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Poincaré–Birkhoff–Witt theorems
ANNE V. SHEPLER AND SARAH WITHERSPOON

We sample some Poincaré–Birkhoff–Witt theorems appearing in mathematics.
Along the way, we compare modern techniques used to establish such results,
for example, the composition-diamond lemma, Gröbner basis theory, and
the homological approaches of Braverman and Gaitsgory and of Polishchuk
and Positselski. We discuss several contexts for PBW theorems and their
applications, such as Drinfeld–Jimbo quantum groups, graded Hecke algebras,
and symplectic reflection and related algebras.

1. Introduction

Poincaré [1900] published a fundamental result on Lie algebras that would prove
a powerful tool in representation theory: A Lie algebra embeds into an associative
algebra that behaves in many ways like a polynomial ring. Capelli [1890] had
proven a special case of this theorem, for the general linear Lie algebra, ten years
earlier. Birkhoff [1937] and Witt [1937] independently formulated and proved
versions of the theorem that we use today, although neither author cited this earlier
work. The result was called the Birkhoff–Witt theorem for years and then later
the Poincaré–Witt theorem (see [Cartan and Eilenberg 1956]) before Bourbaki
[1960] prompted use of its current name, the Poincaré–Birkhoff–Witt theorem.

The original theorem on Lie algebras was greatly expanded over time by a num-
ber of authors to describe various algebras, especially those defined by quadratic-
type relations (including Koszul rings over semisimple algebras). Poincaré–
Birkhoff–Witt theorems are often used as a springboard for investigating the
representation theory of algebras. These theorems are used to

• reveal an algebra as a deformation of another, well-behaved algebra,

• posit a convenient basis (of “monomials”) for an algebra, and

• endow an algebra with a canonical homogeneous (or graded) version.

This material is based upon work supported by the National Science Foundation under grant
no. 0932078000, while Witherspoon was in residence at the Mathematical Sciences Research
Institute (MSRI) in Berkeley, California, during the spring semester of 2013. Shepler was partially
supported by NSF grant #DMS-1101177. Witherspoon was partially supported by NSF grant
#DMS-1101399.
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In this survey, we sample some of the various Poincaré–Birkhoff–Witt theo-
rems, applications, and techniques used to date for proving these results. Our
survey is not intended to be all-inclusive; we instead seek to highlight a few of the
more recent contributions and provide a helpful resource for users of Poincaré–
Birkhoff–Witt theorems, which we henceforth refer to as PBW theorems.

We begin with a quick review in Section 2 of the original PBW theorem
for enveloping algebras of Lie algebras. We next discuss PBW properties for
quadratic algebras in Section 3, and for Koszul algebras in particular, before
turning to arbitrary finitely generated algebras in Section 4. We recall needed
facts on Hochschild cohomology and algebraic deformation theory in Section 5,
and more background on Koszul algebras is given in Section 6. Sections 7–8
outline techniques for proving PBW results recently used in more general settings,
some by way of homological methods and others via the composition-diamond
lemma (and Gröbner basis theory). One inevitably is led to similar computations
when applying any of these techniques to specific algebras, but with different
points of view. Homological approaches can help to organize computations and
may contain additional information, while approaches using Gröbner basis theory
are particularly well-suited for computer computation. We focus on some classes
of algebras in Sections 9 and 10 of recent interest: Drinfeld–Jimbo quantum
groups, Nichols algebras of diagonal type, symplectic reflection algebras, rational
Cherednik algebras, and graded (Drinfeld) Hecke algebras. In Section 11, we
mention applications in positive characteristic (including algebras built on group
actions in the modular case) and other generalizations that mathematicians have
only just begun to explore.

We take all tensor products over an underlying field k unless otherwise indi-
cated and assume all algebras are associative k-algebras with unity. Note that
although we limit discussions to finitely generated algebras over k for simplicity,
many remarks extend to more general settings.

2. Lie algebras and the classical PBW theorem

All PBW theorems harken back to a classical theorem for universal enveloping
algebras of Lie algebras established independently by Poincaré [1900], Birkhoff
[1937] and Witt [1937]. In this section, we recall this original PBW theorem in
order to set the stage for other PBW theorems and properties; for comprehensive
historical treatments, see [Grivel 2004; Ton-That and Tran 1999].

A finite dimensional Lie algebra is a finite dimensional vector space g over a
field k together with a binary operation [ , ] : g× g→ g satisfying

(i) (antisymmetry) [v, v] = 0, and

(ii) (Jacobi identity) [u, [v,w]] + [v, [w, u]] + [w, [u, v]] = 0,
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for all u, v, w ∈ g. Condition (i) implies [v,w] = −[w, v] for all v,w in g (and
is equivalent to this condition in all characteristics other than 2).

The universal enveloping algebra U (g) of g is the associative algebra generated
by the vectors in g with relations vw−wv = [v,w] for all v,w in g, that is,

U (g)= T (g)
/
(v⊗w−w⊗ v− [v,w] : v,w ∈ g),

where T (g) is the tensor algebra of the vector space g over k. It can be defined
by a universal property: U (g) is the (unique up to isomorphism) associative
algebra such that any linear map φ from g to an associative algebra A satisfying
[φ(v), φ(w)] = φ([v,w]) for all v,w ∈ g factors through U (g). (The bracket
operation on an associative algebra A is given by [a, b] := ab − ba for all
a, b ∈ A.) As an algebra, U (g) is filtered, under the assignment of degree 1 to
each vector in g.

Original PBW theorem. A Lie algebra g embeds into its universal enveloping
algebra U (g), and the associated graded algebra of U (g) is isomorphic to S(g),
the symmetric algebra on the vector space g.

Thus the original PBW theorem compares a universal enveloping algebra
U (g) to an algebra of (commutative) polynomials. Since monomials form a
k-basis for a polynomial algebra, the original PBW theorem is often rephrased
in terms of a PBW basis (with tensor signs between vectors dropped):

PBW basis theorem. Let v1, . . . , vn be an ordered k-vector space basis of the
Lie algebra g. Then {va1

1 · · · v
an
n : ai ∈ N} is a k-basis of the universal enveloping

algebra U (g).

Example 2.1. The Lie algebra sl2(C) consists of 2× 2 matrices of trace 0 with
entries in C under the bracket operation on the associative algebra of all 2× 2
matrices. The standard basis of sl2(C) is

e =
(

0 1
0 0

)
, f =

(
0 0
1 0

)
, h =

(
1 0
0 −1

)
,

for which [e, f ] = h, [h, e] = 2e, [h, f ] =−2 f . Thus U (sl2(C)) is the associa-
tive C-algebra generated by three symbols that we also denote by e, f, h (abusing
notation) subject to the relations e f − f e = h, he− eh = 2e, h f − f h =−2 f .
It has C-basis {eahb f c

: a, b, c ∈ N}.

Proofs of the original PBW theorem vary (and by how much is open to inter-
pretation). The interested reader may wish to consult, for example, [Cartan and
Eilenberg 1956; Dixmier 1977; Humphreys 1972; Jacobson 1962; Varadarajan
1984]. Jacobson [1941] proved a PBW theorem for restricted enveloping algebras
in positive characteristic. Higgins [1969] gives references and a comprehensive
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PBW theorem over more general ground rings. A PBW theorem for Lie superal-
gebras goes back to Milnor and Moore [1965] (see also [Kac 1977]). Grivel’s
historical article [2004] includes further references on generalizations to other
ground rings, to Leibniz algebras, and to Weyl algebras. In Sections 7 and 8
below, we discuss two proof techniques particularly well suited to generaliza-
tion: a combinatorial approach through the composition-diamond lemma and a
homological approach through algebraic deformation theory. First we lay some
groundwork on quadratic algebras.

3. Homogeneous quadratic algebras

Many authors have defined the notions of PBW algebra, PBW basis, PBW
deformation, or PBW property in order to establish theorems like the original
PBW theorem in more general settings. Let us compare a few of these concepts,
beginning in this section with those defined for homogeneous quadratic algebras.

Quadratic algebras. Consider a finite dimensional vector space V over k with
basis v1, . . . , vn . Let T be its tensor algebra over k, that is, the free k-algebra
k〈v1, . . . , vn〉 generated by the vi . Then T is an N-graded k-algebra with

T 0
= k, T 1

= V, T 2
= V ⊗ V, T 3

= V ⊗ V ⊗ V, etc.

We often omit tensor signs in writing elements of T as is customary in noncommu-
tative algebra, for example, writing x3 for x ⊗ x ⊗ x and xy for x ⊗ y.

Suppose P is a set of filtered (nonhomogeneous) relations in degree 2,

P ⊆ T 0
⊕ T 1

⊕ T 2,

and let I = (P) be the 2-sided ideal in T generated by P . The quotient A =
T/I is a nonhomogeneous quadratic algebra. If P consists of elements of
homogeneous degree 2, that is, P ⊆ T 2, then A is a homogeneous quadratic
algebra. Thus a quadratic algebra is just an algebra whose relations are generated
by (homogeneous or nonhomogeneous) quadratic expressions.

We usually write each element of a finitely presented algebra A = T/I as a
coset representative in T , suppressing mention of the ideal I . Then a k-basis for
A is a subset of T representing cosets modulo I which form a basis for A as a
k-vector space. Some authors say a quadratic algebra has a PBW basis if it has
the same k-basis as a universal enveloping algebra, that is, if {va1

1 · · · v
an
n : ai ∈N}

is a basis for A as a k-vector space. Such algebras include Weyl algebras,
quantum/skew polynomial rings, some iterated Ore extensions, some quantum
groups, etc.
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Priddy’s PBW algebras. Priddy [1970] gave a broader definition of PBW basis
for homogeneous quadratic algebras in terms of any ordered basis of V (say,
v1 < v2 < · · ·< vn) in establishing the notion of Koszul algebras. (A quadratic
algebra is Koszul if the boundary maps in its minimal free resolution have matrix
entries that are linear forms; see Section 6.) Priddy first extended the ordering
degree-lexicographically to a monomial ordering on the tensor algebra T , where
we regard pure tensors in v1, . . . , vn as monomials. He then called a k-vector
space basis for A = T/I a PBW basis (and the algebra A a PBW algebra) if
the product of any two basis elements either lay again in the basis or could be
expressed modulo I as a sum of larger elements in the basis. In doing so, Priddy
[1970, Theorem 5.3] gave a class of Koszul algebras which is easy to study:

Theorem 3.1. If a homogeneous quadratic algebra has a PBW basis, then it is
Koszul.

Polishchuk and Positselski [2005, Chapter 4, Section 1] reframed Priddy’s
idea; we summarize their approach using the notion of leading monomial LM of
any element of T written in terms of the basis v1, . . . , vn of V . Suppose the set
of generating relations P is a subspace of T 2. Consider those monomials that
are not divisible by the leading monomial of any generating quadratic relation:

BP = {monomials m ∈ T : LM(a) - m for all a ∈ P}.

Polishchuk and Positselski call BP a PBW basis of the quadratic algebra A (and
A a PBW algebra) whenever BP is a k-basis of A.

Gröbner bases. Priddy’s definition and the reformulation of Polishchuk and
Positselski immediately call to mind the theory of Gröbner bases. Recall that
a set G of nonzero elements generating an ideal I is called a (noncommuta-
tive) Gröbner basis if the leading monomial of each nonzero element of I
is divisible by the leading monomial of some element of G with respect to a
fixed monomial (i.e., term) ordering (see [Mora 1986] or [Li 2012]). (Gröbner
bases and Gröbner–Shirshov bases were developed independently in various
contexts by Shirshov [1962a], Hironaka [1964a; 1964b], Buchberger [1965],
Bokut [1976] and Bergman [1978].) A Gröbner basis G is quadratic if it consists
of homogeneous elements of degree 2 (i.e., lies in T 2) and it is minimal if no
proper subset is also a Gröbner basis. A version of the composition-diamond
lemma for associative algebras (see Section 8) implies that if G is a Gröbner
basis for I , then

BG = {monomials m ∈ T : LM(a) - m for all a ∈ G }

is a k-basis for A = T (V )/I .
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Example 3.2. Let A be the C-algebra generated by symbols x, y with a single
generating relation xy = y2. Set V = C-span{x, y} and P = {xy− y2

} so that
A = T (V )/(P). A Gröbner basis G for the ideal I = (P) with respect to the
degree-lexicographical monomial ordering with x < y is infinite:

G = {yxn y− xn+1 y : n ∈ N},

BP = {monomials m ∈ T that are not divisible by y2
},

BG = {monomials m ∈ T that are not divisible by yxn y for any n ∈ N}.

Hence, A is not a PBW algebra using the ordering x < y since BG is a C-basis
for A but BP is not.

If we instead take some monomial ordering with x > y, then G = P is a
Gröbner basis for the ideal I = (P) and BG =BP is a C-basis of A:

BP =BG = {monomials m ∈ T that are not divisible by xy}

= {yaxb
: a, b ∈ N}.

Hence A is a PBW algebra using the ordering y < x .

Quadratic Gröbner bases. How do the sets of monomials BP and BG compare
after fixing an appropriate monomial ordering? Suppose G is a minimal Gröbner
basis for I = (P) (which implies that no element of G has leading monomial
dividing that of another). Then BG ⊂ BP , and the reverse inclusion holds
whenever G is quadratic (since then G must be a subset of the subspace P).
Since each graded piece of A is finite dimensional over k, a PBW basis thus
corresponds to a quadratic Gröbner basis:

BP is a PBW basis of A⇐⇒BG =BP ⇐⇒ G is quadratic.

Thus authors sometimes call any algebra defined by an ideal of relations with a
quadratic Gröbner basis a PBW algebra. In any case, such an algebra is Koszul
[Anick 1986; Bruns et al. 1994; Fröberg 1999; Loday and Vallette 2012]:

Theorem 3.3. Any quadratic algebra whose ideal of relations has a (noncom-
mutative) quadratic Gröbner basis is Koszul.

Backelin (see [Polishchuk and Positselski 2005, Chapter 4, Section 3]) gave
an example of a Koszul algebra defined by an ideal of relations with no quadratic
Gröbner basis. Eisenbud, Reeves and Totaro [Eisenbud et al. 1994, p. 187] gave
an example of a commutative Koszul algebra whose ideal of relations does not
have a quadratic Gröbner basis with respect to any ordering, even after a change
of basis (see also [Fröberg 1999]).

We relate Gröbner bases and PBW theorems for nonhomogeneous algebras in
Section 8.
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4. Nonhomogeneous algebras: PBW deformations

Algebras defined by generators and relations are not naturally graded, but merely
filtered, and often one wants to pass to some graded or homogeneous version
of the algebra for quick information. There is more than one way to do this in
general. The original PBW theorem shows that the universal enveloping algebra
of a Lie algebra has one natural homogeneous version. Authors apply this idea
to other algebras, saying that an algebra satisfies a PBW property when graded
versions are isomorphic and call the original algebra a PBW deformation of this
graded version. We make these notions precise in this section and relate them
to the work of Braverman and Gaitsgory and of Polishchuk and Positselski on
Koszul algebras in the next section.

Filtered algebras. Again, consider an algebra A generated by a finite dimen-
sional vector space V over a field k with some defining set of relations P . (More
generally, one might consider a module over a group algebra or some other
k-algebra.) Let T =

⊕
i≥0 T i be the tensor algebra over V and let I = (P) be

the two-sided ideal of relations so that

A = T/I.

If I is homogeneous, then the quotient algebra A is graded. In general, I is
nonhomogeneous and the quotient algebra is only filtered, with i-th filtered
component F i (A) = F i (T/I ) = (F i (T ) + I )/I induced from the filtration
on T obtained by assigning degree one to each vector in V (i.e., F i (T ) =
T 0
⊕ T 1

⊕ . . .⊕ T i ).

Homogeneous versions. One associates to the filtered algebra A two possibly
different graded versions. On one hand, we cross out lower order terms in the
generating set P of relations to obtain a homogeneous version of the original
algebra. On the other hand, we cross out lower order terms in each element of
the entire ideal of relations. Then PBW conditions are precisely those under
which these two graded versions of the original algebra coincide, as we recall
next.

The associated graded algebra of A,

gr(A)=
⊕
i≥0

F i (A)
/

F i−1(A),

is a graded version of A which does not depend on the choice of generators P of
the ideal of relations I . (We set F−1

= {0}.) The associated graded algebra may
be realized concretely by projecting each element in the ideal I onto its leading
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homogeneous part (see [Li 2012, Theorem 3.2]):

gr
(

T
/

I
)
∼= T

/
(LH(I )),

where LH(S) = {LH( f ) : f ∈ S} for any S ⊆ T and LH( f ) picks off the
leading (or highest) homogeneous part of f in the graded algebra T . (Formally,
LH( f )= fd for f =

∑d
i=1 fi with each fi in T i and fd nonzero.) Those looking

for a shortcut may be tempted instead simply to project elements of the generating
set P onto their leading homogeneous parts. A natural surjection (of graded
algebras) always arises from this homogeneous version of A determined by P to
the associated graded algebra of A:

T
/
(LH(P))� gr

(
T
/

I
)
.

PBW deformations. We say the algebra T/I is a PBW deformation of its homo-
geneous version T/(LH(P)) (or satisfies the PBW property with respect to P)
when the above surjection is also injective, that is, when the associated graded
algebra and the homogeneous algebra determined by P coincide (see [Braverman
and Gaitsgory 1996]):

T
/
(LH(I ))∼= gr

(
T
/

I
)
∼= T

/
(LH(P)).

In the next section, we explain the connections among PBW deformations, graded
(and formal) deformations, and Hochschild cohomology.

In this language, the original PBW theorem for universal enveloping algebras
asserts that the set

P = {v⊗w−w⊗ v− [v,w] : v,w ∈ V }

gives rise to a quotient algebra T/(P) that is a PBW deformation of the commu-
tative polynomial ring S(V ), for V the underlying vector space of a Lie algebra.
Here, each element of V has degree 1 so that the relations are nonhomogeneous
of degree 2 and T/(P) is a nonhomogeneous quadratic algebra.

We include an example next to show how the PBW property depends on
choice of generating relations P defining the algebra T/I . (But note that if A
satisfies the PBW property with respect to some generating set P of relations,
then the subspace P generates is unique; see [Shepler and Witherspoon 2014,
Proposition 2.1].)

Example 4.1. We mention a filtered algebra that exhibits the PBW property
with respect to one generating set of relations but not another. Consider the
(noncommutative) algebra A generated by symbols x and y with defining relations
xy = x and yx = y:

A = k〈x, y〉
/
(xy− x, yx − y),
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where k〈x, y〉 is the free k-algebra generated by x and y. The algebra A does
not satisfy the PBW property with respect to the generating relations xy− x and
yx − y. Indeed, the relations imply that x2

= x and y2
= y in A and thus the

associated graded algebra gr(A) is trivial in degree two while the homogeneous
version of A is not (as x2 and y2 represent nonzero classes). The algebra
A does exhibit the PBW property with respect to the larger generating set
{xy− x, yx − y, x2

− x, y2
− y} since

gr A ∼= k〈x, y〉
/
(xy, yx, x2, y2).

Examples 8.1 and 8.2 explain this recovery of the PBW property in terms of
Gröbner bases and the composition-diamond lemma.

5. Deformation theory and Hochschild cohomology

In the last section, we saw that an algebra defined by nonhomogeneous relations
is called a PBW deformation when the homogeneous version determined by
generating relations coincides with its associated graded algebra. How may
one view formally the original nonhomogeneous algebra as a deformation of
its homogeneous version? In this section, we begin to fit PBW deformations
into the theory of algebraic deformations. We recall the theory of deformations
of algebras and Hochschild cohomology, a homological tool used to predict
deformations and prove PBW properties.

Graded deformations. Let t be a formal parameter. A graded deformation of
a graded k-algebra A is a graded associative k[t]-algebra At (for t in degree 1)
which is isomorphic to A[t] = A⊗k k[t] as a k[t]-module with

At |t=0 ∼= A

as an algebra. If we specialize t to an element of k in the algebra At , then we
may no longer have a graded algebra, but a filtered algebra instead.

PBW deformations may be viewed as graded deformations: Each PBW de-
formation is a graded deformation of its homogeneous version with parameter
t specialized to some element of k. Indeed, given a finitely generated algebra
A = T/(P), we may insert a formal parameter t of degree 1 throughout the
defining relations P to make each relation homogeneous and extend scalars
to k[t]; the result yields a graded algebra Bt over k[t] with A = Bt |t=1 and
B= Bt |t=0, the homogeneous version of A. One may verify that if A satisfies the
PBW property, then this interpolating algebra Bt also satisfies a PBW condition
over k[t] and that Bt and B[t] are isomorphic as k[t]-modules. Thus as Bt is an
associative graded algebra, it defines a graded deformation of B.
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Suppose At is a graded deformation of a graded k-algebra A. Then up to
isomorphism, At is just the vector space A[t] together with some associative
multiplication given by

a ∗ b = ab+µ1(a⊗ b)t +µ2(a⊗ b)t2
+ · · · , (5.1)

where ab is the product of a and b in A, and for each i , µi is a linear map from
A⊗ A to A of degree −i , extended to be k[t]-linear. The degree condition on
the maps µi are forced by the fact that At is graded for t in degree 1. (One
sometimes considers a formal deformation, defined over formal power series
k[[t]] instead of polynomials k[t].)

The condition that the multiplication ∗ in A[t] be associative imposes condi-
tions on the functionsµi which are often expressed using Hochschild cohomology.
For example, comparing coefficients of t in the equation (a ∗ b) ∗ c = a ∗ (b ∗ c),
we see that µ1 must satisfy

aµ1(b⊗ c)+µ1(a⊗ bc)= µ1(ab⊗ c)+µ1(a⊗ b)c (5.2)

for all a, b, c ∈ A. We see below that this condition implies that µ1 is a
Hochschild 2-cocycle. Comparing coefficients of t2 yields a condition on µ1, µ2

called the first obstruction, comparing coefficients of t3 yields a condition on
µ1, µ2, µ3 called the second obstruction, and so on. (See [Gerstenhaber 1964].)

Hochschild cohomology. Hochschild cohomology is a generalization of group
cohomology well suited to noncommutative algebras. It gives information about
an algebra A viewed as a bimodule over itself, thus capturing right and left
multiplication, and predicts possible multiplication maps µi that could be used
to define a deformation of A. One may define the Hochschild cohomology of a
k-algebra concretely as Hochschild cocycles modulo Hochschild coboundaries
by setting

Hochschild i-cochains= {linear functions φ : A⊗ · · ·⊗ A︸ ︷︷ ︸
i times

→ A}

(i.e., multilinear maps A× · · ·× A→ A) with linear boundary operator

δ∗i+1 : i-cochains→ (i + 1)-cochains

given by

(δ∗i+1φ)(a0⊗ · · ·⊗ ai )= a0φ(a1⊗ · · ·⊗ ai )

+

∑
0≤ j≤i−1

(−1) j+1φ(a0⊗ · · ·⊗ a j−1⊗ a j a j+1⊗ a j+2⊗ · · ·⊗ ai )

+(−1)i+1φ(a0⊗ · · ·⊗ ai−1)ai .
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We identify A with the set of 0-cochains. Then

HHi (A) := Ker δ∗i+1/ Im δ∗i .

We are interested in other concrete realizations of Hochschild cohomology
giving isomorphic cohomology groups. Formally, we view any k-algebra A as
a bimodule over itself, that is, a right Ae-module where Ae is its enveloping
algebra, A⊗Aop, for Aop the opposite algebra of A. The Hochschild cohomology
of A is then just

HH
r
(A)= Ext

r
Ae(A, A).

This cohomology is often computed using the A-bimodule bar resolution of A:

· · · −→ A⊗4 δ2
−→ A⊗3 δ1

−→ A⊗2 δ0
−→ A −→ 0, (5.3)

where δ0 is the multiplication in A, and, for each i ≥ 1,

δi (a0⊗ · · ·⊗ ai+1)=

i∑
j=0

(−1) j a0⊗ · · ·⊗ a j a j+1⊗ · · ·⊗ ai+1

for a0, . . . , ai+1 in A. We take the homology of this complex after dropping the
initial term A and applying HomA⊗Aop(−, A) to obtain the above description
of Hochschild cohomology in terms of Hochschild cocycles and coboundaries,
using the identification

HomA⊗Aop(A⊗ A⊗i
⊗ A, A)∼= Homk(A⊗i , A).

6. Koszul algebras

We wish to extend the original PBW theorem for universal enveloping algebras
to other nonhomogeneous quadratic algebras. When is a given algebra a PBW
deformation of another well-understood and well-behaved algebra? Can we
replace the polynomial algebra in the original PBW theorem by any homogeneous
quadratic algebra, provided it is well-behaved in some way? We turn to Koszul
algebras as a wide class of quadratic algebras generalizing the class of polynomial
algebras. In this section, we briefly recall the definition of a Koszul algebra.

6.1. Koszul complex. An algebra S is a Koszul algebra if the underlying field
k admits a linear S-free resolution, that is, one with boundary maps given by
matrices whose entries are linear forms. Equivalently, S is a Koszul algebra if S
is quadratic with generating vector space V and generating relations R ⊆ V ⊗V
and the following complex of left S-modules is acyclic:

· · · −→ K3(S)−→ K2(S)−→ K1(S)−→ K0(S)−→ k −→ 0, (6.1)
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where K0(S)= S, K1(S)= S⊗ V , K2(S)= S⊗ R, and for i ≥ 3,

Ki (S)= S⊗
( i−2⋂

j=0

V⊗ j
⊗ R⊗ V⊗(i−2− j)

)
.

The differential is that inherited from the bar resolution of k as an S-bimodule,

· · ·
∂4
−→ S⊗4 ∂3

−→ S⊗3 ∂2
−→ S⊗2 ∂1

−→ S
ε
−→ k −→ 0, (6.2)

where ε is the augmentation map (ε(v)= 0 for all v in V ) and for each i ≥ 1,

∂i (s0⊗· · ·⊗si )= (−1)iε(si )s0⊗· · ·⊗si−1+

i−1∑
j=0

(−1) j s0⊗· · ·⊗s j s j+1⊗· · ·⊗si .

(Note that for each i , Ki (S) is an S-submodule of S⊗(i+1).)

Bimodule Koszul complex. Braverman and Gaitsgory gave an equivalent defi-
nition of Koszul algebra via the bimodule Koszul complex: Let

K̃i (S)= Ki (S)⊗ S, (6.3)

an Se-module (equivalently S-bimodule) where Se
= S ⊗ Sop. Then K̃ r(S)

embeds into the bimodule bar resolution (5.3) whose i-th term is S⊗(i+2), and
S is Koszul if and only if K̃ r(S) is a bimodule resolution of S. Thus we may
obtain the Hochschild cohomology HH

r
(S) of S (which contains information

about its deformations) by applying HomSe(−, S) either to the Koszul resolution
K̃ r(S) or to the bar resolution (5.3) of S as an Se-module (after dropping the
initial nonzero terms of each) and taking homology. We see in the next section
how these resolutions and the resulting cohomology are used in homological
proofs of a generalization of the PBW theorem from [Braverman and Gaitsgory
1996; Polishchuk and Positselski 2005; Positselski 1993].

7. Homological methods and deformations of Koszul algebras

Polishchuk and Positselski [2005; Positselski 1993] and Braverman and Gaitsgory
[1996] extended the idea of the original PBW theorem for universal enveloping al-
gebras to other nonhomogeneous quadratic algebras by replacing the polynomial
algebra in the theorem by an arbitrary Koszul algebra. They stated conditions
for a version of the original PBW theorem to hold in this greater generality and
gave homological proofs. (Polishchuk and Positselski [2005] in fact gave two
proofs, one homological that goes back to [Positselski 1993] and another using
distributive lattices.) We briefly summarize these two homological approaches
in this section and discuss generalizations.
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Theorem of Polishchuk and Positselski, Braverman and Gaitsgory. As in the
last sections, let V be a finite dimensional vector space over a field k and let
T be its tensor algebra over k with i-th filtered component F i (T ). Consider a
subspace P of F2(T ) defining a nonhomogeneous quadratic algebra

A = T
/
(P).

Let R = LH(P)∩ T 2 be the projection of P onto the homogeneous component
of degree 2, and set

S = T
/
(R),

a homogeneous quadratic algebra (the homogeneous version of A as in Section 4).
Then A is a PBW deformation of S when gr A and S are isomorphic as graded
algebras.

Braverman and Gaitsgory [1996] and also Polishchuk and Positselski [2005;
Positselski 1993] gave a generalization of the PBW theorem as:

Theorem 7.1. Let A be a nonhomogeneous quadratic algebra, A = T/(P), and
S = T/(R) its corresponding homogeneous quadratic algebra. Suppose S is a
Koszul algebra. Then A is a PBW deformation of S if , and only if , the following
two conditions hold:

(I) P ∩ F1(T )= {0}, and

(J) (F1(T ) · P · F1(T ))∩ F2(T )= P.

We have chosen the notation of Braverman and Gaitsgory. The necessity of
conditions (I) and (J) can be seen by direct algebraic manipulations. Similarly,
direct computation shows that if (I) holds, then (J) is equivalent to (i), (ii), and
(iii) of Theorem 7.2 below. Braverman and Gaitsgory used algebraic deformation
theory to show that these conditions are also sufficient. Polishchuk and Positselski
used properties of an explicit complex defined using the Koszul dual of S. The
conditions (i), (ii), (iii) facilitate these connections to homological algebra, and
they are easier in practice to verify than checking (J) directly. But in order to
state these conditions, we require a canonical decomposition for elements of P:
Condition (I) of Theorem 7.1 implies that every element of P can be written as
the sum of a nonzero element of R (of degree 2), a linear term, and a constant
term, that is, there exist linear functions α : R→ V , β : R→ k for which

P = {r −α(r)−β(r) | r ∈ R}.

One may then rewrite Condition (J) and reformulate Theorem 7.1 as follows.

Theorem 7.2. Let A be a nonhomogeneous quadratic algebra, A = T/(P), and
S = T/(R) its corresponding homogeneous quadratic algebra. Suppose S is a
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Koszul algebra. Then A is a PBW deformation of S if , and only if , the following
conditions hold:

(I) P ∩ F1(T )= {0},

(i) Im(α⊗ id − id ⊗α)⊆ R,

(ii) α ◦ (α⊗ id − id ⊗α)=−(β⊗ id − id ⊗β),

(iii) β ◦ (α⊗ id − id ⊗α)= 0,

where the maps α⊗ id − id ⊗α and β⊗ id − id ⊗β are defined on the subspace
(R⊗ V )∩ (V ⊗ R) of T .

We explain next how the original PBW theorem is a consequence of Theo-
rem 7.2. Indeed, Polishchuk and Positselski [2005, Chapter 5, Sections 1 and 2]
described the “self-consistency conditions” (i), (ii), and (iii) of the theorem as
generalizing the Jacobi identity for Lie brackets.

Example 7.3. Let g be a finite dimensional complex Lie algebra, A =U (g) its
universal enveloping algebra, and S= S(g). Then R has C-basis all v⊗w−w⊗v
for v,w in V , and α(v⊗w−w⊗v)= [v,w], β ≡ 0. Condition (I) is equivalent
to antisymmetry of the bracket. Condition (J) is equivalent to the Jacobi identity,
with (i), (ii) expressing the condition separately in each degree in the tensor
algebra (β ≡ 0 in this case). More generally, there are examples with β 6≡ 0, for
instance, the Sridharan enveloping algebras [Sridharan 1961].

Homological proofs. We now explain how Braverman and Gaitsgory and Pol-
ishchuk and Positselski used algebraic deformation theory and Hochschild coho-
mology to prove that the conditions of Theorem 7.2 are sufficient. Braverman
and Gaitsgory constructed a graded deformation St interpolating between S and
A (i.e., with S = St |t=0 and A = St |t=1), implying that gr(A) ∼= S as graded
algebras. They constructed the deformation St as follows.

• They identified α with a choice of first multiplication map µ1 and β with a
choice of second multiplication map µ2, via the canonical embedding of
the bimodule Koszul resolution (6.3) into the bar resolution (5.3) of S. (In
order to do this, one must extend α, β (respectively, µ1, µ2) to be maps on
a larger space via an isomorphism Homk(R, S) ∼= HomSe(S ⊗ R ⊗ S, S)
(respectively, Homk(S⊗ S, S)∼= HomSe(S⊗4, S).)

• Condition (i) is then seen to be equivalent to µ1 being a Hochschild 2-
cocycle (i.e., satisfies Equation (5.2)).

• Condition (ii) is equivalent to the vanishing of the first obstruction.

• Condition (iii) is equivalent to the vanishing of the second obstruction.
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• All other obstructions vanish automatically for a Koszul algebra due to the
structure of its Hochschild cohomology.

• Thus there exist maps µi for i > 2 defining an associative multiplication ∗
(as in Equation (5.1)) on S[t].

Positselski [1993, Theorem 3.3] (see also [Polishchuk and Positselski 2005,
Proposition 5.7.2]) gave a different homological proof of Theorem 7.2. Let B be
the Koszul dual S! := Ext∗S(k, k) of S. Then S ∼= B ! := Ext∗B(k, k). Polishchuk
defined a complex whose terms are the same as those in the bar resolution of B
but with boundary maps modified using the functions α : R→ V , β : R→ k by
first identifying β with an element h of B2 and α with a dual to a derivation d
on B. The conditions (i), (ii), and (iii) on α, β correspond to conditions on d, h,
under which Positselski called B a CDG-algebra. The idea is that CDG-algebra
structures on B are dual to PBW deformations of S. Positselski’s proof relies on
the Koszul property of S (equivalently of B) to imply collapsing of a spectral
sequence with E2

p,q = Ext−q,p
B (k, k). The sequence converges to the homology

of the original complex for B. Koszulness implies the only nonzero terms occur
when p+q = 0, and we are left with the homology of the total complex in degree
0. By its definition this is simply the algebra A, and it follows that gr A∼= B !∼= S.

Generalizations and extensions. Theorem 7.2 describes nonhomogeneous qua-
dratic algebras whose quadratic versions are Koszul. What if one replaces the
underlying field by an arbitrary ring? Etingof and Ginzburg [2002] noted that
Braverman and Gaitsgory’s proof of Theorem 7.2 is in fact valid more generally
for Koszul rings over semisimple subrings as defined by Beilinson, Ginzburg
and Soergel [Beilinson et al. 1996]. They chose their semisimple subring to be
the complex group algebra CG of a finite group G acting symplectically and
their Koszul ring to be a polynomial algebra S(V ). They were interested in
the case α ≡ 0 for their applications to symplectic reflection algebras (outlined
in Section 10 below). Halbout, Oudom and Tang [Halbout et al. 2011] state a
generalization of Theorem 7.2 in this setting that allows nonzero α (i.e., allows
relations defining the algebra A to set commutators of vectors in V to a combina-
tion of group algebra elements and vectors). A proof using the Koszul ring theory
of Beilinson, Ginzburg and Soergel and the results of Braverman and Gaitsgory
is outlined in [Shepler and Witherspoon 2012a] for arbitrary group algebras
over the complex numbers. We also included a second proof there for group
algebras over arbitrary fields (of characteristic not 2) using the composition-
diamond lemma (described in the next section), which has the advantage that
it is characteristic free. We adapted the program of Braverman and Gaitsgory
to arbitrary nonhomogeneous quadratic algebras and Koszul rings defined over



274 ANNE V. SHEPLER AND SARAH WITHERSPOON

nonsemisimple rings in [Shepler and Witherspoon 2014], including group rings
kG where the characteristic of k divides the order of the group G.

The theory of Braverman and Gaitsgory was further generalized to algebras
that are N -Koszul (all relations homogeneous of degree N plus a homological
condition) over semisimple or von Neumann regular rings by a number of authors
(see [Berger and Ginzburg 2006; Fløystad and Vatne 2006; Herscovich et al.
2014]). Cassidy and Shelton [2007] generalized the theory of Braverman and
Gaitsgory in a different direction, to graded algebras over a field satisfying a
particular homological finiteness condition (not necessarily having all relations
in a single fixed degree).

8. The composition-diamond lemma and Gröbner basis theory

PBW theorems are often proven using diamond or composition lemmas and the
theory of (noncommutative) Gröbner bases. Diamond lemmas predict existence
of a canonical normal form in a mathematical system. Often one is presented
with various ways of simplifying an element to obtain a normal form. If two
different ways of rewriting the original element result in the same desired reduced
expression, one is reminded of diverging paths meeting like the sides of the
shape of a diamond. Diamond lemmas often originate from Newman’s lemma
[1942] for graph theory. Shirshov [1962a; 1962b] gave a general version for
Lie polynomials which Bokut (see [Bokut 1976] and [Bokut and Chen 2014])
extended to associative algebras in 1976, using the term “composition lemma”.
Around the same time,1 Bergman [1978] developed a similar result which he
instead called the diamond lemma.

Both the diamond lemma and composition lemma are easy to explain but
difficult to state precisely without the formalism absorbed by Gröbner basis
theory. In fact, the level of rigor necessary to carefully state and prove these
results can be the subject of debate. Bergman himself writes that the lemma
“has been considered obvious and used freely by some ring-theorists. . . but others
seem unaware of it and write out tortuous verifications.” (Some authors are
reminded of life in a lunatic asylum when making the basic idea rigorous; see
[Hellström and Silvestrov 2000].) We leave careful definitions to any one of
numerous texts (for example, see [Beidar et al. 1996], [Bueso et al. 2003], or
[Loday and Vallette 2012]) and instead present the intuitive idea behind the result
developed by Shirshov, Bokut, and Bergman.

The result of Bokut (and Shirshov). We first give the original result of Bokut
(see [1976, Proposition 1 and Corollary 1]), who used a degree-lexicographical
monomial ordering (also see [Bokut and Kukin 1994]).

1Bokut cites a preprint by Bergman.
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Original composition lemma. Suppose a set of relations P defining a k-algebra
A is “closed under composition”. Then the set of monomials that do not contain
the leading monomial of any element of P as a subword is a k-basis of A.

Before explaining the notion of “closed under composition,” we rephrase the
results of Bokut in modern language using Gröbner bases to give a PBW-like
basis as in Section 3 (see, for example, [Green 1994] or [Mora 1986]). Fix a
monomial ordering on a free k-algebra T and again write LM(p) for the leading
monomial of any p in T . We include the converse of the lemma which can
be deduced from the work of Shirshov and Bokut and was given explicitly by
Bergman, who used arbitrary monomial orderings.

Gröbner basis version of composition lemma. The set P is a (noncommuta-
tive) Gröbner basis of the ideal I it generates if and only if

BP = {monomials m in T : m not divisible by any LM(p), p ∈ P}

is a k-basis for the algebra A = T/I .

Example 8.1. Let A be the k-algebra generated by symbols x and y and relations
xy = x and yx = y (Example 4.1):

A = k〈x, y〉
/
(xy− x, yx − y).

Let P be the set of defining relations, P = {xy− x, yx − y}, and consider the
degree-lexicographical monomial ordering with x > y. Then P is not a Gröbner
basis of the ideal it generates since x2

− x = x(yx − y) − (xy − x)(x − 1)
lies in the ideal (P) and has leading monomial x2, which does not lie in the
ideal generated by the leading monomials of the elements of P . Indeed, BP

contains both x2 and x and hence can not be a basis for A. We set P ′ =
{xy− x, yx − y, x2

− x, y2
− y} to obtain a Gröbner basis of (P). Then BP ′ =

{monomials m :m not divisible by xy, yx, x2, y2
} is a k-basis for the algebra A.

Resolving ambiguities. Bergman focused on the problem of resolving ambigu-
ities that arise when trying to rewrite elements of an algebra using different
defining relations. Consider a k-algebra A defined by a finite set of generators
and a finite set of relations

m1 = f1,m2 = f2, . . . ,mk = fk,

where the mi are monomials (in the set of generators of A) and the fi are linear
combinations of monomials. Suppose we prefer the right side of our relations
and try to eradicate the mi whenever possible in writing the elements of A in
terms of its generators. Can we define the notion of a canonical form for every
element of A by deciding to replace each mi by fi whenever possible? We say
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an expression for an element of A is reduced if no mi appears (as a subword
anywhere), that is, when no further replacements using the defining relations of
A are possible. The idea of a canonical form for A then makes sense if the set
of reduced expressions is a k-basis for A, that is, if every element can be written
uniquely in reduced form.

A natural ambiguity arises: If a monomial m contains both m1 and m2 as
(overlapping) subwords, do we “reduce” first m1 to f1 or rather first m2 to f2 by
replacing? (In the last example, the word xyx contains overlapping subwords xy
and yx .) If the order of application of the two relations does not matter and we
end up with the same reduced expression, then we say the (overlap) ambiguity
was resolvable. The composition-diamond lemma states that knowing certain
ambiguities resolve is enough to conclude that a canonical normal form exists
for all elements in the algebra.

Example 8.2. Again, let A be the k-algebra generated by symbols x and y and
relations xy = x and yx = y (Example 4.1). We decide to eradicate xy and yx
whenever possible in expressions for the elements of A using just the defining
relations. On one hand, we may reduce xyx to x2 (using the first relation); on the
other hand, we may reduce xyx to xy (using the second relation) then to x (using
the first relation). The words x and x2 can not be reduced further using just the
defining relations, so we consider them both “reduced”. Yet they represent the
same element xyx of A. Thus, a canonical “reduced” form does not make sense
given this choice of defining relations for the algebra A.

The result of Bergman. One makes the above notions precise by introducing
a monomial ordering and giving formal definitions for ambiguities, reduction,
rewriting procedures, resolving, etc. We consider the quotient algebra A=T/(P)
where T (a tensor algebra) is the free k-algebra on the generators of A and P is
a (say) finite set of generating relations. We single out a monomial mi in each
generating relation, writing

P = {mi − fi : 1≤ i ≤ k},

and choose a monomial ordering so that mi is the leading monomial of each
mi− fi (assuming such an ordering exists). Then the reduced elements are exactly
those spanned by BP . If all the ambiguities among elements of P are resolvable,
we obtain a PBW-like basis, but Bokut and Bergman give a condition that is
easier to check. Instead of choosing to replace monomial mi by fi or monomial
m j by f j when they both appear as subwords of a monomial m, we make both
replacements separately and take the difference. If we can express this difference
as a linear combination of elements p in the ideal (P) with LM(p) <m, then we
say the ambiguity was resolvable relative to the ordering. (Bokut used “closed
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under composition” to describe this condition along with minimality of P .) See
[Bergman 1978, Theorem 1.2].

Diamond lemma idea. The following are equivalent:

• The set of reduced words is a k-basis of T/(P).

• All ambiguities among elements of P are resolvable.

• All ambiguities among elements of P are resolvable relative to the ordering.

• Every element in (P) can be reduced to zero in T/(P) by just using the
relations in P.

In essence, the lemma says that if the generating set of relations P is well-behaved
with respect to some monomial ordering, then one can define a canonical form
just by checking that nothing goes wrong with the set P instead of checking for
problems implied by the whole ideal (P). Thus, resolving ambiguities is just
another way of testing for a Gröbner basis (see [Green 1994]): The set P is a
Gröbner basis for the ideal (P) if and only if all ambiguities among elements of
P are resolvable.

Applications. Although the idea of the composition-diamond lemma can be
phrased in many ways, the hypothesis to be checked in the various versions of the
lemma requires very similar computations in application. One finds precursors of
the ideas underlying the composition-diamond lemma in the original proofs given
by Poincaré, Birkhoff, and Witt of the PBW theorem for universal enveloping
algebras of Lie algebras. These techniques and computations have been used in
a number of other settings. For example, explicit PBW conditions are given for
Drinfeld Hecke algebras (which include symplectic reflection algebras) by Ram
and Shepler [2003]; see Section 10. In [Shepler and Witherspoon 2012a], we
studied the general case of algebras defined by relations which set commutators
to lower order terms using both a homological approach and the composition-
diamond lemma (as it holds in arbitrary characteristic). These algebras, called
Drinfeld orbifold algebras, include Sridharan enveloping algebras, Drinfeld
Hecke algebras, enveloping algebras of Lie algebras, Weyl algebras, and twists
of these algebras with group actions. Gröbner bases were used explicitly by
Levandovskyy and Shepler [2014] in replacing a commutative polynomial algebra
by a skew (or quantum) polynomial algebra in the theory of Drinfeld Hecke
algebras. Bergman’s diamond lemma was used by Khare [2007] to generalize
the Drinfeld Hecke algebras of Section 10 from the setting of group actions to
that of algebra actions.

Of course the composition-diamond lemma and Gröbner–Shirshov bases have
been used to explore many different kinds of algebras (and in particular to find
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PBW-like bases) that we will not discuss here. See [Bokut and Kukin 1994;
Bokut and Chen 2014] for many such examples.

Note that some authors prove PBW theorems by creating a space upon which
the algebra in question acts (see, e.g., [Humphreys 1972] or [Griffeth 2010, first
version]). Showing that the given space is actually a module for the algebra
requires checking certain relations that are similar to the conditions that one
must check before invoking the composition-diamond lemma.

9. Drinfeld–Jimbo quantum groups and related Hopf algebras

Quantized enveloping algebras (that is, Drinfeld–Jimbo quantum groups [Drinfeld
1987; Jimbo 1985]) are deformations of universal enveloping algebras of Lie
algebras. (Technically, they are bialgebra deformations rather than algebra
deformations.) PBW bases for these algebras were discovered by many, including
Lusztig [1990b; 1990a; 1990c] in a very general setting, and De Concini and
Kac [1990], who defined a corresponding algebra filtration. Although there are
many incarnations of these algebras, we restrict ourselves to the simply laced
case and to algebras over the complex numbers for ease of notation. We state
a PBW theorem in this context and refer the reader to the literature for more
general statements (see, e.g., [Lusztig 1990c]).

Quantum groups. Let g be a finite dimensional semisimple complex Lie algebra
of rank n with symmetric Cartan matrix (ai j ). Let q be a nonzero complex
number, q 6= ±1. (Often q is taken to be an indeterminate instead.) The quantum
group Uq(g) is the associative C-algebra defined by generators

E1, . . . , En, F1, . . . , Fn, K±1
1 , . . . , K±1

n

and relations

K±1
i K±1

j = K±1
j K±1

i , Ki K−1
i = 1= K−1

i Ki ,

Ki E j = qai j E j Ki , Ki F j = q−ai j F j Ki ,

Ei F j − F j Ei = δi j
Ki − K−1

i

q − q−1 ,

E2
i E j − (q + q−1)Ei E j Ei + E j E2

i = 0 if ai j=−1,

Ei E j = E j Ei if ai j = 0,

F2
i F j − (q + q−1) Fi F j Fi + F j F2

i = 0 if ai j=−1,

Fi F j = F j Fi if ai j = 0.

The last two sets of relations are called the quantum Serre relations.
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Let W be the Weyl group of g. Fix a reduced expression of the longest
element w0 of W . This choice yields a total order on the set 8+ of positive roots,
β1, . . . , βm . To each α∈8+, Lusztig [1990b; 1990a; 1990c] assigned an element
Eα (respectively, Fα) in Uq(g) determined by this ordering that is an iterated
braided commutator of the generators E1, . . . , En (respectively, F1, . . . , Fn).
These “root vectors” then appear in a PBW basis:

PBW theorem for quantum groups. There is a basis of Uq(g) given by{
Ea1
β1
· · · Eam

βm
K b1

1 · · · K
bn
n Fc1

β1
· · · Fcm

βm
: ai , ci ≥ 0, bi ∈ Z

}
.

Moreover, there is a filtration on the subalgebra U>0
q (g) (respectively, U<0

q (g))
generated by E1, . . . , En (respectively, F1, . . . , Fn) for which the associated
graded algebra is isomorphic to a skew polynomial ring.

The skew polynomial ring to which the theorem refers is generated by the im-
ages of the Eα (respectively, Fα), with relations EαEβ = qαβEβEα (respectively,
FαFβ = qαβFβFα) where each qαβ is a scalar determined by q and by α, β in
8+.

Example 9.1. The algebra U>0
q (sl3) is generated by E1, E2. Let

E12 := E1 E2− q E2 E1.

Then, as a consequence of the quantum Serre relations, E1 E12 = q−1 E12 E1 and
E12 E2=q−1 E2 E12, and, by definition of E12, we also have E1 E2=q E2 E1+E12.
In the associated graded algebra, this last relation becomes E1 E2 = q E2 E1. The
algebras U>0

q (sln) are similar, however in general the filtration on U>0
q (g) stated

in the theorem is more complicated.

Proofs and related results. There are several proofs in the literature of the first
statement of the above theorem and related results, beginning with [Khoroshkin
and Tolstoy 1991; Lusztig 1990b, 1990a; 1990c; Takeuchi 1990; Yamane 1989].
These generally involve explicit computations facilitated by representation theory.
Specifically, one obtains representations of Uq(g) from those of the corresponding
Lie algebra g by deformation, and one then uses what is known in the classical
setting to obtain information about Uq(g). Ringel [1996] gave a different approach
via Hall algebras. The filtration and structure of the associated graded algebra of
U>0(g) was first given by De Concini and Kac [1990]. For a general “quantum
PBW theorem” that applies to some of these algebras, see [Berger 1992].

In case q is a root of unity (of order `), there are finite dimensional versions
of Drinfeld–Jimbo quantum groups. The small quantum group uq(g) may be
defined as the quotient of Uq(g) by the ideal generated by all E`α, F`α , K `

α − 1.
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This finite dimensional algebra has k-basis given by elements in the PBW basis
of the above theorem for which 0≤ ai , bi , ci < `.

The existence of PBW bases for Uq(g) and uq(g) plays a crucial role in their
representation theory, just as it does in the classical setting of Lie algebras. Bases
of finite dimensional simple modules and other modules are defined from weight
vectors and PBW bases [Lusztig 1990a]. R-matrices may be expressed in terms
of PBW basis elements [Drinfeld 1987; Jimbo 1985; Rosso 1989]. Computations
of cohomology take advantage of the structure provided by the PBW basis and
filtration (see, e.g., [Ginzburg and Kumar 1993], based on techniques developed
for restricted Lie algebras [Friedlander and Parshall 1983]).

More generally, PBW bases and some Lie-theoretic structure appear in a
much larger class of Hopf algebras. Efforts to understand finite dimensional
Hopf algebras of various types led in particular to a study of those arising
from underlying Nichols algebras. Consequently, a classification of some types
of pointed Hopf algebras was completed by Andruskiewitsch and Schneider
[2010], Heckenberger [2006] and Rosso [1998]. A Nichols algebra is a “braided”
graded Hopf algebra that is connected, generated by its degree 1 elements, and
whose subspace of primitive elements is precisely its degree 1 component. The
simplest Nichols algebras are those of “diagonal type”, and these underlie the
Drinfeld–Jimbo quantum groups and the Hopf algebras in the above-mentioned
classification. These algebras have PBW bases just as does U>0

q (g) or u>0
q (g); a

proof given by Kharchenko [1999] uses a combinatorial approach such as that in
Section 8.

10. Symplectic reflection algebras, rational Cherednik algebras, and
graded (Drinfeld) Hecke algebras

Drinfeld [1986] and Lusztig [1988; 1989] originally defined the algebras now
variously called symplectic reflection algebras, rational Cherednik algebras,
and graded (Drinfeld) Hecke algebras, depending on context. These are PBW
deformations of group extensions of polynomial rings (skew group algebras)
defined by relations that set commutators of vectors to elements of a group
algebra. Lusztig explored the representation theory of these algebras when the
acting group is a Weyl group. Crawley-Boevey and Holland [1998] considered
subgroups of SL2(C) and studied subalgebras of these algebras in relation to
corresponding orbifolds. Initial work on these types of PBW deformations for
arbitrary groups began with [Etingof and Ginzburg 2002] and [Ram and Shepler
2003]. Gordon [2003] used the rational Cherednik algebra to prove a version of
the n!-conjecture for Weyl groups and the representation theory of these algebras
remains an active area. (See [Brown 2003; Gordon 2010; 2008; Rouquier 2005].)
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We briefly recall and compare these algebras. (See also [Chlouveraki 2015] for
a survey of symplectic reflection algebras and rational Cherednik algebras in the
context of Hecke algebras and representation theory.)

Let G be a group acting by automorphisms on a k-algebra S. The skew group
algebra S#G (also written as a semidirect product S oG) is the k-vector space
S⊗ kG together with multiplication given by (r ⊗ g)(s⊗ h)= r( gs)⊗ gh for
all r, s in S and g, h in G, where gs is the image of s under the automorphism g.

Drinfeld’s “Hecke algebra”. Suppose G is a finite group acting linearly on a
finite dimensional vector space V over k = C with symmetric algebra S(V ).
Consider the quotient algebra

Hκ = T (V )#G
/
(v1⊗ v2− v2⊗ v1− κ(v1, v2) : v1, v2 ∈ V )

defined by a bilinear parameter function κ : V × V → CG. We view Hκ as a
filtered algebra by assigning degree one to vectors in V and degree zero to group
elements in G. Then the algebra Hκ is a PBW deformation of S(V )#G if its
associated graded algebra is isomorphic to S(V )#G. Drinfeld [1986] originally
defined these algebras for arbitrary groups, and he also counted the dimension
of the parameter space of such PBW deformations for Coxeter groups. For more
information and a complete characterization of parameters κ yielding the PBW
property for arbitrary groups, see [Etingof and Ginzburg 2002; Ram and Shepler
2003; Shepler and Witherspoon 2008; 2012a; 2012b].

Example 10.1. Let V be a vector space of dimension 3 with basis v1, v2, v3,
and let G be the symmetric group S3 acting on V by permuting the chosen basis
elements. The following is a PBW deformation of S(V )#G, where (i jk) denotes
a 3-cycle in S3:

Hκ = T (V )#S3
/(
vi ⊗ v j − v j ⊗ vi − (i jk)+ ( j ik) : {i, j, k} = {1, 2, 3}

)
.

Lusztig’s graded affine Hecke algebra. While exploring the representation the-
ory of groups of Lie type, Lusztig [1988; 1989] defined a variant of the affine
Hecke algebra for Weyl groups which he called “graded” (as it was obtained from
a particular filtration of the affine Hecke algebra). He gave a presentation for
this algebra Hλ using the same generators as those for Drinfeld’s Hecke algebra
Hκ , but he gave relations preserving the structure of the polynomial ring and
altering that of the skew group algebra. (Drinfeld’s relations do the reverse.) The
graded affine Hecke algebra Hλ (or simply the graded Hecke algebra) for a finite
Coxeter group G acting on a finite dimensional complex vector space V (in its
natural reflection representation) is the C-algebra generated by the polynomial
algebra S(V ) together with the group algebra CG with relations

gv = gvg+ λg(v)g



282 ANNE V. SHEPLER AND SARAH WITHERSPOON

for all v in V and g in a set S of simple reflections (generating G) where λg in
V ∗ defines the reflecting hyperplane (ker λg ⊆ V ) of g and λg = λhgh−1 for all
h in G. (Recall that a reflection on a finite dimensional vector space is just a
nonidentity linear transformation that fixes a hyperplane pointwise.)

Note that for g representing a fixed conjugacy class of reflections, the linear
form λg is only well-defined up to a nonzero scalar. Thus one often fixes once
and for all a choice of linear forms λ = {λg} defining the orbits of reflecting
hyperplanes (usually expressed using Demazure/BGG operators) and then in-
troduces a formal parameter by which to rescale. This highlights the degree of
freedom arising from each orbit; for example, one might replace

λg(v) by cg〈v, α
∨

g 〉 = cg

(
v− gv

αg

)
for some conjugation invariant formal parameter cg after fixing a G-invariant
inner product and root system {αg : g ∈ S} ⊂ V with coroot vectors α∨g . (Note
that for any reflection g, the vector (v− gv) is a nonzero scalar multiple of αg

and so the quotient of v− gv by αg is a scalar.) Each graded affine Hecke algebra
Hλ is filtered with vectors in degree one and group elements in degree zero and
defines a PBW deformation of S(V )#G.

finite group any G ≤ GL(V ) Coxeter G ≤ GL(V )

algebra Hκ (Drinfeld) Hλ (Lusztig)

generated by V and CG V and CG

with relations gv = gvg, gv = gvg+ λg(v)g,
vw = wv+ κ(v,w) vw = wv

(∀v,w ∈ V,∀g ∈ G) (∀v,w ∈ V,∀g ∈ S)

Comparing algebras. Ram and Shepler [2003] showed that Lusztig’s graded
affine Hecke algebras are a special case of Drinfeld’s construction: For each
parameter λ, there is a parameter κ so that the filtered algebras Hλ and Hκ are
isomorphic (see [Shepler and Witherspoon 2015]). Etingof and Ginzburg [2002]
rediscovered Drinfeld’s algebras with focus on groups G acting symplectically
(in the context of orbifold theory). They called algebras Hκ satisfying the PBW
property symplectic reflection algebras, giving necessary and sufficient conditions
on κ . They used the theory of Beilinson, Ginzburg and Soergel [Beilinson et al.
1996] of Koszul rings to generalize Braverman and Gaitsgory’s conditions to the
setting where the ground field is replaced by the semisimple group ring CG. (The
skew group algebra S(V )#G is Koszul as a ring over the semisimple subring
CG.) Ram and Shepler [2003] independently gave necessary and sufficient PBW
conditions on κ (for arbitrary groups acting linearly over C) and classified all
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such quotient algebras for complex reflection groups. Their proof relies on the
composition-diamond lemma. (See Sections 7 and 8 for a comparison of these
two techniques for showing PBW properties.) Both approaches depend on the
fact that the underlying field k = C has characteristic zero (or, more generally,
has characteristic that does not divide the order of the group G). See Section 11
for a discussion of PBW theorems in the modular setting when C is replaced by
a field whose characteristic divides |G|.

Rational Cherednik algebras. The rational Cherednik algebra is a special case
of a quotient algebra Hκ satisfying the PBW property (in fact, a special case of
a symplectic reflection algebra) for a reflection group acting diagonally on the
reflection representation and its dual (“doubled up”). These algebras are regarded
as “doubly degenerate” versions of the double affine Hecke algebra introduced
by Cherednik [1995] to solve the Macdonald (constant term) conjectures in
combinatorics. We simply recall the definition here in terms of reflections and
hyperplane arrangements.

Suppose G is a finite group generated by reflections on a finite dimensional
complex vector space V . (If G is a Coxeter group, then extend the action to one
over the complex numbers.) Then the induced diagonal action of G on V ⊕ V ∗

is generated by bireflections (linear transformations that each fix a subspace of
codimension 2 pointwise), that is, by symplectic reflections with respect to a
natural symplectic form on V ⊕ V ∗.

Let R be the set of all reflections in G acting on V . For each reflection s in R,
let αs in V and α∗s in V ∗ be eigenvectors (“root vectors”) each with nonidentity
eigenvalue. We define an algebra generated by CG, V , and V ∗ in which vectors
in V commute with each other and vectors in V ∗ commute with each other,
but passing a vector from V over one from V ∗ gives a linear combination of
reflections (and the identity). As parameters, we take a scalar t and a set of
scalars c= {cs : s ∈ R} with cs = chsh−1 for all h in G. The rational Cherednik
algebra Ht,c with parameters t, c is then the C-algebra generated by the vectors
in V and V ∗ together with the group algebra CG satisfying the relations

gu = gug, uu′ = u′u,

vv∗ = v∗v+ tv∗(v)−
∑
s∈R

csα
∗

s (v)v
∗(αs)s,

for any g in G, v in V , v∗ in V ∗, and any u, u′ both in V or both in V ∗. Note
that αs and α∗s are only well-defined up to a nonzero scalar, and we make some
conjugation invariant choice of normalization in this definition, say, by assuming
that α∗s (αs)= 1. One often replaces C by C[t, c] to work in a formal parameter
space.
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The relations defining the rational Cherednik algebra are often given in terms
of the arrangement of reflecting hyperplanes A for G acting on V . For each
hyperplane H in A, choose a linear form α∗H in V ∗ defining H (so H = kerα∗H )
and let αH be a nonzero vector in V perpendicular to H with respect to some
fixed G-invariant inner product. Then the third defining relation of Ht,c can be
rewritten (without a choice of normalization) as

vv∗− v∗v = tv∗(v)−
∑
H∈A

α∗H (v)v
∗(αH )

α∗H (αH )

(
csH sH + cs2

H
s2

H + · · ·+ csaH
H

saH
H

)
,

where sH is the reflection in G about the hyperplane H of maximal order aH +1.
Again, this is usually expressed geometrically in terms of the inner product on
V and induced product on V ∗:

α∗H (v)v
∗(αH )

α∗H (αH )
=
〈v, α∨H 〉〈αH , v

∗
〉

〈αH , α∨〉
.

The PBW theorem then holds for the algebra Ht,c (see [Etingof and Ginzburg
2002]):

PBW theorem for rational Cherednik algebras. The rational Cherednik alge-
bra Ht,c is isomorphic to S(V )⊗ S(V ∗)⊗CG as a complex vector space for any
choices of parameters t and c, and its associated graded algebra is isomorphic
to (S(V )⊗ S(V ∗))#G.

Connections between rational Cherednik algebras and other fields of mathe-
matics are growing stronger. For example, Gordon and Griffeth [2012] link the
Fuss–Catalan numbers in combinatorics to the representation theory of rational
Cherednik algebras. These investigations also bring insight to the classical theory
of complex reflection groups, especially to the perplexing question of why some
reflection groups acting on n-dimensional space can be generated by n reflections
(called “well-generated” or “duality” groups) and others not. (See [Berkesch
et al. 2013; Gorsky et al. 2014; Shan et al. 2014] for other recent applications.)

11. Positive characteristic and nonsemisimple ground rings

Algebras displaying PBW properties are quite common over ground fields of
positive characteristic and nonsemisimple ground rings, but techniques for estab-
lishing PBW theorems are not all equally suited for work over arbitrary fields
and rings. We briefly mention a few results of ongoing efforts to establish and
apply PBW theorems in these settings.

The algebras of Section 10 make sense in the modular setting, that is, when the
characteristic of k is a prime dividing the order of the finite group G. In this case,
however, the group algebra kG is not semisimple, and one must take more care in
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proofs. PBW conditions on κ were examined by Griffeth [2010] by construction
of an explicit Hκ -module, as is done in one standard proof of the PBW theorem
for universal enveloping algebras. (See also [Bazlov and Berenstein 2009] for
a generalization.) The composition-diamond lemma, being characteristic free,
applies in the modular setting; see [Shepler and Witherspoon 2012a] for a proof
of the PBW property using this lemma that applies to graded (Drinfeld) Hecke
algebras over fields of arbitrary characteristic. (Gröbner bases are explicitly used
in [Levandovskyy and Shepler 2014].) Several authors consider representations
of rational Cherednik algebras in the modular setting: for example, Balagovic
and Chen [2013], Griffeth [2010], and Norton [2013].

The theory of Beilinson, Ginzburg, and Soergel of Koszul rings over semisim-
ple subrings, used in Braverman–Gaitsgory style proofs of PBW theorems, does
not apply directly to the modular setting. However it may be adapted using
a larger complex replacing the Koszul complex: In [Shepler and Witherspoon
2014], we used this approach to generalize the Braverman–Gaitsgory argument
to arbitrary Koszul algebras with finite group actions. This replacement com-
plex has an advantage over the composition-diamond lemma or Gröbner basis
theory arguments in that it contains information about potentially new types of
deformations that do not occur in the nonmodular setting.

Other constructions generalize the algebras of Section 10 to algebras over
ground rings that are not necessarily semisimple. Etingof, Gan, and Ginzburg
[2005] considered deformations of algebras that are extensions of polynomial
rings by acting algebraic groups or Lie algebras. They used a Braverman–
Gaitsgory approach to obtain a Jacobi condition by realizing the acting algebras
as inverse limits of finite dimensional semisimple algebras. Gan and Khare
[2007] investigated actions of Uq(sl2) on the quantum plane (a skew polynomial
algebra), and Khare [2007] looked at actions of arbitrary cocommutative algebras
on polynomial rings. In both cases PBW theorems were proven using the
composition-diamond lemma. A general result for actions of (not necessarily
semisimple) Hopf algebras on Koszul algebras is contained in [Walton and
Witherspoon 2014] with a Braverman–Gaitsgory style proof. See also [He et al.
2015] for a PBW theorem using a somewhat different complex in a general
setting of Koszul rings over not necessarily semisimple ground rings. One
expects yet further generalizations and applications of the ubiquitous and potent
PBW theorem.
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