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Formal fibers of prime ideals
in polynomial rings

WILLIAM HEINZER, CHRISTEL ROTTHAUS
AND SYLVIA WIEGAND

Let .R;m/ be a Noetherian local domain of dimension n that is essentially
finitely generated over a field and let yR be the m-adic completion of R.
Matsumura has shown that n� 1 is the maximal height possible for prime
ideals P of yR such that P \RD .0/. In this article we prove that htP D n�1,
for every prime ideal P of yR that is maximal with respect to P \R D .0/.
We also present a related result concerning generic formal fibers of certain
extensions of mixed polynomial-power series rings.

1. Introduction

Let .R;m/ be a Noetherian local domain and let yR be the m-adic completion
of R. The generic formal fiber ring of R is the localization .R n .0//�1 yR of yR
with respect to the multiplicatively closed set of nonzero elements of R. Let
Gff.R/ denote the generic formal fiber ring of R. If R is essentially finitely
generated over a field and dim RD n, then dim.Gff.R//D n� 1 by the result
of Matsumura [1988, Theorem 2] mentioned in the abstract. In this article we
show every maximal ideal of Gff.R/ has height n�1; equivalently, ht P D n�1,
for every prime ideal P of yR that is maximal with respect to P \R D .0/, a
sharpening of Matsumura’s result.

In earlier articles we encounter formal fibers and generic fibers; these concepts
are related to our study of prime spectral maps among “mixed polynomial-power
series rings” over a field; see [Heinzer et al. 2006a; 2006b; 2007]. For P in
Spec R, the formal fiber over P is the affine scheme Spec..R nP /�1. yR=P yR//,
or equivalently Spec..RP=PRP /˝R

yR/. Let Gff.R=P / denote the generic
formal fiber ring of R=P . Since yR=P yR is the completion of R=P , the formal
fiber over P is Spec.Gff.R=P //.
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Let n be a positive integer, let X D fx1; : : : ;xng be a set of n variables over
a field k, and let A WD kŒx1; : : : ;xn�.x1;:::;xn/ D kŒX �.X / denote the localized
polynomial ring in these n variables over k. Then the completion of A is
ykŒX �D kŒŒX ��.
With this notation, we have:

Theorem 1.1 [Heinzer et al. 2006a, Theorem 1.1.1]. Let AD kŒX �.X / be the
localized polynomial ring as defined above. Every maximal ideal of the generic
formal fiber ring Gff.A/ has height n� 1. Equivalently, if Q is an ideal of yA
maximal with respect to Q\AD .0/, then Q is a prime ideal of height n� 1.

We were inspired to revisit and generalize Theorem 1.1 by Youngsu Kim. His
interest in formal fibers and the material in [Heinzer et al. 2006a] inspired us to
consider the second question below.

Questions 1.2. For n2N, let x1; : : : ;xn be indeterminates over a field k, and let
RD kŒx1; : : : ;xn�.x1;:::;xn/ denote the localized polynomial ring with maximal
ideal mD .x1; : : : ;xn/R. Let yR be the m-adic completion of R.

(1) For P 2 Spec R, what is the dimension of the generic formal fiber ring
Gff.R=P /?

(2) What heights are possible for maximal ideals of the ring Gff.R=P /?

In connection with Questions 1.2(1), for P 2 Spec R, the ring R=P is essen-
tially finitely generated over a field, and a result of Matsumura [1988, Corollary,
p. 263] states that dim.Gff.R=P //D n� 1� ht P .

Sharpening Matsumura’s result and Theorem 1.1, we prove Theorem 1.3; see
also Theorem 3.5. Thus the answer to Question 1.2(2) is that the height of every
maximal ideal of Gff.R=P / is n� 1� ht P .

Theorem 1.3. Let S be a local domain essentially finitely generated over a field;
thus S D kŒs1; : : : ; sr �p, where k is a field, r 2 N, the elements si are in S and
p is a prime ideal of the finitely generated k-algebra kŒs1; : : : ; sr �. Let n WD pS

and let yS denote the n-adic completion of S . Then every maximal ideal of Gff.S/
has height dim S � 1. Equivalently, if Q 2 Spec yS is maximal with respect to
Q\S D .0/, then ht QD dim S � 1.

In Theorem 4.2 of Section 4, we prove that all maximal ideals in the generic
formal fiber of certain extensions of a mixed polynomial-power series ring have
the same height.

2. Background and preliminaries

We begin with historical remarks concerning dimensions and heights of maximal
ideals of generic formal fiber rings for Noetherian local domains:
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Remarks 2.1. 1. Let .R;m/ be an n-dimensional Noetherian local domain.
Matsumura [1988] remarks that as the ring R gets closer to its m-adic completion
yR, it is natural to think that the dimension of the generic formal fiber ring Gff.R/

gets smaller. Matsumura describes examples where dim.Gff.R// has one of the
three values n�1; n�2 or 0, and speculates [loc.cit., p. 261] as to whether these
are the only possible values for dim.Gff.R//.

2. Matsumura’s question in item 1 is answered by Rotthaus [1991]; she es-
tablishes the following result: For every positive integer n and every integer t

between 0 and n� 1, there exists an excellent regular local ring R such that
dim RD n and such that the generic formal fiber ring of R has dimension t .

3. For .R;m/ an n-dimensional universally catenary Noetherian local do-
main, Loepp and Rotthaus [2004] compare the dimension of the generic formal
fiber ring of R with that of the localized polynomial ring RŒx�.m;x/. It is
shown in [Matsumura 1988] that the dimension of the generic formal fiber
ring Gff.RŒx�.m;x// is either n or n� 1. Loepp and Rotthaus [2004, Theorem 2]
prove that dim.Gff.RŒx�.m;x///D n implies that dim.Gff R/D n�1. They show
by example that in general the converse is not true, and they give sufficient
conditions for the converse to hold.

4. Let .T;M / be a complete Noetherian local domain that contains a field of
characteristic zero. Assume that T=M has cardinality at least the cardinality
of the real numbers. Loepp [1997; 1998] adapts techniques developed by Heit-
mann [1993] and proves, among other things, for every prime ideal p of T with
p¤M , there exists an excellent regular local ring R that has completion T and
has generic formal fiber ring Gff.R/D Tp. By varying the height of p, Loepp
obtains examples where the dimension of the generic formal fiber ring is any
integer t with 0� t < dim T . Loepp shows for these examples that there exists
a unique prime q of T with q\RD P and q D PT , for each nonzero prime P

of R.

5. If R is an n-dimensional countable Noetherian local domain, Heinzer, Rot-
thaus and Sally [Heinzer et al. 1993, Proposition 4.10, p. 36] show that:

(a) The generic formal fiber ring Gff.R/ is a Jacobson ring in the sense that
each prime ideal of Gff.R/ is an intersection of maximal ideals of Gff.R/.

(b) dim. yR=P / D 1 for each prime ideal P 2 Spec yR that is maximal with
respect to P \RD .0/.

(c) If yR is equidimensional, then ht P D n�1 for each prime ideal P 2 Spec yR
that is maximal with respect to P \RD .0/.

(d) If Q 2 Spec yR with ht Q� 1, then there exists a prime ideal P �Q such
that P \RD .0/ and ht.Q=P /D 1.
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It follows from this result that all ideals maximal in the generic formal fiber ring
of the ring A of Theorem 1.1 have the same height, if the field k is countable.

6. The work of Matsumura [1988], referenced in item 1 above, does not address
the question of whether all ideals maximal in the generic formal fiber rings have
the same height for the rings he studies. In general, for an excellent regular local
ring R, it can happen that Gff.R/ contains maximal ideals of different heights;
see [Rotthaus 1991, Corollary 3.2].

7. Charters and Loepp [2004, Theorem 3.1] extend Rotthaus’ result of the
previous item: Let .T;M / be a complete Noetherian local ring and let G be a
nonempty subset of Spec T such that the number of maximal elements of G is
finite. They prove there exists a Noetherian local domain R whose completion
is T and whose generic formal fiber is exactly G if G satisfies the following
conditions:

(a) M 62G and G contains the associated primes of T .

(b) If P �Q are in Spec T and Q 2G, then P 2G.

(c) Every Q 2G meets the prime subring of T in .0/.

Charters and Loepp [2004, Theorem 4.1] also show that, if T contains the ring
of integers and if, in addition to conditions (a)–(c),

(d) T is equidimensional and

(e) TP is a regular local ring for each maximal element P of G,

then there exists an excellent local domain R whose completion is T and whose
generic formal fiber is exactly G. Since the maximal elements of the set G may
be chosen to have different heights, this result provides many examples where
the generic formal fiber ring contains maximal ideals of different heights.

We make the following observations concerning injective local maps of Noe-
therian local rings:

Discussion 2.2. Let � W .R;m/ ,! .S; n/ be an injective local map of the Noe-
therian local ring .R;m/ into a Noetherian local ring .S; n/. Let

yRD lim
 ��n

R=mn and yS D lim
 ��n

S=nn

denote the m-adic completion of R and the n-adic completion of S . For each
n 2 N, we have mn � nn\R. Hence there exists a map

�n WR=m
n
! R=.nn

\R/ ,! S=nn; for each n 2 N:

The family of maps f�ngn2N determines a unique map y� W yR! yS .
Since mn � nn\R, the m-adic topology on R is the subspace topology from

S if and only if for each positive integer n there exists a positive integer sn such
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that nsn \R � mn. Since R=mn is Artinian, the descending chain of ideals
fmnC .ns \R/gs2N stabilizes. The ideal mn is closed in the m-adic topology,
and it is closed in the subspace topology if and only ifT

s2N

.mnC .ns \R//Dmn:

Hence mn is closed in the subspace topology if and only if there exists a positive
integer sn such that nsn \R� mn. Thus the subspace topology from S is the
same as the m-adic topology on R if and only if y� is injective.

3. Gff.R/ and Gff.S / for S an extension domain of R

Definition 3.1. Let R and S be integral domains with R a subring of S and let
' WR ,! S denote the inclusion map of R into S . The integral domain S is a
trivial generic fiber extension of R, or a TGF extension of R, if every nonzero
prime ideal of S has nonzero intersection with R. In this case, we also say that
' is a trivial generic fiber extension or TGF extension.

Theorem 3.2 is useful in considering properties of generic formal fiber rings.

Theorem 3.2. Let � W .R;m/ ,! .S; n/ be an injective local map of Noetherian
local integral domains. Consider the following properties:

.1/ mS is n-primary, and S=n is finite algebraic over R=m.

.2/ R ,! S is a TGF-extension and dim RD dim S .

.3/ R is analytically irreducible.

.4/ R is analytically normal and S is universally catenary.

.5/ All maximal ideals of Gff.R/ have the same height.

If properties (1), (2) and (3) hold, then dim.Gff.R// D dim.Gff.S//. If , in
addition, properties (4) and (5) hold, then every maximal ideal of Gff.S/ has
height hD dim.Gff.R//.

Proof. Let yR and yS denote the m-adic completion of R and n-adic completion
of S , respectively, and let y� W yR! yS be the natural extension of � as given in
Discussion 2.2. Consider the commutative diagram

yR
y�

����! ySx?? x??
R

�
����! S ,

(3.2.a)

where the vertical maps are the natural inclusion maps to the completion. Assume
properties (1), (2) and (3) hold. Property (1) implies that yS is a finite yR-module
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with respect to the map y� by [Matsumura 1989, Theorem 8.4]. By propety (2),
we have dim yR D dim R D dim S D dim yS . Item 3 says that yR is an integral
domain. It follows that the map y� W yR ,! yS is injective. Let Q 2 Spec yS and
let P D Q\ yR. Since R ,! S is a TGF-extension, by (2), commutativity of
Diagram (3.2.a) implies that

Q \ S D .0/ () P \ R D .0/:

Therefore y� induces an injective finite map Gff.R/ ,! Gff.S/. We conclude
that dim.Gff.R//D dim.Gff.S//.

Assume in addition that properties (4) and (5) hold, and let hD dim.Gff.R//.
The assumption that S is universally catenary implies that dim. yS=q/D dim S

for each minimal prime q of yS by [Matsumura 1989, Theorem 31.7]. Since

yR

q\ yR
,!
yS

q

is an integral extension, we have q\ yRD .0/. The assumption that yR is a normal
domain implies that the going-down theorem holds for yR ,! yS=q by [loc.cit.,
Theorem 9.4(ii)]. Therefore for each Q 2 Spec yS we have ht QD ht P , where
P DQ\ yR. Hence if ht P D h for each P 2 Spec yR that is maximal with respect
to P \RD .0/, then ht QD h for each Q 2 Spec yS that is maximal with respect
to Q\S D .0/. This completes the proof of Theorem 3.2. �
Remark 3.3. We would like to thank Rodney Sharp and Roger Wiegand for their
interest in Theorem 3.2. The hypotheses of Theorem 3.2 do not necessarily imply
that S is a finite R-module, or even that S is essentially finitely generated over
R. If � W .R;m/ ,! .T; n/ is an extension of rank one discrete valuation rings
(DVRs) such that T=n is finite algebraic over R=m, then, for every field F that
contains R and is contained in the field of fractions of yT , the ring S WD yT \F is
a DVR such that the extension R ,! S satisfies the hypotheses of Theorem 3.2.

As a specific example where S is essentially finite over R, but not a finite
R-module, let RD Z5Z, the integers localized at the prime ideal generated by 5,
and let A be the integral closure of Z5Z in QŒi �. Then A has two maximal ideals
lying over 5R, namely .1C 2i/A and .1� 2i/A. Let S DA.1C2i/A. Then the
extension R ,! S satisfies the hypotheses of Theorem 3.2. Since S properly
contains A, and every element in the field of fractions of A that is integral over
R is contained in A, it follows that S is not finitely generated as an R-module.
In Remark 4.5, we describe examples in higher dimension where S is not a finite
R-module.

Discussion 3.4. As in the statement of Theorem 1.3, let S D kŒz1; : : : ; zr �p be a
local domain essentially finitely generated over a field k. We observe that S is a
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localization at a maximal ideal of an integral domain that is a finitely generated
algebra over an extension field F of k.

To see this, let A D kŒx1; : : : ;xr � be a polynomial ring in r variables over
k, and let Q denote the kernel of the k-algebra homomorphism of A onto
kŒz1; : : : ; zr � defined by mapping xi 7! zi , for each i with 1 � i � r . Us-
ing permutability of localization and residue class formation, there exists a
prime ideal N � Q of A such that S D AN =QAN . A version of Noether
normalization as in [Matsumura 1980, Theorem 24 (14.F), p. 89] states that, if
ht N D s, then there exist elements y1; : : : ;yr in A such that A is integral over
B D kŒy1; : : : ;yr � and N \B D .y1; : : : ;ys/B. It follows that y1; : : : ;yr are
algebraically independent over k and A is a finitely generated B-module. Let F

denote the field k.ysC1; : : : ;yr /, and let U denote the multiplicatively closed
set kŒysC1; : : : ;yr �n .0/. Then U�1B is the polynomial ring F Œy1; : : : ;ys �, and
U�1A WD C is a finitely generated U�1B-module. Moreover NC is a prime
ideal of C such that

NC \U�1B D .y1; : : : ;ys/U
�1B D .y1; : : : ;ys/F Œy1; : : : ;ys �

is a maximal ideal of U�1B, and .y1; : : : ;ys/C is primary for the maximal
ideal of C . Hence NC is a maximal ideal of C and S D CNC =QCNC is a
localization of the finitely generated F -algebra D WD C=QC at the maximal
ideal NC=QC .

Therefore S is a localization of an integral domain D at a maximal ideal of
D and D is a finitely generated algebra over an extension field F of k.

Theorem 3.5. Let S be a local integral domain of dimension d that is essentially
finitely generated over a field. Then every maximal ideal of the generic formal
fiber ring Gff.S/ has height d � 1.

Proof. Using Discussion 3.4, we write S DDN , where N is a maximal ideal of
a finitely generated algebra D over a field F . Let nDNS be the maximal ideal
of S . Choose x1; : : : ;xd in n such that x1; : : : ;xd are algebraically independent
over F and .x1; : : : ;xd /S is n-primary. Set R D F Œx1; : : : ;xd �.x1;:::;xd /, a
localized polynomial ring over F , and let mD .x1; : : : ;xd /R.

To prove Theorem 3.5, it suffices to show that the inclusion map � WR ,! S

satisfies properties (1)–(5) of Theorem 3.2. By construction, � is an injective
local homomorphism and mS is n-primary. Also R=mDF and S=nDD=N is
a field that is a finitely generated F -algebra and hence a finite algebraic extension
field of F ; see [Matsumura 1989, Theorem 5.2]. Therefore property (1) holds.
Since dim S D d D dim D, the field of fractions of S has transcendence degree
d over the field F . Therefore S is algebraic over R. It follows that R ,! S is a
TGF extension. Thus property (2) holds. Since R is a regular local ring, R is
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analytically irreducible and analytically normal. Since S is essentially finitely
generated over a field, S is universally catenary. Therefore properties (3) and
(4) hold. Since R is a localized polynomial ring in d variables, Theorem 1.1
implies that every maximal ideal of Gff.R/ has height d � 1. By Theorem 3.2,
every maximal ideal of Gff.S/ has height d � 1. �

4. Other results on generic formal fibers

The main theorem of [Heinzer et al. 2006a] includes results about the generic
formal fiber ring of mixed polynomial-power series rings as in Theorem 4.1.

Theorem 4.1 [Heinzer et al. 2006a, Theorem 1.1]. Let m and n be positive
integers, let k be a field, and let X D fx1; : : : ;xng and Y D fy1; : : : ;ymg be
sets of independent variables over k. Then, for R either the ring kŒŒX �� ŒY �.X ;Y /
or the ring kŒY �.Y /ŒŒX ��, the dimension of the generic formal fiber ring Gff.R/ is
nCm� 2 and every prime ideal P maximal in Gff.R/ has ht P D nCm� 2.

We use Theorem 3.2 and Theorem 4.1 to deduce Theorem 4.2.

Theorem 4.2. Let R be either kŒŒX �� ŒY �.X ;Y / or kŒY �.Y /ŒŒX ��, where m and n

are positive integers and X D fx1; : : : ;xng and Y D fy1; : : : ;ymg are sets of
independent variables over a field k. Let m denote the maximal ideal .X;Y /R
of R. Let .S; n/ be a Noetherian local integral domain containing R such that:

.1/ the injection ' W .R;m/ ,! .S; n/ is a local map;

.2/ mS is n-primary, and S=n is finite algebraic over R=m;

.3/ R ,! S is a TGF-extension and dim RD dim S ;

.4/ S is universally catenary.

Then every maximal ideal of the generic formal fiber ring Gff.S/ has height
nCm� 2. Equivalently, if P is a prime ideal of yS maximal with respect to
P \S D .0/, then ht.P /D nCm� 2.

Proof. We check that the conditions 1–5 of Theorem 3.2 are satisfied for R and
S and the injection '. Since the completion of R is kŒŒX;Y ��, R is analytically
normal, and so also analytically irreducible. Items 1–4 of Theorem 4.2 ensure that
the rest of conditions 1–4 of Theorem 3.2 hold. By Theorem 4.1, every maximal
ideal of Gff.R/ has height nCm� 2, and so condition 5 of Theorem 3.2 holds.
Thus by Theorem 3.2, every maximal ideal of Gff.S/ has height nCm� 2. �

Remark 4.3. Let k;X;Y and R be as in Theorem 4.2. Let A be a finite integral
extension domain of R and let S be the localization of A at a maximal ideal. As
observed in the proof of Theorem 4.2, R is a local analytically normal integral
domain. Since S is a localization of a finitely generated R-algebra and R is
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universally catenary, it follows that S is universally catenary. We also have that
conditions 1–3 of Theorem 4.2 hold. Thus the extension R ,! S satisfies the
hypotheses of Theorem 4.2. Hence every maximal ideal of Gff.S/ has height
nCm� 2.

The next example is an application of Theorem 4.2 and Remark 4.3.

Example 4.4. Let k;X;Y and R be as in Theorem 4.2. Let K denote the field
of fractions of R, and let L be a finite algebraic extension field of K. Let A be
the integral closure of R in L, and let S be a localization of A at a maximal
ideal. The ring R is a Nagata ring by [Marot 1975, Proposition 3.5]. Therefore
A is a finite integral extension of R and the conditions of Remark 4.3 apply to
show that every maximal ideal of Gff.S/ has height nCm� 2.

Remark 4.5. With notation as in Example 4.4, since the sets X and Y are
nonempty, the field K is a simple transcendental extension of a subfield. It
follows that the regular local ring R is not Henselian; see [Berger et al. 1967,
Satz 2.3.11, p. 60; Schmidt 1933]. Hence there exists a finite algebraic field
extension L=K such that the integral closure A of R in L has more than one
maximal ideal. It follows that the localization S of A at any one of these maximal
ideals is not a finite R-module, and gives an example R ,! S that satisfies the
hypotheses of Theorem 3.2.
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