy
theory of spaces is equivalent to the homotopy theory of simplicial sets.

Theorem 2.4.32 (Quillen [229, §II.3]). The homotopy theory of simplicial sets is equiv-
alent to the homotopy theory of topological spaces via the geometric realization a total
singular complex adjunction

sSet Top

|−|

⊥

Sing

2.4.6 Extending homological algebra to homotopical algebra

Derived functors are endemic to homological algebra. Quillen’s homotopical algebra
can be understood to subsume classical homological algebra in the following sense.
The category of chain complexes of modules over a fixed ring (or valued in an arbitrary
abelian category) admits a homotopical structure where the weak equivalences are
quasi-isomorphisms. Relative to an appropriately defined model structure, the left and
right derived functors of homological algebra can be viewed as special cases of the
construction of derived functors of left or right Quillen functors in Corollary 2.4.10 or
in the more general context of Theorem 2.4.7.

The following theorem describes an equivalent presentation of the homotopy theory
just discussed.

Theorem 2.4.33 (Schwede–Shipley after Dold–Kan). The homotopy theory of simplicial
modules over a commutative ring, with fibrations and weak equivalences as on underlying
simplicial sets, is equivalent to the homotopy theory of non-negatively graded chain complexes
of modules, as presented by the projective model structure whose weak equivalences are
the quasi-isomorphisms, fibrations are the chain maps which are surjective in positive
dimensions, and cofibrations are the monomorphisms with dimensionwise projective cokernel.
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Proof. For details of the model structure on simplicial objects see [229, II.4, II.6] and
on chain complexes see [130, 2.3.11, 4.2.13]. The proof that the functors Γ ,N in the
Dold–Kan equivalence are each both left and right Quillen equivalences can be found
in [265, §4.1] or is safely left as an exercise to the reader.

The Dold–Kan Quillen equivalence of Theorem 2.4.33 suggests that simplicial
methods might replace homological ones in non-abelian contexts. Let M be any
category of “algebras” such as monoids, groups, rings (or their commutative variants),
or modules or algebras over a fixed ring; technically M may be any category of models
for a Lawvere theory [154], which specifies finite operations of any arity and relations
between the composites of these operations.

Theorem 2.4.34 (Quillen [229, §II.4]). For any category M of “algebras” — a category of
models for a Lawvere theory — the category M´op

of simplicial algebras admits a simplicial
model structure whose

– weak equivalences are those maps that are weak homotopy equivalences on underlying
simplicial sets,

– fibrations are those maps that are Kan fibrations on underlying simplicial sets, and
– cofibrations are retracts of free maps.

2.5 Homotopy limits and colimits

Limits and colimits provide fundamental tools for constructing new mathematical
objects from existing ones, so it is important to understand these constructions in
the homotopical context. There are a variety of possible meanings of a homotopical
notion of limit or colimit including:

(i) limits or colimits in the homotopy category of a model category;
(ii) limit or colimit constructions that are “homotopy invariant,” with weakly equiva-

lent inputs giving rise to weakly equivalent outputs;
(iii) derived functors of the limit or colimit functors; and finally
(iv) limits or colimits whose universal properties are (perhaps weakly) enriched over

simplicial sets or topological spaces.

We will explore these possibilities in turn. We begin in §2.5.1 by observing that the
homotopy category has few genuine limits and colimits but does have “weak” ones
in the case where the category is enriched, tensored, and cotensored over spaces.
For the reason explained in Remark 2.5.5, homotopy limits or colimits rarely satisfy
condition (i).

In §2.5.2, we define homotopy limits and colimits as derived functors, which in
particular give “homotopy invariant” constructions, and introduce hypotheses on the
ambient model category that ensure that these homotopy limit and colimit functors
always exist. In §2.5.3 we consider particular diagram shapes, the so-called Reedy
categories, for which homotopy limits and colimits exist in any model category. Finally,
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in §2.5.4 we permit ourselves a tour through the general theory of weighted limits and
colimits as a means of elucidating these results and introducing families of Quillen
bifunctors that deserve to be better known. This allows us to finally explain the sense
in which homotopy limits or colimits in a simplicial model category satisfy properties
(ii)-(iv) and in particular have an enriched universal property which may be understood
as saying they “represent homotopy coherent cones” over or under the diagram.

2.5.1 Weak limits and colimits in the homotopy category

Consider a category M that is enriched over spaces — either topological spaces or
simplicial sets will do — meaning that for each pair of objects x,y, there is a mapping
space Map(x,y) whose points are the usual set M(x,y) of arrows from x to y. We may
define a homotopy category of M using the construction of Definition 2.3.24.

Definition 2.5.1. If M is a simplicially enriched category its homotopy category
hM has

– objects the same objects as M and
– hom-sets hM(x,y) := π0Map(x,y) taken to be the path components of the mapping

spaces.

Thus, a morphism from x to y in hM is a homotopy class of vertices in the simplicial
set Map(x,y), where two vertices are homotopic if and only if they can be connected
by a finite zigzag of 1-simplices.

A product of a family of objects mα in a category M is given by a representation m
for the functor displayed on the right:

M(−,m)
�−→

∏
α
M(−,mα).

By the Yoneda lemma, a representation consists of an object m ∈ M together with
maps m → mα for each α that are universal in the sense that for any collection
x→mα ∈M, each of these arrows factors uniquely along a common map x→m. But
if M is enriched over spaces, we might instead require only that the triangles

x

m mα

∃ ' (2.5)

commute “up to homotopy” in the sense of a path in the space Map(x,mα) whose
underlying set of points is M(x,mα). Now we can define the homotopy product to
be an object m equipped with a natural weak homotopy equivalence

Map(x,m)→
∏
α

Map(x,mα)

for each x ∈M. Surjectivity on path components implies the existence and homotopy
commutativity of the triangles (2.5).
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Exercise 2.5.2 . Use the fact that π0 commutes with products and is homotopical
to show, unusually for homotopy limits, that the homotopy product is a product in
the homotopy category hM. Similarly, a homotopy coproduct is a coproduct in the
homotopy category.

For non-discrete diagram shapes, the homotopy category of a category enriched in
spaces12 will no longer have genuine limits or colimits but in the presence of tensors
in the colimit case and cotensors in the limit case it will have weak ones.

Theorem 2.5.3 ([295, 11.1]). If M is cocomplete and also enriched and tensored over spaces,
its homotopy category hM has all weak colimits: given any small diagram F : D→ hM,
there is a cone under F through which every other cone factors, although not necessarily
uniquely.

In general, the colimit of a diagram F of shape D may be constructed as the reflexive
coequalizer of the diagram

∐
a,b∈D

D(a,b)×Fa
∐
a∈D

Fa
ev

proj

id

Note that this construction does not actually require the diagram F to be a functor;
it suffices for the diagram to define a reflexive directed graph in the target category.
In the case of a diagram valued in hM, the weak colimit will be constructed as a
“homotopy reflexive coequalizer”13 of a lifted reflexive directed graph in M.

Proof. Any diagram F : D→ hM may be lifted to a reflexive directed graph F : D→M,
choosing representatives for each homotopy class of morphisms in such a way that
identities are chosen to represent identities. Using these lifted maps and writing I for
the interval, define the weak colimit of F : D→ hM to be a quotient of the coproduct( ∐

a,b∈D
D(a,b)× I ×Fa

)
t

( ∐
a∈D

Fa
)

modulo three identifications:∐
a,b∈D

(D(a,b)× {0} ×Fa t D(a,b)× {1} ×Fa) t
∐
a∈D

I ×Fa
∐
a∈D

Fa

∐
a,b∈D

D(a,b)× I ×Fa wcolimF

(evtproj)tproj

(inclt incl)t id
p

The right-hand vertical map defines the legs of the colimit cone, which commute in
hM via the witnessing homotopies given by the bottom horizontal map.

Now consider a cone in hM under F with nadir X. We may regard the data of this

12 Here we can take our enrichment over topological spaces or over simplicial sets, the latter being more
general [237, 3.7.15-16].

13 Succinctly, it may be defined as the weighted colimit of this reflexive coequalizer diagram weighted by
the truncated cosimplicial object ∗ I whose leftwards maps are the endpoint inclusions into the
closed interval I ; see §2.5.4.
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cone as a diagram D×2→ hM that restricts along {0} ↪→ 2 to F and along {1} ↪→ 2
to the constant diagram at X. This data may be lifted to a reflexive directed graph
D× 2→M whose lift over 0 agrees with the previously specified lift F and whose lift
over 1 is constant at X. This defines a cone under the pushout diagram, inducing the
required map wcolimF→ X.

2.5.2 Homotopy limits and colimits of general shapes

In general, limit and colimit constructions in a homotopical category fail to be weak
equivalence invariant. Famously the n-sphere can be formed by gluing together two
disks along their boundary spheres Sn �Dn ∪Sn−1 Dn. The diagram

Dn Sn−1 Dn

∗ Sn−1 ∗
∼ ∼ (2.6)

reveals that the pushout functor fails to preserve componentwise homotopy equiva-
lences.

When a functor fails to be homotopical, the next best option is to replace it by a de-
rived functor. Because colimits are left adjoints, one might hope that colim: MD→M

has a left derived functor and dually that lim: MD→M has a right derived functor,
leading us to the following definition:

Definition 2.5.4. Let M be a homotopical category and let D be a small cate-
gory. The homotopy colimit functor, when it is exists, is a left derived functor
Lcolim: MD → M, while the homotopy limit functor, when it exists, is a right
derived functor Rlim: MD→M.

We always take the weak equivalences in the category MD of diagrams of shape D

in a homotopical category M to be defined pointwise. By the universal property of
localization, there is a canonical map

MD (HoM)D

Ho(MD)

γ

γD

(2.7)

but it is not typically an equivalence of categories. Indeed, some of the pioneering
forays into abstract homotopy theory [295, 72, 90] were motivated by attempts to
understand the essential image of the functor Ho(MD)→ (HoM)D, the objects in
(HoM)D being homotopy commutative diagrams while the isomorphism classes of
objects in Ho(MD) being somewhat more mysterious; see §2.6.2.

Remark 2.5.5 . The diagonal functor ∆ : M → MD is homotopical and hence acts
as its own left and right derived functors. By Theorem 2.4.13 applied to a Quillen
adjunction to be constructed in the proof of Theorem 2.5.7, the total derived functor
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Lcolim: Ho(MD) → HoM is left adjoint to ∆ : HoM → Ho(MD), but unless the
comparison of (2.7) is an equivalence, this is not the same as the diagonal functor
∆ : HoM → Ho(M)D. Hence, homotopy colimits are not typically colimits in the
homotopy category.14

In the presence of suitable model structures, Corollary 2.4.10 can be used to prove
that the homotopy limit and colimit functors exist.

Definition 2.5.6. Let M be a model category and let D be a small category.

(i) The projective model structure on MD has weak equivalences and fibrations
defined pointwise in M.

(ii) The injective model structure on MD has weak equivalences and cofibrations
defined pointwise in M.

When M is a combinatorial model category, both model structures are guaranteed to
exist. More generally, when M is an accessible model category these model structures
exist [118, 3.4.1]. Of course, the projective and injective model structures might happen
to exist on MD, perhaps for particular diagram shapes D, in the absence of these
hypotheses.

Theorem 2.5.7. Let M be a model category and let D be a small category.

(i) Whenever the projective model structure on MD exists, the homotopy colimit functor
Lcolim: MD→M exists and may be computed as the colimit of a projective cofibrant
replacement of the original diagram.

(ii) Whenever the injective model structure on MD exists, the homotopy limit functor
Rlim: MD → M exists and may be computed as the limit of an injective fibrant
replacement of the original diagram.

Proof. This follows from Corollary 2.4.10 once we verify that the colimit and limit
functors are respectively left and right Quillen with respect to the projective and
injective model structures. These functors are, respectively, left and right adjoint to the
constant diagram functor ∆ : M→MD, so by Definition 2.4.11 it suffices to verify that
this functor is right Quillen with respect to the projective model structure and also left
Quillen with respect to the injective model structure. But these model structures are
designed so that this is the case.

Exercise 2.5.8 .

(i) Show that any pushout diagram B A C comprised of a pair of
cofibrations between cofibrant objects is projectively cofibrant. Conclude that the
pushout of cofibrations between cofibrant objects is a homotopy pushout and use
this to compute the homotopy pushout of (2.6).

14 The comparison (2.7) is an equivalence when D is discrete; this is why homotopy products and
homotopy coproducts are products and coproducts in the homotopy category.
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(ii) Argue that for a generic pushout diagram Y X Z , its homotopy
pushout may be constructed by taking a cofibrant replacement q : X ′ → X of
X and then factoring the composites hq and kq as a cofibration followed by a
trivial fibration:

Y ′ X ′ Z ′

Y X Z

∼ ∼ q ∼

and then taking the ordinary pushout of this projective cofibrant replacement
formed by the top row.

Exercise 2.5.9 .

(i) Verify that any ­-indexed diagram

A0 A1 A2 · · ·f01 f12 f23

of cofibrations between cofibrant objects is projectively cofibrant. Conclude that
the sequential colimit of a diagram of cofibrations between cofibrant objects is a
homotopy colimit.

(ii) Argue that for a generic sequential diagram

X0 X1 X2 · · ·f01 f12 f23

its projective cofibrant replacement may be formed by first replacing X0 by
a cofibrant object Q0, then inductively factoring the resulting composite map
Qn→ Xn+1 into a cofibration followed by a trivial fibration:

G Q0 Q1 Q2 · · ·

F X0 X1 X2 · · ·

q ∼ q0 ∼

g01

q1 ∼

g12

q2 ∼

g23

f01 f12 f23

Conclude that the homotopy sequential colimit is formed as the sequential
colimit of this top row.

2.5.3 Homotopy limits and colimits of Reedy diagrams

In fact, even if the projective model structures do not exist, certain diagram shapes
allow us to construct functorial “projective cofibrant replacements” in any model
category nonetheless, for example by following the prescriptions of Exercise 2.5.9. Dual
“injective fibrant replacements” for pullback or inverse limit diagrams exist similarly.
This happens when the categories indexing these diagrams are Reedy categories.

If M is any model category and D is any Reedy category, then the category MD

of Reedy diagrams admits a model structure. If the indexing category D satisfies
the appropriate half of a dual pair of conditions listed in Proposition 2.5.22, then
the colimit or limit functors colim, lim: MD→M are left or right Quillen. In such
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contexts, homotopy colimits and homotopy limits can be computed by applying
Corollary 2.4.10.

The history of the abstract notion of Reedy categories is entertaining. The category
´op is an example of what is now called a Reedy category. The eponymous model
structure on simplicial objects taking values in any model category was introduced in
an unpublished but widely disseminated manuscript by Reedy [232]. Reedy notes that
a dual model structure exists for cosimplicial objects, which, in the case of cosimplicial
simplicial sets, coincides with a model structure introduced by Bousfield and Kan to
define homotopy limits [58, §X]. The general definition, unifying these examples and
many others, is due to Kan and appeared in the early drafts of the book that eventually
became [92]. Various draft versions circulated in the mid 1990s and contributed to
the published accounts [124, chapter 15] and [130, chapter 5]. The final [92] in turn
references these sources in order to “review the notion of a Reedy category” that
originated in an early draft of that same manuscript.

Definition 2.5.10. A Reedy structure on a small category A consists of a de-
gree function deg: obA→ ω together with a pair of wide subcategories

−→
A and

←−
A

of degree-increasing and degree-decreasing arrows respectively, so that:

(i) The degree of the domain of every non-identity morphism in
−→
A is strictly less

than the degree of the codomain, and the degree of the domain of every non-
identity morphism in

←−
A is strictly greater than the degree of the codomain.

(ii) Every f ∈morA may be factored uniquely as

• •

•

f

←−
A3
←−
f

−→
f ∈
−→
A

(2.8)

Example 2.5.11.

(i) Discrete categories are Reedy categories, with all objects having degree zero.
(ii) If A is a Reedy category, then so is Aop: its Reedy structure has the same de-

gree function but has the degree-increasing and degree-decreasing arrows inter-
changed.

(iii) Finite posets are Reedy categories with all morphisms degree-increasing. Declare
any minimal element to have degree zero and define the degree of a generic
object d ∈ D to be the length of the maximal-length path of non-identity arrows
from an element of degree zero to d. This example can be extended without
change to include infinite posets such as ­ provided that each object has finite
degree.

(iv) The previous example gives the category b← a→ c a Reedy structure in which
deg(a) = 0 and deg(b) = deg(c) = 1. There is another Reedy category structure
in which deg(b) = 0, deg(a) = 1, and deg(c) = 2.

(iv) The category a⇒ b is a Reedy category with deg(a) = 0, deg(b) = 1, and both
non-identity arrows said to strictly raise degrees.
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(vi) The category ´ of finite non-empty ordinals and the category ´+ of finite ordi-
nals and order-preserving maps both support canonical Reedy category struc-
tures, for which we take the degree-increasing maps to be the subcategories of
face operators (monomorphisms) and the degree-decreasing maps to be the sub-
categories of degeneracy operators (epimorphisms).

Exercise 2.5.12 .

(i) Show that every morphism f factors uniquely through an object of minimum
degree and this factorization is the Reedy factorization of (2.8).

(ii) Show that the Reedy category axioms prohibit any non-identity isomorphisms.

Remark 2.5.13 . The notion of a Reedy category has been usefully extended by Berger
and Moerdijk to include examples such as finite sets or finite pointed sets that do have
non-identity automorphisms. All of the results to be described here have analogues
in this more general context, but for ease of exposition we leave these details to [38].

To focus attention on our goal, we now introduce the Reedy model structure, which
serves as motivation for some auxiliary constructions we have yet to introduce.

Theorem 2.5.14 (Reedy, Kan [245, §7]). Let M be a model category and let D be a Reedy
category. Then the category MD admits a model structure whose

– weak equivalences are the pointwise weak equivalences, and
– weak factorization systems (C ∩W [D],F [D]) and (C[D],F ∩W [D]) are the Reedy

weak factorization systems.

In the Reedy weak factorization system (L[D],R[D]) defined relative to a weak
factorization system (L,R) on M, a natural transformation f : X → Y ∈ MD is in
L[D] or R[D], respectively, if and only if, for each d ∈ D, the relative latching map
Xd∪LdX LdY → Y d is in L or the relative matching map Xd → Y d ×MdY M

dX is in R.
The most efficient definition of these latching and matching objects LdX and MdX
appearing in Example 2.5.17 makes use of the theory of weighted colimits and limits,
a subject to which we now turn.

2.5.4 Quillen adjunctions for weighted limits and colimits

Ordinary limits and colimits are objects representing the functor of cones with a
given summit over or under a fixed diagram. Weighted limits and colimits are defined
analogously, except that the cones over or under a diagram might have exotic “shapes.”
These shapes are allowed to vary with the objects indexing the diagram. More formally,
the weight — a functor which specifies the “shape” of a cone over a diagram indexed
by D or a cone under a diagram indexed by Dop — takes the form of a functor in
SetD in the unenriched context or VD in the V-enriched context.

Definition 2.5.15 (weighted limits and colimits, axiomatically). For a general small
category D and bicomplete category M, the weighted limit and weighted colimit
define bifunctors

{−,−}D : (SetD)op ×MD→M and − ∗D− : SetD ×MDop
→M
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which are characterized by the following pair of axioms.

(i) Weighted (co)limits with representable weights evaluate at the representing ob-
ject:

{D(d,−),X}D � X(d) and D(−,d) ∗D Y � Y (d).

(ii) The weighted (co)limit bifunctors are cocontinuous in the weight: for any diagram
X ∈MD, the functor − ∗DX preserves colimits, while the functor {−,X}D carries
colimits to limits.

We interpret axiom (ii) to mean that weights can be “made to order”: a weight
constructed as a colimit of representables — as all Set-valued functors are — will
stipulate the expected universal property.

Let M be any locally small category with products and coproducts. For any set S,
the S-fold product and coproduct define cotensor and tensor bifunctors

{−,−} : Setop ×M→M and − ∗− : Set×M→M,

which form a two-variable adjunction with Hom : Mop ×M→ Set; cf. Exercise 2.4.26.

Definition 2.5.16 (weighted limits and colimits, constructively). The weighted colimit
is a functor tensor product and the weighted limit is a functor cotensor product:

{W,X}D �
∫
d∈D
{W (d),X(d)}, W ∗DY �

∫ d∈D
W (d) ∗Y (d).

The limit {W,X}D of the diagram X weighted by W and the colimit W ∗DY of Y
weighted by W are characterized by the universal properties:

M(M, {W,X}D) � SetD(W,M(M,X)), M(W ∗D Y ,M) � SetD
op

(W,M(Y ,M)).

Example 2.5.17. Let A be a Reedy category and write A≤n for the full subcategory
of objects of degree at most n. Restriction along the inclusion A≤n ↪→ A followed by
left Kan extension defines an comonad skn : SetA→ SetA.

Let a ∈ A be an object of degree n and define

∂A(a,−) := skn−1A(a,−) ∈ SetA and ∂A(−, a) := skn−1A(−, a) ∈ SetA
op
,

where A(a,−) and A(−, a) denote the co- and contravariant functors represented by a,
respectively. For any X ∈MA, the latching and matching objects are defined by

LaX := ∂A(−, a) ∗A X and MaX := {∂A(a,−),X}.

Exercise 2.5.18 (enriched weighted limits and colimits). For the reader who knows
some enriched category theory, generalize Definitions 2.5.15 and 2.5.16 to the V-
enriched context to define weighted limit and weighted colimit bifunctors

{−,−}A : (VA)op ×MA→M and −⊗A− : VA ×MAop
→M

in any V-enriched, tensored, and cotensored category M whose underlying unen-
riched category is complete and cocomplete.
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Recall the notion of Quillen two-variable adjunction, the prototypical example being
the tensor-cotensor-hom of a V-model category M.

Theorem 2.5.19 ([239, 7.1]). Let A be a Reedy category and let ⊗ : K× L→M be a left
Quillen bifunctor between model categories. Then the functor tensor product

⊗A : KAop
× LA→M

is left Quillen with respect to the Reedy model structures.

A dual result holds for functor cotensor products formed relative to a right Quillen
bifunctor. In particular, if M is a V-model category, then its tensor, cotensor, and hom
define a Quillen two-variable adjunction, and so in particular:

Corollary 2.5.20. Let M be a V-model category and let A be a Reedy category. Then for
any Reedy cofibrant weight W ∈ VA, the weighted colimit and weighted limit functors

W ∗A − : MA→M and {W,−}A : MAop
→M

are respectively left and right Quillen with respect to the Reedy model structures on MA and
MAop

.

Example 2.5.21 (geometric realization and totalization). The Yoneda embedding
defines a Reedy cofibrant weight ´• ∈ sSet´. The weighted colimit and weighted
limit functors

´• ∗´op − : M´op
→M and {´•,−}´ : M´→M

typically go by the names geometric realization and totalization. Corollary 2.5.20
proves that if M is a simplicial model category, then these functors are left and right
Quillen.

By Exercise 2.4.26, Corollary 2.5.20 also has implications in the case of an unen-
riched model category M, in which case “Reedy cofibrant” should be read as “Reedy
monomorphic.” Ordinary limits and colimits are weighted limits and colimits where
the weight is the terminal functor, constant at the singleton set.

Proposition 2.5.22 (homotopy limits and colimits of Reedy shape).

(i) If A is a Reedy category with the property that the constant A-indexed diagram at
any cofibrant object in any model category is Reedy cofibrant, then the limit functor
lim: MA→M is right Quillen.

(ii) If A is a Reedy category with the property that the constant A-indexed diagram at
any fibrant object in any model category is Reedy fibrant, then the colimit functor
colim: MA→M is left Quillen.

Proof. Taking the terminal weight 1 in SetA, the weighted limit reduces to the
ordinary limit functor. The functor 1 ∈ SetA is Reedy monomorphic just when, for
each a ∈ A, the category of elements for the weight ∂A(−, a) is either empty or
connected. This is the case if and only if A has “cofibrant constants,” meaning that the
constant A-indexed diagram at any cofibrant object in any model category is Reedy



48 Riehl: Homotopical categories: from model categories to (∞,1)-categories

cofibrant. Thus, we conclude that if A has cofibrant constants, then the limit functor
lim: MA→M is right Quillen. See [245, §9] for more discussion.

There is an analogous result for projective and injective model structures which
the author first saw formulated in this way by Gambino in the context of a simplicial
model category.

Theorem 2.5.23 ([101]). If M is a V-model category and D is a small category, then the
weighted colimit functor

−⊗D − : VD ×MDop
→M

is left Quillen if the domain has the (injective, projective) or (projective, injective) model
structure. Similarly, the weighted limit functor

{−,−}D : (VD)op ×MD→M

is right Quillen if the domain has the (projective, projective) or (injective, injective) model
structure.

Proof. By Definition 2.4.22 we can prove both statements in adjoint form. The
weighted colimit bifunctor of Exercise 2.5.18 has a right adjoint (used to express the
defining universal property of the weighted colimit)

Map(−,−) : (MDop
)op ×M→ VD

which sends F ∈MDop
and m ∈M to Map(F−,m) ∈ VD.

To prove the statement when VD has the projective and MDop
has the injective

model structure, we must show that this is a right Quillen bifunctor with respect to
the pointwise (trivial) cofibrations in MDop

, (trivial) fibrations in M, and pointwise
(trivial) fibrations in VD. Because the limits involved in the definition of right Quillen
bifunctors are also formed pointwise, this follows immediately from the corresponding
property of the simplicial hom bifunctor, which was part of the definition of a simplicial
model category. The other cases are similar.

The upshot of Theorem 2.5.23 is that there are two approaches to constructing a
homotopy colimit: fattening up the diagram, as is achieved by the derived functors of
§2.5.2, or fattening up the weight. The famous Bousfield–Kan formulae for homotopy
limits and colimits in the context of a simplicial model category define them to
be weighted limits and colimits for a particular weight constructed as a projective
cofibrant replacement of the terminal weight; see [58] or [237, §11.5]. The Quillen
two-variable adjunction of Theorem 2.5.23 can be derived as in Theorem 2.4.29 to
express a homotopically enriched universal property of the weighted limit or colimit,
as representing “homotopy coherent” cones over or under a diagram, an intuition to
be explored in the next section.
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2.6 Simplicial localizations

Quillen’s model categories provide a robust axiomatic framework within which to “do
homotopy theory.” But the constructions of §2.5 imply that the homotopy theories
presented by model categories have all homotopy limits and homotopy colimits, which
need not be the case in general. In this section we introduce a framework, originally
developed by Dwyer and Kan and re-conceptualized by Bergner, which allows us to
extend our notion of equivalence between homotopy theories introduced in §2.4.5 to a
more flexible notion of DK-equivalence (after Dwyer and Kan) that identifies when any
two homotopical categories are equivalent.

A mere equivalence of categories of fractions is insufficient to detect an equivalence
of homotopy theories; instead a construction that takes into account the “higher-
dimensional” homotopical structure is required. To that end, Dwyer and Kan build,
from any homotopical category (K,W ), a simplicial category LH (K,W ) called the
hammock localization [88] and demonstrate that their construction has a number of
good properties that we tour in §2.6.1:

– The homotopy category hLH (K,W ) is equivalent to the category of fractions
K[W ]−1 (Proposition 2.6.5).

– If (K,W ) underlies a simplicial model category then the Kan complex enriched
category Kcf ⊂ K is DK-equivalent to LH (K,W ) (Proposition 2.6.7).

– More generally, LH (K,W ) provides a not-necessarily simplicial model category
(K,W ) with function complexes that have the correct mapping type even if the
model structure is not simplicial (Proposition 2.6.6).

– If two model categories are Quillen equivalent, then their hammock localizations
are DK-equivalent (Proposition 2.6.8).

The DK-equivalences are those simplicial functors that are bijective on homo-
topy equivalence classes of objects and define local equivalences of the mapping
spaces constructed by the hammock localization. Zooming out a categorical level, the
Bergner model structure on simplicially enriched categories gives a presentation of
the homotopical category of homotopy theories, with the DK-equivalences as its weak
equivalences. This is the subject of §2.6.2.

2.6.1 The hammock localization

There are two equivalent ways to present the data of a simplicially enriched category,
either as a category equipped with a simplicial set of morphisms between each pair
of objects, or a simplicial diagram of categories Kn of n-arrows, each of which is
equipped with a constant set of objects.

Exercise 2.6.1 . Prove that the following are equivalent:

(i) A simplicially enriched category with objects obK.
(ii) A simplicial object K• : ´op→ Cat in which each of the categories Kn has objects

obK and each functor Kn→ Km is the identity on objects.
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We being by introducing the notion of a DK-equivalence between simplicially
enriched categories.

Definition 2.6.2. A simplicial functor F : K→M is a DK-equivalence if

(i) It defines an equivalence of homotopy categories hF : hK→ hM.
(ii) It defines a local weak equivalence of mapping complexes: for all X,Y ∈ K,

MapK(X,Y ) ∼−→MapM(FX,FY ).

In the case where F is identity on objects, condition (2.6.2) subsumes condition
(2.6.2).

Definition 2.6.3 ([87, 2.1]). Let K be a category with a wide subcategory W , con-
taining all the identity arrows. The hammock localization LH (K,W ) is a simplicial
category with the same objects as K and with the mapping complex Map(X,Y ) de-
fined to be the simplicial set whose k-simplices are “reduced hammocks of width k”
from X to Y , these being commutative diagrams

A0,1 A0,2 · · · A0,n−1

A1,1 A1,2 · · · A1,n−1

X
...

...
... Y

Ak,1 Ak,2 · · · Ak,n−1

o o o

o o o

o o o

where the length of the hammock is any integer n ≥ 1, such that

(i) all vertical maps are in W ,
(ii) in each column of horizontal morphisms all maps go in the same direction and

if they go left then they are in W , and
(iii) the maps in adjacent columns go in different directions.

The graded set of reduced hammocks of width k from X to Y becomes a simplicial
set Map(X,Y ) in which

(iv) faces are defined by omitting rows and
1. degeneracies are defined by duplicating rows.

Composition is defined by horizontally pasting hammocks and then reducing by

(v) composing adjacent columns whose maps point in the same direction and
(vi) omitting any column which contains only identity maps.

There is a canonical functor K→LH (K,W ) whose image is comprised of dimension
zero length 1 hammocks pointing forwards.
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Exercise 2.6.4 . Verify that the composite of the functor K→LH (K,W ) just described
with the quotient functor LH (K,W ) → hLH (K,W ) that collapses each mapping
space onto its set of path components inverts the weak equivalences in K, sending
each to an isomorphism in the homotopy category hLH (K,W ).

In the hammock localization

cancelation in any dimension is achieved not by “imposing relations” in the same dimension,
but by “imposing homotopy relations”, i.e. adding maps, in the next dimension, [87, §3]

in contrast with the category of fractions constructed in §2.2. By considering the effect
of these “homotopy relations,” it is straightforward to see that the induced functor
from the category of fractions to the homotopy category of the hammock localization
is an isomorphism of categories.

Proposition 2.6.5 (Dwyer–Kan [88, 3.2]). The canonical functor K → LH (K,W )
induces an isomorphism of categories K[W−1] � hLH (K,W ).

Proof. The comparison functor K[W−1] → hLH (K,W ) induced by Exercise 2.6.4
and by the universal property of Proposition 2.2.2 is clearly bijective on objects and
full, homotopy classes in hLH (K,W ) being represented by zigzags whose backwards
maps lie in W . To see that this functor is faithful it suffices to consider a 1-simplex in
Map(X,Y ):

A0,1 A0,2 · · · A0,n−1

X Y

A1,1 A1,2 · · · A1,n−1

o o o

and argue that the top and bottom zigzags define the same morphism in K[W−1].
This is an easy exercise in diagram chasing, applying the rules of Definition 2.2.1.

The previous result applies to a model category (M,W ), in which case we see that
LH (M,W ) is a higher-dimensional incarnation of the homotopy category, equipping
M[W−1] with mapping spaces whose path components correspond to arrows in
the category of fractions. A further justification that the mapping spaces of the
hammock localization have the correct homotopy type, not just the correct sets of
path components, proceeds as follows. A simplicial resolution of Y ∈M is a Reedy
fibrant simplicial object Y• together with a weak equivalence Y ∼−→ Y0. Cosimplicial
resolutions X•→ X are defined dually. Every object has a simplicial and cosimplicial
resolution, defined as the Reedy fibrant replacement of the constant simplicial object
in M´op

and the Reedy cofibrant replacement of the constant cosimplicial object in
M´, respectively.

Proposition 2.6.6 (Dwyer–Kan [88, 4.4]). For any cosimplicial resolution X•→ X and
simplicial resolution Y → Y•, the diagonal of the bisimplicial set M(X•,Y•) has the same
homotopy type of MapLH (M,W )(X,Y ), and if X or Y are respectively cofibrant or fibrant
the simplicial sets M(X,Y•) and M(X•,Y ) do as well.
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As a corollary of this result one can show:

Proposition 2.6.7 (Dwyer–Kan [88, 4.7, 4.8]). Let (M,W ) be the homotopical cat-
egory underlying a simplicial model category M. Then for cofibrant X and fibrant Y ,
MapM(X,Y ) and MapLH (M,W )(X,Y ) have the same homotopy type and hence the simpli-
cial categories Mcf and LH (M,W ) are DK-equivalent.

The statement of this result requires some explanation. If K is a simplicial category
whose underlying category of 0-arrows K0 has a subcategory of weak equivalences W ,
then these weak equivalences degenerate to define homotopical categories (Kn,W ) for
each category of n-arrows in K. For each n we may form the hammock localization
LH (Kn,W ). As n varies, this gives a bisimplicial sets of mapping complexes for each
fixed pair of objects of K. The mapping complexes in the hammock localization
LH (K,W ) are defined to be the diagonals of these bisimplicial sets. In the case of a
simplicial model category M, the hammock localization LH (M,W ) is DK-equivalent
to the hammock localization LH (M0,W ) of the underlying unenriched homotopical
category.

Proposition 2.6.8 ([88, 5.4]). A Quillen equivalence

M N

F

⊥
G

induces DK-equivalences

LH (Mc,W ) ∼−→LH (Nc,W ) and LH (Nf,W ) ∼−→LH (Mf,W ).

Moreover, for any model category the inclusions

LH (Mc,C ∩W ) ∼−→LH (Mc,Wc) ∼−→LH (M,W )

are DK-equivalences and hence LH (M,W ) and LH (N,W ) are DK-equivalent.

2.6.2 A model structure for homotopy coherent diagrams

Several of Dwyer and Kan’s proofs of the results in the previous subsection make
use of a model structure on the category of simplicial categories with a fixed set of
objects and with identity-on-objects functors. But this restriction to categories with the
same objects is somewhat unnatural. The Bergner model structure is the extension of
Dwyer and Kan’s model structure that drops that restriction, unifying the notions of
DK-equivalence, free simplicial category (also known as “simplicial computad”), and
Kan complex enriched simplicial category, the importance of which will be made clear
in §2.7.

Theorem 2.6.9 (Bergner [41]). There exists a model structure on the category of simpli-
cially enriched categories given as follows:

– Its equivalences are the DK equivalences.
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– Its cofibrant objects are the simplicial computads: those simplicial categories that, when
considered as a simplicial object C• : ´op→ Cat have the property that

– each category Cn is freely generated by the reflexive directed graph of its atomic
arrows (those admitting no non-trivial factorizations) and

– the degeneracy operators [m]� [n] in ´ preserve atomic arrows.

– Fibrant objects are the Kan complex enriched categories: those simplicial categories
whose mapping spaces are all Kan complexes.

More generally, the cofibrations in the Bergner model structure are retracts of
relative simplicial computads and the fibrations are those functors that are local Kan
fibrations and define isofibrations at the level of homotopy categories; see [41] for more
details.

Definition 2.3.24 tells us that maps in the homotopy category of the Bergner model
structure from a simplicial category A to a simplicial category K are represented by
simplicial functors from a cofibrant replacement of A to a fibrant replacement of
K. These are classically studied objects. Cordier and Porter after Vogt define such
functors to be homotopy coherent diagrams of shape A in K [72].

A particular model for the cofibrant replacement of a strict 1-category A regarded
as a discrete simplicial category gives some intuition for the data involved in defining a
homotopy coherent diagram. This construction, introduced by Dwyer and Kan under
the name “standard resolutions” [89, 2.5], can be extended to the case where A is
non-discrete by applying it levelwise and taking diagonals.

Definition 2.6.10 (free resolutions). There is a comonad (F,ε,δ) on the category of
categories that sends a small category to the free category on its underlying reflexive
directed graph. Explicitly FA has the same objects as A and its non-identity arrows
are strings of composable non-identity arrows of A.

Adopting the point of view of Exercise 2.6.1, we define a simplicial category CA•
with obCA = obA and with the category of n-arrows CAn := Fn+1A. A non-identity
n-arrow is a string of composable arrows in A with each arrow in the string enclosed
in exactly n pairs of well-formed parentheses. In the case n = 0, this recovers the
previous description of the non-identity 0-arrows in FA, strings of composable non-
identity arrows of A.

The required identity-on-objects functors in the simplicial object CA• are defined
by evaluating the comonad resolution for (F,ε,δ) on a small category A:

CA• := FA F2A F3A F4A · · ·

Explicitly, for j ≥ 1, the face maps

FkεFj : Fk+j+1A→ Fk+jA

remove the parentheses that are contained in exactly k others, while Fk+jε composes
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the morphisms inside the innermost parentheses. For j ≥ 1, the degeneracy maps

FkδFj : Fk+j+1A→ Fk+j+2A

double up the parentheses that are contained in exactly k others, while Fk+jδ inserts
parentheses around each individual morphism.

Exercise 2.6.11 . Explain the sense in which free resolutions define Bergner cofibrant
replacements of strict 1-categories by:

(i) verifying that for any A, the free resolution CA• is a simplicial computad, and
(ii) defining a canonical identity-on-objects augmentation functor ε : CA→ A and

verifying that it defines a local homotopy equivalence.

The notation CA• for the free resolution is non-standard and will be explained in
§2.7.2, where we will gain a deeper understanding of the importance of the Bergner
model structure from the vantage point of (∞,1)-categories.

2.7 Quasi-categories as (∞,1)-categories

Any topological space Y has an associated simplicial set Sing(Y ) called its total
singular complex. The vertices in Sing(Y ) are the points in Y and the 1-simplices
are the paths; in general, an n-simplex in Sing(Y ) corresponds to an n-simplex in Y ,
that is, to a continuous map |∆n| → Y . In particular, a 2-simplex |∆2| → Y defines a
triangular shaped homotopy from the composite paths along the spine Λ2

1 ⊂ ∆2 of the
2-simplex to the direct path from the 0th to the 2nd vertex that is contained in its 1st
face.15 Since the inclusion |Λnk | → |∆

n| admits a retraction, Sing(Y ) is a Kan complex.
The total singular complex is a higher-dimensional incarnation of some of the basic

invariants of Y , which can be recovered by truncating the total singular complex at
some level and replacing the top-dimensional simplices with suitably defined “homo-
topy classes” of such. Its set of path components is the set π0Y of path components
in Y . Its homotopy category, in a sense to be defined below, comprised of the vertices
and homotopy classes of paths between them, is a groupoid π1Y called the funda-
mental groupoid of Y . By extension, it is reasonable to think of the higher-dimensional
simplices of Sing(Y ) as being invertible in a similar sense, with composition relations
witnessed by higher cells. In this way, Sing(Y ) models the ∞-groupoid associated
to the topological space Y and the Quillen equivalence 2.4.32 is one incarnation
of Grothendieck’s famous “homotopy hypothesis” (the moniker due to Baez), that
∞-groupoids up to equivalence should model homotopy types [113].

In the catalog of weak higher-dimensional categories, the ∞-groupoids define
(∞,0)-categories, weak categories with morphisms in each dimension, all of which
are weakly invertible. In §2.7.1, we introduce quasi-categories, which provide a
particular model for (∞,1)-categories — infinite-dimensional categories in which every
morphism above dimension 1 is invertible — in parallel with the Kan complex model

15 The simplicial n-simplex ∆n, its boundary sphere ∂∆n, and its horns Λnk are defined in §2.3.5.
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for (∞,0)-categories. We explain the sense in which quasi-categories, which are defined
to be simplicial sets with an inner horn lifting property, model (∞,1)-categories by
introducing the homotopy category of a quasi-category and constructing the hom-space
between objects in a quasi-category. In §2.7.2, we explain how simplicially enriched
categories like those considered in §2.6 can be converted into quasi-categories. Then
in §2.7.3, we introduce a model structure whose fibrant objects are the quasi-categories
due to Joyal and in this way obtain a suitable notion of (weak) equivalence between
quasi-categories.

2.7.1 Quasi-categories and their homotopy categories

The nerve of a small category D is the simplicial set D• whose vertices D0 are the
objects of D, whose 1-simplices D1 are the morphisms, and whose set of n-simplices
Dn is the set of n composable pairs of morphisms in D. The simplicial structure
defines a diagram in Set

· · · D3 D2 D1 D0

Truncating at level 2 we are left with precisely the data that defines a small category
D as a category internal to the category of sets and in fact this higher-dimensional
data is redundant in a sense: the simplicial set D• is 2-coskeletal, meaning any sphere
bounding a hypothetical simplex of dimension at least 3 admits a unique filler.

The description of the nerve as an internal category relies on an isomorphism
D2 � D1×D0

D1 identifying the set of 2-simplices with the pullback of the domain and
codomain maps D1⇒ D0: a composable pair of arrows is given by a pair of arrows
such that the domain of the second equals the codomain of the first. Equivalently, this
condition asserts that the map

Λ2
1 D•

∆2
∃!

admits a unique filler. In higher dimensions, we can consider the inclusion of the spine
∆1∪∆0 · · ·∪∆0∆1 ↪→ ∆n of an n-simplex, and similarly the nerve D• will admit unique
extensions along these maps. From the perspective of an infinite-dimensional category,
in which the higher-dimensional simplices represent data and not just conditions
on the 1-simplices, it is better to consider extensions along inner horn inclusions
Λnk ↪→ ∆n for the reasons explained by the following exercise.

Exercise 2.7.1 . Prove that the spine inclusions can be presented as cell complexes
(see Definition 2.3.11) built from the inner horn inclusions {Λkn ↪→ ∆n}n≥2,0<k<n but
demonstrate by example that the inner horn inclusions cannot be presented as cell
complexes built from the spine inclusions.

The original definition of a simplicial set satisfying the “restricted Kan condition,”
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now called a quasi-category (following Joyal [140]) or an ∞-category (following Lurie
[169]), is due to Boardman and Vogt [48]. Their motivating example appears as
Corollary 2.7.9.

Definition 2.7.2. A quasi-category is a simplicial set X such that X → ∗ has
the right lifting property with respect to the inner horn inclusions for each n ≥ 2,
0 < k < n.

Λnk X

∆n

(2.9)

Nerves of categories are quasi-categories; in fact in this case each lift (2.9) is unique.
Tautologically, Kan complexes are quasi-categories. In particular, the total singular
complex of a topological space is a Kan complex and hence a quasi-category. More
sophisticated examples of (frequently large) quasi-categories are produced by Theorem
2.7.8 below.

Definition 2.7.3 (the homotopy category of a quasi-category [48, 4.12]). Any quasi-
category X has an associated homotopy category hX whose objects are the vertices
of X and whose morphisms are represented by 1-simplices, which we consequently
depict as arrows f : x→ y from their 0th vertex to their 1st vertex. The degenerate
1-simplices serve as identities in the homotopy category, and may be depicted using
an equals sign in place of the arrow.

As the name suggests, the morphisms in hX are homotopy classes of 1-simplices,
where a pair of 1-simplices f and g with common boundary are homotopic if there
exists a 2-simplex whose boundary has any of the following forms:

• • • •

• • • • • • • •

f

∼ ∼
g

∼ ∼
g

f

g f

g

f

(2.10)

Indeed, in a quasi-category, if any of the 2-simplices (2.10) exists then there exists a
2-simplex of each type.

Generic 2-simplices in X

•

• •

g

∼
f

h

(2.11)

witness that gf = h in the homotopy category. Conversely, if h = gf in hX and f ,g,h
are any 1-simplices representing these homotopy classes, there exists a 2-simplex (2.11)
witnessing the composition relation.

Exercise 2.7.4 .

(i) Verify the assertions made in Definition 2.7.3 or see [169, §1.2.3].
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(ii) Show that h is the left adjoint to the nerve functor:16

qCat Cat

h

⊥
N

The mapping space between two objects of a quasi-category A is modeled by the
Kan complex defined via the pullback

MapA(x,y) A∆
1

∆0 A×A

y

(x,y)

The following proposition of Joyal is useful in proving that MapA(x,y) is a Kan
complex and also characterizes the ∞-groupoids in the quasi-categorical model of
(∞,1)-categories.

Proposition 2.7.5 ( Joyal [140, 1.4]). A quasi-category is a Kan complex if and only if its
homotopy category is a groupoid.

Definition 2.7.6 ([140, 1.6]). A 1-simplex f in a quasi-category X is an isomorphism
if and only if it represents an isomorphism in the homotopy category, or equivalently
if and only if it admits a coherent homotopy inverse:

2 X

I

f

extending along the map 2 ↪→ I including the nerve of the free-living arrow into the
nerve of the free-living isomorphism.

2.7.2 Quasi-categories found in nature

Borrowing notation from the simplex category ´, we write [n] ⊂ ­ for the ordinal
category ın + 1, the full subcategory spanned by 0, . . . ,n in the category that indexes a
countable sequence:

[n] := 0 1 2 3 · · · n

These categories define the objects of a diagram ´ ↪→ Cat that is a full embedding:
the only functors [m] → [n] are order-preserving maps from [m] = {0, . . . ,m} to
[n] = {0, . . . ,n}. Applying the free resolution construction of Definition 2.6.10 to these
categories we get a functor C : ´→ sCat, where C[n] is the full simplicial subcategory
of C­ spanned by those objects 0, . . . ,n.

16 In fact, this pair defines a Quillen adjunction between the model structure to be introduced in Theorem
2.7.12 and the “folk” model structure on categories [237, 15.3.8].
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Definition 2.7.7 (homotopy coherent realization and nerve). The homotopy coher-
ent nerve N and homotopy coherent realization C are the adjoint pair of functors
obtained by applying Kan’s construction [237, 1.5.1] to the functor C : ´→ sCat to
construct an adjunction

sSet sCat

C

⊥
N

The right adjoint, called the homotopy coherent nerve, converts a simplicial cat-
egory S into a simplicial set NS whose n-simplices are homotopy coherent diagrams
of shape [n] in S. That is,

NSn := {C[n]→ S}.

The left adjoint is defined by pointwise left Kan extension along the Yoneda em-
bedding:

´ sSet

sCat

よ

C
�

C

That is, C∆n is defined to be C[n] — a simplicial category that we call the homotopy
coherent n-simplex — and for a generic simplicial set X, CX is defined to be a
colimit of the homotopy coherent simplices indexed by the category of simplices of
X.17 Because of the formal similarity with the geometric realization functor, another
left adjoint defined by Kan’s construction, we refer to C as homotopy coherent
realization.

Many examples of quasi-categories fit into the following paradigm.

Theorem 2.7.8 ([72, 2.1]). If S is Kan complex enriched, then NS is a quasi-category.

In particular, in light of Exercise 2.4.28, the quasi-category associated to a simplicial
model category M is defined to be NMcf.

Recall from §2.6.2 that a homotopy coherent diagram of shape A in a Kan
complex enriched category S is a functor CA→ S. Similarly, a homotopy coherent
natural transformation α : F→ G between homotopy coherent diagrams F and G
of shape A is a homotopy coherent diagram of shape A × [1] that restricts on the
endpoints of [1] to F and G as follows:

CA C(A× [1]) CA

S

0

F
α

1

G

Note that the data of a pair of homotopy coherent natural transformations α : F→ G
and β : G→H between homotopy coherent diagrams of shape A does not uniquely

17 The simplicial set X is obtained by gluing in a ∆n for each n-simplex ∆n→ X of X. The functor C
preserves these colimits, so CX is obtained by gluing in a C[n] for each n-simplex of X.
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determine a (vertical) “composite” homotopy coherent natural transformation F→H
because this data does not define a homotopy coherent diagram of shape A×[2], where
[2] = 0→ 1→ 2. Here α and β define a diagram of shape C(A×Λ2

1) rather than a
diagram of shape C(A×[2]), where Λ2

1 is the shape of the generating reflexive directed
graph of the category [2]. This observation motivated Boardman and Vogt to define,
in place of a category of homotopy coherent diagrams and natural transformations of
shape A, a quasi-category of homotopy coherent diagrams and natural transformations
of shape A.

For any category A, let Coh(A,S) denote the simplicial set whose n-simplices are
homotopy coherent diagrams of shape A× [n], i.e., are simplicial functors

C(A× [n])→ S.

Corollary 2.7.9. Coh(A,S) �NSA is a quasi-category.

Proof. By the adjunction of Definition 2.7.7, a simplicial functor CA→ S is the same
as a simplicial map A→ NS. So Coh(A,S) � NSA and since the quasi-categories
define an exponential ideal in simplicial sets as a consequence of the cartesian closure
of the Joyal model structure of Theorem 2.7.12, the fact that NS is a quasi-category
implies that NSA is too.

Remark 2.7.10 (all diagrams in homotopy coherent nerves are homotopy coherent).
This corollary explains that any map of simplicial sets X→NS transposes to define a
simplicial functor CX→ S, a homotopy coherent diagram of shape X in S. While not
every quasi-category is isomorphic to a homotopy coherent nerve of a Kan complex
enriched category, every quasi-category is equivalent to a homotopy coherent nerve;
one proof appears as [244, 7.2.2]. This explains the slogan that “all diagrams in quasi-
categories are homotopy coherent.”

2.7.3 The Joyal model structure

In analogy with Quillen’s model structure of Theorem 2.3.30, in which the fibrant
objects are the Kan complexes and the cofibrations are the monomorphisms, we might
hope that there is another model structure on sSet whose fibrant objects are the
quasi-categories and with the monomorphisms as cofibrations, and indeed there is
one (and by Exercise 2.3.8(2.3.8) it is unique).

The weak equivalences in this hoped-for model structure for quasi-categories can
be described using a particularly nice cylinder object. Let I be the nerve of the
free-standing isomorphism I; the name is selected because I is something like an
interval.

Proposition 2.7.11. For any simplicial set A, the evident inclusion and projection maps
define a cylinder object

AtA A

A× I(i0,i1)

(1A,1A)

∼
π
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Proof. The map (i0, i1) : AtA→ A× I is a monomorphism and hence a cofibration.
To see that the projection is a trivial fibration, observe that it is a pullback of I→ ∗
as displayed below left, and hence by Lemma 2.3.9 it suffices to prove that this latter
map is a trivial fibration. To that end, we must show that there exist solutions to lifting
problems displayed on the right:

A× I I ∂∆n I

A ∗ ∆n ∗

π

π

y

When n = 0 this is true because I is non-empty. For larger n, we use the fact that
I � cosk0I. By adjunction, it suffices to show that I lifts against sk0∂∆

n → sk0∆
n,

but for n > 0, the 0-skeleton of ∆n is isomorphic to that of its boundary.

The proof of Joyal’s model structure has been widely circulated in unpublished
notes, and can also be found in [169, 2.2.5.1] or [81, 2.13].

Theorem 2.7.12 ( Joyal). There is a cartesian closed model structure on sSet whose

– cofibrations are monomorphisms,
– weak equivalences are those maps f : A→ B that induce bijections on the sets

Hom(B,X)/∼` → Hom(A,X)/∼`

of maps into any quasi-category X modulo the left homotopy relation relative to the
cylinder just defined,

– fibrant objects are precisely the quasi-categories, and
– fibrations between fibrant objects are the isofibrations, those maps that lift against the

inner horn inclusions and also the map ∗ → I.

By Proposition 2.3.23, a map between quasi-categories is a weak equivalence, or
we say simply equivalence of quasi-categories, if and only if it admits an inverse
equivalence Y → X together with an “invertible homotopy equivalence” using the
notion of homotopy defined with the interval I. A map between nerves of strict
1-categories is an equivalence of quasi-categories if and only if it is an equivalence of
categories, as usually defined. In general, every categorical notion for quasi-categories
restricts along the full inclusion Cat ⊂ qCat to the classical notion. This gives another
sense in which quasi-categories model the (∞,1)-categories introduced at the start of
this section. However, quasi-categories are not the only model of (∞,1)-categories, as
we shall now discover.

2.8 Models of (∞,1)-categories

An (∞,1)-category should have a set of objects X0, a space of morphisms X1, together
with composition and identities that are at least weakly associative and unital. One
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idea of how this might be presented, due to Segal [269], is to ask that X ∈ sSet´
op

is
a simplicial space

· · · X3 X2 X1 X0

with X0 still a set, so that for all n the map

Xn→ X1 ×X0
· · · ×X0

X1 (2.12)

induced on weighted limits from the spine inclusion ∆1 ∨ · · · ∨∆1 → ∆n is a weak
equivalence in a suitable sense. Segal points out that Grothendieck has observed
that, in the case where the spaces Xn are discrete, these so-called Segal maps are
isomorphisms if and only if X is isomorphic to the nerve of a category.

In this section we introduce various models of (∞,1)-categories, many of which
are inspired by this paradigm. Before these models make their appearance in §2.8.2,
we begin in §2.8.1 with an abbreviated tour of an axiomatization due to Toën that
characterizes a homotopy theory of (∞,1)-categories. In §2.8.3, we then restrict our
attention to four of the six models that are better behaved in the sense of providing
easy access to the (∞,1)-category Fun(A,B) of functors between (∞,1)-categories
A and B. These models each satisfy a short list of axioms that we exploit in §2.9
to sketch a natively “model-independent” development of the category theory of
(∞,1)-categories.

2.8.1 An axiomatization of the homotopy theory of (∞,1)-categories

The homotopy theory of ∞-groupoids is freely generated under homotopy colimits by
the point. We might try to adopt a similar “generators and relations” approach to build
the homotopy theory of (∞,1)-categories, taking the generators to be the category ´,
which freely generates simplicial spaces. The relations assert that the natural maps

∆1 ∨ · · · ∨∆1→ ∆n and I→ ∆0 (2.13)

induce equivalences upon mapping into an (∞,1)-category. This idea motivates Rezk’s
complete Segal space model, which is the conceptual center of the Toën axiomatization
of a model category M whose fibrant objects model (∞,1)-categories.

For simplicity we assume that M is a combinatorial simplicial model category.
In practice, these assumptions are relatively mild: in particular, if M fails to be
simplicial it is possible to define a Quillen equivalent model structure on M´op

that is
simplicial [78]. The model category M should be equipped with a functor C : ´→M

such that C(0) represents a free point in M while C(1) represents a free arrow. This
cosimplicial object is required to be a weak cocategory, meaning that the duals of
the Segal maps are equivalences

C(1)∪C(0) · · · ∪C(0) C(1) ∼−→ C(n).

We state Toën’s seven axioms without defining all the terms because to do so would
demand too long of an excursion, and refer the reader to [292] for more details.
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Theorem 2.8.1 (Toën [292]). Let M be a combinatorial simplicial model category equipped
with a functor C : ´→M satisfying the following properties.

(i) Homotopy colimits are universal over 0-local objects, those X so that

Map(∗ ,X) ∼−→Map(C(1),X).

(ii) Homotopy coproducts are disjoint and universal.
(iii) C is an interval: meaning C(0) and the C-geometric realization of I are contractible.
(iv) For any weak category X ∈M´op

such that X0 and X1 are 0-local, X is equivalent to
the Čech nerve of the map X0→ |X |c.

(v) For any weak category X ∈M´op
such that X0 and X1 are 0-local, the homotopy fiber

of X→RHom(C, |X |c) is contractible.
(vi) The point and interval define a generator: f : X→ Y is a weak equivalence in M if

and only if Map(C(0),X) ∼−→Map(C(0),Y ) and Map(C(1),X) ∼−→Map(C(1),Y ).
(vii) C is homotopically fully faithful: ´([n], [m]) ∼−→Map(C(n),C(m))

Then the functor X 7→ Map(C(−),X) defines a right Quillen equivalence from M to the
model structure for complete Segal spaces on the category of bisimplicial sets.

A similar axiomatization is given by Barwick and Schommer-Pries as a specialization
of an axiomatization for (∞,n)-categories [26].

2.8.2 Models of (∞,1)-categories

We now introduce six models of (∞,1)-categories, each arising as the fibrant objects in
a model category that is Quillen equivalent to all of the others. Two of these models —
the quasi-categories and the Kan complex enriched categories — have been presented
already in Theorems 2.7.12 and 2.6.9.

A Segal category is a Reedy fibrant bisimplicial set X ∈ sSet´
op

such that the
Segal maps (2.12) are trivial fibrations and X0 is a set.18

Theorem 2.8.2 (Hirschowitz–Simpson [125, 278], Pellissier [220], Bergner [40]). There
is a cartesian closed model structure on the category of bisimplicial sets with discrete set of
objects whose

– cofibrations are the monomorphisms,
– fibrant objects are the Segal categories that are Reedy fibrant as simplicial spaces, and
– weak equivalences are the DK-equivalences (in a suitable sense).

A complete Segal space is similarly a Reedy fibrant bisimplicial set X ∈ sSet´
op

such that the Segal maps (2.12) are trivial fibrations. In this model, the discreteness
condition on X0 is replaced with the so-called completeness condition, which is again
most elegantly phrased using weighted limits: it asks either that the map {I,X} →
{∆0,X} � X0 is a trivial fibration or that the map X0 → {I,X} is an equivalence.
Intuitively this says that the spatial structure of X0 is recovered by the ∞-groupoid of
{I,X} of isomorphisms in X.

18 In [90, §7] the Reedy fibrancy condition, which implies that the Segal maps are Kan fibrations, is
dropped and the Segal maps are only required to be weak equivalences.
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Theorem 2.8.3 (Rezk [233]). There is a cartesian closed model structure on the category
of bisimplicial sets whose

– cofibrations are the monomorphisms,
– fibrant objects are the complete Segal spaces, and
– weak equivalences are those maps u : A→ B such that for every complete Segal space X,

the maps XB→ XA are weak homotopy equivalences of simplicial sets upon evaluating
at 0.

A marked simplicial set is a simplicial set with a collection of marked edges
containing the degeneracies; maps must then preserve the markings. A quasi-category
is naturally a marked simplicial set whose marked edges are precisely the isomorphisms,
described in Definition 2.7.6.

Theorem 2.8.4 (Verity [293], Lurie [169]). There is a cartesian closed model structure
on the category of marked simplicial sets whose

– cofibrations are the monomorphisms,
– fibrant objects are the naturally marked quasi-categories, and
– weak equivalences are those maps A→ B so that for all naturally marked quasi-categories
X the map XB→ XA is a homotopy equivalence of maximal sub Kan complexes.

A relative category is a category equipped with a wide subcategory of weak
equivalences. A morphism of relative categories is a homotopical functor. A weak
equivalence of relative categories is a homotopical functor F : (C,W )→ (D,W ) that
induces a DK-equivalence on hammock localizations LH (C,W )→ LH (D,W ).

Theorem 2.8.5 (Barwick–Kan [23]). There is a model structure for relative categories
whose

– weak equivalences are the relative DK-equivalences just defined

and whose cofibrations and fibrant objects are somewhat complicated to describe.

Each of these model categories, represented in the diagram below by their sub-
categories of fibrant objects, are Quillen equivalent, connected via right Quillen
equivalences as follows:19

CSS Segal

RelCat Kan-Cat

qCat\ qCat

(2.14)

A nice feature of the simplicial category and relative category models is that their

19 The right Quillen equivalences from relative categories are in [23]. The Quillen equivalences involving
complete Segal spaces, Segal categories, and quasi-categories can all be found in [142]. Proofs that the
homotopy coherent nerve defines a Quillen equivalence from simplicial categories to quasi-categories
can be found in [169] and [81]. A zigzag of Quillen equivalences between simplicial categories and Segal
categories is constructed in [42]. The right Quillen equivalence from naturally marked quasi-categories
to the Joyal model structure can be found in [169] and [293].
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objects and morphisms are strictly-defined, as honest-to-goodness enriched categories
in the former case and honest-to-goodness homotopical categories in the latter. From
this vantage point it is quite surprising that they are Quillen equivalent to the weaker
models. But there are some costs paid to obtain this extra strictness: neither model
category is cartesian closed, so both contexts lack a suitable internal hom, whereas
the other four models — the quasi-categories, Segal categories, complete Segal spaces,
and naturally marked quasi-categories — all form cartesian closed model categories.
Consequently, in each of these models the (∞,1)-categories define an exponential
ideal: if A is fibrant and X is cofibrant, then AX is again fibrant and moreover the
maps induced on exponentials by the maps (2.13) are weak equivalences.

2.8.3 ∞-cosmoi of (∞,1)-categories

From the cartesian closure of the model categories for quasi-categories, Segal cate-
gories, complete Segal spaces, and naturally marked quasi-categories, it is possible
to induce a secondary enrichment, in the sense of Definition 2.4.25, on these model
categories:

Theorem 2.8.6 ([240, 2.2.3]). The model structures for quasi-categories, complete Segal
spaces, Segal categories, and naturally marked quasi-categories are all enriched over the
model structure for quasi-categories.

The following definition of an ∞-cosmos collects together the properties of the
fibrant objects and fibrations and weak equivalences between them in any model
category that is enriched over the Joyal model structure and in which the fibrant
objects are also cofibrant:

Definition 2.8.7 (∞-cosmos). An ∞-cosmos is a simplicially enriched category K

whose

– objects we refer to as the ∞-categories in the ∞-cosmos, whose
– hom simplicial sets Fun(A,B) are all quasi-categories,

and that is equipped with a specified subcategory of isofibrations, denoted by “�”,
satisfying the following axioms:

(i) (completeness) As a simplicially enriched category, K possesses a terminal ob-
ject 1, cotensors AU of objects A by all20 simplicial sets U , and pullbacks of
isofibrations along any functor.21

(ii) (isofibrations) The class of isofibrations contains the isomorphisms and all of
the functors ! : A � 1 with codomain 1; is stable under pullback along all

20 For most purposes, it suffices to require only cotensors with finitely presented simplicial sets (those with
only finitely many non-degenerate simplices).

21 For the theory of homotopy coherent adjunctions and monads developed in [241], limits of towers of
isofibrations are also required, with the accompanying stability properties of (ii). These limits are present
in all of the ∞-cosmoi we are aware of, but will not be required for any results discussed here.
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functors; and if p : E � B is an isofibration in K and i : U ↪→ V is an in-
clusion of simplicial sets then the Leibniz cotensor �{i,p} : EV � EU ×BU BV
is an isofibration. Moreover, for any object X and isofibration p : E � B,
Fun(X,p) : Fun(X,E)� Fun(X,B) is an isofibration of quasi-categories.

The underlying category of an∞-cosmos K has a canonical subcategory of equiva-
lences, denoted by “ ∼−→”, satisfying the two-of-six property. A functor f : A→ B is an
equivalence just when the induced functor Fun(X,f ) : Fun(X,A)→ Fun(X,B) is an
equivalence of quasi-categories for all objects X ∈ K. The trivial fibrations, denoted
by “ ∼−−→→ ”, are those functors that are both equivalences and isofibrations. It follows
from 2.8.7(i)-(ii) that:

(iii) (cofibrancy) All objects are cofibrant, in the sense that they enjoy the left lifting
property with respect to all trivial fibrations in K:

E

A B

o∃

(iv) (trivial fibrations) The trivial fibrations define a subcategory containing the
isomorphisms; are stable under pullback along all functors; and the Leibniz
cotensor �{i,p} : EV ∼−−→→ EU ×BU BV of an isofibration p : E � B in K and a
monomorphism i : U ↪→ V between presented simplicial sets is a trivial fi-
bration when p is a trivial fibration in K or i is a trivial cofibration in the
Joyal model structure on sSet. Moreover, for any object X and trivial fibration
p : E ∼−−→→ B, Fun(X,p) : Fun(X,E) ∼−−→→ Fun(X,B) is a trivial fibration of quasi-
categories.

(v) (factorization) Any functor f : A→ B may be factored as f = pj :

Nf

A B

p
q
∼

f

∼
j

where p : Nf� B is an isofibration and j : A ∼−→ Nf is right inverse to a trivial
fibration q : Nf

∼−−→→ A.

It is a straightforward exercise in enriched model category theory to verify that
these axioms are satisfied by the fibrant objects in any model category that is enriched
over the Joyal model structure on simplicial sets, at least when all of these objects are
cofibrant. Consequently:

Theorem 2.8.8 ( Joyal–Tierney, Verity, Lurie, Riehl–Verity [240]). The full subcate-
gories qCat, CSS, Segal, and qCat\ all define ∞-cosmoi.

Moreover, each of the model categories referenced in Theorem 2.8.8 is a closed
monoidal model category with respect to the cartesian product. It follows that each of
these four ∞-cosmoi is cartesian closed in the sense that it satisfies the extra axiom:
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(vi) (cartesian closure) The product bifunctor − × − : K × K → K extends to a
simplicially enriched two-variable adjunction

Fun(A×B,C) � Fun(A,CB) � Fun(B,CA).

A cosmological functor is a simplicial functor F : K→ L preserving the class of
isofibrations and all of the limits enumerated in Definition 2.8.7(i). A cosmological
functor is a biequivalence when it is:

(i) surjective on objects up to equivalence: i.e., if for every C ∈ L, there is some
A ∈ K so that FA ' C ∈ L;

(ii) a local equivalence of quasi-categories: i.e., if for every pair A,B ∈ K, the map
Fun(A,B) ∼−→ Fun(FA,FB) is an equivalence of quasi-categories.

The inclusion Cat ↪→ qCat defines a cosmological functor but not a biequivalence,
since it fails to be essentially surjective. Each right Quillen equivalence of

CSS Segal

qCat\ qCat

defines a cosmological biequivalence.
As discussed in the next section, Theorem 2.8.8 together with an additional

observation — that the ∞-cosmoi of quasi-categories, Segal categories, complete Segal
spaces, and naturally marked simplicial sets are biequivalent — forms the lynchpin of
an approach to develop the basic theory of (∞,1)-categories in a model-independent
fashion. In fact, most of that development takes places in a strict 2-category that we
now introduce.

Definition 2.8.9 (the homotopy 2-category of ∞-cosmos). The homotopy 2-cate-
gory of an ∞-cosmos K is a strict 2-category hK such that

– the objects of hK are the objects of K, i.e., the ∞-categories,
– the 1-cells f : A→ B of hK are the vertices f ∈ Fun(A,B) in the mapping quasi-

categories of K, i.e., the ∞-functors, and

– a 2-cell A B

f

g

⇓α in hK, which we call an ∞-natural transformation, is rep-

resented by a 1-simplex α : f → g ∈ Fun(A,B), where a parallel pair of 1-simplices
in Fun(A,B) represent the same 2-cell if and only if they bound a 2-simplex whose
remaining outer face is degenerate.

Put concisely, the homotopy 2-category is the 2-category hK defined by applying the
homotopy category functor h : qCat→ Cat to the mapping quasi-categories of the
∞-cosmos; the hom-categories in hK are defined by the formula

Hom(A,B) := hFun(A,B)

to be the homotopy categories of the mapping quasi-categories in K.



2.9 Model-independent (∞,1)-category theory 67

As we shall see in the next section, much of the theory of (∞,1)-categories can be
developed simply by considering them as objects in the homotopy 2-category using an
appropriate weakening of standard 2-categorical techniques. A key to the feasibility
of this approach is that the standard 2-categorical notion of equivalence, reviewed in
Definition 2.9.2 below, coincides with the representably-defined notion of equivalence
present in any ∞-cosmos. The proof of this result should be compared with Quillen’s
Proposition 2.3.23.

Proposition 2.8.10. An ∞-functor f : A→ B is an equivalence in the ∞-cosmos K if
and only if it is an equivalence in the homotopy 2-category hK.

Proof. By definition, any equivalence f : A ∼−→ B in the ∞-cosmos induces an equiv-
alence Fun(X,A) ∼−→ Fun(X,B) of quasi-categories for any X, which becomes an
equivalence of categories Hom(X,A) ∼−→ Hom(X,B) upon applying the homotopy cate-
gory functor h : qCat→ Cat. Applying the Yoneda lemma in the homotopy 2-category
hK, it follows easily that f is an equivalence in the standard 2-categorical sense.

Conversely, as the map I → ∆0 of simplicial sets is a weak equivalence in the
Joyal model structure, an argument similar to that used to prove Proposition 2.7.11
demonstrates that the cotensor BI defines a path object for the ∞-category B:

BI

B B×B

(p1,p0)

∆

∼

It follows from the two-of-three property that any ∞-functor that is isomorphic in the
homotopy 2-category to an equivalence in the∞-cosmos is again an equivalence in the
∞-cosmos. Now it follows immediately from the two-of-six property for equivalences
in the ∞-cosmos, plus the fact that the class of equivalences includes the identities,
that any 2-categorical equivalence is an equivalence in the ∞-cosmos.

A consequence of Proposition 2.8.10 is that any cosmological biequivalence in
particular defines an biequivalence of homotopy 2-categories, which explains the
choice of terminology.

2.9 Model-independent (∞,1)-category theory

We now develop a small portion of the theory of ∞-categories in any ∞-cosmos,
thereby developing a theory of (∞,1)-categories that applies equally to quasi-cate-
gories, Segal categories, complete Segal spaces, and naturally marked quasi-categories.
The definitions of the basic (∞,1)-categorical notions presented here might be viewed
as “synthetic,” in the sense that they are blind to which model is being considered,
in contrast with the “analytic” theory of quasi-categories first outlined in Joyal’s [140]
and later greatly expanded in his unpublished works and Lurie’s [169, 168]. In §2.9.1,
we introduce adjunctions and equivalences between ∞-categories, which generalize
the notions of Quillen adjunction and Quillen equivalence between model categories
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from §2.4.3 and §2.4.5. Then in §2.9.2, we develop the theory of limits and colimits in
an ∞-category, which correspond to the homotopy limits and colimits of §2.5.

Our synthetic definitions specialize in the ∞-cosmos of quasi-categories to notions
that precisely recapture the Joyal–Lurie analytic theory; the proofs that this is the case
are not discussed here, but can be found in [243, 240]. Considerably more development
along these lines can be found in [242].

2.9.1 Adjunctions and equivalences

In any 2-category, in particular in the homotopy 2-category hK of an ∞-cosmos,
there are standard definitions of adjunction or equivalence, which allow us to define
adjunctions and equivalences between ∞-categories.

Definition 2.9.1. An adjunction between ∞-categories consists of:

– a pair of ∞-categories A and B;
– a pair of ∞-functors f : B→ A and u : A→ B; and
– a pair of ∞-natural transformations η : idB⇒ uf and ε : f u⇒ idA

so that the triangle equalities hold:

B B

A A

⇓ε f ⇓η =
u

u

B

A

=u u
B B

A A
f

⇓η ⇓ε
f

u =
B

A

=
f

f

We write f a u to assert that the ∞-functor f : B → A is left adjoint to the
∞-functor u : A→ B, its right adjoint.

Definition 2.9.2. An equivalence between ∞-categories consists of:

– a pair of ∞-categories A and B;
– a pair of ∞-functors f : B→ A and g : A→ B; and
– a pair of natural isomorphisms η : idB � gf and ε : f g � idA.

An ∞-natural isomorphism is a 2-cell in the homotopy 2-category that admits a
vertical inverse 2-cell.

We write A ' B and say that A and B are equivalent if there exists an equivalence
between A and B. The direction for the ∞-natural isomorphisms comprising an
equivalence is immaterial. Our notation is chosen to suggest the connection with
adjunctions conveyed by the following exercise.

Exercise 2.9.3 . In any 2-category, prove that:

(i) Adjunctions compose: given adjoint ∞-functors

C B A  C A

f ′

⊥
f

⊥
u′ u

f f ′

⊥
u′u

the composite ∞-functors are adjoint.
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(ii) Any equivalence can always be promoted to an adjoint equivalence by modify-
ing one of the∞-natural isomorphisms. That is, show that the∞-natural isomor-
phisms in an equivalence can be chosen so as to satisfy the triangle equalities.
Conclude that if f and g are inverse equivalences then f a g and g a f .

The point of Exercise 2.9.3 is that there are various diagrammatic 2-categorical
proofs that can be taken off the shelf and applied to the homotopy 2-category of
an ∞-cosmos to prove theorems about adjunctions and equivalence between (∞,1)-
categories.

2.9.2 Limits and colimits

We now introduce definitions of limits and colimits for diagrams valued inside an
∞-category. We begin by defining terminal objects, or as we shall call them “terminal
elements,” to avoid an overproliferation of the generic name “objects.”

Definition 2.9.4. A terminal element in an∞-category A is a right adjoint t : 1→ A
to the unique ∞-functor ! : A→ 1. Explicitly, the data consists of

– an element t : 1→ A and
– a ∞-natural transformation η : idA⇒ t! whose component ηt at the element t is

an isomorphism.22

Several basic facts about terminal elements can be deduced immediately from the
general theory of adjunctions.

Exercise 2.9.5 .

(i) Terminal elements are preserved by right adjoints and by equivalences.
(ii) If A′ ' A then A has a terminal element if and only if A′ does.

Terminal elements are limits of empty diagrams. We now turn to limits of generic
diagrams whose indexing shapes are given by 1-categories. For any ∞-category A in
an ∞-cosmos K, there is a 2-functor A(−) : Catop→ hK defined by forming simplicial
cotensors with nerves of categories. Using these simplicial cotensors, if J is a 1-category
and A is an ∞-category, the ∞-category of J-indexed diagrams in A is simply the
cotensor AJ .23

Remark 2.9.6 . In the cartesian closed ∞-cosmoi of Definition 2.8.7(vi), we also
permit the indexing shape J to be another ∞-category, in which case the internal
hom AJ defines the ∞-category of J-indexed diagrams in A. The development
of the theory of limits indexed by an ∞-category in a cartesian closed ∞-cosmos
entirely parallels the development for limits indexed by 1-categories, a parallelism we
highlight by conflating the notation of 2.8.7(i) and 2.8.7(vi).

22 If η is the unit of the adjunction ! a t, then the triangle equalities demand that ηt = idt . However, by a
2-categorical trick, to show that such an adjunction exists, it suffices to find a 2-cell η such that ηt is an
isomorphism.

23 More generally, this construction permits arbitrary simplicial sets as indexing shapes for diagrams in an
∞-category A. In either case, the elements of AJ are to be regarded as homotopy coherent diagrams
along the lines of Remark 2.7.10.
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In analogy with Definition 2.9.4, we have:

Definition 2.9.7. An ∞-category A admits all limits of shape J if the constant
diagram ∞-functor ∆ : A→ AJ , induced by the unique ∞-functor ! : J → 1, has a
right adjoint:

A AJ
∆

⊥
lim

From the vantage point of Definition 2.9.7, the following result is easy:

Exercise 2.9.8 . Using the general theory of adjunctions, show that a right adjoint ∞-
functor u : A→ B between ∞-categories that admit all limits of shape J necessarily
preserves them, in the sense that the ∞-functors

AJ BJ

A B

lim

uJ

lim�

u

commute up to isomorphism.

The problem with Definition 2.9.7 is that it is insufficiently general: many ∞-
categories will have certain, but not all, limits of diagrams of a particular indexing
shape. With this in mind, we will now re-express Definition 2.9.7 in a form that
permits its extension to cover this sort of situation. For this, we make use of the
2-categorical notion of an absolute right lifting, which is the “op”-dual (reversing
the 1-cells but not the 2-cells) of the notion of absolute right Kan extension introduced
in Definition 2.4.1.

Exercise 2.9.9 . Show that in any 2-category, a 2-cell ε : f u⇒ idA defines the counit
of an adjunction f a u if and only if

B

A A
⇓ε

fu

defines an absolute right lifting diagram.

Applying Exercise 2.9.9, Definition 2.9.7 is equivalent to the assertion that the limit
cone, our term for the counit of ∆ a lim, defines an absolute right lifting diagram:

A

AJ AJ
⇓ε

∆
lim (2.15)

Recall that the appellation “absolute” means “preserved by all functors,” in this case
by restriction along any ∞-functor X → AJ . In particular, an absolute right lifting
diagram (2.15) restricts to define an absolute right lifting diagram on any subobject of
the ∞-category of diagrams. This motivates the following definition.
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Definition 2.9.10 (limit). A limit of a J-indexed diagram in A is an absolute right
lifting of the diagram d through the constant diagram ∞-functor ∆ : A→ AJ

A

1 AJ
⇓λ

∆limd

d

(2.16)

the 2-cell component of which defines the limit cone λ : ∆ limd⇒ d.

If A has all J-indexed limits, the restriction of the absolute right lifting diagram (2.15)
along the element d : 1→ AJ defines a limit for d. Interpolating between Definitions
2.9.10 and 2.9.7, we can define a limit of a family of diagrams to be an absolute
right lifting of the family d : K → AJ through ∆ : A→ AJ . For instance:

Theorem 2.9.11 ([243, 5.3.1]). For every cosimplicial object in an ∞-category that admits
a coaugmentation and a splitting, the coaugmentation defines its limit. That is, for every
∞-category A, the ∞-functors

A

A´⊥ A´
⇓λ

∆

res

ev[−1]

define an absolute right lifting diagram.

Here ´ is the usual simplex category of finite non-empty ordinals and order-
preserving maps. It defines a full subcategory of ´+, which freely appends an initial
object [−1], and this in turn defines a subcategory of ´⊥, which adds an “extra
degeneracy” map between each pair of consecutive ordinals. Diagrams indexed by ´ ⊂
´+ ⊂ ´⊥ are, respectively, called cosimplicial objects, coaugmented cosimplicial
objects, and split cosimplicial objects. The limit of a cosimplicial object is often
called its totalization.

Proof sketch. In Cat, there is a canonical 2-cell

´ ´⊥

1

!
⇑λ

[−1]

because [−1] ∈ ´⊥ is initial. This data defines an absolute right extension diagram
that is moreover preserved by any 2-functor, because the universal property of the
functor [−1] : 1→ ´⊥ and the 2-cell λ is witnessed by a pair of adjunctions. The
2-functor A(−) : Catop→ hK converts this into the absolute right lifting diagram of
the statement.

The most important result relating adjunctions and limits is of course this:

Theorem 2.9.12 ([243, 5.2.13]). Right adjoints preserve limits.
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Our proof will closely follow the classical one. Given a diagram d : 1→ AJ and a
right adjoint u : A→ B to some ∞-functor f , a cone with summit b : 1→ B over uJd
transposes to define a cone with summit f b over d, which factors uniquely through
the limit cone. This factorization transposes back across the adjunction to show that
u carries the limit cone over d to a limit cone over uJd.

Proof. Suppose that A admits limits of a diagram d : 1→ AJ as witnessed by an
absolute right lifting diagram (2.16). Since adjunctions are preserved by all 2-functors,
an adjunction f a u induces an adjunction f J a uJ . We must show that

A B

1 AJ BJ
⇓λ

∆

u

∆limd

d uJ

is again an absolute right lifting diagram. Given a square

X B

1 AJ BJ

b

! ⇓χ ∆

d uJ

we first “transpose across the adjunction,” by composing with f and the counit.

X B A X B A

1 AJ BJ AJ 1 AJ

b

! ⇓χ ∆

f

∆ = !

b

∃!⇓ζ

⇓λ

f

∆

d ⇓εJ
uJ f J

limd

d

The universal property of the absolute right lifting diagram λ : ∆ lim⇒ d induces a
unique factorization ζ, which may then be “transposed back across the adjunction” by
composing with u and the unit.

X B A B X B A B

1 AJ BJ 1 AJ BJ AJ BJ

!

b

∃!⇓ζ

⇓λ

⇓ηf

∆

u

∆ =

b

! ⇓χ ∆

f

⇓η

∆

u

∆limd

d uJ d
uJ

⇓εJ
f J

uJ

=
X B B X B

1 AJ BJ AJ BJ 1 AJ BJ

!

b

⇓χ ∆ ∆ =

b

! ⇓χ ∆

d
uJ

⇓εJ

⇓ηJ
f J

uJ d uJ

Here the second equality is a consequence of the 2-functoriality of the simplicial
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cotensor, while the third is an application of a triangle equality for the adjunction
f J a uJ . The pasted composite of ζ and η is the desired factorization of χ through λ.

The proof that this factorization is unique, which again parallels the classical
argument, is left to the reader: the essential point is that the transposes defined via
these pasting diagrams are unique.

Colimits are defined “co”-dually, by reversing the direction of the 2-cells but not the
1-cells. There is no need to repeat the proofs however: any ∞-cosmos K has a co-dual
∞-cosmos Kco with the same objects but in which the mapping quasi-categories are
defined to be the opposites of the mapping quasi-categories in K.

2.10 Epilogue

A category K equipped with a class of “weak equivalences” W— perhaps saturated in
the sense of containing all of the maps inverted by the Gabriel–Zisman localization
functor or perhaps merely generating the class of maps to be inverted in the category
of fractions — defines a “homotopy theory,” a phrase generally used to refer to the
associated homotopy category together with the homotopy types of the mapping spaces,
as captured for instance by the Dwyer–Kan hammock localization. We have studied
two common axiomatizations of this abstract notion: Quillen’s model categories, which
present homotopy theories with all homotopy limits and homotopy colimits, and
(∞,1)-categories, which might be encoded using one of the models introduced in §2.8
or worked with model-independently in the sense outlined in §2.9.

From the point of view of comparing homotopy categories, the model-independent
theory of (∞,1)-categories has some clear advantages: equivalences between homotopy
theories are directly definable (see Definition 2.9.2) instead of being presented as
zigzags of DK- or Quillen equivalences. The formation of diagram categories (see
Remark 2.9.6) is straightforward and homotopy limit and colimit functors become
genuine adjoints (see Definition 2.9.7) and homotopy limits and colimits become
genuine limits and colimits — at least in the sense appropriate to the theory of (∞,1)-
categories. So from this vantage point it is natural to ask: Do we still need model
categories?24 While some might find this sort of dialog depressing, in our view it does
not hurt to ask.

Chris Schommer-Pries has suggested a useful analogy to contextualize the role
played by model categories in the study of homotopy theories that are complete and
cocomplete: 

model category :: (∞,1)-category
basis :: vector space
local coordinates :: manifold

A precise statement is that combinatorial model categories present those (∞,1)-cate-
gories that are complete and cocomplete and more generally (locally) presentable; this

24 See https://mathoverflow.net/questions/78400/do-we-still-need-model-categories.
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result is proven in [169, A.3.7.6] by applying a theorem of Dugger [77].25 In general
having coordinates is helpful for calculations. In particular, when working inside a
particular homotopy theory as presented by a model category, you also have access
to the non-bifibrant objects. For instance, the Bergner model structure of §2.6.2 is a
useful context to collect results about homotopy coherent diagrams, which are defined
to be maps from the cofibrant (and not typically fibrant) objects to the fibrant ones
(which are not typically cofibrant).

But Quillen himself was somewhat unsatisfied with the paradigm-shifting abstract
framework that he introduced, writing:

This definition of the homotopy theory associated to a model category is obviously unsatisfactory.
In effect, the loop and suspension functors are a kind of primary structure on HoM and the
families of fibration and cofibration sequences are a kind of secondary structure since they
determine the Toda bracket . . . . Presumably there is higher order structure . . . on the homotopy
category which forms part of the homotopy theory of a model category, but we have not been
able to find an inclusive general definition of this structure with the property that this structure is
preserved when there are adjoint functors which establish an equivalence of homotopy theories.
[229, pp. 3–4]

Quillen was referring to a model category that is pointed, in the sense of having
a zero object, like the role played by the singleton space in Top∗. A more modern
context for the sort of stable homotopy theory that Quillen is implicitly describing is
the category of spectra, the (∞,1)-category of which has many pleasant properties
collected together in the notion of a stable ∞-category. We posit that these notions,
which are the subject of Chapter 4 of this volume, might fulfill Quillen’s dream.

25 Morally, in the sense discussed in §2.3.2, all model categories are Quillen equivalent to locally
presentable ones. More precisely, the result that every cofibrantly generated (in a suitable sense of this
term) model category is Quillen equivalent to a combinatorial one has been proven by Raptis and
Rosicky to be equivalent to a large cardinal axiom called Vopěnka’s principle [254].


