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To the memory of Egbert Brieskorn

In this survey paper we try to explain how the monodromy theorem for isolated
hypersurface singularities led to unexpected conjectures by J. Scherk relating
the smallest power r for which f r belongs to the jacobian ideal Jf to the size
of the Jordan blocks in the vanishing cohomology. These were proven by
A. Varchenko using his asymptotic mixed Hodge structure on the vanishing
cohomology.

1. The monodromy transformation

The study of the ramification of integrals depending on parameters has a history
that can be traced back at least to the work of Euler, Legendre and Gauss, but it
seems that the systematic study of the topology of algebraic varieties and their
period integrals has its roots in the nineteenth century in the work of Poincaré
and Picard. To see what is involved, let us start with a well-known and basic
example.

The equation

y2
= (t − x2)(1− x)

describes an affine part of an elliptic curve Et depending on a parameter t .

The small loop in the picture that runs between x =−
√

t and x =
√

t shrinks to
a point for t = 0: it is a vanishing cycle. The projection to the x-line represents
Et as a double cover of the Riemann sphere, ramified over the four points
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From this one can see that for general t the topology of Et is that of a 2-torus,
but for t→ 0, this torus degenerates to a pinched torus:

γ

t = 0

γ

δ

t small

One can pick a basis for H1(Et) consisting of the vanishing cycle δ = δ(t) ∈
H 1(Et) that runs around the points ±

√
t and a cycle γ = γ (t) that survives the

contraction of the vanishing cycle, but gets pinched. When we make a small
detour t = ε exp(iθ), θ ∈ [0, 2π ] in the complex plane around the point t = 0,
the two branch-points ±

√
t get interchanged. When we follow the cycles by

parallel transport, we obtain a monodromy-transformation

T : H1(Et)→ H1(Et).

For the cycles δ and γ we find T δ = δ, and T γ = γ + δ, as indicated by the
following pictures.
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Hence the monodromy is represented by the matrix

T =
( 1

0
1
1

)
, (T − 1)2 = 0.

γ

δ

T γ

The behaviour of the cycles is reflected in the behaviour of the period integrals

80(t)=
∫
0

ηt , ηt =
dx√

(t − x2)(1− x)
.

These satisfy the linear differential equation

(1622
− t (42+ 1)(42+ 3))80(t)= 0,

where 2 := t∂/∂t . For the above cycles δ, γ one finds the following series
expansions:

8δ(t)= 2π
(
1+ 3

16 t + 105
1024 t2

+ · · ·
)
,

2π i8γ (t)= log(t)8δ(t)+ 2π
( 5

8 t + 389
1024 t2

+ · · ·
)
.

The analytic continuation of these period integrals exactly reflect the monodromy
behaviour of the cycles δ and γ : continuation around t = 0 gives

8δ→8δ, 8γ →8γ +8δ.

This example turns out to be part of a much more general story: for families
of curves of higher genus acquiring nodes as singularities the situation is very
similar and was first described in [Picard and Simart 1897, Tome I, Chapter IV,
Section 19]. For an excellent account see [Brieskorn and Knörrer 1981, Sec-
tion 9.3], where also an example similar to the above one is worked out in detail.
The generalisation to the case of n-dimensional varieties Yt acquiring an ordinary
double point was first described by Lefschetz [1924].

The effect of the monodromy can be described by the Picard–Lefschetz formula

T : H n(Yt)→ H n(Yt), γ 7→ γ ±〈γ, δ〉δ,

where 〈−,−〉 denotes the intersection of cycles on Yt , and the sign is found to
be (−1)(n+1)(n+2)/2 [Lamotke 1981; Vassiliev 2002].
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In general, a holomorphic one-parameter family of compact complex n-
dimensional manifolds degenerating over 0 is described by a smooth n + 1-
dimensional complex manifold Y with a proper holomorphic map f := Y→ D
to the disc D, submersive on Y∗ = Y \ f −1(0). By the Ehresmann fibration
theorem, the family f ∗ : Y∗ → D∗ is a differentiable fibre bundle over the
punctured disc D∗. As D∗ contracts to a circle, this fibre bundle is described by a
geometric monodromy transformation Yt → Yt , which induces a cohomological
monodromy transformation T .

The monodromy theorem. The cohomological monodromy transformation

T : Hq(Yt)→ Hq(Yt)

is quasiunipotent. More precisely, there exists an integer e such that

(T e
− 1)q+1

= 0.

So the eigenvalues of T are roots of unity and the size of the Jordan blocks
is bounded by q + 1. One can write T = S ·U =U · S where S is semisimple
and U is unipotent. The nilpotent operator 1−U has the same Jordan type as
1− T e or as the monodromy logarithm

N := log(U )= (U − 1)− 1
2(U − 1)2+ 1

3(U − 1)3+ · · · .

The first proof of this fundamental theorem appeared in the (unpublished)
Berkeley thesis of Landman [1966] (see also [Landman 1973]). A further topo-
logical proof was given by Clemens [1969]. Many alternative proofs, avoiding
resolutions of singularities and using arithmetical or Hodge theoretical arguments
were given by Deligne, Grothendieck, Katz, and Borel; see [Deligne and Katz
1973; Katz 1970; 1971].

2. Isolated hypersurface singularities

Locally around any point of Y , the map can be described by a germ

f : (Cn+1, 0)→ (C, 0)

determined by a convergent power series

f ∈ S := C{x0, x1, . . . , xn}.

One speaks of an isolated singularity if the equations

∂ f
∂x0
=
∂ f
∂x1
= · · · =

∂ f
∂xn
= 0
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have only 0 as a common solution in a neighbourhood of 0. This is equivalent to
the condition that the Jacobi ring

Q f := S/Jf , Jf = (∂0 f, ∂1 f, . . . , ∂n f )

is of finite C-dimension. One says that two singularities f and g are right-
equivalent, notation f ∼ g, if one can find a coordinate transformation

(Cn+1, 0)→ (Cn+1, 0)

that maps f to g. The classification up to right equivalence then starts with
the famous ADE list, [Arnold 1975]. Here some pictures of some well-known
singularities, together with a deformation that explains their name.

A1 A2 D4

2.1. Milnor fibration. An isolated singularity always possesses a so-called good
representative; see [Looijenga 1984, p. 21]. By this we mean the following. First
one picks ε > 0 so small that for all 0< ε′ ≤ ε the boundary ∂Bε′ is transverse to
the special fibre f −1(0). One obtains a smooth orientable differentiable manifold

L = ∂Bε ∩ f −1(0)

of dimension 2n − 1, called the link of the singularity. Then one picks η > 0
such that for all t with 0 < |t | ≤ η the fibre f −1(t) is transverse to ∂Bε . We
put B = Bε = {|x | ≤ ε} and D = Dη = {|t | ≤ η} and let X := B ∩ f −1(D),
so that f determines a map X → D, called good representative of the germ f .
Furthermore, in such a situation we set D∗ := D \ {0}, X ∗ := X \ f −1(0), and
we obtain a map

f ∗ : X ∗→ D∗.
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Again, the Ehresmann fibration theorem shows that

f ∗ : X ∗→ D∗

is a C∞-fibre bundle. This fibration is now commonly called the Milnor fibration,
its fibre X t := f −1(t) the Milnor fibre.

f

Theorem. The Milnor fibre has the homotopy type of a bouquet of n-spheres.

X t ≈

µ∨
i=1

Sn.

The number µ of spheres, called the Milnor number, can be computed as

µ= dim(S/Jf ).

The spheres appearing in the first part of the statement are contracted upon
approaching the fibre over 0, and are called, extending the terminology used
by Lefschetz, the vanishing cycles of the singularity. A consequence of the
bouquet-theorem is that the Milnor fibre only has one interesting cohomology
group H n(X t ,Z), which is free of rank µ.

Although all Milnor fibres X t are diffeomorphic, one can not speak about
“the” Milnor fibre, as the manifold X t depends on t . For some constructions it is
convenient to use the canonical Milnor fibre X∞, defined as the pull-back of X ∗

over the universal covering D̃→ D∗ of the punctured disc

X∞ = X ∗×D∗ D̃.

Then X∞ contracts to each of the Milnor fibres X t and we have a single group
H n(X∞,Z) isomorphic to each of the H n(X t ,Z).

2.2. Exotic spheres. One of the strong motivations to study the differential
topological properties of isolated hypersurface singularities came from the dis-
coveries of Hirzebruch [1964] and Brieskorn [1966a; 1966b] that the link L
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of such singularity can be a sphere with an exotic differentiable structure. The
so-called Brieskorn–Pham polynomials of the form

f = xa0
0 + xa1

1 + · · ·+ xan
n

played an important role in that story. The Milnor number of f is easily seen to
be

µ= (a0− 1)(a1− 1) · · · (an − 1).

Furthermore, Pham [1965] determined the cohomological monodromy T of this
singularity. It is of finite order

e := lcm(a0, a1, . . . , an),

and the eigenvalues of T on H n(X t) are the numbers

ω0ω1 . . . ωn,

where ωi runs over all ai -th roots of unity. A closer analysis of the topology of
the Milnor fibration (see [Milnor 1968, p. 65]) shows that the link L of an isolated
singularity has the integral homology of a sphere if and only if det(I −T )=±1,
from which one can conclude for n 6= 2 that L in fact is homeomorphic to a
sphere. Brieskorn [1966b] used this to show, for example, that the link of

x2
0 + x2

1 + x2
2 + x3

3 + x6k−1
4

for k = 1, 2, . . . , 28 represents the 28 distinct differentiable structures on the
7-sphere S7. In fact, all exotic spheres that bound a parallelizable manifold
appear as links of such Brieskorn–Pham singularities.

2.3. The Brieskorn lattice. Brieskorn [1970] described a method to determine
the cohomological monodromy of an isolated hypersurface singularity and used it
to give a proof of the monodromy theorem for isolated hypersurface singularities,
thus answering a question of Milnor.

Monodromy Theorem for Isolated Hypersurface Singularities. The cohomo-
logical monodromy transformation

T : H n(X t)→ H n(X t)

is quasiunipotent: there exists e such that

(T e
− 1)n+1

= 0.

The idea is to look at the cohomology bundle over D∗ with fibres H n(X t ,C),
the cohomology of the Milnor fibre. This bundle comes with a natural flat
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connection defined by parallel-transport of (co)cycles: the Gauss–Manin connec-
tion. Brieskorn then develops a de Rham description to represent sections of this
cohomology bundle and gives an explicit description of Gauss–Manin connection
in local terms. The resulting system of linear differential equations describe the
variation of the period integrals over the vanishing cycles and the monodromy of
this differential system is identified with the cohomological monodromy T . In
more detail it works as follows.

A (germ of a) differential form

ω ∈�n+1
:= S dx0 dx1 . . . dxn = C{x0, x1, . . . , xn} dx0 dx1 . . . dxn

determines a section of the cohomology bundle: we obtain a family of closed
differential forms on the Milnor fibres X t by

ηt = ResX t

(
ω

f − t

)
.

The forms ω that belong to the subspace d f ∧ d�n−1 give rise to forms that are
exact on the fibres and hence the Brieskorn lattice defined by

H :=�n+1/d f ∧ d�n−1

can be thought to give families of cohomology classes on the Milnor fibration. It
is called H ′′ in [Brieskorn 1970].

On H there are various important structures. First it has a natural structure as
a C{t}-module: the action of t on H is realised by multiplication of differential
forms by f . In fact one has:

Theorem. H is a free C{t}-module of rank µ.

The statement about the rank is due to Brieskorn, the freeness is due to
Sebastiani [1970]. His and other proofs use integration and no completely
algebraic proof is known to me.

Example. Consider f = y2
+ x3. In the diagram at the top of the next page the

dots indicate nonzero monomials

xa yb dx dy

in the Brieskorn lattice H. The dotted lines indicate relations between these
monomials in H, coming from

d f ∧ d(x p yq)= (3qx2+p yq−1
− 2pyq+1x p−1) dx dy.

We can use the monomials dx dy and x dx dy as a C{t}-basis of H.



FROM BRIANÇON–SKODA TO SCHERK–VARCHENKO 355

(See example on previous page).

The Brieskorn lattice H carries another operation called ∂−1, which Brieskorn
identifies as the inverse of the Gauss–Manin connection. It is defined as follows:
if the (n+ 1)-form ω ∈�n+1 on (Cn+1, 0) represents an element of H, we can
write it as dη for some η ∈�n . One now sets

∂−1ω := d f ∧ η.

It is easy to check that this gives a well-defined operation on H, which satisfies

t∂−1
− ∂−1t = ∂−2.

The map ∂−1
:H→H is injective and the cokernel can be identified with

H/∂−1H=�n+1/d f ∧�n
=: Q f ,

which after a choice of a volume form is isomorphic to Q f = S/Jf , the Jacobi
ring of C-dimension µ. When we choose a basis ω1, ω2, . . . , ωµ of H as C{t}-
module, we can write out the action of ∂−1 in this basis

∂−1


ω1

ω2

. . .

ωµ

= B(t)


ω1

ω2

. . .

ωµ

 ,
from which one obtains a meromorphic connection matrix

A(t)= B(t)−1(1− B ′(t))

for H:

∂


ω1

ω2

. . .

ωµ

= A(t)


ω1

ω2

. . .

ωµ

 .
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If δ(t) denotes a (multivalued) horizontal family of cycles in Hn(X t) the (in
general multivalued) period integral is

8(t)=
∫
δ(t)
ηt .

For such period integrals on can prove an estimate of the form

|8(t)| ≤ O(t−N ),

which implies the regularity theorem: the resulting differential system is regular
singular, hence can be transformed into a system with first order pole:

A(t)=
A−1

t
+ A0+ A1t + · · · .

And the monodromy exp(2π A−1) is identified with the (complexification) of
the cohomological monodromy T . In this way we have a theoretical method to
determine the cohomological monodromy transformation T (up to conjugacy).
As T is an automorphism of the lattice H n(X t ,Z), the characteristic polynomial
has integer coefficients, and it follows that the eigenvalues of T are algebraic
numbers. From the fact that the construction is “algebraically defined”, the
eigenvalues α of A−1 are algebraic too. As by the theorem of Gelfond–Schneider
for an irrational algebraic number α, the number

exp(2π iα)

is transcendental, Brieskorn concluded that the eigenvalues of the monodromy
are roots of unity!

The period integrals expand in series of the following sort

8(t)=
∑
α,k

Aα,k tα(log t)k .

It was shown by Malgrange [1974] that in fact Aα,k = 0 for α ≤ −1, which
provides an alternative proof of the fact that H is C{t}-free. (The reason is that
elements ω ∈ H in the kernel of multiplication by t belong to the space C−1,
defined in Section 5.)

Gauss–Manin system. It has become customary to embed the Brieskorn lattice
H into the Gauss–Manin system G of f . This is explained by Pham [1979,
pp. 153–167]: one considers the de Rham complex �• of (germs) of differential
forms on (Cn+1, 0) and let D be a variable. By �•[D] we denote the set of
polynomials with coefficients in �•. On it we have a the twisted differential
d := d + Dd f∧:

d(ωDk) := dωDk
+ d f ∧ωDk+1.
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The Gauss–Manin system G is defined as the (n+ 1)-cohomology group of the
twisted de Rham complex:

G := H n+1(�•[D], d + Dd f∧).

The element ωDk can be thought of as standing for the family of differential
forms

ResX t

(
k!ω

( f − t)k+1

)
on the Milnor fibres X t . On G one has actions of t and ∂

t (ωDk)= f ωDk
− kωDk−1, ∂(ωDk)= ωDk+1,

which are easily checked to satisfy

∂t − t∂ = 1,

so G becomes a module over D := C{t}[∂]. The map ω ∈�n+1
7→ ωD0 induces

a well-defined embedding
H ↪→ G.

In fact, ∂ is invertible on G, and the restriction of the inverse ∂−1 coincides with
the operation on H defined earlier.

M. Schulze has implemented Brieskorn’s algorithm in [Schulze 2003]. From
the computational point of view it is useful to change, as advocated by Pham
[1979], to the microlocal point of view, that is using s = ∂−1 as expansion
parameter. This boils down to looking at the incomplete Laplace transform of
the period integrals, that is to the associated oscillatory integral. The relevant
formula is ∫

0(t)
e− f/sω =

∫ t

0
e−u/s

∫
δ(t)

Res
(

ω

f − u

)
du,

where 0(t) is trace of the vanishing cycle, also known as Lefschetz thimble.

3. Questions and answers

Griffiths [1970, pp. 249–250] reports on a question raised by Brieskorn and
related to him by Deligne.

Problem. Is the P.-L. transformation T : H n(X t)→ H n(X t) of finite order?

Here “P.-L.” of course stands for “Picard–Lefschetz”. Although the mon-
odromy transformation in the global case usually has Jordan blocks, the trans-
formation on the vanishing cohomology of the simplest singularities like the
ordinary node or the Brieskorn–Pham singularities have finite order. Lê proved
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in 1971 that the monodromy is of finite order for irreducible curve singularities
[Lê 1974]. There were serious attempts to prove the result in general.

T δ = δ.

So it came somewhat as a surprise when A’Campo [1973] published the first
examples of plane curve singularities where the monodromy transformations on
the cohomology of the Milnor fibre had a Jordan block.

Example (A’Campo). Consider the curve singularity that consists of two cusps,
with distinct tangent cones.

f = (x2
+ y3)(y2

+ x3)= x2 y2
+ x5
+ y5
+ x3 y3

∼ x2 y2
+ x5
+ y5.

It has µ= 11 and the monodromy satisfies

T 10
− 1 6= 0, (T 10

− 1)2 = 0.

A good embedded resolution of f −1(0) is obtained by blowing up the origin
and then twice in the strict transform of the two cusps. We obtain a chain of 5
exceptional divisors, with multiplicities 5, 10, 4, 10, 5; the strict transforms of
the cusps pass through the components with multiplicity 10.

5 5
10 10

41 1

The Milnor fibre f = t as a subset of the embedded resolution is a curve very
close to the union of the exceptional curves and the strict transform of the two
cusps. The multiplicity of each component indicates how often the Milnor fibre
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runs along the divisor. From this information one can build a topological model
of the Milnor fibre. Usually one first performs a semistable reduction, which
in this case amounts to replacing t by t10 and which comes down to taking a
10-fold cyclic cover of the embedded resolution. As Milnor fibre one obtains a
Riemann surface consisting of two Riemann surfaces of genus 2, with a boundary,
and glued together via two cylinders. The cycle γ indicated on the right has
(T 10
− 1)γ 6= 0.

γ

For more details we refer to [A’Campo 1973] and [Brieskorn and Knörrer 1981,
p. 751].

A’Campo raised the problem of finding examples of singularities in n + 1
variables whose cohomological monodromy had a Jordan block of maximal size
n + 1. Such examples were described by Malgrange [1973] in a letter to the
editors, published front-to-back to the paper of A’Campo. Malgrange credits
Hörmander for the idea.

Example [Malgrange 1973]. The singularity

f = (x0x1 . . . xn)
2
+ x2n+4

0 + x2n+4
1 + · · ·+ x2n+4

n

has a Jordan block of maximal size n+ 1. Let

E(t) := {(x0, x1, . . . , xn) ∈ Rn+1
| f ≤ t}.

For t small enough, this is a topological ball; its boundary

δ(t) := ∂E(t)

is a vanishing cycle that for n = 2 looks like the picture at the top of the next
page.

Clearly: ∫
δ(t)

x0 dx1 . . . dxn =

∫
E(t)

dx0 dx1 . . . dxn = Vol(E(t)).
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100(xyz)2+ x8
+ y8
+ z8
= 1.

Now Malgrange computes

Vol(E(t))∼ Ct1/2 logn(t),

where C 6= 0. This shows that the vanishing cycle δ(t) ∈ Hn(X t ,Z) sits in a
Jordan block of size n+ 1.

4. The Briançon–Skoda theorem and Scherk’s conjecture

According to C. T. C Wall [1971] it was Mather who asked about the smallest r
for which

f r
∈ Jf .

Around the same time as A’Campo and Malgrange found the examples of singu-
larities with maximal Jordan blocks in their vanishing cohomology, a strange
algebraic theorem was discovered, whose proof required deep results from
complex analysis.

Recall that the integral closure I of an ideal I ⊂ S=C{x0, x1, . . . , xn} consists
of all functions h that satisfies an integrality equation over I : h ∈ I if and only
if for some n there exist ak ∈ I k , k = 1, 2, . . . , n such that

hn
+ a1hn−1

+ · · ·+ an = 0.

This ideal can be characterised in various other ways. For example, one has
f ∈ I if and only if

γ ∗( f ) ∈ γ ∗ I

for each curve germ γ : (C, 0)→ (Cn+1, 0) [Lipman and Teissier 1981].

Theorem [Skoda and Briançon 1974]. If I is generated by k elements then

I min(k,n+1)
⊂ I.
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This is a completely algebraic statement, but its proof was not. Lipman and
Teissier [1981] wrote: “The absence of an algebraic proof has been for algebraists
something like a scandal — perhaps even an insult — and certainly a challenge.”

In any case, as f ∈ Jf , it follows from this theorem that for any f ∈ S one has

f n+1
∈ Jf ,

or equivalently, the operator

[ f ] : Q f → Q f

induced by multiplication with f on the Jacobi ring has index of nilpotency
bounded by n+ 1:

[ f ]n+1
= 0.

In [Skoda and Briançon 1974] it is also remarked that this estimate on the
exponent is optimal. As an example, they give

f = (x0x1 . . . xn)
3
+ z3n+2

0 + z3n+2
1 + · · ·+ z3n+2

n ,

for which f n /∈ Jf .
So we see that to an isolated hypersurface singularity f ∈ S, one can associate

two natural vector-spaces of dimension µ, each with a nilpotent endomorphism.
On one hand, we have the topological space H f := H n(X∞,C) with the endo-
morphism N , the monodromy logarithm. On the other hand, we have the purely
algebraic Q f with the endomorphism [ f ]. The monodromy theorem tells us that
N n+1

=0, while the theorem of Briançon–Skoda tells that [ f ]n+1
=0. According

to Scherk, it was Brieskorn who asked about a possible relation between the two
appearances of n+ 1 in these theorems.

Conjecture 1 [Scherk 1978]. For any isolated hypersurface singularity the
following holds: If f r+1

∈ Jf , then the Jordan normal form of the monodromy
has blocks of size at most (r + 1).

In case r = 0 the conjecture follows from the following two theorems.

Theorem [Saito 1971]. If f ∈ Jf , one can find a coordinate system in which f
is represented as a quasihomogeneous polynomial.

Recall that a polynomial f is called quasihomogeneous if one can find positive
rational weights w0, w1, . . . , wn such that

f (λw0 x0, λ
w1 x1, . . . , λ

wn xn)= f (x0, x1, . . . , xn).

This is the case if and only if all monomials xa
= xa0

0 xa1
1 . . . xan

n appearing in f
with nonzero coefficient lie in the hyperplane

w0a0+w1a1+ · · ·+wnan = 1.
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Theorem. For a quasihomogeneous singularity with weights w0, w1, . . . , wn ,
the cohomological monodromy is finite of order d, which is the least common
multiple of the denominators of the wi .

This generalises the result of Pham on the Brieskorn–Pham singularities and
can be found in [Milnor 1968, p. 71].

In the example of the Tp,q,r -singularities ( 1
p +

1
q +

1
r < 1), given by

f (x, y, z)= x p
+ yq
+ zr
+ xyz,

one has f /∈ Jf , f 2
∈ Jf and indeed the monodromy has a single 2× 2-block for

the eigenvalue 1. In this way the conjecture may also be seen as a refinement
of the usual monodromy theorem for isolated hypersurfaces. On the other hand,
the converse of the statement is certainly not true. Scherk gives the example

fa = y6
+ x4 y+ ax5.

For a = 0 the singularity is quasihomogeneous, so f ∈ Jf and the monodromy
is of finite order. For a 6= 0, the singularity is no longer quasihomogeneous and
so we have f /∈ Jf , but the monodromy is still of finite order, as the topology of
the singularity does not depend on a. Similarly, one could take any quasihomo-
geneous singularity f and add a nontrivial term of quasihomogeneous degree
> 1.

Scherk gave a proof of his conjecture [1980], using a globalisation of the
Milnor fibre to a smooth projective hypersurface and using the resulting variation
of Hodge structures. In that paper he also formulated a strengthening of his
conjecture:

Conjecture 2 [Scherk 1980]. For an isolated hypersurface singularity f and
any integer k the following inequality takes place:

dim Ker([ f ]k : S/Jf → S/Jf )≤ dim ker(N k
: H n(X t)→ H n(X t)).

5. Period integrals and mixed Hodge structures

The second conjecture of Scherk was proven by Varchenko in [1981] as a
consequence of a stronger theorem.

Theorem [Varchenko 1981]. Consider an isolated hypersurface singularity
f ∈ S. There exists a filtration V • on S/Jf with the property that

[ f ] : V α
7→ V α+1,

and such that
{ f } := Gr •V [ f ] : Gr •V S/Jf → Gr •+1

V S/Jf
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and
N : H n(X∞,C)→ H n(X∞,C)

have the same Jordan normal form.

As by going to an associated graded of a filtration kernels only can get bigger,
one obtains:

dim ker[ f ]k ≤ dim ker N k .

The construction of the filtration V • is a bit involved. It lives naturally on the
Gauss–Manin system G and the Brieskorn lattice

H=�n+1/d f ∧ d�n−1,

and induces a filtration on the quotient

Q f
=�n+1/d f ∧�n

=H/∂−1H.

For a differential formω∈�n+1 the V •-filtration reflects the asymptotic behaviour
of the period integrals

8(t)=
∫
δ(t)

Res
(

ω

f − t

)
=

∑
α,k

Aα,k tαlog(t)k .

The element ω belongs to V βH, if for all δ(t) the coefficients in the above
expansion vanish for α < β.

Varchenko [1980] derives the theorem from his construction of an asymptotic
mixed Hodge structure on the vanishing cohomology H n(X∞,Z).

Recall that a mixed Hodge structure on a finite rank abelian group H is a
linear algebra object that consist of two filtrations, to know an increasing weight
filtration W•, defined on HQ := H ⊗Q, and a decreasing Hodge filtration F •

defined on HC := H ⊗C, such that F • induces on the graded pieces Gr W
k H =

Wk/Wk−1 a pure Hodge structure of weight k. We refer to [Peters and Steenbrink
2008] for a more systematic account of mixed Hodge theory.

Steenbrink [1975/76; 1977] had first constructed such a mixed Hodge structure,
using an embedded resolution of f . The weight-filtration is constructed using
the nilpotent operator N : it is the unique increasing filtration W•

0⊂W0 ⊂W1 ⊂W2 . . .⊂W2n−1 ⊂W2n = H n(X∞,Q),

such that
N :Wk→Wk−2,

with the property that the operator N k induces an isomorphism from GrW
n+k H to

GrW
n−k H :

N k
: GrW

n+k H
≈
→ GrW

n−k H.
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As this filtration is uniquely defined by the cohomological monodromy operator,
it is called the monodromy weight filtration.

In the asymptotic mixed Hodge structure of Varchenko, the Hodge filtration
F • is related to the V •-filtration and encodes the asymptotic behaviour of the
period integrals when t approaches the origin radially. So we have the nice
picture that the two filtrations, in a way, arise from the decomposition in angular
and radial components as the parameter t→ 0.

We now describe, following [Scherk and Steenbrink 1985], the construction
of the asymptotic mixed Hodge structure in more detail.

The generalised eigenspaces Cα. The Gauss–Manin system G has the struc-
ture of a (finitely generated) regular singular C{t}[∂]-module. One defines the
generalised α-eigenspace by

Cα
:=

⋃
k>0

ker(t∂ −α)k ⊂ G.

These are finite-dimensional C-vector spaces. Note that

(t∂t −α)
k−1(tα logk t)= 0,

so that Cα picks out those elements of G that “behave like” the function tα logk t
for some k.

The structure of G can be schematically visualised as follows:

G

∂H H

t

∂∂

2Cα+21Cα+10Cα−1−2

Horizontally runs the eigenvalue parameter α. The vertical bars represent the
generalised eigenspaces Cα. Multiplication by t maps Cα to Cα+1, whereas ∂
maps Cα+1 back to Cα. The operators t∂ −α act “vertically” and are nilpotent
on Cα. One has an isomorphism

H n(X∞,C)=
⊕
−1<α≤0

Cα.

It follows from the regularity of the Gauss–Manin connection that the generalised
exp(2π iα)-eigenspace H n(X∞,C)α of the monodromy T is isomorphic to the
space Cα and the monodromy logarithm N identifies, up to a factor 2π i , with
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the operator t∂ −α.

H n(X∞,C)α
≈
//

N
��

Cα

2π i (t∂−α)
��

H n(X∞,C)α
≈
// Cα

The position of the Brieskorn lattice H inside G contains important information
and is indicated in the picture as the region to right of the wiggly curve. Note
that H⊂ V>−1, by the result of Malgrange. The action of ∂ moves H to the left.

The V •-filtration. The V •-filtration of G is defined as the C{t}-span of the Cβ

with β ≥ α
V αG := 〈Cβ

| β ≥ α〉,

and we have
Cα
≈ V α/V>α.

As H⊂ G we obtain by intersection a V •-filtration on the Brieskorn lattice H.
On the quotient

Q f
=�n+1/d f ∧�n

=H/∂−1H,

one has a natural induced filtration by setting

V αQ f
:= (V αH+ ∂−1H)/∂−1H.

For an important class of singularities the V •-filtration can be computed easily:

Theorem [Saito 1988]. For a Newton nondegenerate f the V •-filtration on Q f

coincides with the Newton filtration N •, shifted by one:

V αQ f
=N α−1 Q f .

Hodge filtration on H n(X∞). By applying the operator ∂ to H⊂ G, we obtain a
“Hodge filtration” on G:

H⊂ ∂H⊂ ∂2H⊂ · · · ⊂ G.

Using this, we define a filtration F • on Cα by setting

F pCα
:= (∂n−pH∩ V α

+ V>α)/V>α
⊂ Cα

and
F p H n(X∞,C) :=

⊕
−1<α≤0

F pCα.

Unwinding the definitions, one finds that the spaces Grp
F Cα can be identified
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with certain V •-graded piece of Q f :

∂n−p
: Grα+n−p

V Q f ≈
→ Grp

FCα.

The main theorem on asymptotic mixed Hodge theory is the following.

Theorem. The space H n(X∞), together with the monodromy weight-filtration
W• and the above defined Hodge filtration F • define a mixed Hodge structure,
isomorphic to the limiting mixed Hodge structure defined in [Steenbrink 1977].

This theorem, in a slightly different form, was first proven by Varchenko [1980;
1982]. We basically followed here the presentation of [Scherk and Steenbrink
1985].

Although all the ingredients of the mixed Hodge structure can be defined lo-
cally, the proofs of the required Hodge properties use globalisation to a projective
hypersurface in an essential way; apparently no purely local proof is known.

5.1. Varchenko’s theorem. A feature of mixed Hodge theory is that all mor-
phisms of mixed Hodge structures are strictly compatible with weight and Hodge
filtration: going from a morphism H → H ′ of mixed Hodge structures to maps
between the associated graded pieces, such as

Grp
F GrW

k H → Grp
F GrW

k H ′,

preserves exactness properties. In our situation there is one particular interesting
morphism of mixed Hodge structures, namely the morphism

N : H n(X∞,Q)→ H n(X∞,Q).

As by construction N :Wk→Wk−2 and N : F p
→ F p−1, N is a morphism of

type (−1,−1).
One now can argue as follows:

(1) From the strictness, the Jordan structure of N on H := H n(X∞,C) is the
same as that of

GrF N : Gr•F H → Gr•−1
F H.

(2) On the component Cα the map

GrF N : Grp
F Cα
→ Grp−1

F Cα.

is represented by

2π i(t∂ −α)= 2π i t∂ mod F p.

(3) Identifying the Hodge spaces Grp
F Cα with pieces of the V •-filtration on Q f
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we obtain a diagram

Grα+n−p
V Q f

∂n−p

��

{ f }
// Grα+n−p+1

V Q f

∂n−p+1

��

Grp
F Cα GrF N

// Grp−1
F Cα

that is commutative up to a factor 2π i .

Corollary 1. The operator { f } on Gr•V Q f and N on H n(X∞,C) have the same
Jordan type.

Example. We analyse the example of A’Campo in terms of the V •-filtration. As
the function is Newton nondegenerate, we can use the theorem of M. Saito to
identify the V -filtration with the Newton filtration (shifted by one). A basis for
Q f is given by the 11 differential forms

dx dy, xy dx dy, x2 y2 dx dy,

x dx dy, x2 dx dy, x3 dx dy, x4 dx dy, y dx dy, y2 dx dy, y3 dx dy, y4 dx dy

The Newton weights of these monomials can be read off from the Newton
diagram as

1
2 , 1, 3

2 ,

7
10 ,

9
10 ,

11
10 ,

13
10 ,

7
10 ,

9
10 ,

11
10 ,

13
10 .

The fractions appearing here (or diminished by 1) are called the spectral numbers
of the singularity.

Multiplication of the monomial dx dy of weight 1
2 by f maps to the monomial

x2 y2dx dy of weight 3
2 , which thus represents a nontrivial Jordan block N of

the monodromy.
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The picture on the right shows the Milnor fibre of f , which was described
earlier and seen to be a genus 5 Riemann surface with two holes. We drew
the surface around the monomials of the Newton diagram, with holes piercing
through the edges of the Newton diagram. In a way that is a bit hard to explain
in a precise way, one can see that the nontrivial Jordan block “hits” the cycle γ
on the Riemann surface that appeared in A’Campo’s example!

This concludes our account of a unique key period in the theory of isolated
hypersurface singularities. Many important developments arose out of them, e.g.,
M. Saito’s theory of mixed Hodge modules and applications to log-canonical
thresholds, multiplier ideals, jumping coefficients, etc. For these more recent
developments we refer to [Peters and Steenbrink 2008; Blickle and Lazarsfeld
2004; Ein et al. 2004; Mustat,ă 2012].
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[Mustat,ă 2012] M. Mustat,ă, “IMPANGA lecture notes on log canonical thresholds”, pp. 407–442
in Contributions to algebraic geometry, edited by P. Pragacz, Eur. Math. Soc., Zürich, 2012.

[Peters and Steenbrink 2008] C. A. M. Peters and J. H. M. Steenbrink, Mixed Hodge structures,
Ergebnisse der Math. und ihrer Grenzgebiete (3) 52, Springer, Berlin, 2008.

[Pham 1965] F. Pham, “Formules de Picard–Lefschetz généralisées et ramification des intégrales”,
Bull. Soc. Math. France 93 (1965), 333–367.

[Pham 1979] F. Pham, Singularités des systèmes différentiels de Gauss–Manin, Progress in
Mathematics 2, Birkhäuser, Boston, 1979.

[Picard and Simart 1897] É. Picard and G. Simart, Théorie des fonctions algébriques de deux
variables indépendantes, vol. I, Gauthier-Villars, Paris, 1897.

[Saito 1971] K. Saito, “Quasihomogene isolierte Singularitäten von Hyperflächen”, Invent. Math.
14 (1971), 123–142.

[Saito 1988] M. Saito, “Exponents and Newton polyhedra of isolated hypersurface singularities”,
Math. Ann. 281:3 (1988), 411–417.

http://dx.doi.org/10.1215/S0012-7094-04-12333-4
http://dx.doi.org/10.1215/S0012-7094-04-12333-4
http://dx.doi.org/10.1090/S0002-9904-1970-12444-2
http://dx.doi.org/10.1090/S0002-9904-1970-12444-2
http://eudml.org/doc/109651
http://dx.doi.org/10.1007/BF02684688
http://dx.doi.org/10.1007/BF02684688
http://goo.gl/Ms5Iqz
http://dx.doi.org/10.1016/0040-9383(81)90013-6
http://dx.doi.org/10.1090/S0002-9947-1973-0344248-1
http://dx.doi.org/10.1090/S0002-9947-1973-0344248-1
http://dx.doi.org/10.1007/BFb0068109
http://dx.doi.org/10.1307/mmj/1029002461
http://dx.doi.org/10.1307/mmj/1029002461
http://dx.doi.org/10.1017/CBO9780511662720
http://dx.doi.org/10.1007/BF01404064
http://goo.gl/HkLPsc
http://dx.doi.org/10.4171/114-1/16
http://www.maths.ed.ac.uk/~aar/papers/steenbrink2.pdf
http://www.numdam.org/item?id=BSMF_1965__93__333_0
http://dx.doi.org/10.1007/978-1-4757-1457-9
http://dx.doi.org/10.1007/BF01405360
http://dx.doi.org/10.1007/BF01457153


370 DUCO VAN STRATEN

[Scherk 1978] J. Scherk, “On the Gauss–Manin connection of an isolated hypersurface singular-
ity”, Math. Ann. 238:1 (1978), 23–32.

[Scherk 1980] J. Scherk, “On the monodromy theorem for isolated hypersurface singularities”,
Invent. Math. 58:3 (1980), 289–301.

[Scherk and Steenbrink 1985] J. Scherk and J. H. M. Steenbrink, “On the mixed Hodge structure
on the cohomology of the Milnor fibre”, Math. Ann. 271:4 (1985), 641–665.

[Schulze 2003] M. Schulze, “Monodromy of hypersurface singularities”, Acta Appl. Math. 75:1-3
(2003), 3–13.

[Sebastiani 1970] M. Sebastiani, “Preuve d’une conjecture de Brieskorn”, Manuscripta Math. 2
(1970), 301–308.

[Skoda and Briançon 1974] H. Skoda and J. Briançon, “Sur la clôture intégrale d’un idéal de
germes de fonctions holomorphes en un point de Cn”, C. R. Acad. Sci. Paris Sér. A 278 (1974),
949–951.

[Steenbrink 1975/76] J. Steenbrink, “Limits of Hodge structures”, Invent. Math. 31:3 (1975/76),
229–257.

[Steenbrink 1977] J. H. M. Steenbrink, “Mixed Hodge structure on the vanishing cohomology”,
pp. 525–563 in Real and complex singularities (Oslo, 1976), Sijthoff and Noordhoff, Alphen aan
den Rijn, 1977.

[Varchenko 1980] A. Varchenko, “The asymptotics of holomorphic forms determine a mixed
Hodge structure”, Sov. Math. Dokl. 22:5 (1980), 772–775.
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