
This book introduces and explores some of the deep connections between Ein-
stein’s theory of gravitation and differential geometry. As an outgrowth of
graduate summer schools, the presentation is aimed at graduate students in
mathematics and mathematical physics, starting from the foundations of special
and general relativity, and moving to more advanced results in geometric analysis
and the Einstein constraint equations. Topics include the formulation of the
Einstein field equation and the Einstein constraint equations; a treatment of the
Penrose singularity theorem; an introduction to scalar curvature deformation and
the conformal method; a detailed introduction to asymptotically flat spaces and
the Riemannian positive mass theorem; gluing construction of initial data sets
which are Schwarzschild near infinity; constant mean curvature surfaces and the
center of mass for asymptotically flat initial data sets; and an introduction to the
Riemannian Penrose inequality.

While the book assumes a background in differential geometry and real analysis,
a number of basic results in geometry are included in the text and exercises. A
brief treatment of elliptic partial differential equations is designed to help the
reader navigate through the applications of geometric analysis to the Einstein
constraint equations discussed in the analysis-heavy second half of the book.

There are well over 100 exercises, many woven into the fabric of the chapters as
well as others collected at the end of chapters, to give readers a chance to engage
and extend the text.
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Preface

This volume arose from the Summer Graduate Workshop in Mathematical Gen-

eral Relativity at the Mathematical Sciences Research Institute (MSRI, now

renamed the Simons Laufer Mathematical Sciences Institute) in Berkeley, CA

in 2012, and the subsequent summer school in Cortona, Italy, in 2013. The

editors of the volume served as scientific organizers for the summer schools.

The contributions to the volume grew out of lectures given at one or both of the

schools.

We have endeavored to enhance the presentation of the material covered in the

two-week summer schools to make it suitable for reading in book form, while at

the same time remaining faithful to the spirit of those schools.

The advertised prerequisites for the schools, and hence this volume, included a

standard first-year graduate analysis course, with elements of real and functional

analysis as might be found in Real analysis by H. Royden [193] and Real and
complex analysis by W. Rudin [194]. We also assumed introductory graduate

courses in differential and Riemannian geometry, at the level of the following

texts: An introduction to smooth manifolds and Riemannian manifolds, by J. M.

Lee [141; 140]; Riemannian geometry by M. P. do Carmo [41]; Riemannian
geometry by P. Peterson [182]; and of particular relevance to the summer schools,

Semi-Riemannian geometry by B. O’Neill [174]. A graduate course in partial

differential equations (PDE), at the level of Partial differential equations by L. C.

Evans [86] and the first half of Elliptic partial differential equations of second
order by D. Gilbarg and N. Trudinger [107], was not a requirement for the

schools, and although some of the lectures needed to draw on some PDE results,

students without such background could profit from the bulk of the material

discussed at the schools. For this volume, however, certain PDE details in some

of the presentations have been fleshed out, so those sections would be better

approached with this background in hand. We have endeavored to bridge the gap

by including a section introducing and motivating some of the PDE tools.

The students came to the schools with a wide range of backgrounds in mathe-

matics, from those who had nearly completed their doctoral dissertations to those

xiii
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who came without the prerequisite geometry background. Through exercises and

tutorial sessions, students were able to build enough intuition and computational

skills to understand much of the material presented. While we decided a primer

section on elliptic PDE was essential for the flow of this book, we resisted the

temptation to add further sections on background geometry. That said, we do

recall or develop some foundational material where needed, and some startup

notations and conventions are reviewed starting on p. xix. We include exercises

that were assigned before and during the schools, both to give readers a feel for

the tutorials and to help focus those who are learning the topics for the first time

or reviewing on the fly. We added many exercises as well, some collected at the

end of chapters, some interspersed in the text. Of particular note, many exercises

in Chapters 1 and 2 serve to review and extend background in geometry.

Strictly speaking, no physics background is required. We assume, as we did

at the schools, a nodding acquaintance with pre-relativity physics, enough so

that students can approach the development of the theory of special and general

relativity with context from which to appreciate the rudiments of spacetime

structure and the line of thought from Galileo to Newton to Einstein, and to

motivate why the Einstein equations and the initial value constraints were to

receive so much of their attention. In part for this reason, the first chapter

contains some very basic material that would be included in an undergraduate

course in special relativity, but we found it to be a fun way to start each school,

engendering some interesting discussion amongst participants without needing

much in the way of background. The first two chapters on special and general

relativity may seem somewhat chatty, including some discussion of physics

without always being mathematically efficient or fastidious, but we hope it helps

to frame the mathematical theory. We could have cut the physics discussion short

by formulating the mathematical postulates from the start with a small amount

of motivation, but we decided, given the audience, to put some more time into

developing these ideas from their genesis in physics. Even giving ourselves

some leeway, the presentation is not too leisurely, and the lecture schedule at the

schools called for covering the physics background reasonably efficiently at the

beginning of the first week.

The mathematical and physical foundations of relativity have been an active

topic of discussion and research for over a hundred years, and we have not tried

to approach the scope of the debate (for instance, we chose not to discuss Mach’s

principle in depth), nor have we tried to use too fine a brush in painting the

logical and philosophical distinctions, nor strained to give a serious historical

account of the development of the theory. Interested readers can follow up with
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references such as [82; 83; 85; 161; 169; 170; 171], and with a wealth of material

available online.

Even while starting off in an elementary fashion, and keeping in mind the

range of student backgrounds represented, we were able to cover a reasonable

amount of ground at each school. During the MSRI workshop, Pengzi Miao

covered sufficient elements of causal theory to present the proof of the Penrose

singularity theorem. Justin Corvino developed enough background in scalar

curvature and asymptotically flat solutions of the constraint equations to be able

to present a proof of the Riemannian positive mass theorem in three dimensions,

while Lan-Hsuan Huang and Fernando Schwartz were able to build on this to

discuss advanced aspects of the geometry of initial data sets, with Lan-Hsuan

discussing constant mean curvature surfaces and the notion of center of mass,

and with Fernando outlining multiple approaches to the Riemannian Penrose

inequality. This volume reflects essentially the material covered during the MSRI

workshop.

At Cortona, in lieu of Pengzi’s lectures, Mauro Carfora (Università di Pavia)

presented an engaging and marvelously illustrated development connecting the

constraint equations (elliptic PDE governing initial values for the Einstein evo-

lution) and the Ricci flow,1 while Michael Eichmair (ETH Zürich, now at the

University of Vienna) developed connections between the positive mass theorem

and the geometry of initial data sets (including isoperimetry of large spheres),2

which dovetailed beautifully with the lectures of Huang and Schwartz.

With all this background to present, the organizers decided to focus the topics

lectures on the Einstein constraint equations which govern the initial data for

the Einstein evolution, at the expense of not including advanced and/or current

topics on the evolution problem. While this is a reasonable basis for criticism

(of the schools and hence this volume), the field has developed to a point where

there is room for multiple programs on each of these topics, and the relations

between them; articles such as [64] and volumes such as [11; 51] indicate the

considerable breadth and depth of the field.

The years just after the workshops witnessed a flurry of activity in general

relativity. The centennial year of 2015 marked the hundredth anniversary of

Einstein’s formulation of a geometric theory of gravity governed by the Einstein

equation, and was capped off with the excitement over the detection by LIGO

of gravitational waves generated from black hole mergers — the discovery of

which led to the 2017 Nobel Prize in physics. Roger Penrose shared the 2020

1A full treatment of the topic in Mauro’s lectures can be found in the recent monograph [40].
2For this material see [32; 33; 79; 80; 81].
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Nobel Prize in physics for his work on singularity formation and black holes,

some of which we discuss. We hope the field will continue to develop in a robust

manner, and that this work will be of some value in introducing graduate students

to the field, and showing them some aspects of more advanced topics. Along

these lines, we enthusiastically point the reader to the graduate text Geometric
Relativity by Dan A. Lee (Queens College, CUNY), which has appeared recently

[142], and would surely have been a recommended text for the schools.

The first two chapters of this volume present the basic background, from

Minkowski spacetime and special relativity, to Einstein’s equation and general

relativity. Chapters 3 and 4 treat causality and the Penrose singularity theorem.

Chapter 5 on the Einstein constraint equations rounds out the basic background

from general relativity. Starting from Chapter 6 the text takes a sharp turn in the

direction of geometric analysis. Chapter 6 includes some background motivation

on elliptic PDE, with some applications to the constraint equations and scalar

curvature; of note, there is an excursus on the first and second variations of area,

which will appear throughout the rest of the text. Chapters 7–9 are written as

topical chapters and are largely independent of each other, though one might

find utility in referring to Chapter 7 for some properties of asymptotically flat

spaces. That said, on a first pass, some readers might find themselves giving

some of the more technical discussions in Chapter 7 a light read.

We would like to thank the graduate students for their hard work and enthu-

siasm at the summer schools, and in particular Alan Parry and Xin Zhou, as

well as Peter McGrath and Andrea Santi, for their work as graduate assistants

at the MSRI and Cortona schools, respectively. During one tutorial session,

Alan introduced us to his research area, by presenting work of his thesis advisor

Hubert Bray (Duke University), which modifies the Einstein–Hilbert action of

general relativity with a goal to model dark matter; while we do not treat this

topic in the text, we refer the interested reader to [27]; see also [30]. It has been

inspiring to the scientific organizers to see so many of the students producing a

staggering amount of interesting theses and papers in the years since the summer

schools were held, and many have moved on to postdocs and faculty positions. In

particular, Brian Allen, currently in the Department of Mathematics at Lehman

College, CUNY, attended the MSRI summer school as a graduate student, and is

a coauthor on Chapter 9 in this volume.

There are many people to thank for helping this project along. Giorgio

Patrizio (Università di Firenze) first broached the idea of a volume after the

Cortona summer school. We thank Heléne Barcelo (MSRI) for her enthusiastic

support throughout the process. We also thank all the great staff at MSRI, and in
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particular Chris Marshall, for their support before, during and after the school,

and likewise at Cortona, in particular Silvana Boscherini and Cinzia Benedetti.

Funding for the schools was provided in part by National Science Foundation,

the Clay Foundation, and INdAM (Istituto Nazionale di Alta Matematica), and

we thank them for their generous support. Likewise we thank our respective

home institutions, Lafayette College and the University of Miami. The editors

shaped the book in part during their invited mini-course at the 2013 Taiwan

International Conference on Geometry, at the National Taiwan University, and we

would like to extend our thanks to Yng-Ing Lee for that opportunity. JC thanks

Lehigh University, and especially Huai-Dong Cao, for inviting him to teach a

graduate course in mathematical relativity in 2011, an experience that helped

frame the approach to some of the material. JC would also like to acknowledge

invitations from the Park City Math Institute, the Erwin Schrödinger Institute in

Vienna, as well as from the Ravello Summer School, where he delivered mini-

courses in the summers of 2013, 2014 and 2015, respectively, at which some

of the presentation was honed. Of particular note is the support of Tommaso

Ruggeri (Università di Bologna) for both the Cortona and Ravello summer

schools. We thank Greg Galloway for reading Chapters 3 and 4 and offering

some helpful feedback. JC thanks former student Kevin Manogue (Lafayette

College) for feedback on Chapters 1 and 2, David Maxwell (University of Alaska,

Fairbanks) for discussions on the conformal method, Farhan Abedin (Lafayette

College) for reading parts of several chapters, and whose critical feedback led

to a reorganization of Chapters 5–7, and finally John D. Norton (University

of Pittsburgh) for several enlightening email exchanges on the foundations of

general relativity. In addition to lecturing in Cortona, Mauro Carfora read several

chapters in detail and offered critical advice from a physics perspective; in

addition, his beautiful sketch of the palace at which the school was held adorns

this volume. A huge thank you goes out to the editor Silvio Levy not only for

his advice and encouragement, but for his calm patience while this project took

longer than anticipated.

This book is dedicated to our friend and colleague Sergio Dain, who passed

away in February 2016 at the age of 46. Sergio was an inspiration — through

his work and his talks, he shared his deep insights into mathematical relativity

and inspired you to be a better mathematician, while through his friendly and

generous personality, interacting with him inspired you to be a better person. We

lack the words to express how much he is missed.





Notation and conventions

We will often indicate conventions when they appear in the text (sometimes

repeatedly), but we will mention a few here, just to get started.

While we generally use the term smooth to mean C∞ (partly for definiteness),

we note that often it will be obvious that a certain Ck-smoothness level is

sufficiently smooth for the context under consideration. Subset notation A ⊂ B
also allows for A = B. Vectors will be denoted in various ways; standard basis

vectors in coordinates xi will be often written as partial derivative operators

∂/∂xi , so that a vector V can be written as a linear combination V = V i ∂/∂xi .

Here we have used the Einstein summation convention of summing over repeated

upper and lower indices. While this convention will be in force unless otherwise

noted, we will repeat it on occasion for the sake of clarity.

The term manifold will generally refer to a smooth manifold without boundary.

A closed manifold will refer to a compact manifold (again, without boundary).

While we assume the standard topological conditions that manifolds are Hausdorff

and second countable, we are ambivalent about whether to restrict to connected

manifolds: many results will not require connectedness, and for certain results

that do, it is rather obvious that a statement as written would only hold on

each component separately. We will try to point out where connectedness is

assumed, but we trust the reader can discern if we have missed such an instance.

A submanifold of codimension one is a hypersurface, which will generally be

taken to be smoothly embedded, though we will try to point out when we allow

it to be immersed, or weaken the regularity assumption (as in Chapter 3).

We will work with semi-Riemannian (also called pseudo-Riemannian) metrics

on M , mostly Lorentzian or Riemannian; our signature for Lorentzian metrics

is (−, +, +, . . . ,+). When the spacetime is the focus, it may be given as

a Lorentzian manifold (M, g), whereas at some point, the focus in the book

will shift primarily to Riemannian manifolds, often construed as Riemannian

hypersurfaces in a spacetime, so that the Riemannian manifold might then be

given as (M, g), and the corresponding spacetime (if referenced) by (S, ḡ), for

example. Pay close attention to this, and also to the dimension of the spacetime.

xix
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This will be made clear in each situation, but just keep it in mind when cross-

referencing formulae across chapters and sections.

When dealing with tensors, we sometimes just need the value of the tensor at

a point, and sometimes we are referring to a tensor field; this will not always be

explicitly stated, but should be clear in context. If a formula refers to derivatives

of the tensor field, we will assume, unless stated otherwise, that the tensor field

is smooth, or, at least smooth enough to do the indicated computations. For

example, “consider a one-form θ” might really mean “consider a smooth one-

form field θ”. At various points we will consider fields that have less regularity

(e.g., Sobolev spaces of tensor fields), and that will be made clear when needed;

in particular, we will be more deliberate about emphasizing the regularity when

it comes to the fore starting with the PDE discussion in Chapter 6.

Recall that a connection on the tangent bundle TM (an affine connection)

assigns to vector fields X and Y a vector field ∇X Y , which is C∞(M)-linear

(and hence tensorial) in X and �-linear in Y , and satisfies the product rule

∇X ( f Y ) = (∇X f )Y + f ∇X Y for f ∈ C∞(M), where ∇X f = X [ f ] is the

directional derivative of f ; the value of (∇X Y )|p depends only on X |p and the

values of Y along a curve tangent to X |p. One can extend the connection to

tensor fields T , defining ∇X T by applying a product rule; e.g., if T is a one-form,

∇X (T (Y ))= (∇X T )(Y )+T (∇X Y ). In general, ∇X T is a tensor of the same rank

as T , and it follows easily from the definition that ∇X T is tensorial in X . Hence

we can construe ∇T as a tensor with rank higher by one: if T is an (r, s)-tensor,

producing a scalar from a tuple of r one-forms and s vectors, then ∇T is an

(r, s+1)-tensor. On a semi-Riemannian (M, g), there is a unique connection,

called the Levi-Civita connection and denoted by ∇ (among other notations you

might see in the text), which is torsion-free (∇X Y −∇Y X = [X, Y ]) and satisfies

∇g = 0; this will generally be the connection employed unless stated otherwise.

A metric g will often be written in bracket notation: g(X, Y ) = 〈X, Y 〉.
In coordinates, g is given by a symmetric matrix of components gi j , so that

locally g = gi j dxi ⊗ dx j = gi j dxi dx j , where for one-forms θ and η we define

θη= 1
2
(θ⊗η+η⊗θ) (whereas the wedge product is given by θ∧η=θ⊗η−η⊗θ ).

Thus the Euclidean metric g�n on �n , for which the component functions xi

are Cartesian coordinates, is then expressed as g�n = δi j dxi dx j , for example.

The nondegeneracy of g corresponds in components to the invertibility of the

matrix (gi j ), and we write (gi j ) = (gi j )
−1, i.e., gi j g jk = δi

k . There is a natural

volume measure dvg associated to g, which in local coordinates takes the form

dvg = √|det(gi j )| dx , where dx is the Euclidean (Lebesgue) volume measure in

coordinates; dvg corresponds to a volume form ωg in case M is orientable. We
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sometimes let det g = det(gi j ) for abbreviation, and we often let dσ or dσg be

the volume measure induced on a semi-Riemannian submanifold.

Since at each point on M the metric g is nondegenerate, it can be used to

change the tensor type, e.g., a vector X is associated to a dual form X � by

g(X, Y ) = X �(Y ), and likewise a one-form α can be associated to its vector dual

α
 by g(α
, Y ) = α(Y ). It is easy to check in a basis v j for Tp M with dual basis

θ i for T ∗
p M (so θ i (v j ) = δi

j ) that if X = X jv j then X � = Xiθ
i with Xi = gi j X j ,

where gi j = g(vi , v j ); similarly, if α = αiθ
i , then α
 = α jv j with α j = gi jαi .

This kind of operation, known as raising and lowering of indices from the way

the notation is arranged, can be performed on more general tensors T , with the

positions of the indices generally indicating tensor type in lieu of the musical 


and � notation.

We remark on the consistency of the raising/lowering notation: if T is a

(0, 2)-tensor with components Ti j , then T i j = gik g j�Tk� give the components of

the tensor obtained by type-changing using g, so that if T = g, then in fact we see

T i j = gi j (the components of the inverse matrix). Furthermore, we can extend g
as a bilinear form on more general tensors, defining 〈S, T 〉 to be an appropriate

metric contraction of S ⊗ T ; e.g., if S and T are (1, 2)-tensors, then in a local

basis 〈S, T 〉 = gi�g js gkm Si
jk T �

sm . We may write this in various ways, depending

on context: 〈S, T 〉 = 〈S, T 〉g = S ·g T = S · T , and we let |T |2g = 〈T, T 〉g (this

is in fact nonnegative when g is Riemannian). Note that if h is a (0, 2)-tensor,

then 〈g, h〉g = gi j hi j = trgh, and similarly if h is a (2, 0)-tensor.

The Riemann curvature tensor will be defined via the vector field

R(X, Y, Z) = ∇X∇Y Z − ∇Y ∇X Z − ∇[X,Y ]Z = R(X, Y )Z ,

with index conventions R�
i jk

∂
∂x� = R

(
∂

∂xi ,
∂

∂x j ,
∂

∂xk

)
, in which R is a (1, 3)-

tensor, while the components of the corresponding (0, 4)-tensor are given by

Ri jk� = g�m Rm
i jk = 〈R

(
∂

∂xi ,
∂

∂x j ,
∂

∂xk

)
, ∂

∂x�〉. Different books use different con-

ventions, so be alert! The curvature tensor enjoys a number of symmetries.

Clearly, R(X, Y, Z) = −R(Y, X, Z); slightly less obvious is symmetry-by-pairs
〈R(V,W, Y ), Z〉 = 〈R(Y, Z , V ),W 〉. Thus we have the component identities:

Rk�i j = Ri jk� = −R jik� = R ji�k . For a nondegenerate two-plane Π ⊂ Tp M ,

the following expression is independent of basis {V,W } for Π , and defines the

sectional curvature K (Π):

K (Π) = 〈R(V,W,W ), V 〉
〈V, V 〉〈W,W 〉− 〈V,W 〉2

. (0.0.1)

For given X and Y , R( · , X, Y ) is a linear transformation, whose trace is defined

to be Ric(X, Y ), the Ricci curvature. The Ricci tensor Ric (alternatively, Ric(g)
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or Ricg) is a symmetric (0, 2)-tensor (via the preceding curvature component

identities), and it is generally the same tensor across texts (though a notable

exception is [221], where the sign differs from ours), which means the way

it is defined from the Riemann tensor may differ to account for sign. In our

convention,

Ric(X, Y ) = dx�
(
R
(

∂
∂x� , X, Y

)) = gk�〈R
(

∂
∂x� , X, Y

)
, ∂

∂xk〉,

Ri j = Ric
(

∂
∂xi ,

∂
∂x j

) = R�
�i j = gk� R�i jk .

The scalar curvature is the metric trace of the Ricci tensor, and is given in

components by R(g) = gi j Ri j .

A comma is used to denote a partial derivative, whereas a semicolon is used

to denote components of the covariant derivative of a tensor. For example, with

Ti jk = gkm T m
i j , we have (∇T )i jk� = Ti jk;� = (gkm T m

i j );� = gkm T m
i j;�, since ∇g = 0.

While the covariant derivative of a function f is naturally a one-form d f , i.e.,

∇ f (X) = ∇X f = X [ f ] = d f (X), sometimes ∇ f is instead taken to be the vector

(d f )
 = gradg f dual to d f , i.e., the gradient of f with respect to the metric g,

so that d f (X) = g(X, gradg f ); the meaning should be clear in context.

The Christoffel symbols 
k
i j for a coordinate frame are defined by

∇ ∂

∂xi

∂

∂x j
= 
k

i j
∂

∂xk
,

and can be computed in terms of the metric as 
k
i j = 1

2
gkm(gmj,i + gim, j − gi j,m).

If u is a smooth function on M , the Hessian of u is defined by Hessgu =∇(du).

It is a (0, 2)-tensor, with (Hessgu)i j = u;i j in components, and moreover it is

symmetric (Exercise 1-9). The Laplacian is the trace of the Hessian:

�gu = trg(Hessgu) = gi j u;i j .

In some texts, the term Laplacian is reserved for the case (M, g) is Riemannian,

and may be defined as the negative of our definition. When (M, g) is Lorentzian,

the trace of the Hessian is often called (again, up to a sign) the wave operator �g.

Geodesic normal coordinates at a point p ∈ M can be useful in computations.

In such a coordinate system, gi j (p) = ±δi j and ∇ ∂

∂xi

∂
∂x j

∣∣
p = 
k

i j

∣∣
p

∂
∂xk

∣∣
p = 0, the

latter condition being equivalent to the vanishing gi j,k(p) = 0 of all the partial

derivatives of the components of g at p. Thus, for example, if T is a (1, 2)-tensor

field, then T k
i j;� = T k

i j,� + 
k
�m T m

i j − 
m
�i T

k
mj − 
m

�j T
k

im , which greatly simplifies at

a point p in normal coordinates. When we use an expression like “at a point in
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normal coordinates”, we generally imply evaluating at the point p around which

the normal coordinates chart is centered.

We will sometimes use “big O” notation: f = O(h) means that | f | ≤ C |h|
for some C > 0, where the quantities may be tensors, with corresponding norms.

Generally one must pay attention to the dependence of C . If f and h are functions

of x , then C might be uniformly chosen for x in a compact subset, or possibly f
is a function of a tensor h, and so the C might depend on the set of tensors under

consideration. Sometimes this notation also implies some bounds on derivatives

of f as well, which will have to be specified in context.

Various function spaces will play a role in some of the analysis herein. We

will in Chapter 6 recall basic definitions of Sobolev and Hölder spaces, and we

encourage the reader to review their basic properties from references such as [2;

86; 107; 144]. We let � be an open subset of �n , sometimes called a domain in
�n . For k a nonnegative integer, we let Ck(�) be the set of all functions u on

� such that u and all its partials up through order k are continuous, and we let

C∞(�) = ⋂∞
k=0 Ck(�).


