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Applications of random matrix theory for
sensor array imaging with measurement noise

JOSSELIN GARNIER AND KNUT SØLNA

The imaging of a small target embedded in a medium is a central problem
in sensor array imaging. The goal is to find a target embedded in a medium.
The medium is probed by an array of sources, and the signals backscattered
by the target are recorded by an array of receivers. The responses between
all pairs of source and receiver are collected so that the available information
takes the form of a response matrix. When the data are corrupted by additive
measurement noise we show how tools of random matrix theory can help to
detect, localize, and characterize the target.

1. Introduction

The imaging of a small target embedded in a medium is a central problem
in wave sensor imaging [Angelsen 2000; Stergiopoulos 2001]. Sensor array
imaging involves two steps. The first step is experimental, it consists in emitting
waves from an array of sources and recording the backscattered signals by an
array of receivers. The data set then consists of a matrix of recorded signals
whose indices are the index of the source and the index of the receiver. The
second step is numerical, it consists in processing the recorded data in order
to estimate the quantities of interest in the medium, such as reflector locations.
The main applications of sensor array imaging are medical imaging, geophysical
exploration, and nondestructive testing.

Recently it has been shown that random matrix theory could be used in order
to build a detection test based on the statistical properties of the singular values of
the response matrix [Aubry and Derode 2009a; 2009b; 2010; Ammari et al. 2011;
2012]. This paper summarizes the results contained in [Ammari et al. 2011;
2012] and extends them into several important directions. First we address in this
paper the case in which the source array and the receiver array are not coincident,
and more generally the case in which the number of sources is different from
the number of receivers. As a result the noise singular value distribution has
the form of a deformed quarter circle and the statistics of the singular value
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associated to the target is also affected. Second we study carefully the estimation
of the noise variance of the response matrix. Different estimators are studied
and an estimator that achieves an efficient trade-off between bias and variance
is proposed. The use of this estimator instead of the empirical estimator used
in the previous versions significantly improves the quality of the detection test
based on the singular value distribution of the measured response matrix when
the number of sensors is not very large. Third we propose an algorithm that can
reconstruct not only the position of the target, but also its scattering amplitude.
The estimator of the scattering amplitude compensates for the level repulsion of
the singular value associated to the target due to the noise.

2. The response matrix

We address the case of a point reflector that can model a small dielectric anomaly
in electromagnetism, a small density anomaly in acoustics, or more generally a
local variation of the index of refraction in the scalar wave equation. We consider
the case in which the contrast of the anomaly (its index of refraction relative
to the one of the background medium) can be of order one but its diameter is
assumed to be small compared to the wavelength. In such a situation it is possible
to expand the solution of the wave equation around the background solution, as
we explain below [Ammari and Kang 2004; Ammari et al. 2001; Ammari and
Volkov 2005].

Let us consider the scalar wave equation in a d-dimensional homogeneous
medium with the index of refraction n0. The reference speed of propagation is
denoted by c. We assume that the target is a small reflector or inclusion D with
the index of refraction nref ¤ n0. The support of the inclusion is of the form
D D xrefCB, where B is a domain with small volume and xref is the location
of the reflector. Therefore the scalar wave equation with the source S.t;x/ takes
the form

n2.x/

c2
@2

t E ��xE D S.t;x/;

where the index of refraction is given by

n.x/D n0C .nref� n0/1D.x/:

In this paper we consider time-harmonic point sources emitting at frequency
!. For any yn; zm far from xref the field Re. OE.yn; zm/e

�i!t / observed at yn

when a point source emits a time-harmonic signal with frequency ! at zm can
be expanded as powers of the volume of the inclusion as

OE.yn; zm/D OG.yn; zm/C k2
0�ref OG.yn;xref/ OG.xref; zm/CO

�
jBj

dC1
d

�
; (1)
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where k0 D n0!=c is the homogeneous wavenumber, �ref is the scattering
amplitude

�ref D

�
n2

ref

n2
0

� 1

�
jBj; (2)

and OG.x; z/ is the Green’s function or fundamental solution of the Helmholtz
equation with a point source at z:

�x
OG.x; z/C k2

0
OG.x; z/D�ı.x� z/: (3)

More explicitly we have

OG.x; z/D

8̂̂̂<̂
ˆ̂:

i

4
H
.1/
0
.k0jx� zj/ if d D 2;

eik0jx�zj

4�jx� zj
if d D 3;

where H
.1/
0

is the Hankel function of the first kind of order zero.
When there are M sources .zm/mD1;:::;M and N receivers .yn/nD1;:::;N , the

response matrix is the N �M matrix A0 D .A0;nm/nD1;:::;N;mD1;:::;M defined
by

A0;nm WD
OE.yn; zm/� OG.yn; zm/: (4)

This matrix has rank one:

A0 D �refurefv
|
ref; (5)

where | stands for the conjugate transpose. The unique nonzero singular value
of this matrix is

�ref D k2
0�ref

� NX
lD1

j OG.yl ;xref/j
2

�1=2� MX
lD1

j OG.zl ;xref/j
2

�1=2

: (6)

The associated left and right singular vectors uref and vref are given by

uref D u.xref/; vref D v.xref/; (7)

where we have defined the normalized vectors of Green’s functions:

u.x/D

�
OG.yn;x/�PN

lD1 j
OG.yl ;x/j

2
�1=2

�
nD1;:::;N

;

v.x/D

�
OG.zm;x/�PM

lD1 j
OG.zl ;x/j

2
�1=2

�
mD1;:::;M

:

(8)
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The matrix A0 is the complete data set that can be collected. In practice the
measured matrix is corrupted by electronic or measurement noise that has the
form of an additive noise, with uncorrelated entries. The purpose of this paper is
to address the classical imaging problems given the measured data set:

(1) Is there a target in the medium? This is the detection problem. In the
absence of noise this question is trivial in that we can claim that there is
a target buried in the medium as soon as the response matrix is not zero.
In the presence of noise, it is not so obvious to answer this question since
the response matrix is not zero due to additive noise even in the absence
of a target. Our purpose is to build a detection test that has the maximal
probability of detection for a given false alarm rate.

(2) Where is the target? This is the localization problem. Several methods can
be proposed, essentially based on the back-propagation of the data set, and
we will describe robust methods in the presence of noise.

(3) What are the characteristic properties of the target? This is the reconstruction
problem. One may look after geometric and physical properties. In fact,
in view of the expression (1)–(2), only the product of the volume of the
inclusion times the contrast can be identified in the regime we address in
this paper.

The paper is organized as follows. In Section 3 we explain how the data should
be collected to minimize the impact of the additive noise. In Section 4 we give
results about the distribution of the singular values of the response matrix, with
special attention on the maximal singular value. In Section 5 we discuss how
the noise level can be estimated with minimal bias and variance. In Section 6
we build a test for the detection of the target and in Section 7 we show how the
position and the scattering amplitude of the target can be estimated.

3. Data acquisition

In this section we consider that there are M sources and N receivers. The
measures are noisy, which means that the signal measured by a receiver is
corrupted by an additive noise that can be described in terms of a circular complex
Gaussian random variable with mean zero and variance �2

n . The recorded noises
are independent from each other.

In the standard acquisition scheme, the response matrix is measured during a
sequence of M experiments. In the m-th experience, mD 1; : : : ;M, the m-th
source (located at zm) generates a time-harmonic signal with unit amplitude and
the N receivers (located at yn, nD 1; : : : ;N ) record the backscattered waves
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which means that they measure

Ameas;nm DA0;nmCWnm; nD 1; : : : ;N; mD 1; : : : ;M;

which gives the matrix
Ameas DA0CW ; (9)

where A0 is the unperturbed response matrix of rank one (4) and Wnm are
independent complex Gaussian random variables with mean zero and variance
�2

n .
The Hadamard technique is a noise reduction technique in the presence of

additive noise that uses the structure of Hadamard matrices.

Definition 3.1. A complex Hadamard matrix H of order M is a M �M matrix
whose elements are of modulus one and such that H |H DM I .

Complex Hadamard matrices exist for all M. For instance the Fourier matrix

Hnm D exp
�
i2�

.n� 1/.m� 1/

M

�
; m; nD 1; : : : ;M; (10)

is a complex Hadamard matrix. A Hadamard matrix has maximal determinant
among matrices with complex entries in the closed unit disk. More exactly
Hadamard [1893] proved that the determinant of any complex M �M matrix
H with entries in the closed unit disk satisfies jdet H j �M M=2, with equality
attained by a complex Hadamard matrix.

We now describe a general multisource acquisition scheme and show the
importance of Hadamard matrices to build an optimal scheme. Let H be an
invertible M �M matrix with complex entries in the closed unit disk. In
the multisource acquisition scheme, the response matrix is measured during a
sequence of M experiments. In the m-th experience, mD 1; : : : ;M, all sources
generate time-harmonic signals with unit amplitude or smaller, the m0 source
generating Hm0m for m0D 1; : : : ;M. In other words, in the m-th experiment, we
can use all the sources up to their maximal transmission power (which we have
normalized to one) and we are free to choose their phases in order to minimize
the effective noise level in the recorded data. In the m-th experiment, the N

receivers record the backscattered waves, which means that they measure

Bmeas;nm D

MX
m0D1

Hm0mA0;nm0 CWnm D .A0H /nmCWnm; nD 1; : : : ;N:

Collecting the recorded signals of the M experiments gives the matrix

Bmeas DA0H CW ;
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where A0 is the unperturbed response matrix and Wnm are independent complex
Gaussian random variables with mean zero and variance �2

n . The measured
response matrix Ameas is obtained by right multiplying the matrix Bmeas by the
matrix H�1:

Ameas WDBmeasH
�1
DA0HH�1

CWH�1; (11)

so that we get the unperturbed matrix A0 up to a new noise

Ameas DA0C
zW ; zW DWH�1: (12)

The choice of the matrix H should fulfill the property that the new noise matrix
zW has independent complex entries with Gaussian statistics, mean zero, and

minimal variance. We have

E
�
zWnm
zWn0m0

�
D

MX
q;q0D1

.H�1/qm.H
�1/q0m0E

�
WnqWn0q0

�
D �2

n ..H
�1/|H�1/mm01n.n

0/:

This shows that we look for a complex matrix H with entries in the unit disk
such that .H�1/|H�1 D cI with a minimal c. This is equivalent to require
that H is unitary and that jdet H j is maximal. Using Hadamard result we know
that the maximal determinant is M M=2 and that a complex Hadamard matrix
attains the maximum. Therefore a matrix H that minimizes the noise variance
should be a Hadamard matrix, such as, for instance, the Fourier matrix (10).
Note that, in the case of a linear array, the use of a Fourier matrix corresponds to
an illumination in the form of plane waves with regularly sampled angles.

When the multisource acquisition scheme is used with a Hadamard technique,
we have H�1 D

1
M

H | and the new noise matrix zW in (12) has independent
complex entries with Gaussian statistics, mean zero, and variance �2

n =M :

E
�
zWnm
zWn0m0

�
D
�2

n

M
1m.m

0/1n.n
0/: (13)

This gain of a factor M in the signal-to-noise ratio is called the Hadamard
advantage.

4. Singular value decomposition of the response matrix

Singular values of a noisy matrix. We consider here the situation in which the
measured response matrix Ameas consists of independent noise coefficients with
mean zero and variance �2

n =M and the number of receivers is larger than the
number of sources N �M. As shown in the previous section, this is the case
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when the response matrix is acquired with the Hadamard technique and there is
no target in the medium.

We denote by � .M /
1
� �

.M /
2
� �

.M /
3
� � � � � �

.M /
M

the singular values of the
response matrix Ameas sorted by decreasing order and byƒ.M / the corresponding
integrated density of states defined by

ƒ.M /.Œ�u; �v �/ WD
1

M
Card

˚
l D 1; : : : ;M ; �

.M /

l
2 Œ�u; �v �

	
for �u < �v:

(14)
For large N and M with N=M D �1 fixed we have the following results which
are classical in random matrix theory [Marchenko and Pastur 1967; Johnstone
2001; Capitaine et al. 2012].

Proposition 4.1. (a) The random measure ƒ.M / almost surely converges to
the deterministic absolutely continuous measure ƒ with compact support:

ƒ.Œ�u; �v �/D

Z �v

�u

1

�n
�

�
�

�n

�
d�; 0� �u � �v; (15)

where � is the deformed quarter-circle law given by

� .x/D

8̂<̂
:

1

�x

q�
.

1
2C1/2�x2

��
x2�.

1
2�1/2

�
if 

1
2�1<x�

1
2C1;

0 otherwise:
(16)

(b) The normalized l2-norm of the singular values satisfies

M

�
1

M

MX
jD1

.�
.M /
j /2� �2

n

�
M!1
�!

p
�2

n Z0 in distribution; (17)

where Z0 follows a Gaussian distribution with mean zero and variance one.

(c) The maximal singular value satisfies

M
2
3

�
�
.M /
1
� �n.

1
2 C 1/

�M!1
�!

�n

2
.1C �

1
2 /

1
3 Z2 in distribution; (18)

where Z2 follows a type-2 Tracy–Widom distribution.

The type-2 Tracy–Widom distribution has the cumulative distribution function
ˆTW2 given by

ˆTW2.z/D exp
�
�

Z 1
z

.x� z/'2.x/ dx

�
; (19)

where '.x/ is the solution of the Painlevé equation

'00.x/D x'.x/C 2'.x/3; '.x/' Ai.x/; x!1; (20)
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Ai being the Airy function. The expectation and variance of Z2 are

E ŒZ2�'�1:77 and Var.Z2/' 0:81:

Detailed results about the Tracy–Widom distributions can be found in [Baik et al.
2008] and their numerical evaluations are addressed in [Bornemann 2010].

Singular values of the perturbed response matrix. The measured response ma-
trix using the Hadamard technique in the presence of a target and in the presence
of measurement noise is

Ameas DA0CW ; (21)

where A0 is given by (4) and W has independent random complex entries with
Gaussian statistics, mean zero and variance �2

n =M. We consider the critical and
interesting regime in which the singular values of the unperturbed matrix are of
the same order as the singular values of the noise, that is to say, �ref is of the
same order of magnitude as �n. The following proposition shows that there is a
phase transition:

(1) Either the noise level �n is smaller than the critical value �1=4�ref and
then the maximal singular value of the perturbed response matrix is a
perturbation of the nonzero singular value of the unperturbed response
matrix; this perturbation has Gaussian statistics with a mean of order one
and a variance of the order of 1=M.

(2) Or the noise level �n is larger than the critical value �1=4�ref and then
the nonzero singular value of the unperturbed response matrix is buried in
the deformed quarter circle distribution of the pure noise matrix and the
maximal singular value of the perturbed response matrix has a behavior
similar to the pure noise case (described in Proposition 4.1).

Proposition 4.2. In the regime M !1:

(a) The normalized l2-norm of the singular values satisfies

M

�
1

M

MX
jD1

.�
.M /
j /2� �2

n

�
M!1
�! �2

refC
p

2�2
n Z0 in distribution; (22)

where Z0 follows a Gaussian distribution with mean zero and variance one.

(b1) If �ref < 
1=4�n, the maximal singular value satisfies

�
.M /
1

M!1
�! �n.

1
2 C 1/ in probability: (23)

More exactly,
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M
2
3

�
�
.M /
1
� �n

�


1
2 C 1

��M!1
�!

1
2
�n
�
1C �

1
2

� 1
3 Z2 in distribution; (24)

where Z2 follows a type-2 Tracy–Widom distribution.

(b2) If �ref > 
1=4�n, then the maximal singular value satisfies

�
.M /
1

M!1
�! �ref

�
1C 

�2
n

�2
ref

�1
2
�

1C
�2

n

�2
ref

�1
2

in probability: (25)

More exactly,

M
1
2

�
�
.M /
1
� �ref

�
1C 

�2
n

�2
ref

�1
2
�

1C
�2

n

�2
ref

�1
2
�

M!1
�!

�n

2

�
1� �4

n =�
4
ref

� 1
2
�
2C .1C  /�2

n =�
2
ref

� 1
2�

1C �2
n =�

2
ref

� 1
2
�
1C �2

n =�
2
ref

� 1
2

Z0; (26)

in distribution, where Z0 follows a Gaussian distribution with mean zero
and variance one.

These results are illustrated in Figure 1. Their proofs can be obtained from
the method described in [Benaych-Georges and Nadakuditi 2011]. Extensions to
heteroscedastic noise can also be obtained as in [Chapon et al. 2014]. Note that
formula (26) seems to predict that the standard deviation of the maximal singular
value cancels when �ref&  1=4�n, but this is true only to the order M�1=2, and
in fact it becomes of order M�2=3 (see Figure 1). Following [Baik et al. 2005]
we can anticipate that there are interpolating distributions which appear when

0 1 2 3 4
2.5

3

3.5

4

4.5

5

σ
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 / σ
n

E
 [
 σ

1
 ]
 /
 σ

n
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0.1

σ
ref

  / σ
n

s
td

 (
 σ

1
 )

 /
 σ

n

Figure 1. Mean and standard deviation of the maximal singular value.
We compare the empirical means (left) and standard deviations (right)
obtained from 104 MC simulations (blue dots) with the theoretical
formulas given in Proposition 4.2 (red dashed lines). Here N D 200

and M D 50 ( D 4).
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Figure 2. Means of the square angles between the perturbed and unper-
turbed singular vectors. We compare the empirical means obtained from
104 MC simulations (blue dots) with the theoretical formulas given in
Proposition 4.3 (red dashed lines). Here N D 200 and M D 50 ( D 4).

�ref D 
1=4�nCwM�1=3 for some fixed w. This problem deserves a detailed

study.

Singular vectors of the perturbed response matrix. It is of interest to describe
the statistical distribution of the angle between the left singular vector u

.M /
1

(resp. right singular vector v
.M /
1

) of the noisy matrix Ameas and the left singular
vector u.xref/ (resp. right singular vector v.xref/) of the unperturbed matrix A0.
This justifies the MUSIC-based algorithm for the target localization algorithm
that we discuss in Section 7.

Proposition 4.3. We consider the case �ref > 
1
4�n. When  D N=M is fixed

and M !1, we have in probabilityˇ̌
.u
.M /
1

/|u.xref/
ˇ̌2 M!1
�!

1� �4
n =�

4
ref

1C �2
n =�

2
ref

;

ˇ̌
.v
.M /
1

/|v.xref/
ˇ̌2 M!1
�!

1� �4
n =�

4
ref

1C �2
n =�

2
ref

:

(27)

Proposition 4.3 shows that the first singular vectors of the perturbed matrix
Ameas have deterministic angles with respect to the first singular vectors of
the unperturbed matrix A0 provided the first singular value emerges from the
deformed quarter-circle distribution. These results are proved in [Benaych-
Georges and Nadakuditi 2011] and they are illustrated in Figure 2.

5. The evaluation of the noise level

Empirical estimator. The truncated normalized l2-norm of the singular values
satisfies (22). Therefore the truncated normalized l2-norm of the singular values
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satisfies

M

�
1

M�.1C�
1
2 /2

MX
jD2

.�
.M /
j /2��2

n

�
M!1
�! b1C

p
�2

n Z0 in distribution;

where Z0 follows a Gaussian distribution with mean zero and variance one, and
the asymptotic bias is

b1 D �
2
ref� N�

2
1 C �

2
n .1C 

1
2 /2: (28)

Here

N�1 Dmax
�
�ref

�
1C 

�2
n

�2
ref

�1
2
�

1C
�2

n

�2
ref

�1
2

; �n.1C 
1
2 /

�
(29)

is the deterministic leading-order value of the maximal singular value as shown
in Proposition 4.2. The normalization in the truncated l2-norm has been chosen
so that, in the absence of a target, the asymptotic bias is zero: b1 j�refD0D 0. This
implies that

O�e
n WD 

� 1
2

�
1

M � .1C �
1
2 /2

MX
jD2

�
�
.M /
j

�2� 1
2

(30)

is an empirical estimator of �n with Gaussian fluctuations of the order of M�1.
This estimator satisfies

M Œ O�e
n � �n�

M!1
�!

b1

2�n
C

�n

2
1
2

Z0 in distribution;

and therefore

O�e
n D �nC o

�
1

M
2
3

�
in probability: (31)

The empirical estimator is easy to compute, since it requires the evaluation of the
Frobenius norm of the measured matrix Ameas and the maximal singular value:

O�e
n D 

� 1
2

�PN
nD1

PM
mD1 jAnmj

2�
�
�
.M /
1

�2
M � .1C �

1
2 /2

� 1
2

: (32)

Corrected empirical estimator. It is possible to improve the quality of the esti-
mation of the noise level and to cancel the bias of the empirical estimator. Using
Proposition 4.2 we can see that the quantity

O�e
ref D

O�e
n
p

2

(�
�
.M /
1

O�e
n

�2

� 1�  C

���
�
.M /
1

O�e
n

�2

� 1� 

�2

� 4

�1
2

) 1
2

(33)
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is an estimator of �ref, provided that �ref>
1=4�n. Therefore, when �ref>

1=4�n,
it is possible to build an improved estimator of the noise variance by removing
from the empirical estimator an estimation of the asymptotic bias which is itself
based on the empirical estimator O�e

n . The estimator of the asymptotic bias that
we propose to use is

Obe
1 D . O�

e
ref/

2
�
�
�
.M /
1

�2
C . O�e

n /
2.1C 

1
2 /2; (34)

and therefore we can propose the following estimator of the noise level �n:

O�c
n WD O�

e
n �

Obe
1

2M O�e
n
: (35)

This estimator satisfies

M Œ O�c
n � �n�

M!1
�!

�n

2
1
2

Z0 in distribution: (36)

This estimator can only be used when O�e
ref >  1=4 O�e

n and it should then be
preferred to the empirical estimator O�e

n .

Kolmogorov–Smirnov estimator. An alternative method to estimate �n is the
approach outlined in [Györfi et al. 1996] and applied in [Shabalin and Nobel
2013], which consists in minimizing the Kolmogorov–Smirnov distance D.�/

between the observed sample distribution of the M �K smallest singular values
of the measured matrix Ameas and that predicted by theory, which is the deformed
quarter circle distribution (16) parametrized by �n. Compared to [Györfi et al.
1996; Shabalin and Nobel 2013] we here introduce a cut-off parameter K that can
be chosen by the user. All choices are equivalent in the asymptotic framework
M !1, but for finite M low values for K give estimators with small variances
but with bias, while large values for K increase the variance but decay the bias
(see Figure 3). We define the new estimator O�K

n of �n as the parameter that
minimizes the Kolmogorov–Smirnov distance. After elementary manipulations
we find that the Kolmogorov–Smirnov estimator is of the form

O�K
n WD argmin

�>0

D
.M /
K

.�/; (37)

where D
.M /
K

.�/ is defined by

D
.M /
K

.�/ WD max
mD1;:::;M�K

ˇ̌̌̌
G

�
�
.M /
MC1�m

�

�
�

m� 1=2

M

ˇ̌̌̌
C

1

2M
; (38)
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Figure 3. Relative bias (left) and standard deviations (right) of different
estimators of the noise level. Here N D 200 and M D 50 ( D 4).

G is the cumulative distribution function with density (16):

G .x/D

8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

0 if x � 
1
2�1;

1

2
C


1
2

�
.1�G.x/2/

1
2�

C1

�
arcsin G.x/

�
�1

�
arctan

1�.
1
2C�

1
2 /G.x/

.1�G.x/2/
1
2 .

1
2��

1
2 /

if 
1
2�1<x�

1
2C1;

1 if 
1
2C1< x;

with

G.x/D
.1C  /�x2

2
1
2

:

If  D 1, we have

G1.x/D

8̂̂̂̂
<̂
ˆ̂̂:

0 if x � 0;

1

2�

�
x
p

4�x2C 4 arcsin x

2

�
if 0< x � 2;

1 if 2< x:

Discussion. The three estimation methods described in the three previous sub-
sections have been implemented and numerical results are reported in Figure 3.

As predicted by the asymptotic theory, the variance of the empirical estima-
tor is equivalent to the one of the corrected empirical estimator, and they are
smaller than the ones of the Kolmogorov–Smirnov estimator. The bias of the
empirical estimator is larger than the bias of the Kolmogorov–Smirnov estimator.
The corrected empirical estimator has a very small bias. The variance of the
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Figure 4. Relative bias (left) and standard deviations (right) of the
final estimator (39) of the noise level. Here N D 200 and M D 50

( D 4).

Kolmogorov–Smirnov estimator increases with K, but its bias decreases with
increasing K. From these observations we conclude:

� When O�e
ref>

1=4 O�e
n , it is recommended to use the corrected empirical estimator

(35). It is the one that has the minimal bias and the minimal variance amongst
all the estimators studied in this paper, but it can only be applied in the regime
when the singular value corresponding to the target is outside the deformed
quarter-circle distribution of the noise singular values.

� When O�e
ref <  1=4 O�e

n , it is recommended to use the Kolmogorov–Smirnov
estimator (37) with K D 1. Although its variance is larger than the one of the
empirical estimator, its bias is much smaller and, as a result, it is the one that
has the minimal quadratic error (sum of the squared bias and of the variance).

To summarize, the estimator of the noise variance that we will use in the
following is

O�fn D 1 O�e
ref�

1=4 O�e
n
O�KD1

n C 1 O�e
ref>

1=4 O�e
n
O�c

n : (39)

Its bias and standard deviation are plotted in Figure 4.

6. Detection test

Consider the response matrix in the presence of measurement noise:

Ameas DA0CW ;

where A0 is zero in the absence of a target and equal to (4) when there is a target.
The matrix W models additive measurement noise and its complex entries are
independent and identically distributed with Gaussian statistics, mean zero and
variance �2

n =M.
The objective is to propose a detection test for the target. Since we know that

the presence of a target is characterized by the existence of a significant singular
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value, we propose to use a test of the form R> r for the alarm corresponding
to the presence of a target. Here R is the quantity obtained from the measured
response matrix and defined by

RD
�
.M /
1

O�n
; (40)

where O�n is the known value of �n, if known, or the estimator (39) of �n. Here
the threshold value r of the test has to be chosen by the user. This choice follows
from Neyman–Pearson theory as we explain below. It requires the knowledge
of the statistical distribution of R which we give in the following proposition,
which is a corollary of Proposition 4.2 (and Slutsky’s theorem).

Proposition 6.1. In the asymptotic regime M � 1 the following statements hold.

(a) In the absence of a target we have up to a term of order o.M�2=3/:

R' 1C 
1
2 C

1

2M
2
3

.1C �
1
2 /

1
3 Z2; (41)

where Z2 follows a type-2 Tracy–Widom distribution.

(b) In presence of a target:

(b1) If �ref > 
1=4�n, then we have, up to a term of order o.M�1=2/,

R'
�ref

�n

�
1C 

�2
n

�2
ref

�1
2
�

1C
�2

n

�2
ref

�1
2

C
1

2M
1
2

 �
1� �4

n =�
4
ref

��
2C .1C  /�2

n =�
2
ref

�
�
1C �2

n =�
2
ref

��
1C �2

n =�
2
ref

�1
2

!1
2

Z0; (42)

where Z0 follows a Gaussian distribution with mean zero and variance
one.

(b2) If �ref < 
1=4�n, then we have (41).

The data (i.e., the measured response matrix) gives the value of the ratio R.
We propose to use a test of the form R> r for the alarm corresponding to the
presence of a target. The quality of this test can be quantified by two coefficients:

(1) The false alarm rate (FAR) is the probability to sound the alarm while there
is no target:

FARD P.R> r˛j no target/:

(2) The probability of detection (POD) is the probability to sound the alarm
when there is a target:

PODD P.R> r˛j target/:
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As is well-known in statistical test theory, it is not possible to find a test that
minimizes the FAR and maximizes the POD. However, by the Neyman–Pearson
lemma, the decision rule of sounding the alarm if and only if R> r˛ maximizes
the POD for a given FAR ˛, provided the threshold is taken to be equal to

r˛ D 1C 
1
2 C

1

2M
2
3

.1C �
1
2 /

1
3ˆ�1

TW2.1�˛/; (43)

where ˆTW2 is the cumulative distribution function (19) of the Tracy–Widom
distribution of type 2. The computation of the threshold r˛ is easy since it
depends only on the number of sensors N and M and on the FAR ˛. We have,
for instance,

ˆ�1
TW2.0:9/'�0:60; ˆ�1

TW2.0:95/'�0:23; ˆ�1
TW2.0:99/' 0:48:

These values are used in the detection tests whose POD are plotted in Figure 5.
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Figure 5. Probability of detection (POD) for the detection test cali-
brated with the threshold values r˛ with ˛D 0:1 (left), ˛D 0:05 (right),
and ˛D 0:01 (bottom). Here N D 200 and M D 50. The blue solid and
dotted lines correspond to the results of 104 MC simulations, in which
the noise level is known (thick solid lines) or estimated by (39) (thick
dotted lines). The dashed lines are the FAR desired in the absence of a
target, which should be obtained when �ref D 0.
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The POD of this optimal test (optimal amongst all tests with the FAR ˛) de-
pends on the value �ref and on the noise level �n. The theoretical test performance
improves very rapidly with M when �ref > 

1=4�n. When �ref < 
1=4�n, so

that the target is buried in noise (more exactly, the singular value corresponding
to the target is buried in the deformed quarter-circle distribution of the other
singular values), then we have PODD 1�ˆTW2.ˆ

�1
TW2

.1�˛//D ˛.
The POD of the test (40) calibrated for different values of the FAR is plotted

in Figure 5. One can observe that the calibration with r˛ gives the desired FAR
and that the POD rapidly goes to one when the singular value �ref of the target
becomes larger than  1=4�n. Furthermore, the use of the estimator (39) for the
noise level �n is also very efficient in that we get almost the same FAR and POD
with the true value �n as with the estimator O�fn . In Figure 6 we plot the POD
obtained with other estimators of the noise level in order to confirm that the
estimator O�fn defined by (39) is indeed the most appropriate.
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Figure 6. Probability of detection (POD) for the detection test cali-
brated with the threshold values r˛ with ˛D 0:1 (left), ˛D 0:05 (right),
and ˛ D 0:01 (bottom). Here N D 200 and M D 50. The blue lines
correspond to the results of 104 MC simulations, in which the noise
level is known (thick solid lines) or estimated by (39) (thick dotted
lines) or estimated by the estimators (30) and (37) (thin dashed lines).
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7. Target localization and reconstruction

In this section we would like to present simple and robust way to localize the
target and reconstruct its properties once the detection test has passed. By simple
we mean that we will only use the first singular value and left singular vector
of the response matrix, and by robust we mean a procedure that allows for
estimations with bias and variance as small as possible.

Localization. A standard imaging functional is the MUSIC functional defined
by [Ammari et al. 2011]:

IMUSIC.x/ WD
u.x/�

�
u
.M /
1

|
u.x/

�
u
.M /
1

� 1
2 D

�
1�

ˇ̌
u.x/|u

.M /
1

ˇ̌2�� 1
2 ;

where u.x/ is the normalized vector of Green’s functions (8) and u
.M /
1

is the
first left singular vector of the measured response matrix Ameas. The MUSIC
functional is the projection of the Green’s vector u.x/ from the receiver array to
the search point x onto the noise space of the measured response matrix.

In the absence of noise the MUSIC functional presents a peak at x D xref.
Indeed, in this case, we have u

.M /
1
D u.xref/ (up to a phase term) and therefore

IMUSIC.x/ becomes singular at x D xref. Furthermore, we can quantify the
accuracy of the reflector localization as follows. When the arrays surround the
search region, the singular vectors u.x/ can be shown to be orthogonal to u.xref/

when the distance between the search point x and the target point xref becomes
larger than half a wavelength. This can be shown using Helmholtz–Kirchhoff
identity and this gives the resolution of the imaging functional: one can get the
position of the reflector within the accuracy of half a wavelength. When the
arrays are partial, then the accuracy can be described in terms of the so-called
Rayleigh resolution formulas [Elmore and Heald 1969; Garnier and Papanicolaou
2010].

In the presence of noise the peak of the MUSIC functional is affected. By
Proposition 4.3, in the regime M � 1, the value of the MUSIC functional at an
arbitrary point x ¤ xref is one while the theoretical value at x D xref is given by

IMUSIC.xref/D .1� cu/
� 1

2 ;

where cu is the theoretical angle between the first left singular vector u.xref/ of
the unperturbed matrix A0 and the first left singular vector u

.M /
1

of the measured
response matrix Ameas:

cu D

8̂<̂
:

1� �4
n =�

4
ref

1C �2
n =�

2
ref

if �ref > 
1
4�n;

0 if �ref < 
1
4�n:
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Therefore, provided the detection test has passed, which means that the target
singular value is larger than the noise singular values, the MUSIC algorithm
gives a robust and simple way to estimate the position of the reflector. The
estimator of xref that we propose is

Oxref WD argmax
x

IMUSIC.x/: (44)

Note that more complex and computationally expensive algorithms (using reverse-
time migration) can improve the quality of the estimation as shown in [Ammari
et al. 2012].

Reconstruction. Using Proposition 4.2 we can see that the quantity

O�ref D
O�n
p

2

(�
�
.M /
1

O�n

�2

� 1�  C

���
�
.M /
1

O�n

�2

� 1� 

�2

� 4

�1
2

) 1
2

(45)

is an estimator of �ref, provided that �ref > 
1
4�n. Here O�n is the known value of

�n, if known, or the estimator (39) of �n. In practice, if the detection test passes,
then this implies that we are in this case. From (6) we can therefore estimate the
scattering amplitude �ref of the inclusion by

O�ref D
c2

0

!2

� NX
nD1

j OG.!; Oxref;yn/j
2

�� 1
2
� MX

mD1

j OG.!; Oxref; zm/j
2

�� 1
2

O�ref; (46)

with O�ref the estimator (45) of �ref and Oxref is the estimator (44) of the position of
the inclusion. This estimator is not biased asymptotically because it compensates
for the level repulsion of the first singular value due to the noise.

Numerical simulations. We consider the following numerical set-up: the wave-
length is equal to one. There is one reflector with scattering amplitude �ref D 1,
located at xref D .0; 0; 50/. We consider a linear array of N D 200 transducers
located half a wavelength apart on the line from .�50; 0; 0/ to .50; 0; 0/. Each
transducer is used as a receiver, but only one of four is used as a source (therefore,
M D 50 and  D 4). The noise level is �n D �ref=4 or �ref=2, where �ref is the
singular value associated to the reflector (given by (6)).

We have carried out a series of 104 MC simulations (using the estimator (39)
of �n). The results are reported in Figure 7 for �n D �ref=4 and in Figure 8 for
�n D �ref=2:

(1) The reflector is always detected when �n D �ref=4 and it is detected with
probability 97% when �n D �ref=2 (in agreement with the POD plotted in



242 JOSSELIN GARNIER AND KNUT SØLNA

−0.1 −0.05 0 0.05 0.1
0

10

20

30

40

x

h
is

to
g

ra
m

 o
f 
x

re
f

49.5 50 50.5
0

2

4

6

8

z

h
is

to
g

ra
m

 o
f 
z

re
f

0.8 0.9 1 1.1 1.2 1.3
0

5

10

15

20

ρ

h
is

to
g

ra
m

 o
f 

ρ
re

f

Figure 7. Top: histograms of the estimated cross-range position Oxref

(left) and estimated range position Ozref (right) given by (44). Bottom:
histogram of the estimated scattering amplitude O�ref given by (46) (solid
lines) or O�e

ref given by (47) (dashed lines). Here �n D �ref=4.

Figure 5).

(2) The estimator Oxref defined by (44) of the position of the reflector has good
properties. The histograms of the estimated positions Oxref D . Oxref; 0; Ozref/

are plotted in the top row of Figures 7 and 8.

(3) The estimator O�ref defined by (46) of the scattering amplitude has no bias
because it uses the inversion formula (45) which compensates for the level
repulsion of the first singular value. We plot in the bottom row of Figures 7
and 8 the histogram of the estimated scattering amplitude and we compare
with the empirical estimator

O�e
ref D

c2
0

!2

� NX
nD1

j OG.!; Oxref;yn/j
2

�� 1
2
� MX

mD1

j OG.!; Oxref; zm/j
2

�� 1
2

�
.M /
1

;

(47)
which has a large bias.
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Figure 8. The same as in Figure 7, but here �n D �ref=2.

8. Conclusion

In this paper we have presented a few results that show how random matrix
theory can be used in sensor array imaging. It turns out that most of the needed
results are already available in the literature in the case addressed in this paper,
that is, when the response matrix is perturbed by an additive measurement noise.
However, the most interesting questions arise in the presence of clutter noise,
which is the case in which the data are corrupted by perturbations due to random
heterogeneities present in the medium. In this case the random perturbation of
the response matrix cannot be described in terms of an additive uncorrelated
noise, but it has special correlation structure [Aubry and Derode 2009a; Fouque
et al. 2007]. This case certainly deserves more attention and more work.
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