
Commutative Algebra and Noncommutative Algebraic Geometry, II
MSRI Publications
Volume 68, 2015

An intriguing ring structure
on the set of d-forms

JÜRGEN HERZOG, LEILA SHARIFAN AND MATTEO VARBARO

The purpose of this note is to introduce a multiplication on the set of ho-
mogeneous polynomials of fixed degree d, in a way to provide a duality
theory between monomial ideals of K [x1, . . . , xd ] generated in degrees ≤ n
and block stable ideals (a class of ideals containing the Borel fixed ones) of
K [x1, . . . , xn] generated in degree d. As a byproduct we give a new proof of
the characterization of Betti tables of ideals with linear resolution given by
Murai.

Introduction

Minimal free resolutions of modules over a polynomial ring are a classical and
fascinating subject. Let P = K [x1, . . . , xn] denote the polynomial ring equipped
with the standard grading in n variables over a field K . For a Z-graded finitely
generated P-module M , we consider its minimal graded free resolution:

· · · →

⊕
j∈Z

P(− j)βi, j (M)→ · · · →
⊕
j∈Z

P(− j)β0, j (M)→ M→ 0,

where P(k) denotes the P-module P supplied with the new grading P(k)i = Pk+i .
Hilbert’s syzygy theorem guarantees that the resolution above is finite: more
precisely βi, j (M) = 0 whenever i > n. The natural numbers βi, j = βi, j (M)
are numerical invariants of M , and they are called the graded Betti numbers of
M . The coarser invariants βi = βi (M) =

∑
j∈Z βi, j are called the (total) Betti

numbers of M . We will refer to the matrix (βi,i+ j ) as the Betti table of M :
...

...
... · · · · · ·

...

β0,d β1,1+d β2,2+d · · · · · · βn,n+d
...

...
... · · · · · ·

...

 .
MSC2010: 13D02.
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It is a classical problem to inquire on the behavior of Betti tables, especially
when M = P/I (equivalently M = I ) for a graded ideal I ⊂ P . Recently the
point of view is substantially changed: Boij and Söderberg [2008] suggested to
look at the set of Betti tables of modules M up to rational numbers. Eisenbud
and Schreyer [2009] confirmed this intuition, giving birth to a new theory that
demonstrated extremely powerful and is rapidly developing.

In some directions the original problem of determining the exact (not only
up to rationals) possible values of the Betti numbers of ideals has however been
solved: For example, Murai [2007, Proposition 3.8] characterized the Betti tables
of ideals with linear resolution (i.e., with only one nonzero row in the Betti
table), and Crupi and Utano [2003] and Herzog, Sharifan and Varbaro [Herzog
et al. 2014] gave (different in nature) characterizations of the possible extremal
Betti numbers (nonzero top left corners in a block of zeroes in the Betti table)
that a graded ideal may achieve. The proof of Murai makes use of the Kalai’s
stretching of a monomial ideal and the Eagon–Reiner theorem. In this note we
aim to give an alternative proof of his result, introducing a structure of K -algebra
on the set of the degree d polynomials in a suitable way to yield a good duality
theory between strongly stable ideals of K [x1, . . . , xd ] generated in degrees ≤ n
and strongly stable ideals of K [x1, . . . , xn] generated in degree d . Such a duality
extends to all monomial ideals of K [x1, . . . , xd ] generated in degrees ≤ n, the
counterpart being certain monomial ideals of K [x1, . . . , xn] generated in degree
d , which we will call block stable ideals. Let us remark that this construction is
completely elementary.

1. Terminology

Throughout we denote by N the set of the natural numbers {0, 1, 2, . . .} and by
n a positive natural number. We will essentially work with the polynomial rings

S = K [xi : i ∈ N] and P = K [x1, . . . , xn],

where the xi are variables over a field K . The reason why we consider a polyno-
mial ring in infinite variables is that it is more natural to deal with it in Section 2,
when we will define the ∗-operation. However, for the applications of the theory
to the graded Betti numbers, P will be considered. The following notions will
be introduced just relatively to S, also if we will use them also for P .

The ring S is graded on N, namely S =
⊕

d∈N Sd , where

Sd = 〈xi1 xi2 · · · xid : i1 ≤ i2 ≤ · · · ≤ id are natural numbers〉.

Given a monomial u ∈ Sd , with d ≥ 1, we set

m(u)=max{e ∈ N : xe divides u}. (1)
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A monomial space V ⊂ S is a K -vector subspace of S which has a K -basis
consisting of monomials of S. If V ⊂ Sd , we will refer to the complementary
monomial space V c of V as the K -vector space generated by the monomials of
Sd which are not in V . Given a monomial space V ⊂ S and two natural numbers
i, d , such that d ≥ 1, we set

wi,d(V )= |{u monomials in V ∩ Sd and m(u)= i}|.

Without taking in consideration the degrees,

wi (V )= |{u monomials in V and , m(u)= i}|.

We order the variables of S by the rule

xi > x j ⇐⇒ i < j,

so that x0> x1> x2> · · · . On the monomials, unless we explicitly say differently,
we use a degree lexicographical order with respect to the above ordering of the
variables. A monomial space V ⊂ S is called stable if for any monomial u ∈ V ,
then (u/xm(u)) · xi ∈ V for all i < m(u). It is called strongly stable if for any
monomial u ∈ V and for each j ∈N such that x j divides u, then (u/x j ) · xi ∈ V
for all i < j . Obviously a strongly stable monomial space is stable.

The remaining definitions of this section will be given for P , since we do not
need them for S. A monomial space V ⊂ P is called lexsegment if, for all d ∈N,
there exists a monomial u ∈ Pd such that

V ∩ Pd = 〈v ∈ Pd : v ≥ u〉.

Clearly, a lexsegment monomial space is strongly stable. The celebrated theorem
of Macaulay explains when a lexsegment monomial space is an ideal. We
recall that given a natural number a and a positive integer d , the d-th Macaulay
representation of a is the unique writing

a =
d∑

i=1

(k(i)
i

)
such that k(d) > k(d − 1) > · · ·> k(1)≥ 0;

see [Bruns and Herzog 1993, Lemma 4.2.6]. Then:

a〈d〉 =
d∑

i=1

(k(i)+1
i+1

)
.

A numerical sequence (hi )i∈N is called an O-sequence if h0 = 1 and hd+1 ≤ h〈d〉d
for all d ≥ 1. (The reader should be careful because the definition of O-sequence
depends on the numbering: A vector (m1, . . . ,mn) will be a O-sequence if
m1 = 1 and mi+1 ≤m〈i−1〉

i for all i ≥ 2). The theorem of Macaulay (for example,
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see [Bruns and Herzog 1993, Theorem 4.2.10]) says that, given a numerical
sequence (hi )i∈N, the following are equivalent:

(i) (hi )i∈N is an O-sequence with h1 ≤ n.

(ii) There is a homogeneous ideal I ⊂ P such that (hi )i∈N is the Hilbert function
of P/I .

(iii) The lexsegment monomial space L ⊂ P such that L ∩ Pd consists in the
biggest

(n+d−1
d

)
− hd monomials, is an ideal.

We already defined the Betti numbers of a Z-graded P-module M in the
introduction. For an integer d, the P-module M is said to have a d-linear
resolution if βi, j (M)= 0 for every j 6= i+d; equivalently, if βi (M)= βi,i+d(M)
for all i . Notice that if M has d-linear resolution, then it is generated in degree d .
The P-module M is said componentwise linear if M〈d〉 has d-linear resolution for
all d ∈ Z, where M〈d〉 means the P-submodule of M generated by the elements
of degree d of M . It is not difficult to show that if M has a linear resolution,
then it is componentwise linear.

We introduce the following numerical invariants of a Z-graded finitely gener-
ated P-module M : For all i = 1, . . . , n+ 1 and d ∈ Z,

mi,d(M)=
n∑

k=0

(−1)k−i+1
( k

i−1

)
βk,k+d(M). (2)

The following lemma shows that to know the mi,d(M)’s is equivalent to know
the Betti table of M .

Lemma 1.1. Let M be a Z-graded finitely generated P-module. Then:

βi,i+d(M)=
n+1∑
k=i

(k−1
i

)
mk,d(M). (3)

Proof. Set mk,d = mk,d(M) and βi, j = βi, j (M). By the definition of the mk,d’s
we have the following identity in Z[t]:

n+1∑
k=1

mk,d tk−1
=

n∑
i=0

βi,i+d(t − 1)i .

Replacing t by s+ 1, we get the identity in Z[s]

n+1∑
k=1

mk,d(s+ 1)k−1
=

n∑
i=0

βi,i+dsi ,

which implies the lemma. �
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Let us define also the coarser invariants:

mi (M)=
∑
d∈Z

mi,d(M) for all i = 1, . . . , n+ 1. (4)

If M = I is a homogeneous ideal of P , notice that mi,d = 0 if i = n+1 or d < 0.
We say that a monomial ideal I ⊂ P is stable (strongly stable) (lexsegment) if
the underlying monomial space is. By G(I ), we will denote the unique minimal
set of monomial generators of I . If I is a stable monomial ideal, we have the
following nice interpretation by the Eliahou–Kervaire formula [1990] (see also
[Herzog and Hibi 2011, Corollary 7.2.3]):

mi,d(I )= wi,d(〈G(I )〉)= |{u monomials in G(I )∩ Pd and m(u)= i}|,

mi (I )= wi (〈G(I )〉)= |{u monomials in G(I ) and m(u)= i}|.

From Lemma 1.1 and (5) it follows that a stable ideal generated in degree d has
a d-linear resolution. Furthermore, if I is a stable ideal, then I〈d〉 is stable for all
natural numbers d . So any stable ideal is componentwise linear.

When M = I is a stable monomial ideal we will consider (5) the definition of
the mi,d ’s, and we will refer to (3) as the Eliahou–Kervaire formula.

2. The ∗-operation on monomials and strongly stable ideals

We are going to give a structure of associative commutative K -algebra to the
K -vector space Sd , in the following way: Given two monomials u and v in Sd ,
we write them as u = xi1 xi2 · · · xid with i1 ≤ i2 ≤ · · · ≤ id and v = x j1 x j2 · · · x jd
with j1 ≤ j2 ≤ · · · ≤ jd . Then we define their product as

u ∗ v = xi1+ j1 xi2+ j2 · · · xid+ jd .

We can extend ∗ to the whole of Sd by K -linearity. Clearly, ∗ is associative and
commutative. We will denote by Sd the K -vector space Sd supplied with such
an algebra structure. Actually Sd has a natural graded structure: we can write
Sd =

⊕
e∈N(Sd)e, where

(Sd)e = 〈u monomial of Sd and m(u)= e〉.

Notice that (Sd)0 = 〈xd
0 〉
∼= K and that (Sd)e is a finite dimensional K -vector

space; for example

(Sd)1 = 〈xd−1
0 x1, xd−2

0 x2
1 , . . . , xd

1 〉

is a K -vector space of dimension d. It follows that Sd is a positively graded
K -algebra. Moreover, if u = xa0

0 · · · x
ae
e ∈Sd , with ae 6= 0 and e ≥ 1, then

u = (xa0
0 xa1+···+ae

1 ) ∗ (xa0+a1
0 xa2+···+ae

1 ) ∗ · · · ∗ (xa0+···+ae−1
0 xae

1 ),



236 JÜRGEN HERZOG, LEILA SHARIFAN AND MATTEO VARBARO

so Sd is a standard graded K -algebra: Sd = K [(Sd)1]. In particular, Sd is
Noetherian. In fact, Sd is a polynomial ring in d variables over K :

Proposition 2.1. The ring Sd is isomorphic, as a graded K -algebra, to the
polynomial ring in d variables over K .

Proof. Let K [y1, . . . , yd ] be the polynomial ring in d variables over K . Of course
there is a graded surjective homomorphism of K -algebras φ from K [y1, . . . , yd ]

to Sd , by extending the rule:

φ(yi )= x i−1
0 xd+1−i

1 . (5)

In order to show that φ is an isomorphism, it suffices to exhibit an isomorphism
of K -vector spaces between the graded components of Sd and K [y1, . . . , yd ].
To this aim pick a monomial u ∈ (Sd)e:

u = xa0
0 · · · x

ae
e , ai ∈ N, ae > 0 and

e∑
i=0

ai = d.

To such a monomial we associate the monomial of K [y1, . . . , yd ]e

ya0+1 ya0+a1+1 · · · ya0+···+ae−1+1.

It is easy to see that the above map is bijective, so the proposition follows. �

Remark 2.2. For the sequel it is useful to familiarize with the map φ. For
instance, one can easily verify that

φ(yb1
1 yb2

2 · · · y
bd
d )= xb1 xb1+b2 · · · xb1+···+bd . (6)

Proposition 2.1 guarantees that φ has an inverse, that we will denote by ψ =
φ−1
:Sd → K [y1, . . . , yd ]. As one can show,

ψ(xa0
0 xa1

1 · · · x
ae
e )= ya0+1 ya0+a1+1 · · · ya0+···+ae−1+1. (7)

Given a monomial space V of course we have an isomorphism of K -vector
spaces

V ∼=Sd/V c.

However in general the above isomorphism does not yield a structure of K -
algebra to V , because V c may be not an ideal of Sd . We are interested to
characterize those monomials spaces V ⊂ Sd such that V c is an ideal of Sd . For
what follows it is convenient to introduce the following definition.

Definition 2.3. Let V ⊂ S be a monomial space. We will call it block stable if
for any u = xa0

0 · · · x
ae
e ∈ V and for any i = 1, . . . , e, we have

u
xai

i · · · x
ae
e
· xai

i−1 · · · x
ae
e−1 ∈ V .
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Remark 2.4. Notice that a strongly stable monomial space is also stable and
block stable. On the other hand block stable monomial spaces might be not
stable (it is enough to consider 〈x2

0 , x2
1〉). There are also stable monomial spaces

which are not block stable: Consider the monomial space

V = 〈x3
0 , x2

0 x1, x0x2
1 , x0x1x2, x0x1x3〉 ⊂ S3.

It turns out that V is stable, but not block stable, because
x0x1x3

x1x3
· x0x2 = x2

0 x2 /∈ V .

Finally, the monomial space 〈x3
0 , x2

0 x1, x0x2
1 , x0x1x2〉 ⊂ S3 is both stable and

block stable, but is not strongly stable.

Lemma 2.5. Let V ⊂ Sd be a monomial space. Then V is block stable if and
only if V c is an ideal of Sd .

Proof.⇒ Consider a monomial u ∈ V c. Assume for a contradiction that there
is an i ∈ {1, . . . , d − 1} such that

w = u ∗ (x i
0xd−i

1 ) /∈ V c.

If u = x p1 · · · x pd with p1 ≤ · · · ≤ pd , then

w = x p1 · · · x pi · x pi+1+1 · · · x pd+1.

Since V is block stable and w is a monomial of V , then

u =
w

x pi+1+1 · · · x pd+1
· x pi+1 · · · x pd ∈ V,

a contradiction.

⇐ Pick u = xa0
0 · · · x

ae
e ∈ V . By contradiction there is i ∈ {1, . . . , e} such that

w =
u

xai
i · · · x

ae
e
· xai

i−1 · · · x
ae
e−1 /∈ V .

Since V c is an ideal of Sd and w ∈ V c, we have

u = w ∗ (xa1+···+ai−1
0 xai+···+ae

1 ) ∈ V c.

This contradicts the fact that we took u ∈ V . �

The following corollary, essentially, is why we introduced Sd .

Corollary 2.6. Let (wi )i∈N be a sequence of natural numbers. If there exists a
strongly stable monomial space V ⊂ Sd (actually it is enough that V is block
stable) such that wi (V )= wi for any i ∈N, then (wi )i∈N is an O-sequence such
that w1 ≤ d.
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Proof. That w0 = 1 and w1 ≤ d is clear. By Lemma 2.5 V c is an ideal of Sd .
So, Proposition 2.1 implies that Sd/V c is a standard graded K -algebra. Clearly
we have

HFSd/V c(i)= wi (V )= wi for all i ∈ N,

(HF denotes the Hilbert function) so we get the conclusion by the theorem of
Macaulay. �

The above corollary can be reversed. To this aim we need to understand the
meaning of “strongly stable” in Sd . By Proposition 2.1 Sd ∼= K [y1, . . . , yd ], so
we already have a notion of strong stability in Sd . However, we want to describe
it in terms of the multiplication ∗.

Lemma 2.7. Let W be a monomial space of K [y1, . . . , yd ]. We recall the iso-
morphism φ : K [y1, . . . , yd ] →Sd of (5). The following are equivalent:

(i) W is a strongly stable monomial space.

(ii) If xa0
0 · · · x

ae
e ∈ φ(W ) with ae > 0, then xa0

0 · · · x
ai−1
i · xai+1+1

i+1 · · · xae
e ∈ φ(W )

for all i ∈ {0, . . . , e− 1} such that ai > 0.

Proof. (i) =⇒ (ii). If u = xa0
0 xa1

1 · · · x
ae
e ∈ φ(W ) with ae > 0, then

ψ(u)= ya0+1 ya0+a1+1 · · · ya0+···+ae−1+1 ∈W,

see (7). Since W is strongly stable, then for all i ∈ {0, . . . , e− 1},

w = ya0+1 · · · ya0+···+(ai−1)+1 · ya0+···+(ai−1)+(ai+1+1)+1 · · · ya0+···+ae−1+1 ∈W.

Therefore, if ai >0, we get v= xa0
0 · · · x

ai−1
i ·xai+1+1

i+1 · · · xae
e =φ(w), so v∈φ(W ).

(ii) =⇒ (i). Let w = yb1
1 yb2

2 · · · y
bd
d ∈W . Then, using (6),

φ(w)= xb1 xb1+b2 · · · xb1+···+bd ∈ φ(W ).

By contradiction there exist p and q in {1, . . . , d} such that bp > 0, q < p and

w

yp
· yq = yb1

1 · · · y
bq+1
q · · · ybp−1

p · · · ybd
d /∈W.

Of course we can suppose that q = p− 1, so we get a contradiction, because the
assumptions yield

φ
(
w

yp
· yp−1

)
= xb1 · · · xb1+···+(bp−1+1)xb1+···+(bp−1+1)+(bp−1) · · · xb1+···+bd ∈ φ(W ). �

Thanks to Lemma 2.7, therefore, it will be clear what we mean for a monomial
space of Sd being strongly stable.
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Proposition 2.8. Let V ⊂ Sd be a monomial space. The following are equivalent:

(i) V c is a strongly stable monomial subspace of Sd .

(ii) V is a strongly stable monomial subspace of Sd .

Proof. First we prove (i) =⇒ (ii). Pick u = xa0
0 · · · x

ae
e ∈ V . By contradiction,

assume that there exists i ∈ {1, . . . , e} such that

w = xa0
0 · · · x

ai−1+1
i−1 xai−1

i · · · xae
e /∈ V .

Sow∈V c, and since V c is a strongly stable monomial ideal of Sd , by Lemma 2.7
we get u ∈ V c, which is a contradiction.

(ii) =⇒ (i). By Lemma 2.5 V c is an ideal of Sd . Consider u = xa0
0 · · · x

ae
e ∈ V c

with ae > 0 and i ∈ {0, . . . , e− 1}. If w = xa0
0 · · · x

ai−1
i · xai+1+1

i+1 · · · xae
e were not

in V c, then u would be in V because V is a strongly stable monomial space.
Thus V c has to be strongly stable once again using Lemma 2.7. �

Theorem 2.9. Let (wi )i∈N be a sequence of natural numbers. Then the following
are equivalent:

(i) There exists a strongly stable monomial space V ⊂ Sd such that wi (V )=wi

for any i ∈ N.

(ii) There exists a block stable monomial space V ⊂ Sd such that wi (V )= wi

for any i ∈ N.

(iii) (wi )i∈N is an O-sequence such that w1 ≤ d.

Proof. (i) =⇒ (ii) is obvious and (ii) =⇒ (iii) is Corollary 2.6. So (iii) =⇒ (i)
is the only thing we still have to prove. If the sequence (wi )i∈N satisfies the
conditions of (iii), then the theorem of Macaulay guarantees that there exists a
lexsegment ideal J ⊂ K [y1, . . . , yd ] such that

HFK [y1,...,yd ]/J (i)= wi for all i ∈ N.

Being a lexsegment ideal, J is strongly stable. So φ(J )c is a strongly stable
monomial subspace of Sd by Proposition 2.8. Clearly we have:

mi (φ(J )c)= HFK [y1,...,yd ]/J (i)= wi for all i ∈ N,

thus we conclude. �

Discussion 2.10. Theorem 2.17 implies [Murai 2007, Proposition 3.8]. Let us
briefly discuss the proof of Murai, comparing it with ours.

Let u = xi1 xi2 · · · xid be a monomial with i1 ≤ i2 ≤ · · · ≤ id . Following Kalai,
the stretched monomial arising from u is

uσ = xi1 xi2+1 · · · xid+(d−1).
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Notice that uσ is a squarefree monomial. The compress operator τ is the inverse
to σ . If v = x j1 x j2 · · · x jd is a squarefree monomial, we define the compressed
monomial arising from v to be

vτ = x j1 x j2−1 · · · x jd−(d−1).

Let I ⊂ K [x1, . . . , xn] be a strongly stable ideal generated in degree d with
G(I )= {u1, . . . , ur }. We set

I σ = (uσ1 , uσ2 , . . . , uσr )⊂ K [x1, . . . , xn+m−1].

As shown in [Herzog and Hibi 2011, Lemma 11.2.5], one has that I σ is a
squarefree strongly stable ideal. Recall that a squarefree monomial ideal J is
called squarefree strongly stable, if for all squarefree generators u of I and all
i < j for which x j divides u and xi does not divides u, one has that (u/x j )·xi ∈ J .
Denoting by ∨ the Alexander dual of a squarefree monomial ideal, given a strongly
stable ideal I we set

I dual
= ((I σ )∨)τ ,

where for a squarefree monomial ideal J with G(J ) = {u1, . . . , um} we set
J τ = (uτ1, . . . , uτm). Murai showed his result using a formula relating the Betti
numbers of a squarefree monomial ideal with linear resolution and the h-vector of
the quotient by its Alexander dual, that is Cohen–Macaulay by the Eagon–Reiner
theorem.

Starting with a strongly stable monomial ideal is necessary, otherwise the
stretching operator changes the Betti numbers. However, one can show that on
strongly stable ideals this duality actually coincides with the one discussed in
this note: If J ′ ⊂ K [x1, · · · , xn] is a strongly stable ideal generated in degree d
and J ⊂ S is the ideal J ′S under the transformation xi 7→ xi+1, then

ψ(〈G(J )c〉)= J ′ dual

up to degree n (J ′ dual has not minimal generators of degree bigger than n). To
show this, it is enough to notice that J ′ dual

⊂ ψ(〈G(J )c〉) because the graded
rings K [x1, · · · , xd ]/J ′ dual and K [x1, · · · , xd ]/〈G(J )c〉 share the same Hilbert
function up to n.

Actually, a careful reading of the proof of Theorem 2.9 shows that, given a
O-sequence, we can give explicitly a strongly stable monomial subspace V ⊂ Sd

such that wi (V )= wi for any i ∈ N. The reason is that to any Hilbert function
is associated a unique lexsegment ideal: Let (wi )i∈N be a sequence of natural
numbers. For any i ∈ N, set

Vi = {biggest wi monomials u ∈ Sd such that m(u)= i}.
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Then we call V = 〈∪i∈NVi 〉 ⊂ Sd the piecewise lexsegment monomial space (of
type (d, (wi )N)). The proof of Theorem 2.9 yields:

Corollary 2.11. The piecewise lexsegment of type (d, (wi )N) is strongly stable
if and only if (wi )N is an O-sequence such that w1 ≤ d.

Remark 2.12. The notion of piecewise lexsegment was successfully used in
[Herzog et al. 2014] to characterize the possible extremal Betti numbers of a
homogeneous ideal. We wish to point out that, even if [Herzog et al. 2014,
Theorem 3.7] is stated in characteristic 0, actually the same conclusion holds
true in any characteristic, by exploiting a construction from [Caviglia and Sbarra
2013, Proposition 2.2(vi)].

Notice that the established interaction between Sd and K [y1, . . . , yd ] can also
be formulated between

K [x0, . . . , xm] and K [y1, . . . , yd ]/(y1, . . . , yd)
m+1 for all m ≥ 1.

Therefore, an interesting corollary of Proposition 2.8 is the following.

Corollary 2.13. Let us define the sets

A = {strongly stable monomial ideals of K [x0, . . . , xm] generated in degree d}

and

B =
{
strongly stable monomial ideals of K [y1, . . . , yd ]

with height d and generated in degrees ≤ m+ 1
}
.

Then the assignation V 7→ ψ(V c) establishes a 1-1 correspondence between A
and B.

Proof. Notice that if I ⊂ K [y1, . . . , yd ] is of height d , then (y1, . . . , yd)
k
⊂ I for

all k≥ reg(I ). Since I is generated in degrees≤m+1 and componentwise linear,
we have reg(I )≤ m+ 1, so we are done by what said before the corollary. �

It is worth to rest a bit on the properties of block stable ideals, since by
Lemma 2.5 they seem to arise naturally by studying strongly stable ideals. Let us
consider the Borel subgroup of GL∞(K ) consisting of∞×∞ upper diagonal
matrices with entries in K and 1’s on the diagonal. In characteristic 0 Borel fixed
(with respect to the obvious action) monomial spaces are strongly stable, so in
particular block stable. However in positive characteristic the situation is quite
different, for example the space 〈x2

0 , x2
1〉 is Borel fixed in characteristic 2 but not

strongly stable.

Proposition 2.14. Regardless of char(K ), a Borel fixed monomial space is block
stable.
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Proof. Let V ⊂ S be a Borel fixed vector space. If u = xa0
0 · · · x

ae
e ∈ V , then for

any i = 1, . . . , e we have (u/xai
i ) · x

ai
i−1 ∈ V since

(ai
ai

)
= 1 is different from 0

modulo char(K ), whatever the latter is (see [Eisenbud 1995, Theorem 15.23]).
Recursively one gets

u
xai

i · · · x
ae
e
· xai

i−1 · · · x
ae
e−1 ∈ V . �

One might be induced to look for an analog of the Eliahou–Kervaire formula for
block stable ideals. Such a formula, however, would be not purely combinatorial,
in the sense that the graded Betti numbers of block stable ideals depend on the
characteristic of the field K : In fact even the Betti numbers of a Borel fixed ideal
depend on the characteristic, as recently shown (indeed while they were at MSRI
for the 2012 “Commutative Algebra” program) by Caviglia and Kummini [2014,
Theorem 3.2], solving negatively a conjecture of Pardue. Their method gives
rise to a Borel fixed ideal generated in many degrees. However Caviglia pointed
out to us that we can even get a Borel fixed ideal generated in a single degree as
follows:

Example 2.15. There is an ideal I ⊂ R = Z[x1, . . . , x6] generated in a single
degree 2726 such that it is Borel fixed in characteristic 2 but its Betti numbers
depend on the characteristic.

Proof. Let J ⊂ R the Borel fixed ideal (in characteristic 2) of [Caviglia and
Kummini 2014, Example 3.7]. If d = 2729, we have β2,d(J (R⊗Z K )) = 0 if
and only if char(K ) 6= 2. By computing the Betti numbers in terms of Koszul
homology with respect to (x1, . . . , x6), it is clear that

β2,d(J (R⊗Z K ))= β2,d((Jd−2+ Jd−3)(R⊗Z K )).

However the minimal generator of maximal degree of J has degree 2568, that is
less than d − 3. So (Jd−3)= (Jd−2+ Jd−3). In particular I = (Jd−3) is a Borel
fixed ideal (in characteristic 2) generated in degree 2726 whose Betti numbers
are sensible to the characteristic. �

The possible Betti numbers of an ideal with linear resolution. In this subsec-
tion we will see how Theorem 2.9 yields a characterization of the Betti tables
with just one row. Such an issue, in fact, is equivalent to characterize the possible
graded Betti numbers of a strongly stable monomial ideal of P generated in one
degree. Actually, more generally, to characterize the possible Betti tables of a
componentwise linear ideal of P is equivalent to characterize the possible Betti
tables of a strongly stable monomial ideal of P . In fact, in characteristic 0 this is
true because the generic initial ideal of any ideal I is strongly stable [Eisenbud
1995, Theorem 15.23]. Moreover, if I is componentwise linear and the term
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order is degree reverse lexicographic, then the graded Betti numbers of I are
the same of those of Gin(I ) by a result of Aramova, Herzog and Hibi [Aramova
et al. 2000]. In positive characteristic it is still true that for a degree reverse
lexicographic order the graded Betti numbers of I are the same of those of Gin(I ),
provided that I is componentwise linear. But in this case Gin(I ) might be not
strongly stable. However, it is known that, at least for componentwise linear
ideals, it is stable [Conca et al. 2004, Lemma 1.4]. The graded Betti numbers of a
stable ideal do not depend from the characteristic, because the Elihaou–Kervaire
formula (3). So to compute the graded Betti numbers of Gin(I ) we can consider
it in characteristic 0. Let us call J the ideal Gin(I ) viewed in characteristic 0.
The ideal J , being stable, is componentwise linear, so we are done by what said
above. Summarizing, we showed:

Proposition 2.16. The following sets coincide:

(1) {Betti tables (βi, j (I )) where I ⊂ P is componentwise linear};

(2) {Betti tables (βi, j (I )) where I ⊂ P is strongly stable}.

So, we get the following:

Theorem 2.17. Let m1, . . . ,mn be a sequence of natural numbers. Then the
following are equivalent:

(1) There exists a homogeneous ideal I ⊂ P with d-linear resolution such that
mk(I )= mk for all k = 1, . . . , n.

(2) There exists a strongly stable monomial ideal I ⊂ P generated in degree d
such that mk(I )= mk for all k = 1, . . . , n.

(3) (m1, . . . ,mn) is an O-sequence such that m2 ≤ d; that is:
(a) m1 = 1;
(b) m2 ≤ d;
(c) mi+1 ≤ m〈i−1〉

i for any i = 2, . . . , n− 1.

Proof. By virtue of Proposition 2.16, (1) ⇐⇒ (2). Moreover, if I is strongly
stable, then mi (I )=wi (〈G(I )〉) for all i = 1, . . . , n; see (5). Since the monomial
space 〈G(I )〉 is strongly stable, Theorem 2.9 yields the equivalence (2)⇐⇒ (3).

�

Example 2.18. Let us see an example: Theorem 2.17 assures that we will never
find a homogeneous ideal I ⊂ R= K [x1, x2, x3, x4] with minimal free resolution:

0−→ R(−6)6 −→ R(−5)22
−→ R(−4)29

−→ R(−3)14
−→ I −→ 0.

In fact I , using (2), should satisfy m1(I ) = 1, m2(I ) = 3, m3(I ) = 4 and
m4(I )= 6. This is not an O-sequence, thus the existence of I would contradict
Theorem 2.17.
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