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How long does it take
to compute the eigenvalues

of a random symmetric matrix?
CHRISTIAN W. PFRANG, PERCY DEIFT AND GOVIND MENON

We present the results of an empirical study of the performance of the QR
algorithm (with and without shifts) and the Toda algorithm on random sym-
metric matrices. The random matrices are chosen from six ensembles, four
of which lie in the Wigner class. For all three algorithms, we observe a form
of universality for the deflation time statistics for random matrices within the
Wigner class. For these ensembles, the empirical distribution of a normalized
deflation time is found to collapse onto a curve that depends only on the
algorithm, but not on the matrix size or deflation tolerance provided the
matrix size is large enough. For the QR algorithm with the Wilkinson shift,
the observed universality is even stronger and includes certain non-Wigner
ensembles. Our experiments also provide a quantitative statistical picture of
the accelerated convergence with shifts.

1. Introduction

We present the results of a statistical study of the performance of the QR and
Toda eigenvalue algorithms on random symmetric matrices. Our work is mainly
inspired by progress in quantifying the “probability of difficulty” and “typical
behavior” for several numerical algorithms [Demmel 1988; Goldstine and von
Neumann 1951]. This approach has led to a deeper understanding of the efficacy
of fundamental numerical algorithms such as Gaussian elimination and the
simplex method [Rudelson and Vershynin 2008; Sankar et al. 2006; Smale
1983; Tao and Vu 2010]. It has also stimulated new ideas in random matrix
theory [Dumitriu and Edelman 2002; Edelman 1988; Edelman and Sutton 2007].
Testing eigenvalue algorithms with random input continues this effort. In related
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work [Pfrang 2011], we have also studied the performance of a version of the
matrix sign algorithm. However, these results are of a different character, and
apart from some theoretical observations, we do not present any experimental
results for this algorithm (see [Pfrang 2011] for more information). Our study is
empirical — a study of the eigenvalue problem from the viewpoint of complexity
theory is presented in [Armentano 2014].

1.1. Algorithms and ensembles. It is natural to study the QR algorithm because
of its elegance and fundamental practical importance. But in fact all the algo-
rithms we study are linked by a common framework. In each case, an initial
matrix L0 is diagonalized via a sequence of isospectral iterates Lm . The gist of the
framework is that the Lm correspond exactly to the flow of a completely integrable
Hamiltonian system evaluated at integer times. The Hamiltonian for these flows
is of the form tr G(L) where G is a real-valued function defined on an interval.
Different choices of G generate different algorithms: G(x)= x(log x−1) yields
unshifted QR, G(x)= x2/2 yields Toda, and G(x)= |x | yields the matrix sign
algorithm. As noted above, we will not present any numerical experiments
on the matrix sign algorithm (but see Section 2). We note that the practical
implementation of the QR algorithm requires an efficient shifting strategy. Our
work includes a study of the QR algorithm with the Wilkinson shift as discussed
below.

Initial matrices are drawn from six ensembles that arise in random matrix
theory. These are listed below in Section 2.4. For many random matrix ensembles,
as the size of the matrix grows, the density of eigenvalues and suitably rescaled
fluctuations have limiting distributions that may be computed explicitly. Four
of the ensembles we study consist of random matrices with independent entries
subject to the constraint of symmetry. The law of these entries is chosen so that
these ensembles have the Wigner semicircle law as limiting spectral density. We
say that these ensembles are in the Wigner class. Numerical experiments with
these ensembles are contrasted with two ensembles that do not belong to the
Wigner class.

1.2. Deflation and QR with the Wilkinson shift. In evaluating these algorithms
we focus on the statistics of deflation. Given a real, symmetric, n× n matrix L
and an integer k between 1 and n, we write

L =
(

L11 L12

LT
12 L22

)
, L̃ =

(
L11 0
0 L22

)
, (1)

where L11 is a k× k block. Let λ j and λ̃ j , j = 1, . . . , n, denote the eigenvalues
of L and L̃ . For a fixed tolerance ε > 0 we say that L is deflated to L̃ when
the off-diagonal block L12 is so small that max j |λ j − λ̃ j | < ε. The deflation
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time is the number of iterations m before Lm can be deflated by a tolerance
ε > 0 at some index k. The deflation index is this value of k. Since the iterative
eigenvalue algorithms correspond to Hamiltonian flows, there is also a natural
notion of deflation time for the Hamiltonian flows (see equations (17) and (18)
below).

Let us now explain why deflation serves as a useful measure of the time
required to compute the eigenvalues of a matrix. The cost of practical computation
requires an analysis of algorithms, hardware and software. In our study, we only
focus on the algorithm, and “time” is taken to mean the number of iterations
required for convergence. In our experiments we have observed that the QR
and Toda algorithms deflate a matrix at the upper-left or lower-right corner with
high probability. The deflation index for the shifted QR algorithm is n− 1 with
overwhelming probability. The deflation index for unshifted QR is also typically
n− 1 (see Figures 19 and 20). As a consequence, the deflation time is typically
the same as the time taken to compute an eigenvalue. We then expect that
the time taken to compute all eigenvalues with these algorithms is determined
by n deflations. By contrast, we find that the matrix sign algorithm typically
deflates a matrix in the middle and does not immediately yield any eigenvalues.
Instead, these are obtained after a divide-and-conquer procedure that consists of
approximately log2 n deflations. Thus, for all these algorithms a finite sequence
of deflation times determines the number of iterations necessary to compute
eigenvalues. We must note however, that we do not track all deflations in our
experiments, only the first. This restriction is necessary to keep the datasets
manageable as n increases. A more extensive study that tracks all deflation times
for these algorithms will certainly yield further interesting information. Finally,
as we show in Section 2.6 below, the notion of deflation time is also of theoretical
value since it is the starting point for an analysis of the expected number of
iterations for eigenvalue algorithms that is similar in spirit to [Smale 1983].

The convergence of the QR algorithm is greatly accelerated by shifts. We
will only consider the Wilkinson shift, i.e., the shift is the eigenvalue of the
2× 2 lower diagonal corner of the matrix that is closer to Lnn . The QR algo-
rithm on tridiagonal matrices is cubically convergent with this choice of shift
(this is generically true [Wilkinson 1968]; see also [Leite et al. 2010] for a
more careful analysis). As noted above, the unshifted QR algorithm deflates
at index n − 1 with very high probability. Since the Wilkinson shift utilizes
the lower 2× 2 block of the matrix, the number of the iterations required for
shifted QR, as opposed to unshifted QR, to deflate is far smaller. While such
acceleration of convergence is well-known, some features of our experiments
still come as a surprise. For example, a striking feature of Figures 1 and 2 is
that the number of iterations required to deflate a random matrix with the QR
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algorithm (shifted and unshifted) is almost independent of n for matrices as large
as 190× 190.

1.3. Universality. Our main empirical findings concern universal fluctuations in
the deflation time distribution for the QR algorithm (shifted and unshifted) and the
Toda algorithm for ensembles in the Wigner class. We sample the deflation time
for a range of matrix size and deflation tolerance combinations and normalize
these empirical distributions to mean zero and variance one. The resulting
histograms have the same general shape and in particular, the same tails on the
right side (see in particular Figures 4, 7 and 10). In other words, the fluctuations
in deflation time are universal. For the Toda and unshifted QR algorithm, the
observed limiting fluctuations for Wigner and non-Wigner ensembles are distinct
(see Figures 6 and 9). In addition, we find that the universal distributions for
Wigner ensembles have exponential tails for unshifted QR and Gaussian tails for
Toda (Figures 6 and 12). Universality of the tails is quantified with a statistical
methodology developed in [Clauset et al. 2009]. Quite remarkably, for the
(Wilkinson) shifted QR algorithm, the observed universality is stronger: to a
good approximation all tested ensembles show the same limiting distribution
(see Figure 9).

The origin of such universality is not clear. We do not understand fully if
our results are connected with the now familiar universality theorems of random
matrix theory such as those that describe fluctuations in the bulk and at the edge
of the spectrum for the Wigner ensembles [Erdős and Yau 2012; Mehta 2004;
Tracy and Widom 1994]. Unlike these universality theorems, where the mean
and variance are known theoretically, in our work the mean and variance of
the deflation time are computed empirically and we have not yet been able to
determine analytically how these depend on n. It does appear however that the
mean deflation time is linearly proportional to log ε (see Figures 13 and 15).

More broadly, our experiments are suggestive of a wider class of questions
concerning universality of fluctuations for computations in numerical linear
algebra. For example, in similar experiments to be reported elsewhere, one of
the authors (P.D.) and Sheehan Olver have studied the solution x to the linear
equation Ax = b empirically, when A is a random positive symmetric matrix and
b is a random vector. They compute the solution using the conjugate gradient
method and observe universal fluctuations in the number of iterations required
for convergence, independent of the choice of ensemble for A and b.

We now discuss the algorithms and ensembles in greater detail. This is
followed by a description of the results in Section 3. The implementation of the
algorithms is discussed briefly in Section 4.
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2. Algorithms, ensembles and deflation statistics

2.1. Notation. We denote the space of real, symmetric n×n matrices by Symm(n)
and the space of real n×m matrices by Rn×m . Matrices in Symm(n) are denoted
L or M and the iterates of an eigenvalue algorithm are denoted Lm or Mm ,
m = 0, 1, 2, . . . . We use Q to denote an orthogonal matrix and R an upper
triangular matrix with positive diagonal entries, typically with reference to a
QR factorization. We use σ(L) to denote the spectrum of L . The spectral
decomposition of L ∈ Symm(n) is written

L =U3U T ,

where 3 = diag(λ1, λ2, . . . , λn) the matrix of eigenvalues and U denotes the
orthogonal matrix of eigenvectors of L . We also use the following standard
notation. The n× n identity matrix is I ; the standard basis in Rn is (e1, . . . , en);
the unit sphere in Rn+1 and its positive orthant are Sn and Sn

+
, respectively; the

symmetric group of order n is Sn .
When L ∈ Symm(n) is tridiagonal, we let (a1, . . . , an) be its diagonal entries

and (b1, . . . , bn−1) its off-diagonal entries. A Jacobi matrix is a tridiagonal
matrix with bi > 0 for all i . The space of Jacobi matrices is denoted Jac(n).
We use u = U T e1 to denote the first row of the matrix of eigenvectors. When
L ∈ Jac(n), σ(L) is simple and we may assume that λ1 > λ2 > · · · > λn .
Moreover, all the components ui are nonzero and we may assume that ui > 0
(this is also generically true for L ∈ Symm(n)). Let M denote the manifold
{(3, u) ∈ Rn

× Sn
+
|λ1 > λ2 > · · · > λn}. It is a basic result in the spectral and

inverse spectral theory of Jacobi matrices that the matrix L can be reconstructed
if 3 and u are given. More precisely, the spectral map S : Jac(n)→M defined
by L 7→ (3, u) is a diffeomorphism [Deift et al. 1983, Theorem 2].

We use the following standard notation for probabilistic notions. The phrase
independent and identically distributed is abbreviated to iid. A normal random
variable with mean µ and variance σ 2 is denoted N(µ, σ 2); a Bernoulli random
variable that is ±1 with probability 1/2 is denoted B; a random variable with
the χ-distribution with parameter k is denoted χk . The notation X ∼ Y means
that X has the same law as Y .

2.2. The QR algorithm and Hamiltonian eigenvalue algorithms. We assume
the reader is familiar with the QR algorithm (excellent textbook presentations
are [Demmel 1997; Golub and Van Loan 1996; Trefethen and Bau 1997]). In the
unshifted QR algorithm the iterates Mm are generated through QR factorizations
and matrix multiplication in the reverse order:

Qm Rm = Mm, Mm+1 = Rm Qm, m = 0, 1, 2, . . . . (2)
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The shifted QR algorithm relies on a shift µm at each step, and the modified
steps

Qm Rm = Mm −µm I, Mm+1 = Rm Qm +µm I, m = 0, 1, 2, . . . . (3)

Typical shifts, such as the Wilkinson shift, are constructed from the lower 2× 2
block of Mm [Golub and Van Loan 1996, p. 418].

In the early 80s it was discovered that the QR algorithm is intimately connected
with integrable Hamiltonian systems [Symes 1980; 1981/82; Deift et al. 1986;
1983; Nanda 1985]. We summarize these results below. An expanded presentation
of these connections may be found in [Deift et al. 1996; 1993; Pfrang 2011]. A
different exposition that explains these ideas in a fashion “intrinsic” to numerical
linear algebra is [Watkins 1984].

Assume G is a piecewise smooth real-valued function defined on an interval,
and set g = G ′. If g is defined on σ(L), we define g(L) :=Ug(3)U T . Let M−
denote the strictly lower triangular part of the square matrix M , and prkM :=
MT
−
−M−, the projection of M onto skew-symmetric matrices. We then consider

the ordinary differential equation

L̇ = [prkg(L), L]. (4)

Equation (4) defines a completely integrable Hamiltonian flow on the space of
(generic) symmetric matrices with Hamiltonian H(L)= tr G(L) and symplectic
structure detailed in [Deift et al. 1986]. This flow is connected to the unshifted
QR algorithm as follows.

Theorem 1. Let g be a real-valued function defined on σ(L0). Then

(a) The solution to Equation (4) with initial condition L0 is an isospectral
deformation

L(t)= Q(t)T L0 Q(t), (5)

where the orthogonal matrix Q(t) is given by the unique QR factorization

etg(L0) = Q(t)R(t), t ≥ 0, (6)

that has Q(0)= I and depends smoothly on t.

(b) At integer times m = 0, 1, 2 . . . , the solution L(m) satisfies

eg(L(m))
= Mm, (7)

where Mm is the m-th step of the QR algorithm applied to the initial matrix
M0 = eg(L0).
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(c) Assume that the spectrum σ(L0) is simple and that g is injective on σ(L0).
Then L∞ = limt→∞ L(t) is a diagonal matrix consisting of the eigenvalues
of L0.

The case of tridiagonal matrices is of practical and theoretical importance.
When L0 is tridiagonal, so is L(t), and the flow can be linearized using the
spectral map S for Jacobi matrices.

Theorem 2. Assume L0 ∈ Jac(n). Then the solution L(t) to (4) is an isospectral
deformation L(t)=U (t)T3U (t) and the evolution of u(t)=U (t)T e1 and L(t)
is given explicitly by

u(t)=
etg(3)u0

‖etg(3)u0‖
, L(t)= S−1(λ, u(t)). (8)

Assume g is injective on σ(L0). Then

lim
t→∞

L(t)= diag(λσ1, . . . , λσn ), (9)

where σ ∈ Sn is the permutation such that g(λσ1) > · · ·> g(λσn ).

Theorem 1 and Theorem 2 may be used to develop numerical schemes. The
main observation is that each choice of a Hamiltonian H(L)= tr G(L) corre-
sponds to a choice of an algorithm. In particular, we have:

(1) the unshifted QR algorithm: g(x) = log x , G(x) = x(log x − 1) and
HQR(L)= tr [L log L − L] [Nanda 1985];

(2) the Toda algorithm: g(x) = x , G(x) = x2/2 and HToda(L) = 1
2 tr L2 (in

this case, (4) describes the evolution of the Toda lattice [Moser and Zehnder
2005]);

(3) the matrix sign algorithm: g(x)= sign x , G(x)= |x | and Hsign(L)= tr |L|.

Of course, each step of the shifted QR algorithm, L 7→ L −µI , is Hamiltonian,
with Hamiltonian HQR,shift(L)= HQR(L−µI ). While every function G defines
a Hamiltonian not all choices are equally relevant. Since our goal is to find the
spectral decomposition of L0, we must assume that U and 3 are unknown. But
then how are we to compute the matrix-valued functions g(L) or eg(L) efficiently?
The choices g(x) = log x and g(x) = x are special since these give eg(L)

= L
and g(L) = L , respectively. The first choice gives the QR algorithm (strictly
speaking a branch of the logarithm must be chosen so that (4) is well-defined,
but this does not affect the QR algorithm because of (7)). For the second choice
g(x) = x , the vector field (4) is faster to compute than the matrix exponential
eL(m) and it is natural to use an ordinary differential equation solver for (4) to
diagonalize L . This is the essence of the Toda algorithm.
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Our final choice g(x)= sign(x) requires further comment since the observation
that the matrix sign algorithm is Hamiltonian seems to us to be new. Assume zero
is not an eigenvalue of L0 and let6± denote the eigenspaces of L0 corresponding
to positive and negative eigenvalues, respectively. Consider matrices Q± whose
columns form an orthonormal basis for 6±, respectively. Then the matrices
P+= Q+QT

+
and P−= Q−QT

−
are orthogonal projections onto 6±, respectively,

and we find sign(L0) = P+− P− and (I ± sign(L0))/2 = P±. It is immediate
that

et sign(L0) = et P+− e−t P−, and lim
t→∞

e−t et sign(L0) = P+. (10)

The projection P+ has a rank-revealing QR factorization P+=U∞R∞5 [Higham
2008, Chapter 2.5]. The matrix sign algorithm rests on the fact that with U∞ as
above, U T

∞
U∞ = I , and the matrix

L̃ =U T
∞

L0U∞ (11)

is block-diagonal as in (1), where L11 is k × k with k = dim(6+). Clearly,
σ(L̃)= σ(L0).

Thus, the procedure to deflate a matrix using the matrix sign algorithm is:

(1) Given L0, compute sign(L0) and hence P+ = (I + sign(L0))/2.

(2) Compute U∞ using a rank-revealing QR decomposition of P+.

(3) Compute L̃ =U T
∞

L0U∞.

We note that sign(L0) can be computed efficiently using a scaled Newton iteration
and inverse-free modifications of this procedure [Bai et al. 1997; Higham 2008;
Malyshev 1993]. The complete spectral decomposition of L0 may be determined
in a sequence of deflation steps. At each stage, the number of iterations required
to deflate the matrix depends on the number of iterations required to compute
sign(L0).

From the dynamical point of view, let L(t) denote the solution to (4) with
g(L)= sign(L). Then it may be shown that for generic initial data 5= I and
limt→∞ L(t)= L̃ where L̃ =U T

∞
L0U∞ is the block-diagonal matrix obtained

above by the matrix sign algorithm. While this dynamical interpretation of the
matrix sign algorithm is of theoretical interest, it is not clear how to implement
the algorithm numerically in an effective manner.

We have not tested the performance of the matrix sign algorithm with random
input in full generality. Instead, we have tested the deflation behavior of this
algorithm in a more restricted setting by first precomputing sign(L0) and then
using Theorem 2. These results are not presented in this paper: the interested
reader is referred to [Pfrang 2011].
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2.3. Deflation criterion. Consider a symmetric matrix A with eigenvalues

λ1 ≥ · · · ≥ λn,

a symmetric matrix B, a positive number ε and the perturbed matrix A+ εB
with eigenvalues

λ1(ε)≥ · · · ≥ λn(ε).

Standard perturbation theory [Demmel 1997, Theorem 5.1] implies

|λi − λi (ε)| ≤ ε‖B‖2. (12)

When deflating Jacobi matrices the perturbation matrix is of the form

B =
(

0 ET
1k

E1k 0

)
, (13)

where the only nonzero entry in E1k ∈R(n−k)×k is a one in the upper right corner.
Clearly, ‖B‖2 = 1 in this case. For the deflation of full symmetric matrices, the
perturbation matrix has the structure

B =
(

0 BT
21

B21 0

)
, (14)

where again B21 ∈ R(n−k)×k , but now all entries of B satisfy |bi j | ≤ 1. In this
case, one may show that ‖B‖2 ≤

√
k(n− k).

We now define the deflation criterion. If L is a Jacobi matrix define

ε̂k = bk . (15)

If L = (li j ) is a full symmetric matrix, set

ε̂k =
√

k(n− k) max
k<i≤n
1≤ j≤k

|li j |. (16)

Assume Lm is a sequence of iterates (Jacobi or full symmetric) obtained through
an iterative eigenvalue algorithm. For a given tolerance ε > 0 and initial matrix
L0 we define the deflation time

τn,ε(L0)=min
{
m | ε̂k(Lm) < ε for some 1≤ k ≤ n− 1

}
. (17)

For calculations based on the Hamiltonian flow (4) it is more natural to consider
the real valued deflation time

τn,ε(L0)= inf
{
t > 0 | ε̂k(L(t)) < ε for some 1≤ k ≤ n− 1

}
. (18)
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The location where the matrix deflates is called the deflation index:

ιn,ε(L0)= arg min
1≤k≤n−1

ε̂k(Lτn,ε(L0)). (19)

There is an important difference between deflation and the asymptotic con-
vergence guaranteed by Theorem 1. While Theorem 1 may be used to compute
asymptotic rates of convergence as t →∞ [Deift et al. 1983, Theorem 3], in
practice the rate of convergence is determined by deflation and transients play
an important role. We illustrate this with a simple example.

Fix λ1 > λ2 > 0, let 3= diag(λ1, λ2) and consider the QR flow on Symm(2)
with the initial matrix

L0 = Q03QT
0 , Q0 =

(
cos θ0 sin θ0

sin θ0 −cos θ0

)
. (20)

According to Theorem 2, limt→∞ L(t)=3 for every θ0. However, if θ0 ≈ π/2,
L0 is a small perturbation of diag(λ2, λ1), and in practice, the algorithm would
immediately deflate and return L0. But according to Theorem 2, L(t)must evolve
so that the initial diagonal terms “turn around” and are presented in the correct
order diag(λ1, λ2) as t→∞ (see (9)). More generally, consider3= (λ1, . . . , λn)

with λ1>λ2> · · ·>λn > 0. Each permutation σ ∈ Sn yields a distinct fixed point
3σ = (λσ1, . . . , λσn ) for the QR and Toda algorithms. In a numerical calculation,
an initial condition close to 3σ is immediately deflated. Alternatively, iterates
may pass close to one of the permutations 3σ and again deflation occurs at
finite times. However, only the equilibrium (λ1, . . . , λn) attracts generic initial
conditions [Deift et al. 1983]. Thus the notion of convergence as t →∞ and
deflation are completely distinct.

2.4. Ensembles. We now introduce the six ensembles of random matrices that
we will analyze. For general introductions on random matrices see [Deift 1999;
Edelman and Rao 2005; Mehta 2004]. The simplest way to construct an ensem-
ble of random matrices is to choose entries independently subject only to the
constraint of symmetry. Such ensembles are called Wigner ensembles. We also
say that an ensemble lies in the Wigner class if the limiting spectral distribution
for this ensemble is the Wigner semicircle law (described below). We consider
four Wigner ensembles in the Wigner class:

1. the Gaussian orthogonal ensemble (GOE) (independent entries where we
have Mi i ∼

√
2N(0, 1), Mi j ∼ N(0, 1), i > j);

2. the Gaussian Wigner ensemble (GWE) (iid Mi j ∼ N(0, 1), i ≥ j);

3. the Bernoulli ensemble (iid Mi j ∼B, i ≥ j );
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4. the Hermite-1 ensemble on Jacobi matrices (iid ak ∼N(0, 1), k = 1, . . . , n
and independent bk ∼ χk , k = 0, . . . , n− 1).

Items 1–3 are ensembles of full symmetric matrices. The distinction between 1
and 2 is that the variance of the diagonal and off-diagonal entries of matrices in
GOE is different to ensure orthogonal invariance (see [Mehta 2004]). Hermite-1
is an ensemble of Jacobi matrices obtained by applying the Householder tridiago-
nalization procedure to the GOE ensemble. It is a remarkable fact that the entries
remain independent under tridiagonalization (this is not true when matrices from
ensembles (2) and (3) are tridiagonalized).

A choice of an ensemble of random, symmetric matrices is a choice of a
probability measure on the space of symmetric matrices. When the matrix entries
are independent this measure is a product measure. For example, the measure
corresponding to GOE has density

PGOE(M)= 22n/2(2π)−n(n+1)/4e−
1
4 tr(M2). (21)

For all these ensembles, while the matrix entries are independent, the eigenval-
ues are not. The joint density of eigenvalues for GOE and Hermite-1 may be
computed explicitly and is given by the determinantal formula [Mehta 2004,
Chapter 3]

f1(3)=
1
Zn
|4n(λ)|e−

|λ|2
2 , 4n(λ)=

∏
i< j

(λi − λ j ). (22)

The normalization constant Zn may be computed explicitly. By contrast, while
the analogues of (21) for ensembles 2 and 3 are clear, there is no explicit analogue
for (22).

The ensembles 1–4 are in the Wigner class, i.e., for each of these ensembles

lim
n→∞

1
n

#{λi ∈
√

n(a, b)} =
∫ b

a
ν(x) dx, (23)

where ν(x) denotes the density of the Wigner semicircle law

ν(x)=
1

2π

√
4− x2 1|x |≤2. (24)

We will contrast our results on these ensembles with two ensembles of Jacobi
matrices that are not in the Wigner class. These are:

5. the uniform doubly stochastic Jacobi ensemble (UDSJ);

6. the Jacobi uniform ensemble (JUE).

Doubly stochastic Jacobi matrices of dimension n×n form a compact polytope
in Rn−1 which can be equipped with its uniform measure [Diaconis and Wood
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2010]. This is the UDSJ ensemble. We can approximately sample from this
ensemble using a Gibbs sampler.

JUE is defined using the spectral map S for Jac(n). Since we may describe
Jacobi matrices by their spectral data (3, u), a probability measure on the spectral
data pulls back under S−1 to a probability measure on Jac(n). For JUE, we
replace (22) with eigenvalues chosen independently and uniformly on an interval
and u distributed uniformly on the orthant Sn−1

+ . In our numerical simulations we
assume the eigenvalues are uniformly distributed on [−2

√
n, 2
√

n] because this
interval corresponds to the support of the semicircle law and allows a comparison
between JUE and ensembles in the Wigner class. A particularly important aspect
of JUE is that the eigenvalues do not repel one another. This strongly affects the
statistics of τn,ε as shown below (for unshifted QR and Toda, but not for shifted
QR!).

2.5. The normalized deflation time. We have now defined the algorithms, en-
sembles and deflation criterion. For a given algorithm and ensemble, τn,ε(L) and
ιn,ε(L) are random variables that depends on the random initial matrix L and
ε > 0. We explore the empirical distributions of τn,ε and ιn,ε in simulations. Our
main empirical finding is that for each algorithm these empirical distributions
collapse into a universal distribution for the Wigner ensembles 1–4. Let µn,ε

and σ 2
n,ε denote the empirically determined mean and variance of τn,ε(L) for a

particular algorithm and ensemble.
Our simulations suggest that the normalized deflation time

Tn,ε =
τn,ε −µn,ε

σn,ε
(25)

converges in distribution as n→∞ and ε→ 0 and that the limit is the same
for ensembles in the Wigner class (see Figures 4 and 10). Both µn,ε and σn,ε

are computed empirically. Our numerical calculations also suggest that µn,ε ∼

C |log ε| for all ensembles in the Wigner class (see Figures 13 and 15). As
already noted above, a surprising outcome of our simulations is that universality
for shifted QR is more encompassing, and actually holds for all six ensembles
1–6.

In order to prove convergence in distribution of Tn,ε it is first necessary to
estimate the mean and variance of τ . We present below a calculation of µ2,ε that
illustrates the subtle role of eigenvalue repulsion.

2.6. The scaling of the expected deflation time. In this section we estimate the
expected deflation time of the Toda flow on Symm(2). We show that

µ2,ε,GOE ∼ C |log ε|, but µ2,ε,JUE ∼ C |log ε|2, ε→ 0. (26)
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The interval of support for the JUE density is chosen here to be [−1, 1]. This
choice only affects the prefactor C , not the term |log ε|2.

In order to establish these asymptotics, we first determine the deflation time
τε as a function of the initial condition (for brevity we write τε for τ2,ε since
n = 2 is fixed). Since M(t) ∈ Symm(2) we may write M =U (t)3U (t)T , where
3= diag(λ1, λ2), λ1 > λ2, and

U (t)=
(

cos θ(t) sin θ(t)
sin θ(t) −cos θ(t)

)
. (27)

Note that m12 > 0 corresponds to θ ∈ (0, π/2). We use Theorem 2 to obtain

m12(t)= (λ1− λ2) cos θ(t) sin θ(t)= (λ1− λ2) ·
et (λ2−λ1) · tan θ0

1+ e2t (λ2−λ1) tan2 θ0
. (28)

Here θ0 = θ(0). Now we set m12(τε)= ε and solve to find

(λ1−λ2)τε =


0 m12(0)≤ ε,

log tan θ0− log
[
λ1−λ2

2ε
−

√
(λ1−λ2)

2

4ε2 −1
]

m12(0) > ε.

(29)
The asymptotics of τε are easily determined. We have

(λ1− λ2)τε ∼ − log ε+ log tan θ0+ log(λ1− λ2), ε→ 0. (30)

In order to compute the mean deflation time for GOE and JUE we first
change to spectral variables. As noted above, the spectral map S is a diffeomor-
phism between the set of 2× 2 symmetric matrices with m12 > 0 and the set
{λ1 > λ2}× (0, π/2). The Jacobian of this transformation is λ1− λ2, so that

dm11 dm22 dm12 = (λ1− λ2) dλ1 dλ2 dθ. (31)

The mean deflation time for GOE is then given by

µ2,ε,GOE =
1
Z1

∫
∞

−∞

∫ λ1

−∞

∫ π/2

0
τε(λ1, λ2, θ)e−(λ

2
1+λ

2
2)/4(λ1−λ2) dλ1 dλ2 dθ.

(32)
For JUE, the eigenvalues are chosen uniformly from [−1, 1] and we find

µ2,ε,JUE =
1
Z2

∫ 1

−1

∫ λ1

−1

∫ π/2

0
τε(λ1, λ2, θ) dλ2 dλ2 dθ. (33)

Here Z1 and Z2 are normalizing constants for these probability densities.
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The asymptotic behavior of (30), combined with (32) and (33), suggests the
following leading order behavior as ε→ 0:

µ2,ε,GOE ∼
|log ε|

Z1

∫
∞

−∞

∫ λ1

−∞

∫ π/2

0
e−(λ

2
1+λ

2
2)/4 dλ1 dλ2 dθ ∼ C1 |log ε|,

µ2,ε,JUE ∼
|log ε|

Z2

∫ 1

−1

∫ λ1

−1

∫ π/2

0

1
λ1− λ2

1m12>ε dλ1 dλ2 dθ ∼ C2 |log ε|2.

Here Ci denote constants that may be computed explicitly. The second integral
is divergent without the cut-off 1m12>ε : the cut-off gives rise to an additional
factor of |log ε|. With more effort, these formal estimates may be made rigorous.

The analogous calculations for M(t) ∈ Jac(n), n > 2 are quite subtle. For
Jacobi matrices deflation occurs when M(t) approaches the boundary ∂ Jac(n) of
Jac(n) (see for example [Deift et al. 1983, Figs. 6 and 7]). A theoretical analysis
of such deflations, which we have not carried out yet, is a significant challenge
as it requires a detailed understanding of the geometry of both the flow and the
initial probability distribution in the vicinity of ∂ Jac(n) in high dimensions. For
this reason, we are reduced to using the empirical mean µn,ε and variance σ 2

n,ε
to define the normalized deflation time in (25).

3. Results

We generated a large number (typically 5000–10,000) of samples of the deflation
time and the deflation index for each choice of the following parameters:

1. an eigenvalue algorithm (QR without shift, QR with shift, Toda);

2. a random matrix ensemble;

3. matrix size n (typically ranging from 10, 30, . . . , 190);

4. tolerance ε (typically 10−k , k = 2, 4, 6, 8).

We present a representative sample of our main results. Further statistical tests,
figures and tables that amplify our conclusions may be found in [Pfrang 2011].

3.1. Unscaled deflation time statistics for GOE. We first present deflation time
statistics for τn,ε for a fixed ensemble (GOE) for both the QR (shifted and
unshifted) and Toda algorithms. The statistics of τn,ε for the unshifted QR
algorithm are shown in Figure 1. Similar statistics for the QR algorithm with
Wilkinson shift and the Toda algorithm are shown in Figures 2 and 3, respectively.
These figures reflect the typical dependence of these algorithms on n and ε for
ensembles 1–6. Similar statistics for other ensembles may be found in [Pfrang
2011, Chapter 7]. In all cases, we observe that the histograms for the QR
algorithm are relatively insensitive to n and shift to the right as ε decreases. The
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Figure 1. QR algorithm applied to GOE. (a) Histogram for empirical
frequency τn,ε as n ranges from 10, 30, . . . , 190 for a fixed deflation
tolerance ε = 10−8. The curves (10 of them, plotted one on top of
another) do not depend significantly on n. (b) Histogram for empirical
frequency of τn,ε when ε = 10−k , k = 2, 4, 6, 8 for fixed matrix size
n = 190. Curves move to the right as ε decreases.
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Figure 2. Shifted QR algorithm applied to GOE. (a) Histogram for
empirical frequency τn,ε as n ranges from 10, 30, . . . , 190 for a fixed
deflation tolerance ε=10−12. In the case of the unshifted QR algorithm,
curves are insensitive to n, though the tail becomes more pronounced
for larger n. (b) Histogram for empirical frequency τn,ε when ε= 10−k ,
k = 8, 10, 12 for fixed matrix size n = 190. Curves move to the right
as ε decreases.
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Figure 3. Toda algorithm applied to GOE. (a) Histogram for empirical
frequency of τn,ε as n ranges from 10, 30, . . . , 190 for a fixed deflation
tolerance ε = 10−8. Curves drift to the right as n increases. (b) His-
togram for empirical frequency τn,ε when ε = 10−k , k = 2, 4, 6, 8 for
fixed matrix size n = 190. Curves move to the right as ε decreases.

effect of the Wilkinson shift is to sharply reduce the number of iterations required
(note the different scale of the abscissa in Figures 1 and 2). The values of ε
for shifted QR are much smaller than those chosen for QR without shifts. This
choice is necessary to generate a viable data set for the shifted QR algorithm with
sufficient variation in the deflation time. The histograms for the Toda algorithm
shift to the right as n increases and ε decreases, as discussed below.

3.2. Normalized deflation time and universality for the Wigner class. We now
present results that show the collapse of all data onto universal curves depending
only on the algorithm under the rescaling (25). The statistics of the empirical
mean µn,ε and standard deviation σn,ε are discussed a little later. The empirical
distribution of the normalized deflation time Tn,ε for the QR algorithm with initial
data from the Wigner ensembles is shown in Figure 4. All the data contained in
Figure 1 collapse onto the single curve seen in Figure 4(a). Analogous data for
the other Wigner class ensembles 2–4 collapse onto the same universal curve.
The normalized deflation time distributions for UDSJ and JUE are shown in
Figure 5. While we again observe a collapse of the data, it is not onto the curve
of Figure 4(a). This contrast is amplified in the comparison of the tails of the
normalized deflation time (see Figure 6). QQ plots that directly compare the
histograms of these distributions may be found in [Pfrang 2011].

The most obvious difference between the behavior of the unshifted and shifted
QR algorithm is that the spread in the deflation time for the shifted QR algorithm is
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Figure 4. Universal deflation time statistics for QR algorithm applied
to Wigner class. Empirical deflation time normalized as in (25) for
ε = 10−k , k = 2, 4, 6, 8 and n ranging from 10, 30, . . . , 190. Ran-
dom matrix ensembles are (a) GOE; (b) Hermite-1; (c) GWE; and
(d) Bernoulli, with (a)–(d) obtained by rescaling data of 10× 4 fixed-
n and fixed-ε histograms and plotting them together. All these data
collapse onto one universal curve. Plotting all 160 histograms together
in Figure 6 further demonstrates universality of the deflation algorithm.

much narrower. However, this does not seem to affect our general conclusion that
there is universality for each Hamiltonian eigenvalue algorithm. The normalized
deflation time distribution for shifted QR is shown in Figures 7 and 8. Moreover,
for shifted QR, the deflation times vary far less with the choice of underlying
ensemble than the unshifted QR algorithm. In particular, we see a strong similarity
for all ensembles in Figure 9. This behavior is in contrast with that of unshifted
QR, shown in Figure 6.
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Figure 5. QR algorithm applied to non-Wigner ensembles. Normalized
empirical deflation time distributions for QR algorithm with ε = 10−k ,
k = 2, 4, 6, 8 and n ranging from 10, 30, . . . , 190. Random matrix
ensembles are (a) UDSJ and (b) JUE. Each figure contains normalized
empirical data of 40 fixed-n and fixed-ε histograms. All data are
observed to collapse onto a single curve. However, these curves are
not the same for UDSJ and JUE, and neither of these coincides with
curve for Wigner data shown in Figure 4.
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Figure 6. Exponential tail for QR algorithm. Histograms of normal-
ized deflation time for QR algorithms on a logarithmic scale. (a) Wigner
data: Empirical normalized deflation time distributions from all 160
histograms of Wigner class initial data (black dots) are compared with
a gamma distribution with parameters k = 2 and θ = 1 shifted to mean
zero (gray line). (b) non-Wigner data: Empirical normalized deflation
time distributions from 40 GOE histograms (black dots) contrasted
with data from 40 UDSJ histograms (gray squares).
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Figure 7. Universality for shifted QR algorithm on Wigner class. Em-
pirical deflation time for QR algorithm with Wilkinson shift normal-
ized as in (25) with ε = 10−k , k = 8, 10, 12 and n ranging from
10, 30, . . . , 190. Note that ε is significantly smaller than for unshifted
QR algorithm. Ensembles are (a) GOE; (b) Hermite-1; (c) GWE; and
(d) Bernoulli. Figures (a)–(d) are obtained by collapsing data as in
Figure 4. Peak of the TE1 ensemble is lower, and tail shorter, than
those for other three ensembles.

Finally, we have also observed universality for the Toda algorithm. The
empirical distribution of the normalized deflation time for the Wigner ensembles
is shown in Figure 10. Again, all the data contained in Figure 3 collapse onto
the single curve seen in Figure 10(a). Further, analogous data for the other
Wigner ensembles 2–4 collapse onto the same curve. The data for UDSJ and JUE
collapse under normalization, but not onto the same distribution (see Figures 5
and 12).
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Figure 8. Shifted QR algorithm applied to non-Wigner ensembles.
Normalized empirical deflation time distributions for QR algorithm
with Wilkinson shift for ε = 10−k , k = 8, 10, 12 and n ranging from
10, 30, . . . , 190. Random matrix ensembles are (a) UDSJ and (b) JUE.
Note that results for these ensembles seem very similar to those for
Wigner class data shown in Figure 7. UDSJ is similar to full matrix
ensembles, while JUE is similar to TE1, also a tridiagonal ensemble.

Remark 1. We note that for both the QR and Toda algorithms the limiting
distribution of the normalized deflation time Tn,ε for UDSJ and JUE is distinct
from that of ensembles in the Wigner class. This raises the interesting issue in
random matrix theory whether UDSJ and JUE are in the same universality class
as Wigner ensembles and invariant ensembles. As JUE does not have eigenvalue
repulsion built in, this is unlikely to be the case.

3.3. Universal tails for deflation times. We used a hypothesis testing approach
to quantify the statement that the rescaled deflation time has an exponential tail for
QR and a Gaussian tail for Toda. Our approach is modeled on the methodology
of [Clauset et al. 2009]. Given deflation time data D we perform maximum likeli-
hood estimation of parameters for distribution families conditioned on observing
only values above a cutoff value xmin(D) and use a semiparametric approach to
compute p-values for these parameters. Based on D and our parameter estimate,
we compute resampled data sets and a modified Kolmogorov–Smirnov statistic
measuring the distance between the empirical distribution function and the ones
resulting from our maximum likelihood estimates. The semiparametric p-value
is given as the proportion of instances that the resampled data sets yield larger
modified KS statistics than the original. If this p-value is large we accept the
hypothesis that the original data set has in fact the proposed decay in the right tail.
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Figure 9. Comparison of ensembles for shifted QR. Histograms of
normalized deflation time for shifted QR algorithms on a logarithmic
scale. In (a)–(c), GOE (black dots) is contrasted with data from a
second ensemble (gray dots). (a) GOE and TE1: Empirical normalized
deflation time distributions from 40 GOE histograms (black dots) con-
trasted with data from 40 TE1 histograms (gray squares); (b) GOE and
UDSJ; (c) GOE and JUE.

We applied this approach with the Gaussian, Exponential, Weibull and Gamma
families. We found that the exponential tails fit the QR runtime data especially
well for small values of the deflation tolerance. The fit of the Toda runtime data
to Gaussian tails is very compelling across most experimental regimes. Direct
pictorial comparisons of the normalized Toda runtimes with the standard normal
as well as normalized QR runtimes with normalized Gamma distributions are
shown in Figure 6. Further details of the statistical tests may be found in [Pfrang
2011].
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Figure 10. Universal deflation time statistics for Toda algorithm ap-
plied to Wigner class. Empirical deflation time normalized as in (25)
for ε = 10−k , k = 2, 4, 6, 8 and n ranging from 10, 30, . . . , 190. Ran-
dom matrix ensembles are (a) GOE; (b) Hermite-1; (c) GWE; and
(d) Bernoulli, with (a)–(d) obtained by rescaling data of 40 fixed-n and
fixed-ε histograms and plotting them together. All these data collapse
onto one universal curve. Universality is amplified in Figure 12.

3.4. The dependence of µn,ε and σn,ε on n and ε. We used linear regression to
express µn,ε and σn,ε as functions of log ε and n. Only the best fits are reported
here. The data for the QR algorithm was matched very well by

µn,ε ≈ a0+ a1n+ a2 log ε, (34)

σn,ε ≈ b0+ b1n+ b2 log ε. (35)

This regression is compared visually with the numerical data in Figures 13 and 14.
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Figure 11. Toda algorithm applied to non-Wigner ensembles. Nor-
malized empirical deflation time distributions for Toda algorithm with
ε = 10−k , k = 2, 4, 6, 8 and n ranging from 10, 30, . . . , 190. Random
matrix ensembles are (a) UDSJ and (b) JUE; each contains normalized
empirical data of 40 fixed-n and fixed-ε histograms. All data are
observed to collapse onto a single curve. However, curves are not the
same for UDSJ and JUE and neither of these coincides with Wigner
data curve shown in Figure 10.
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Figure 12. Gaussian tail for Toda algorithm. Histograms of normalized
deflation time for QR algorithms on a logarithmic scale. (a) Wigner
data: Empirical normalized deflation time distributions from all 160
histograms of Wigner class initial data (black dots) compared with
standard normal distribution (gray line). (b) non-Wigner data: Empiri-
cal normalized deflation time distributions from 40 GOE histograms
(black dots) contrasted with data from 40 UDSJ histograms (gray
squares).



434 CHRISTIAN W. PFRANG, PERCY DEIFT AND GOVIND MENON

50 100 150

0
5

1
0

1
5

2
0

Matrix Size

A
v
e
ra

g
e
 D

e
fl
a
ti
o
n
 T

im
e

(a)

50 100 150

0
5

1
0

1
5

2
0

2
5

Matrix Size

A
v
e
ra

g
e
 D

e
fl
a
ti
o
n
 T

im
e

(b)

Figure 13. Mean deflation time µn,ε for QR algorithm. Empirical
average of deflation time for ε = 10−k , k = 2, 4, 6, 8 and n in the range
10, 30, . . . , 190. (a) Wigner class initial data: Full lines are empirical
mean µn,ε for GOE, GWE and Bernoulli ensembles. Note that they
seem to align well with one another. Circles are values obtained from
the regression estimate (34) with parameters listed in Table 1. Dashed
line and triangles represent empirical data and regression, respectively,
for Hermite-1 ensemble. (b) JUE and UDSJ initial data: Full line
and dashed line are empirical mean µn,ε for UDSJ and JUE data,
respectively. Circles and triangles are regression estimates for UDSJ
and JUE, respectively. As ε decreases, curves move up monotonically.
Regression is not applied to lowest curve in (b) since ε = 0.01 is
sufficiently large that several matrices deflate instantaneously.

The regression parameters are tabulated in Tables 1 and 2. Since the means and
variances do not visually appear to depend on n for ensembles 1–3 we have
also included the p-values for the t-test of the hypothesis that the coefficient
corresponding to the dimension is zero. Note that µn,ε and σn,ε are almost
identical for the ensembles 1–3 in the Wigner class, while for the Hermite-1
initial data both statistics have a slightly larger value.

Ensemble a0 a1 a2 p-value a1

GOE, GWE, Bernoulli 1.96824 0.0004690 −1.0263649 0.0095
Hermite-1 .802338 −.004554 −1.042907 < 2 · 10−16

UDSJ 0.7648330 −0.0072921 −1.0916354 4.16 · 10−8

JUE 1.844126 −0.003467 −1.276037 0.0256

Table 1. Regression parameters for µn,ε for the unshifted QR algorithm.
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Figure 14. Standard deviation σn,ε of deflation time for QR algorithm.
(a) Ensembles in Wigner class; (b) JUE and UDSJ. Legend as in
Figure 13 with regression parameters from Table 2.
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Figure 15. Mean deflation time µn,ε for Toda algorithm. Mean defla-
tion time distributions of Toda algorithm for initial data described in
Figure 13. (a) Wigner class initial data; (b) JUE and UDSJ initial data.
Legend as in Figure 13 and regression parameters as in Table 3.

Ensemble b0 b1 b2 p-value b1

GOE, GWE, Bernoulli 1.2799509 0.0005311 −0.5854859 0.0118
Hermite-1 0.442622 −.003329 −.617517 8 · 10−15

UDSJ 1.066713 −0.007584 −0.658920 0.000353
JUE 2.0044243 −0.0026034 −0.7961700 0.000185

Table 2. Regression parameters for σn,ε for the unshifted QR algorithm.
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Figure 16. Standard deviation σn,ε of deflation time for Toda algorithm.
(a) Ensembles in the Wigner class; (b) JUE and UDSJ. Legend as in
Figure 13 and regression parameters as in Table 4.

Ensemble a0 a1 a2

GOE, GWE, Bernoulli −6.0669 1.2888 −0.7302
Hermite-1 −7.0273 1.6795 −0.7708
UDSJ −34.01514 0.02984 −6.60133
JUE −2.78614 0.05318 −0.74315

Table 3. Regression parameters for µn,ε for the Toda algorithm. UDSJ
and JUE are fit to (34)–(35) and the Wigner class ensembles are fit to
(36)–(37).

The deflation time depends more strongly on n for the Toda algorithm. We
explored several regressions but our results for Toda are more ambiguous than
for QR. We found that the non-Wigner ensembles (UDSJ and JUE) could be fit
with an expression of the form (34)–(35). However, the Wigner class ensembles
were better suited to the regression

µn,ε ≈ a0+ a1 log n+ a2 log ε (36)

σn,ε ≈ b0+ b1 log n+ b2 log ε (37)

The results of this regression are presented in Figures 15–16 and Tables 3–4.

3.5. Deflation index statistics and the effect of the Wilkinson shift. The re-
markable acceleration of QR by shifting is of course well known. Our experiments
provide a quantitative statistical picture for the efficacy of the shift. Figure 17
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Ensemble b0 b1 b2

GOE, Gaussian Wigner, Bernoulli −1.6532 0.3347 −0.1569
Hermite-1 −2.1233 0.6324 −0.1727
UDSJ −16.46367 0.04845 −3.10561
JUE 0.97525 0.04068 0.01451

Table 4. Regression parameters for σn,ε for the Toda algorithm. UDSJ
and JUE are fit to (34)–(35) and the Wigner class ensembles are fit to
(36)–(37).
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Figure 17. Effect of the Wilkinson shift. Mean deflation time µn,ε

for QR algorithm with Wilkinson shift. (a) Wigner class ensembles;
(b) JUE and UDSJ. Empirical data are generated for ε=10−2, . . . , 10−8

and n = 20, . . . , 190. Empirical data and a regression of the form (34)
are presented in same line-styles as in Figure 13. Observe that µn,ε is
almost independent of n and that curves move upwards as ε decreases,
as in Figure 13, but the scale of the ordinate is different. Regression is
not applied to lowest curve in (b) since ε = 0.01 is sufficiently large
that several matrices deflate instantaneously.

shows that the deflation time is sharply reduced by the Wilkinson shift. Figure 18
shows that the standard deviation of the deflation time is also sharply reduced
by the shift. Deflation takes only a few iterations independent of the size of the
matrix. This is in sharp contrast with the unshifted QR algorithm.

An explanation for the speed-up lies in the statistics of the deflation index
shown in Figure 19. We find that the unshifted QR algorithm deflates at the
bottom right corner of the matrix with high probability. Since the Wilkinson
shift uses only the 2×2 lower-right block of the matrix, small off-diagonal terms
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Figure 18. Standard deviation of deflation time with Wilkinson shift.
(a) Wigner class ensembles; (b) JUE and UDSJ. Line styles are as in
Figure 17 with a regression of the form (35).
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Figure 19. Empirical distributions of deflation index ιn,ε for unshifted
QR algorithm. Figures show histograms of frequency with which defla-
tion occurs at a given off-diagonal index. To aid visibility, distribution
is centered so that peaks do not overlap. Off-diagonal index takes values
between 0 and n− 2. Here “a”, “b” and “c” refer to ensembles with
n= 190, 130 and 70, respectively. Ensembles shown are (a) Hermite-1;
(b) GOE; (c) UDSJ; and (d) JUE.
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Figure 20. Empirical distributions of the deflation index ιn,ε for the
Toda algorithm. Figures show histograms of frequency with which
deflation occurs at a given off-diagonal index. Ensembles are as in
Figure 19.

in this block accelerate the unshifted algorithm greatly. In contrast with the QR
algorithm, the Toda algorithm deflates at both the upper-left and lower-right
corner of the matrix (Figure 20). Note though that deflation is still predominantly
at the corners of the matrix. Similar statistics for other ensembles may be found
in [Pfrang 2011].

4. Methods and implementation

The algorithms were implemented in Python and run on a computing cluster
using the module mpi4py. For numerical computations we relied on the scipy
module except in the case of the RKPW spectral reconstruction procedure [Gragg
and Harrod 1984] which was implemented in C. Our simulation strategy was
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to generate a number N of samples for each (ε, n)-pair of tolerances given by
ε ∈ {10−k

: k = 2, 4, 6, 8} and matrix dimensions n ∈ {10, 30, . . . , 190}. One
initial matrix sample of size ni×ni is used to generate deflation time and deflation
index samples for all pairs (ε̃, ni ), where ε̃ is in our list of tolerances. To do this
we advance the matrix using the algorithm under consideration until we undercut
each of the tolerances in the list and save the corresponding statistics along the
way. Typically for each (ε, n)-combination we generate between 1000 and 5000
samples. In the following we present a short summary of the implementation
strategies chosen for the individual algorithms.

4.1. QR algorithm. Our simulation code uses the QR decomposition and matrix
multiplication methods provided by scipy for the case of full symmetric matrices.
For Jacobi matrices we implemented the efficient (unshifted) QR step presented
for example in [Golub and Van Loan 1996]. We augment these implementations
to include the Wilkinson shift by subtracting (adding) the shift value before
(after) the QR step, respectively.

4.2. Toda algorithm. Both Jacobi and full symmetric matrices are treated simi-
larly for this algorithm. The implementation uses the QR representation (8) to
generate Toda steps Tn as follows:

Mk = exp(Tk)= Qk Rk, (38)

Mk+1 = Rk Qk, (39)

Tk+1 = log(Mk+1). (40)

Our implementation uses scipy routines for the matrix exponentials and matrix
logarithms. Note that in general the matrix exponential of a Jacobi matrix is full
symmetric. scipy is also used for the QR decomposition and standard matrix
multiplication routines for the reverse order multiplication.

Note that we do not use an ordinary differential equation solver to solve (4)
and diagonalize the matrix as proposed in [Deift et al. 1983]. This is because
our goal here is not to develop a competitive numerical scheme, but to compute
reliable statistics of the deflation time for different algorithms. The above
numerical scheme based on QR factorization was validated against both an
ordinary differential equation solver based method and the use of the explicit
solution (8) with the RKPW implementation of the inverse spectral map.
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