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Adjoint associativity: an invitation to algebra
in co-categories

JOSEPH LIPMAN

There appeared not long ago a reduction formula for derived Hochschild
cohomology, that has been useful, for example, in the study of Gorenstein
maps and of rigidity with respect to semidualizing complexes. The formula
involves the relative dualizing complex of a ring homomorphism, so brings
out a connection between Hochschild homology and Grothendieck duality.
The proof, somewhat ad hoc, uses homotopical considerations via a number
of noncanonical projective and injective resolutions of differential graded
objects. Recent efforts aim at more intrinsic approaches, hopefully upgradable
to “higher” contexts — like bimodules over algebras in co-categories. This
would lead to wider applicability, for example to ring spectra; and the methods
might be globalizable, revealing some homotopical generalizations of aspects
of Grothendieck duality. (The original formula has a geometric version, proved
by completely different methods coming from duality theory.) A first step is to
extend Hom-Tensor adjunction — adjoint associativity — to the co-category

setting.
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Introduction

There are substantial overlaps between algebra and homotopy theory, making for
mutual enrichment — better understanding of some topics, and wider applicability
of results from both areas. In this vein, works of Quillen, Neeman, Avramov—
Halperin, Schwede—Shipley, Dwyer-Iyengar—Greenlees, to mention just a few,
come to mind. See also [Greenlees 2007]. In recent years, homotopy theorists
like May, Toén, Joyal, Lurie (again to mention just a few) have been developing
a huge theory of algebra in co-categories, dubbed by Lurie “higher algebra”,!
familiarity with which could be of significant benefit to (lower?) algebraists.
This little sales pitch will be illustrated here by one specific topic that arose

algebraically, but can likely be illuminated by homotopical ideas.

1. Motivation: reduction of Hochschild (co)homology

Let R be a noetherian commutative ring, D(R) the derived category of the cate-
gory of R-modules, and similarly for S. Let o: R — S be a flat homomorphism
essentially of finite type. Set S¢:= S ®g S. Let M, N € D(S), with M o-
perfect, that is, the cohomology modules H' (M) are finitely generated over S,
and the natural image of M in D(R) is isomorphic to a bounded complex of flat
R-modules.

Theorem 1.1 (reduction theorem [Avramov et al. 2010, Theorems 1 and 4.6]).
There exists a complex D® € D(S) together with bifunctorial S-isomorphisms
R Homge (S, M ®Ik N) = RHomg(RHomg(M, D°),N), (1.1.1)
S ®5. RHomg(M, N) = RHomg (M, D%) ®% N. (1.1.2)
Remarks. (1) “Reduction” refers to the reduction, via (1.1.1) and (1.1.2), of
constructions over S€ to constructions over S.

(2) The homology S-modules of the sources of (1.1.1) and (1.1.2) are the
Hochschild cohomology modules of o, with coefficients in M ®Ik N, and the
Hochschild homology modules of o, with coefficients in R Homg (M, N).

INot to be confused with the contents of [Hall and Knight 1907].
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(3) (Applications.) The isomorphism (1.1.1) is used to formulate a notion of
rigidity with respect to a fixed semidualizing complex [Avramov et al. 2011,
Section 3], leading to a broad generalization of the work of Yekutieli and Zhang
summarized in [Yekutieli 2010].

The special case M = N = § of (1.1.1) plays a crucial role in the proofs of
[Avramov and Iyengar 2008, Theorems 3 and 4].

The special case M = N = § of (1.1.2) is used in a particularly simple ex-
pression for the fundamental class of o; see [Lyengar et al. 2015, Theorem 4.2.4].

(4) The complex D¢ is determined up to isomorphism by either (1.1.1) — which
implies that DY corepresents the endofunctor R Homge (S, S ®  —) of D(S) —
or, more directly, by (1.1.2), which yields an isomorphism

S ®5. RHomg(S,S) = D°.
In fact, if g is the map Spec(o) from V := Spec(S) to W:= Spec(R), then
D ~ g!(@W,

that is, D is a relative dualizing complex for ¢ [Avramov et al. 2010, Re-
mark 6.2].

Thus we have a relation (one of several) between Hochschild homology and
Grothendieck duality.

(5) For example, if Spec(S) is connected and o is formally smooth, so that,
with I the kernel of the multiplication map S¢ — S, the relative differential
module Q4 := 1 /17 is locally free of constant rank, say d, then

D = Q4¢[d]:= (AN 1/1?)[d] = Tor'(S, $)[d].

Using local resolutions of S by Koszul complexes of S€-regular sequences that
generate [, one finds a chain of natural D(.S)-isomorphisms

R Homg:(S. $¢) —> (H?RHomg:(S. S®))[—d]
(H*RHoms. (S, $9)[~d] ®s: S
(HY (RHomg:(S, S¢) ®%. §))[—d]
(Hd(R Homg (S ®%. S, $)))[—d]
Homg (Tor5 (S, $)[d], S)

Homg (D7, S)

RHomg (D, S).

R O
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The composition ¢ of this chain is (1.1.1) with M = N = §. (It is essentially the
same as the isomorphism H?RHomg-(S, S¢) —~> Homg (/\d 1/1%,S) given
by the “fundamental local isomorphism” of [Hartshorne 1966, Chapter 111, §7].)

As o is formally smooth, o-perfection of M is equivalent to M being a perfect
S¢-complex; and S too is a perfect S€-complex. It is then straightforward to
obtain (1.1.1) by applying to ¢ the functor

— Q% (M RFN) =—®5 S ®ge (M @R N) = — Q5 (M ®5 N).

(Note that M and N may be assumed to be K-flat over .S, hence over R.)
To prove (1.1.1) for arbitrary o one uses a factorization

o0 = (surjection) o (formally smooth)

to reduce to the preceding formally smooth case. For this reduction (which
is the main difficulty in the proof), as well as a scheme-theoretic version of
Theorem 1.1, see [Avramov et al. 2010; Iyengar et al. 2015, Theorem 4.1.8].

2. Enter homotopy

So far no homotopical ideas have appeared. But they become necessary, via
(graded-commutative) differential graded algebras (dgas), when the flatness
assumption on o is dropped. Then for Theorem 1.1 to hold, one must first
define S¢ to be a derived tensor product:

S¢:=S®% S:=S®rS,

where S — S is a homomorphism of dg R-algebras that induces homology
isomorphisms, with S flat over R. Such “flat dg algebra resolutions” of the
R-algebra S exist; and any two are “dominated” by a third. (This is well-known;
for more details, see [Avramov et al. 2010, Sections 2 and 3].) Thus S€ is not an
R-algebra, but rather a class of quasi-isomorphic dg R-algebras.

By using suitable “semiprojective” dg S-resolutions of the complexes Mand N,
one can make sense of the statements

M ®% N € D(S%), RHomg(M, N) € D(S°);
and then, following Quillen, Mac Lane and Shukla, define complexes
RHomge(S,M ®% N), S ®5.RHomg(M,N),

whose homology modules are the derived Hochschild cohomology resp. the
derived Hochschild homology modules of o, with coefficients in M (8)'1-e N and
RHompg(M, N), respectively. These complexes depend on a number of choices
of resolution, so they are defined only up to a coherent family of isomorphisms,
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indexed by the choices. This is analogous to what happens when one works with
derived categories of modules over a ring.

In [Avramov et al. 2010], the reduction of Theorem 1.1 to the formally smooth
case is done by the manipulation of a number of noncanonical dg resolutions,
both semiprojective and semiinjective. Such an argument tends to obscure the
conceptual structure. Furthermore, in section 6 of that paper a geometric version
of Theorem 1.1 is proved by completely different methods associated with
Grothendieck duality theory — but only for flat maps. A globalized theory of
derived Hochschild (co)homology for analytic spaces or noetherian schemes of
characteristic zero is given, for example, in [Buchweitz and Flenner 2008]; but
there is as yet no extension of Theorem 1.1 to nonflat maps of such spaces or
schemes.

The theory of algebra in co-categories, and its globalization “derived algebra
geometry,” encompass all of the above situations,? and numerous others, for
instance “structured spectra” from homotopy theory. The (unrealized) underlying
goal toward which this lecture is a first step is to prove a version of Theorem 1.1 —
without flatness hypotheses — that is meaningful in this general context. The
hope is that such a proof could unify the local and global versions in [Avramov
et al. 2010], leading to better understanding and wider applicability; and perhaps
most importantly, to new insights into, and generalizations of, Grothendieck
duality.

3. Adjoint associativity

To begin with, such an upgraded version of Theorem 1.1 must involve some
generalization of ® and Hom; and any proof will most probably involve the
basic relation between these functors, namely adjoint associativity.

For any two rings (not necessarily commutative) R, S, let R#S be the abelian
category of R-S bimodules (R acting on the left and S on the right).

The classical version of adjoint associativity (compare [MacLane 1967, VI,
(8.7)]) asserts that for rings A, B, C, D, and x € A#B, y € B#C, z € D#C,
there exists in D#A a functorial isomorphism

a(x,y,z):Homc(x ®p y,z) — Homp(x,Homc (y, 2)), 3.1

such that for any fixed x and y, the corresponding isomorphism between the left
adjoints of the target and source of a is the associativity isomorphism

- Q®4(x®py) <— (—®4x)Rp Y.

2to some extent, at least: see, e.g., [Shipley 2007]. But see also Example 10.3 and 12.3 below.
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As hinted at above, to get an analogous statement for derived categories,
where one needs flat resolutions to define (derived) tensor products, one has to
work in the dg world; and that suggests going all the way to co-categories.

The remainder of this article will be an attempt to throw some light on how
(3.1) can be formulated and proved in the co-context. There will be no possibility
of getting into details, for which however liberal references will be given to the
massive works [Lurie 2009; 2014], for those who might be prompted to explore
the subject matter more thoroughly.3

4. oo-categories

It’s time to say what an co-category is.
An ordinary small category C is, to begin with, a diagram

dy

Al — S
-

dy

Ao

where A1 is the set of arrows in C, A is the set of objects, 5o takes an object to
its identity map, and dg (resp. d) takes an arrow to its target (resp. source). We
can extend this picture by introducing sequences of composable arrows:

The first picture represents a sequence of two composable arrows, whose com-
position is represented by the dashed arrow; and the second picture represents
a sequence of three composable arrows, with dotted arrows representing com-
positions of two or three of these. The pictures suggest calling a sequence of n
composable arrows an n-simplex. (A 0-simplex is simply an object in C.) The
set of n-simplices is denoted A;.

There are four face maps d;: A3 — A, (0 <i <3), taking a sequence yo o«
to the respective sequences yo 8, yo (Ba), (yB)ea and foa. There are three
degeneracy maps sj: Ap — Az (0 < j < 2) taking a sequence Bo« to the

3The page numbers in the references to [Lurie 2014] refer to the preprint dated August, 2012.
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respective “degenerate” (that is, containing an identity map) sequences Beo aoid,
Boidea and ide Boa.

Likewise, for any n > 0 there are face maps dj: A, = Ap—1 (0 <i <n)
and degeneracy maps s;: Ap—1 — A (0 < j <n); and these maps satisfy the
standard identities that define a simplicial set (see, e.g., [Goerss and Jardine
1999, p. 4, (1.3)].

The simplicial set N(C) just defined is called the nerve of C.

Example. For any n > 0, the totally ordered set of integers
O<l<2<---<n—1<n

can be viewed as a category (as can any ordered set). The nerve of this category
is the standard n-simplex, denoted A”. Its m-simplices identify with the nonde-
creasing maps from the integer interval [0, m] to [0, n]. In particular, there is a
unique nondegenerate n-simplex ¢, namely the identity map of [1, n].

The collection of all the nondegenerate simplices of A", and their face maps,
can be visualized by means of the usual picture of a geometric n-simplex and its
subsimplices. (For n = 2 or 3, see the above pictures, with all dashed arrows
made solid.)

The horn A} C A" is the simplicial subset whose m-simplices (m > 0) are
the nondecreasing maps s: [0, m] — [0, n] with image not containing the set
([O, n]\ {i }) For example, A7 has n nondegenerate (n — 1)-simplices namely
djtn (0= j =n, j #1i).

Visually, the nondegenerate simplices of A C A” are those subsimplices of
a geometric n-simplex other than the n-simplex itself and its i -th face.

Small categories are the objects of a category Cat whose morphisms are func-
tors; and simplicial sets form a category Seto whose morphisms are simplicial
maps, that is, maps taking m-simplices to m-simplices (for all m > 0) and
commuting with all the face and degeneracy maps. The above map C +— N(C)
extends in an obvious way to a nerve functor Cat — Seta.

Proposition 4.1 [Lurie 2009, p.9, 1.1.2.2]. The nerve functor Cat — Setp is
a fully faithful embedding. Its essential image is the full subcategory of Seta
spanned by the simplicial sets K with the following property:

(¥) Foralln >0and 0 <i <n, every simplicial map A} — K extends uniquely
to a simplicial map A" — K.

Remarks. By associating to each simplicial map A" — K the image of the
nondegenerate n-simplex ¢, one gets a bijective correspondence between such
maps and n-simplices of K. (See, e.g., [Goerss and Jardine 1999, p. 6].)

By associating to each simplicial map A} — K the image of the sequence
(djtn)o<j<n, j+i> One gets a bijective correspondence between such maps and
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sequences (y;)o<;<n, j#i of (n—1)-simplices of K such that d; yx = dg_1y;
if j <k and j, k #i. (See [Goerss and Jardine 1999, p.10, Corollary 3.2].)

Thus () means that for alln > 0 and 0 <i <n, if A is the map from the set
of n-simplices of K to the set of such sequences (y;) that takes an n-simplex y
to the sequence (d;y)o<j<n, j+i, then A is bijective.

Definition 4.2. An oco-category is a simplicial set K such that for all n > 0 and
0 <i <n, every simplicial map A} — K extends to a simplicial map A" — K.
Equivalently, it is a K for which the preceding map A is surjective.

A functor from one co-category to another is a map of simplicial sets.

Thus oco-categories and their functors form a full subcategory of Seta, one
that itself has a full subcategory canonically isomorphic to Cat.

Example 4.2.1. To any dg category C (one whose arrows between two fixed
objects are complexes of abelian groups, composition being bilinear) one can
assign the dg-nerve Ny, (C), an oo-category whose construction is more compli-
cated than that of the nerve N(C) because the dg structure has to be taken into
account. (For details, see [Lurie 2014, Section 1.3.1].)

For instance, the complexes in an abelian category A can be made into a dg
category Cqg(A) by defining Hom(E, F) for any complexes E and F to be the
complex of abelian groups that is Hom(E ,F [n]) in degree n, with the usual
differential. When A is a Grothendieck abelian category, we will see below
(Example 5.3) how one extracts from the oo-category Nyg(Cag(A)) the usual
derived category D(A).

Example 4.2.2. To any topological category € — that is, one where the Hom
sets are topological spaces and composition is continuous — one can assign a
topological nerve Nyp(C), again more complicated than the usual nerve N(C)
[Lurie 2009, p. 22, 1.1.5.5].

CW-complexes are the objects of a topological category CW. The topolog-
ical nerve 8:= Nyp(CW) is an oo-category, the co-category of spaces. (See
[loc.cit, p.24, 1.1.5.12; p. 52, 1.2.16.3].) Its role in the theory of co-categories
is analogous to the role of the category of sets in ordinary category theory.

Example 4.2.3. Kan complexes are simplicial sets such that the defining condi-
tion of co-categories holds for all i € [0, n]. Examples are the singular complex
of a topological space (a simplicial set that encodes the homotopy theory of the
space), the nerve of a groupoid (= category in which all maps are isomorphisms),
and simplicial abelian groups. (See [Goerss and Jardine 1999, Section 1.3].)

Kan complexes span a full subcategory of the category of co-categories, the
inclusion having a right adjoint [Lurie 2009, p. 36, 1.2.5.3]. The simplicial nerve
of this subcategory [Lurie 2009, p. 22, 1.1.5.5] provides another model for the
oo-category of spaces [loc. cit, p.51, 1.2.16].
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Most of the basic notions from category theory can be extended to oo-
categories. Several examples will be given as we proceed. A first attempt
at such an extension would be to express a property of categories in terms of
their nerves, and then to see if this formulation makes sense for arbitrary oo-
categories. (This will not always be done explicitly; but as co-category notions
are introduced, the reader might check that when restricted to nerves, these
notions reduce to the corresponding classical ones.)

Example 4.2.4. An object in an oco-category is a 0-simplex. A map f in an
oo-category is a 1-simplex. The source (resp. target) of f is the object dj f
(resp. do f). The identity map id, of an object x is the map 59 x, whose source
and target are both x.

Some history and motivation related to co-categories can be gleaned, for
example, starting from ncatlab.org/nlab/show/quasi-category.

The notion of co-category as a generalization of that of category grew out
of the study of operations in the homotopy category of topological spaces, for
instance the composition of paths. Indeed, as will emerge, the basic effect of
removing unicity from condition () above to get to co-categories (Definition 4.2)
is to replace equality of maps in categories with a homotopy relation, with all
that entails.

Topics of foundational importance in homotopy theory, such as model cate-
gories, or spectra and their products, are closely related to, or can be treated via,
oo-categories [Lurie 2009, p. 803; 2014, Sections 1.4, 6.3.2]. Our concern here
will mainly be with relations to algebra.

5. The homotopy category of an co-category

5.1. The nerve functor of Proposition 4.1 has a left adjoint h: Setpo — Cat, the
homotopy functor; see [loc. cit., p. 28, 1.2.3.1].

If the simplicial set C is an co-category, the homotopy category 2C can be
constructed as follows. For maps f and g in C, write f ~ g (and say that “ f
is homotopic to g”) if there is a 2-simplex ¢ in C such that dro = f,dioc =g
and d()O’ = iddog = iddof:

(This can be intuited as the skeleton of a deformation of f to g through a
“continuous family” of maps with fixed source and target.) Using the defining
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property of co-categories, one shows that this homotopy relation is an equivalence
relation. Denoting the class of f by f, one defines the composition f»o fi to be
h for any & such that there exists a 2-simplex

EAN

f

One shows that this composition operation is well-defined, and associative. There
results a category whose objects are those of C, and whose maps are the homotopy
equivalence classes of maps in €, with composition as just described. (For details,
see [Lurie 2009, Section 1.2.3].) This is the homotopy category hC.

Example 5.2. Let S be the co-category of spaces (Example 4.2.2). Its homotopy
category H:=hS is called the homotopy category of spaces. The objects of H are
CW-complexes, and the maps are homotopy-equivalence classes of continuous
maps. (See [loc. cit., p.16].)

Example 5.3 (extending Example 4.2.1). In the category of complexes in a
Grothendieck abelian category s, the (injectively) fibrant objects are those
complexes I such that for any sd-diagram of complexes X < ¥y L1 with s both
a (degreewise) monomorphism and a quasi-isomorphism, there exists g: X — [
such that gs = f. (See [Lurie 2014, p.93, 1.3.5.3].)

The g-injective, or K-injective, objects are those I such that for any diagram
of complexes X <= Y L1 with s a quasi-isomorphism, there exists g: X — [
such that gs is homotopic to f.

(Recall that, following Spaltenstein, right-derived functors are defined via
g-injective resolutions.)

Lemma 5.3.1. An A-complex I is g-injective if and only if I is homotopy-
equivalent to a fibrant complex.

Proof. Fix a fibrant Q. By [loc.cit., p. 97, 1.3.5.11], if the complex M is exact
then so is the complex Hom®(M, Q); and so by [Lipman 2009, 2.3.8(iv) and
(2.3.8.1)], Q is g-injective, whence so is any complex homotopy-equivalent to Q.

If I is g-injective, then factoring / — 0 as fibratione (trivial cofibration) ([Lurie
2014, p. 93, 1.3.5.3]) one gets a monomorphic quasi-isomorphism j:/ — Q
with Q fibrant, hence g-injective; so j is a homotopy equivalence [Lipman 2009,
2.3.2.2]. O

Remarks. (1) If the complex Q is bounded below and injective in each degree,
then Q is fibrant, hence g-injective, see [Lurie 2014, p. 96, 1.3.5.6].
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(2) Any split short exact sequence, extended infinitely both ways by zeros, is a
complex homotopically equivalent to the fibrant complex 0, but not necessarily
itself fibrant, since fibrant complexes are term-wise injective; see again [Lurie
2014, p. 96, 1.3.5.6].

5.3.2. For any additive category #{, two maps in the dg-nerve Ng,(Ch(s{)) are
homotopic if and only if they are so as chain maps, see [loc. cit., p. 64, 1.3.1.8].
Thus the homotopy category hNgg(Ch(s{)) is just the category with objects the
A-complexes and arrows the homotopy-equivalence classes of chain maps.

Similarly, when s is a Grothendieck abelian category and Ch(4)? is the full
subcategory of Ch(s{)) spanned by the fibrant complexes, the homotopy category
of the derived oco-category D(HA):= ng(Ch(&ﬂ)O) [loc.cit., p.96, 1.3.5.8] is
the quotient of Ch(s4)° by the homotopy relation on chain maps, and thus is
equivalent to the similar category whose objects are the fibrant complexes, which
by Lemma 5.3.1 is equivalent to the usual derived category D(sd).

In summary: h'D(A) is equivalent to D(A).

(A more general result for any dg category is in [loc. cit., p. 64, 1.3.1.11].)

5.4. The homotopy category of a stable oco-category is triangulated. (See In-
troduction to [loc. cit., Section 1.1].) For instance, the co-category D(s{) (just
above) is stable [loc. cit., p. 96, 1.3.5.9]. So is the co-category of spectra— whose
homotopy category underlies stable homotopy theory [loc. cit., p. 16, 1.1.1.11].

Example 5.5. A localization D — Dy of an ordinary category D with respect
to a set V of maps in D is an initial object in the category of functors with source
D that take the maps in V to isomorphisms.

A localization € — C[W~!] of an oo-category € w.r.t a set W of maps (i.e.,
1-simplices) in € is similarly universal up to homotopy for those co-functors out
of C that take the maps in W to equivalences. (For more precision, see [loc. cit.,
p- 83, 1.3.4.1].) Such a localization exists, and is determined uniquely up to
equivalence by C and W [loc. cit., p. 83, 1.3.4.2].

For functors of the form € — N(D) with D an ordinary category, the words
“up to homotopy” in the preceding paragraph can be omitted. (This follows
from the precise definition of localization, because in co-categories of the form
Fun(C, N(D)) —see 8.2—the only equivalences are identity maps.)

So composition with the localization map (see (12.4.1)) gives a natural bijec-
tion from the set of co-functors C[W ~1] — N(D) to the set of those co-functors
€ — N(D) that take the maps in W to equivalences, that is, from the set of
functors h(C[W~1]) = D to the set of those functors h@ — D that take the maps
in the image W of W to isomorphisms. Hence there is a natural isomorphism

hCW ™) = (W) (5.5.1)
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giving commutativity of the homotopy functor with localization.

For instance, to every model category A one can associate naturally an “un-
derlying oco-category” Ao. Under mild assumptions, A, can be taken to be the
localization (N(A))[W ~1], with W the set of weak equivalences in A. Without
these assumptions, one can just replace A by its full subcategory spanned by the
cofibrant objects, see [Lurie 2014, p. 89, 1.3.4.16].

Equation (5.5.1), with € = N(A), shows that the homotopy category hA is
canonically isomorphic to Ay, the classical homotopy category of A [Goerss
and Jardine 1999, p. 75, Theorem 1.11].

Example 5.3, with o the category of right modules over a fixed ring R, is
essentially the case where A is the category of complexes in &, with “injec-
tive” model structure as in [Lurie 2009, p.93, 1.3.5.3]. Indeed, A can be
identified with D(A) [Lurie 2014, p.98, 1.3.5.15], and the classical homotopy
category of A, obtained by inverting weak equivalences ( = quasi-isomorphisms),
with D().

Example 5.6. Let D be a dg category. For any two objects x, y € D replace the
mapping complex Mapq,(x, y) by the simplicial abelian group associated by the
Dold—Kan correspondence to the truncated complex 7., Map4, (x, y), to produce
a simplicial category Da. (See [loc. cit., p. 65, 1.3.1.13], except that indexing
here is cohomological rather than homological.)

For example, with notation as in Example 5.3, D(s4{) is also the homotopy
category of the simplicial nerve of the simplicial category thus associated to
Ch(s1)? [loc. cit., p. 66, 1.3.1.17].

For the category o of abelian groups, and D := Ch(#)?, [loc.cit., p.47,
Remark 1.2.3.14] (in light of [loc. cit., p. 46, 1.2.3.13]) points to an agreeable
interpretation of the homotopy groups of the Kan complex Mapy,, (x, y) with
base point O (or of its geometric realization, see [Goerss and Jardine 1999, bottom,

p. 60]):
Tn (MapDA(xv y)) = H™ MapD (X, y) =:Ext™" (X, y) (I’l > O)

(See also [Lurie 2014, p.32, 1.2.1.13] and [loc. cit., p. 29; Section 1.2, second
paragraph].)

6. Mapping spaces; equivalences

6.1. An important feature of co-categories is that any two objects determine not
just the set of maps from one to the other, but also a topological mapping space.
In fact, with HH as in Example 5.2, the homotopy category hC of an co-category C
can be upgraded to an H{-enriched category, as follows:
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For any objects x and y in C, one considers not only maps with source x and
target y, but all “arcs” of n-simplexes (n > 0) that go from the trivial n-simplex
A" — A% 5 € to the trivial n-simplex A" — A° 2 e —more precisely, maps
6: Al x A" — C such that the compositions

j X1 7]
A= A0 An AT A D (=0, 1)

are the unique n-simplices in the constant simplicial sets {x} and {y} respec-
tively. Such 6 are the n-simplices of a Kan subcomplex M, , of the “function
complex” Hom(A!, C) [Goerss and Jardine 1999, Section 1.5]. The mapping
space Mape(x, y) is the geometric realization of My ,. It is a CW-complex
[loc. cit., Section 1.2]. For objects x, y, z € C, there is in J{ a composition map

Mape(y, 2) x Mape(x, y) —> Mape(x, 2),

that, unfortunately, is not readily describable (see [Lurie 2009, pages 27-28,
1.2.2.4, 1.2.2.5]); and this composition satisfies associativity.

The unenriched homotopy category is the underlying ordinary category, ob-
tained by replacing each Mape(x, y) by the set w9 Mape(x, y) of its connected
components.

All page and section numbers in the next example refer to [Lurie 2009].

Example 6.2. When € = N(C) for an ordinary category C, the preceding
discussion is pointless: the spaces Mape(x, y) are isomorphic in H to discrete
topological spaces (see, e.g., p.22, 1.1.5.8; p.25, 1.1.5.13), so that the H-
enhancement of hN(C) is trivial; and one checks that the counit map is an
isomorphism of ordinary categories hN(C) — C.

More generally — and much deeper, for any topological category D and any
simplicial category C that is fibrant — that is, all its mapping complexes are Kan
complexes, one has natural H-enriched isomorphisms

hNp(D) => hD and hNA(€) > hC,

where Nyp(D) is the topological nerve of D (an oco-category: p.24, 1.1.5.12)
and N (C) is the simplicial nerve of C (an co-category: p.23, 1.1.5.10), where
the topological homotopy category hD is obtained from D by replacing each
topological space Mapq,(x, y) by a weakly homotopically equivalent CW com-
plex considered as an object of I (p.16, 1.1.3.4), and the simplicial homotopy
category hC is obtained from € by replacing each simplicial set Mape(x, y) by
its geometric realization considered as an object of 3 (see p.19). Using the
description of the homotopy category of a simplicial set given in p. 25, 1.1.5.14,
one finds that the first isomorphism is essentially that of p.25, 1.1.5.13; and
likewise, the second is essentially that of p. 72, 2.2.0.1.
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6.3. A functor F': C; — €5 between two co-categories induces a functor
hF:hC; — hC,

of H-enriched categories: the functor hF has the same effect on objects as F
does, and there is a natural family of JH-maps

hFyx,y:Mapg, (x, y) = Mape, (Fx, Fy) (x,y objects in C1)

that respects composition (for whose existence see [Lurie 2009, p.25, 1.1.5.14
and p.27, 1.2.2.4].)

The functor F is called a categorical equivalence if for all x and y, hFy )
is a homotopy equivalence (= isomorphism in J), and for every object z € C»,
there exists an object x € C; and a map f:z — Fx whose image in hC; is an
isomorphism.

Example 6.4. For any oo-category C, the unit map € — N(hC) induces an
isomorphism of ordinary homotopy categories (because N and h are adjoint, so
that hNh = h); but it is a categorical equivalence only when the mapping spaces
of € are isomorphic in H{ to discrete topological spaces, that is, their connected
components are all contractible (because this holds for the mapping spaces of
N(h©)).

The “interesting” properties of co-categories are those which are invariant
under categorical equivalence. In other words, the J{-enriched homotopy category
is the fundamental invariant of an co-category C; the role of € itself is to generate
information about this invariant.

For this purpose, C can be replaced by any equivalent co-category, that is,
an oo-category that can be joined to € by a chain of equivalences (or even
by equivalent topological or simplicial categories, as explained in [loc. cit.,
Section 1.1], and illustrated by Example 6.2 above). Analogously, one can think
of a single homology theory in topology or algebra being constructed in various
different ways.

Along these lines, a map in € is called an equivalence if the induced map in
hC is an isomorphism; and the interesting properties of objects in € are those
which are invariant under equivalence.

Example 6.5. An oo-category C is a Kan complex (Example 4.2.3) if and only if
every map in € is an equivalence, that is, hC is a groupoid [loc. cit., Section 1.2.5].
For a Kan complex C, h€ is the fundamental groupoid of C (or of its geometric
realization), see [loc. cit., p. 3, 1.1.1.4].
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7. Colimits

To motivate the definition of colimits in co-categories, recall that a colimit of a
functor p: K — C of ordinary categories is an initial object in the category Cp,
whose objects are the extensions of p to the right cone K” — that is, the disjoint
union of K and the trivial category * (the category with just one map) together
with one arrow from each object of K to the unique object of * —and whose
maps are the obvious ones.

Let us now reformulate this remark in the language of co-categories. (A fuller
discussion appears in [Lurie 2009, Sections 1.2.8, 1.2.12 and 1.2.13].)

First, an initial object in an oo-category C is an object x € C such that for every
object y € C, the mapping space Mape(x, y) is contractible. It is equivalent to
say that x is an initial object in the H-enriched homotopy category hC. Thus
any two initial objects in € are equivalent. (In fact, if nonempty, the set of initial
objects in C spans a contractible Kan subcomplex of € [loc. cit., p. 46, 1.2.12.9].)

Next, calculation of the nerve of the above right cone K> suggests the follow-
ing definition. For any simplicial set K, the right cone K" is the simplicial set
whose set of n-simplices K, is the disjoint union of all the sets K, (m <n) and
A (the latter having a single member j), with the face maps dj —whenn>0—
(resp. degeneracy maps s;) restricting on Ky, to the usual face (resp. degeneracy)
maps for 0 < j <m (except that dy maps all of K¢ to *,—1), and to identity maps
for m < j <n, and taking *, to *,— (resp. *,+1). It may help here to observe
that for n > 0, the nondegenerate n-simplices in K* are just the nondegenerate
n-simplices in K together with the nondegenerate (n — 1) simplices in K, 1,
the latter visualized as being joined to the “vertex” ;.

This is a special case of the construction (which we’ll not need) of the join of
two simplicial sets [loc. cit., Section 1.2.8]. The join of two oco-categories is an
oo-category [loc. cit., p.41, 1.2.8.3]; thus if K is an co-category then so is K.

Define K> inductively by K> := K> and (for n > 1) K>":= (K>" ).
There is an obvious embedding of K into K”, and hence into K >" For a map
p: K — C of oo-categories, the corresponding undercategory Cp is a simplicial
set whose (1 — 1)-simplices (1 > 0) are the extensions of p to maps K> — €,
see [loc. cit., p. 43, 1.2.9.5]. This undercategory is an co-category [loc. cit., p. 61,
2.1.2.2].

Definition 7.1. A colimit of amap p: K — C of co-categories is an initial object
in the co-category €.

Being an object (= 0-simplex) in €/, any colimit of p is an extension of p
to amap p: K” — C. Often one refers loosely to the image under p of xg € K*
as the colimit of p.
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Some instances of colimits are the oco-categorical versions of coproducts
(where K is the nerve of a category whose only maps are identity maps), pushouts
(where K is the horn A%), and coequalizers (where K is the nerve of a category
with exactly two objects x1 and x», and such that Map(x;, x;) has cardinality
j —1i 4+ 1); see [Lurie 2009, Section 4.4].

Example 7.2. Suppose C is the nerve N(C) of an ordinary category C. A functor
p: K — € corresponds under the adjunction h < N to a functor p:hK — C.
There is a natural isomorphism of ordinary categories

h(K”) = (hK)>,

whence an extension of p to K> corresponds under h < N to an extension of p
to (hK)™. More generally, one checks that there is a natural isomorphism

Gp/ = N(C)p/ = N(Cﬁ/).

Any colimit of p is an initial object in hC,, = hN(Cj3,) = Cjp/; that is, the
homotopy functor takes a colimit of p to a colimit of p.

For more general C, and most p, the homotopy functor does not preserve
colimits. For example, in any stable co-category, like the derived oco-category of
a Grothendieck abelian category [Lurie 2014, p. 96, 1.3.5.9], the pushout of 0
with itself over an object X is the suspension X[1] (see [loc. cit., p.19, bottom
paragraph]), but the pushout in the homotopy category is 0.

8. Adjoint functors

For a pair of functors (= simplicial maps) C i) D @ of oo-categories one
says that f is a left adjoint of g, or that g is a right adjoint of f, if there exists
a homotopy u from the identity functor ide to gf (that is, a simplicial map
u: @ x A! — @ whose compositions with the maps

c—exa’Dexal (i=o1

corresponding to the 0-simplices {0} and {1} of A! are ide and g f, respectively)
such that, for all objects C € € and D € D, the natural composition

Mapy (/(C). D) — Mape(g/(C). g(D)) ““% Mape(C. g(D))

is an isomorphism in .
(For an extensive discussion of adjunction, see [Lurie 2009, Section 5.2]. The
foregoing definition comes from [loc. cit., p. 340, 5.2.2.8].)

h h
Such adjoint functors f and g induce adjoint functors hC —f> hD -5 he
between the respective J{-enriched homotopy categories.
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As a partial converse, it holds that if the functor h f induced by a functor
f: € — D between co-categories has an H-enriched right adjoint, then f itself
has a right adjoint [Lurie 2009, p. 342, 5.2.2.12].

The following adjoint functor theorem gives a powerful criterion (to be used
subsequently) for f:C — D to have a right adjoint. It requires a restriction —
accessibility— on the sizes of the co-categories C and D. This means roughly
that C is generated under filtered colimits by a small co-subcategory, and similarly
for D, see [loc. cit., Chap. 5]. (If necessary, see also [loc. cit., p.51] for the
explication of “small” in the context of Grothendieck universes.) Also, € and D
need to admit colimits of all maps they receive from small simplicial sets K. The
conjunction of these properties is called presentability [loc. cit., Section 5.5].

For example, the co-category S of spaces (see Example 4.2.2) is presentable
[loc. cit., p. 460, 5.5.1.8]. It follows that the co-category of spectra Sp:= Sp(Sx)
(see [Lurie 2014, p.116, 1.4.2.5 and p.122, 1.4.3.1]) is presentable. Indeed,
presentability is an equivalence-invariant property (see, e.g., [Lurie 2009, p. 457,
5.5.1.1(4)]), hence by the presentability of & and by [loc. cit., p. 719, 7.2.2.8;
p.242, 4.2.1.5; p.468, 5.5.3.11], 8« is presentable, whence, by [Lurie 2014,
p-127, 1.4.4.4], so is Sp.

Theorem 8.1 [Lurie 2009, p. 465, 5.5.2.9]. A functor f:C — D between pre-
sentable co-categories has a right adjoint if and only if it preserves small colimits.

8.2. Let € and D be oco-categories. The simplicial set Hom(C, D) [Goerss and
Jardine 1999, Section 1.5] is an co-category, denoted Fun(C, D) [Lurie 2009,
p- 39, 1.2.7.3]. Its O-simplices are functors (= simplicial maps). Its 1-simplices
are homotopies between functors, that is, simplicial maps ¢: C x Al to D such
that the following functor is f when i =0 and g when i = 1:
e=exA 2 exat Lop,

Let Fun™(C, D) (resp. Fun® (€, D)) be the full co-subcategories spanned by
the functors which are left (resp. right) adjoints, that is, the co-categories whose
simplices are all those in Fun(C, D) whose vertices are such functors.

The opposite E°P of an co-category € [loc. cit., Section 1.2.1] is the simplicial
set having the same set €, of n-simplices as € for all n > 0, but with face and
degeneracy operators

(di: &P — & )i= (dn—i: &n = En—1),

(si: &P = &P 1 )i=(Sn—i: &n = Ent1).

It is immediate that £°P is also an oco-category.
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The next result, when restricted to ordinary categories, underlies the notion
of conjugate functors (see, e.g., [Lipman 2009, 3.3.5-3.3.7].) It plays a role in
Theorem 12.1 below.

Proposition 8.3. There is a canonical (up to homotopy) equivalence
¢: Fun®(C, D) =5 Fun™(D, C)°P. (8.3.1)

that takes any object g: € — D in Fun®(C, D) to a left-adjoint functor g'.

9. Algebra objects in monoidal co-categories

A monoidal category M is a category together with a monoidal structure, that is,
a product functor ®: M x M — M that is associative up to isomorphism, plus a
unit object O and isomorphisms (unit maps)

ORM <> M = M®O (M eM)

compatible with the associativity isomorphisms.

An associative algebra A € M (M-algebra for short) is an object equipped
with maps A ® A — A (multiplication) and O — A (unit) satisfying associativity
etc. up to isomorphism, such isomorphisms having the usual relations, expressed
by commutative diagrams.

(No additive structure appears here, so one might be tempted to call algebras
“monoids”. However, that term is reserved in [Lurie 2014, Section 2.4.2] for a
related, but different, construct.)

Examples 9.1. (a) M:= {Sets}, ® is the usual direct product, and M-algebras
are monoids.

(b) M:=modules over a fixed commutative ring O, & is the usual tensor product
over O, and M-algebras are the usual O-algebras.

(c) M:=dg modules over a fixed commutative dg ring O, ® is the usual tensor
product of dg O-modules, and an M-algebra is a dg O-algebra (i.e., a dg ring A
plus a homomorphism of dg rings from O to the center of A4).

(d) M:= the derived category D(X) of O-modules over a (commutative) ringed
space (X, O), ® is the derived tensor product of O-complexes. Any dg O-algebra
gives rise to an M-algebra; but there might be M-algebras not of this kind, as
the defining diagrams may now involve quasi-isomorphisms and homotopies,
not just equalities.

The foregoing notions can be extended to co-categories. The key is to formu-
late how algebraic structures in categories arise from operads, in a way that can be
upgraded to co-categories and co-operads. Details of the actual implementation
are not effortless to absorb. (See [loc. cit., Section 4.1].)
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The effect is to replace isomorphism by “coherent homotopy”. Whatever this
means (see [Lurie 2009, Section 1.2.6]), it turns out that any monoidal structure
on an oo-category C induces a monoidal structure on the ordinary category hC,
and any C-algebra (very roughly: an object with multiplication associative up to
coherent homotopy) is taken by the homotopy functor to an hC-algebra [Lurie
2014, p.332, 4.1.1.12; 4.1.1.13].

The C-algebras are the objects of an oco-category Alg(€) [loc.cit., p.331,
4.1.1.6]. The point is that the homotopy-coherence of the associativity and unit
maps are captured by an co-category superstructure.

Similar remarks apply to commutative C-algebras, that is, C-algebras whose
multiplication is commutative up to coherent homotopy.

Example 9.2. In the monoidal co-category of spectra [loc. cit., Sections 1.4.3,
6.3.2], algebras are called Axo-rings, or Aso-ring spectra; and commutative
algebras are called Exo-rings, or Exo-ring spectra. The discrete Aoo-(resp. Eoo-)
rings — those algebras S whose homotopy groups 7; S vanish for i # 0— span
an oo-category that is equivalent to (the nerve of) the category of associative
(resp. commutative) rings [loc. cit., p. 806, 8.1.0.3].

In general, for any commutative ring R, there is a close relation between
dg R-algebras and Ao-R-algebras; see [Lurie 2014, p. 824, 8.1.4.6; Shipley
2007, Theorem 1.1]; and when R contains the rational field @, between graded-
commutative dg R-algebras and E- R-algebras [Lurie 2014, p. 825, 8.1.4.11]; in
such situations, every Aoo-(resp. Eso-) R-algebra is equivalent to a dg R-algebra.

See also [loc. cit., Section 4.1.4] for more examples of co-category-algebras
that have concrete representatives.

10. Bimodules, tensor product

10.1. For algebra objects A and B in a monoidal co-category C, there is a
notion of A-B-bimodule — an object in € on which, via ® product in €, A acts
on the left, B on the right and the actions commute up to coherent homotopy.
(No additive structure is required.) The bimodules in € are the objects of an
oo-category 4BModpg(€), to be denoted here, once the co-category € is fixed,
as A#B. (See [Lurie 2014, Section 4.3].)

10.2. Let A, B, C be algebras in a monoidal co-category C that admits small

colimits, and in which product functor € x € — € preserves small colimits
separately in each variable. There is a tensor-product functor

(A#B) x (B#C) 2> A#C, (10.2.1)
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defined to be the geometric realization—a kind of colimit (see [Lurie 2009,
p.542, 6.1.2.12]) of a two-sided bar-construction. (See [Lurie 2014, p. 409,
4.3.5.11]; and for some more motivation, [Lurie 2007, pp.145-146].)

Tensor product is associative up to canonical homotopy [Lurie 2014, p. 416,
4.3.6.14]. It is unital on the left in the sense that, roughly, the endofunctor of
B#C given by tensoring on the left with the B-B-bimodule B is canonically
homotopic to the identity; and similarly on the right [loc. cit., p.417, 4.3.6.16].
Also, it preserves colimits separately in each variable [loc. cit., p. 411, 4.3.5.15].

Example 10.3 (Musings). It is natural to ask about direct connections between
(10.2.1) and the usual tensor product of bimodules over rings. If there is an
explicit answer in the literature I haven’t found it, except when A = B = C is an
ordinary commutative ring regarded as a discrete Exo-ring, a case addressed by
[loc.cit., p. 817, 8.1.2.13] (whose proof might possibly be adaptable to a more
general situation).

What follows are some related remarks, in the language of model categories,
which in the present context can presumably be translated into the language of
oo-categories. (Compare, e.g., [loc. cit., p. 90, 1.3.4.21, and p. 824, 8.1.4.6].)

Let M be the (ordinary) symmetric monoidal category of abelian groups, and
let A, B, C be M-algebras, that is, ordinary rings (set O:= Z in Example 9.1(b)).
The tensor product over B of an A® B°P-complex (i.e., a left A- right B-complex,
or A-B-bicomplex) and a B ® C°P-complex is an A ® C°P-complex. Can this
bifunctor be extended to a derived functor

D(A® B°®) xD(B ® C°?) > D(A® C°P)?

The problem is to construct, in D(A ® C°P), a derived tensor product, over B,
of an A-B-bicomplex X and a B-C-bicomplex Y. As in the classical situation
where C = Z, this requires building something like a quasi-isomorphism f:Y —
Y’ of B-complexes with Y’ flat over B; but now f must be compatible with the
right C-action. How can this be done?

To deal with the question it seems necessary to move out into the dg world.
Enlarge M to the category of complexes of abelian groups, made into a sym-
metric monoidal model category by the usual tensor product and the “projective”
model structure (weak equivalences being quasi-isomorphisms, and fibrations
being surjections), see [loc. cit., p. 816, 8.1.2.11]. It results from [Schwede and
Shipley 2000, Theorem 4.1(1)] (for whose hypotheses see [Shipley 2007, p. 356,
Section 2.2 and p. 359, Proposition 2.9]) that:

(1) For any M-algebra (i.e., dg ring) S, the category Mg C M of left dg S-
modules has a model structure for which maps are weak equivalences (resp. fi-
brations) if and only if they are so in M.
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(2) For any commutative M-algebra (i.e., graded-commutative dg ring) R, the
category of R-algebras in M has a model structure for which maps are weak
equivalences (resp. fibrations) if and only if they are so in M.

In either case (1) or (2), the cofibrant objects are those I such that for any
diagram I 5> Y < X with s a surjective quasi-isomorphism, there exists (in
the category in play) g: I — X such that sg = f Any object Z in these model
categories is the target of a quasi-isomorphism Z — Z with cofibrant Z; such a
quasi-isomorphism (or its source) is called a cofibrant replacement of Z.

Note that the derived category D(S) — obtained by adjoining to Mg formal
inverses of its quasi-isomorphisms —is the homotopy category of the model
category Mg.

Now fix a graded-commutative dg ring R. The derived tensor product S ®Y; rT
of two dg R-algebras S, T is the tensor product S ®@g T.* This construction
depends, up to quasi-isomorphism, on the choice of the cofibrant replacements.
However, two such derived tensor products have canonically isomorphic derived
categories [Schwede and Shipley 2000, Theorem 4.3]. Any such derived category
will be denoted D(S ®% T).

If either S or T is flat over R then the natural map S ®; T—SQ®grTisa
quasi-isomorphismy; in this case one need not distinguish between the derived
and the ordinary tensor product.

More generally, let S and T be dg R-algebras, let M be a dg S-module
and N a dg T-module. Let S — S and T — T be cofibrant replacements.
Let M > M (resp. N — N) be a cofibrant replacement in the category of
dg S- -(resp. T-)modules. Then M Qg N is a dg module over SorT. Using
“functorial factorizations” [Hovey 1999, Definition 1.1.3], one finds that this
association of M ®g N to (M, N) gives rise to a functor

D(S) x D(T) — D(S ®% 7),

and that different choices of cofibrant replacements lead canonically to isomor-
phic functors.

If A, B and C are dg R-algebras, with B commutative, then setting S :=
A®g B and T:= B @g C°P, one gets, as above, a functor

D(A®g B)xD(B®RC®) — D((A®g B)®% (B®RC)).
Then, via restriction of scalars through the natural map
D(A®% C®) — D((A®r B)®% (B®r C™)),
4This is an instance of the passage from a monoidal structure on a model category M to one

on the homotopy category of M [Hovey 1999, Section 4.3] — a precursor of the passage from a
monoidal structure on an co-category to one on its homotopy category.
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one gets a version of the desired functor, of the form
D(A®R B) x D(B ®g C°P) — D(A ®Y% C°P).

What does this functor have to do with the tensor product of 10.2?

Here is an approach that should lead to an answer; but details need to be
worked out.

Restrict R to be an ordinary commutative ring, and again, B to be graded-
commutative. By [Shipley 2007, 2.15] there is a zigzag H of three “weak
monoidal Quillen equivalences” between the model category of dg R-modules
(i.e., R-complexes) and the model category of symmetric module spectra over
the Eilenberg—Mac Lane symmetric spectrum HR (see, e.g., [Greenlees 2007,
4.16]), that induces a monoidal equivalence between the respective homotopy
categories. (The monoidal structures on the model categories are given by the
tensor and smash products, respectively; see, e.g., [Schwede 2012, Chapter 1,
Theorem 5.10].) For A-B-bimodules M and B-C-bimodules N, the tensor
product M ®p N coequalizes the natural maps M Qg BQr N =M Qg N,
and likewise for the smash product of HM and HN over HB; so it should
follow that when M and N are cofibrant, these products also correspond, up to
homotopy, under H. This would reduce the problem, modulo homotopy, to a
comparison of the smash product and the relative tensor product in the associated
oo-category of the latter category. But it results from [Shipley 2000, 4.9.1]
that these bifunctors become naturally isomorphic in the homotopy category of
symmetric spectra, that is, the classical stable homotopy category.

For a parallel approach, based on “sphere-spectrum-modules” rather than sym-
metric spectra, see [Elmendorf et al. 1997, Section IV.2 and Proposition IX.2.3].

Roughly speaking, then, any homotopical — that is, equivalence-invariant —
property of relative tensor products in the oo-category of spectra (whose homo-
topy category is the stable homotopy category) should entail a property of derived
tensor products of dg modules or bimodules over appropriately commutative (or
not) dg R-algebras.

11. The oco-functor Hom

One shows, utilizing [Lurie 2014, p. 391, 4.3.3.10], that if € is presentable then
so is A#B. Then one can apply the adjoint functor Theorem 8.1 to prove:

Proposition 11.1. Let A, B, C be algebras in a fixed presentable monoidal oo-
category. There exists a functor

Homc: (B#C) x A#C — A#B,
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such that for every fixed y € B#C, the functor
z+> Homc(y,z): A#C — A#B

is right-adjoint to the functor x — x Qg y: A#B — A#C.

As adjoint functors between oco-categories induce adjoint functors between
the respective homotopy categories, and by unitality of tensor product, when
x = A = B one gets:

Corollary 11.2 (“global sections” of #om = mapping space). There exists an
H-isomorphism of functors (going from h(A#C)°P x h(A#C) to H):
Map 44 (A, Homc (y.2)) — Map g3c(A®4 Y. 2) =Map g4c (v, 2).

12. Adjoint associativity in co-categories

We are finally in a position to make sense of adjoint associativity for co-categories.
The result and proof are similar in spirit to, if not implied by, those in [Lurie
2014, p. 358, 4.2.1.31 and 4.2.1.33(2)] about “morphism objects”.

Theorem 12.1. There is in Fun((A#B)°P x (B#C)°? x D#C, D#A) a functorial
equivalence (canonically defined, up to homotopy)

a(x,y,z):Homc(x Qp y,z) — Homp(x, Homc(y, 2)),

such that for any objects x € A#B and y € B#C, the map a(x,y,—) in
FunR(D#C, D#A) is taken by the equivalence (8.3.1) to the associativity equiv-
alence, in FunL(D#A, D#C)°P,

—®4(x®BYy) < (—Q®4X)®B ).
Using Corollary 11.2, one deduces:

Corollary 12.2. In the homotopy category of spaces there is a trifunctorial
isomorphism

Map g4c (x ®B y.2) —> Map 44p(x.Homc(y.2))
(x € A#B, y € B#C, z € A#C).

12.3. What conclusions about ordinary algebra can we draw?

Let us confine attention to spectra, and try to understand the homotopy invari-
ants of the mapping spaces in the preceding corollary, in particular the maps in
the corresponding unenriched homotopy categories (see last paragraph in 6.1).

As in Example 10.3, the following remarks outline a possible approach, whose
details I have not completely verified.
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Let R be an ordinary commutative ring. Let S and 7 be dg R-algebras,
and U a derived tensor product U := S ®52 T°P (see Example 10.3). For any
dg R-module V, let ¥ be the canonical image of HV (H as in Example 10.3)
in the associated co-category D of the model category A of HR-modules. The
oo-category D is monoidal via a suitable extension, denoted A, of the smash
product; see [Lurie 2014, p. 619, (S1)]. Recall from the second-last paragraph
in Example 5.5 that the homotopy category hD is equivalent to the homotopy
category of A.

As indicated toward the end of Example 10.3, there should be, in D, an
equivalence

—

U= SATeP,
whence, by [loc. cit., p. 650, 6.3.6.12], an equivalence
S#T ~ LMOd('j,

whence, for any dg S-7 bimodules a and b, and i € Z, isomorphisms in the
homotopy category J{ of spaces

— —

Mapg,7(@.bli]) —> Map; yioq,, (@. b1i]). (12.3.1)

(For the hypotheses of [loc. cit., p. 650, 6.3.6.12], note that the co-category Sp
of spectra, being presentable, has small colimits — see the remarks preceding
Theorem 8.1; and these colimits are preserved by smash product [loc. cit., p. 623,
6.3.2.19].)

By [loc. cit., p. 393, 4.3.3.17] and again, [loc. cit., p. 650, 6.3.6.12], the stable
oo-category LMody; is equivalent to the associated co-category of the model
category of H U-module spectra, and hence to the associated co-category U of
the equivalent model category of dg U -modules. There results an H-isomorphism

Mapy voq,, (@ bli]) — Mapy(a, b[i]). (12.3.2)
Since the homotopy category hLMod}; is equivalent to hl:= D(U), (12.3.1)
and (12.3.2) give isomorphisms, with Extiﬁ#f as in [loc. cit., p. 24, 1.1.2.17]:

Extiﬁ#?(&, l;):: o Map§#f(a, l;[?]) — Homp)(a,bli]) = Ext’i](a, b).

(In particular, when S = T = a, one gets the derived Hochschild cohomology
of S/R, with coefficients in b.)

Thus, Corollary 12.2 implies a derived version, involving Exts of adjoint
associativity for dg bimodules.
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12.4. Proof of Theorem 12.1 (Sketch). The associativity of tensor product gives
a canonical equivalence, in

Fun((D#A) x (A#B) x (B#C), (D#C)).

between the composed functors

(D#A) x (A#B) x (B#C) 2% (D#B) x (B#C) 2> (D#C),
(D#A) x (A#B) x (B#C) &5 (D#4) x (4#C) 25 (D#C).

The standard isomorphism Fun(X xY, Z) = Fun(X, Fun(Y, Z)) (see [Goerss
and Jardine 1999, p. 20, Proposition 5.1]) turns this into an equivalence £ between
the corresponding functors from (A#B) x (B#C) to Fun(D#A, D#C). These
functors factor through the full subcategory Fun“(D#A, D#C): this need only
be checked at the level of objects (x, y) € (A#B) x (B#C), whose image functors
are, by Proposition 11.1, left-adjoint, respectively, to Homp(x, Homc (y,—))
and to Homc (x ® y, —). Composition with (¢~ 1) (¢ as in (8.3.1)) takes &
into an equivalence in

Fun((A#B) x (B#C), FunR (D#C, D#4)°")
= Fun((A#B)°" x (B#C)°P, Fun®(D#C, D#A)),

to which « corresponds. (More explicitly, note that for any oco-categories X, ¥
and Z, there is a composition functor

Fun(Y, Z) x Fun(X, Y) — Fun(X, 2), (12.4.1)
corresponding to the natural composed functor
Fun(Y, Z) xFun(X,Y)x X - Fun(Y,Z)xY — Z;

and then set
X:= (A#B)°° x (B#C)°P,

Y := Fun“(D#A4, D#C)°P,
Z:=Fun®(D#C, D#4)...).

The rest follows in a straightforward manner from Proposition 8.3. O
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