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CLT for spectra of submatrices
of Wigner random matrices, II:

Stochastic evolution
ALEXEI BORODIN

We show that the global fluctuations of spectra of GOE and GUE matrices and
their principal submatrices executing Dyson’s Brownian motion are Gaussian
in the limit of large matrix dimensions. For nested submatrices one obtains
a limiting three-dimensional generalized Gaussian process; its restrictions to
two-dimensional sections that are monotone in matrix sizes and time moments
coincide with the two-dimensional Gaussian free field with zero boundary
conditions. The proof is by moment convergence, and it extends to more
general Wigner matrices and their stochastic evolution.

Introduction. The fact that the global spectral fluctuations of a GOE or a GUE
random matrix evolving under Dyson’s Brownian motion, are asymptotically
Gaussian is well-known; see [Anderson et al. 2010, Section 4.3.3] and references
therein, and also [Spohn 1998] for a general β analog. On the other hand, it
was shown in [Borodin 2014] that the global fluctuations of spectra of various
principal submatrices of a single GOE or GUE matrix are also Gaussian. The
goal of this article is to put these two statements together.

We prove the asymptotic Gaussian behavior for submatrices of a class of
stochastically evolving Wigner random matrices that includes Dyson’s Brownian
motion for GOE and GUE. The proof is by the method of moments, and the
argument is slightly more general than the one presented in [Anderson et al.
2010] for a single Wigner matrix.

We also compute the resulting covariance kernel explicitly. In the case of
nesting submatrices, it represents a three-dimensional generalized Gaussian
process, where one dimension comes from the position of the spectral variable,
the second dimension reflects the size of the submatrix, and the third dimension
is the time variable. When restricted to the two-dimensional sections that are
monotone in matrix size and time variables, it reproduces the two-dimensional
Gaussian free field (GFF) with zero boundary conditions.

In the case of GUE, the appearance of GFF on monotone sections could
have been predicted from the determinantal structure of the correlation functions
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[Ferrari and Frings 2010; Adler et al. 2010b], and from the analysis of [Borodin
and Ferrari 2014] that showed how such a structure leads to GFF covariances
in the global asymptotic regime. However, the complete three-dimensional
covariance structure seems to be inaccessible via that approach for example
because the spectra of the full set of submatrices evolve in a non-Markovian way
[Adler et al. 2010a].

Wigner matrices. Let {Zi j (t)} j>i≥1,t∈R and {Yi (t)}i≥1,t∈R be two families of in-
dependent identically distributed real-valued stochastic (not necessarily Markov)
processes with zero mean such that for any k ≥ 1,

max
t∈R

(E|Z12(t)|k, E|Y1(t)|k) <∞.

Set c(s, t)= 1
2 EY1(s)Y1(t) and assume that

c(s, t)≥ 0, c(t, t)≡ 1,

EZ12(s)Z12(t)≡ c(s, t), EZ2
12(s)Z

2
12(t)≡ 2c(s, t)2+ 1.

Note that by Cauchy’s inequality c(s, t) ≤
√

c(s, s)c(t, t) = 1. We say that a
function c(s, t) is admissible if it arises in this way.

One possibility for the above relations to be satisfied is to take all {2−
1
2 Yi (t)}

and {Zi j (t)} to be independent standard Ornstein–Uhlenbeck processes on R;
then c(s, t) = exp(−|s − t |). We will refer to this possibility as to Gaussian
specialization.

Define a real symmetric time-dependent Wigner matrix X (t)=[X (i, j | t)]i, j≥1

by

X (i, j | t)= X ( j, i | t)=
{

Zi j (t), i < j,
Yi , i = j.

A Hermitian variation of the same definition is as follows: Let {Zi j } j>i≥1

now be complex-valued (i.i.d., zero-mean) stochastic processes with the same
uniform bound on all moments. Denote c(s, t)= EY1(s)Y1(t) and assume that

c(s, t)≥ 0, c(t, t)≡ 1,

EZ12(s)Z12(t)≡ 0, EZ12(s)Z12(t)≡ c(s, t),

E|Z12(s)|2|Z12(t)|2 ≡ c(s, t)2+ 1.

We will also say that a function c(s, t) is admissible if it arises in this way.
There is also a Gaussian specialization that corresponds to {Yi (t)} and

{2
1
2<Zi j (t)}, {2

1
2=Zi j (t)}

being independent standard Ornstein–Uhlenbeck processes on R; in that case
c(s, t)= exp(−|s− t |).
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Define a Hermitian time-dependent Wigner matrix X (t)= [X (i, j | t)]i, j≥1 by

X (i, j | t)= X ( j, i | t)=
{

Zi j (t), i < j,
Yi , i = j.

Under the Gaussian specializations, the matrix stochastic processes defined
above are called Dyson’s Brownian motions. Traditionally one distinguishes the
two cases by a parameter β that takes value 1 in the real symmetric case and
value 2 in the Hermitian case. The random matrices arising at a single time
moment are said to belong to the Gaussian orthogonal ensemble (GOE) in the
β = 1 case, and Gaussian unitary ensemble (GUE) in the β = 2 case.

The height function. For any finite set B⊂{1, 2, . . . } denote by X B the |B|×|B|
submatrix of a matrix X formed by the intersections of the rows and columns of
X marked by elements of B.

The height function H associated to a time-dependent Wigner matrix X is a
random integer-valued function on R×R≥1×R defined by

H(x, y, t)=

√
βπ

2

{
the number of eigenvalues of X{1,2,...,[y]}(t) that are ≥ x

}
.

More generally, let A = {an}n≥1 be an arbitrary sequence of pairwise distinct
natural numbers. Then we define the height function HA via

HA(x, y)=

√
βπ

2

{
the number of eigenvalues of X{a1,...,a[y]}(t) that are ≥ x

}
.

The first definition corresponds to A = N.
The convenience of the constant prefactor

√
βπ/2 will be evident shortly.

A three-dimensional Gaussian field. Let c(s, t) be an admissible function as
defined above. Set H= {z ∈ C | =z > 0} and introduce a function

C : (H×R)× (H×R)→ R∪ {+∞}

via

C(z, s;w, t)=
1

2π
ln
∣∣∣∣c(s, t)min(|z|2, |w|2)− zw
c(s, t)min(|z|2, |w|2)− zw

∣∣∣∣
=


−

1
2π

ln
∣∣∣∣c(s, t)z−w
c(s, t)z−w

∣∣∣∣, |z| ≤ |w|,
−

1
2π

ln
∣∣∣∣c(s, t)w− z
c(s, t)w− z

∣∣∣∣, |z|> |w|.
It is easy to see that for any (s, t) with c(s, t) < 1, C( · , s; · , t) is a continuous
function on H×H. Note also that if c(s, t)= 1 then



60 ALEXEI BORODIN

C(z, s;w, t)=−
1

2π
ln
∣∣∣∣ z−wz− w̄

∣∣∣∣
is the Green function for the Laplace operator on H with Dirichlet boundary
conditions. Viewed as a function in (z, w), it represents the covariance for the
two-dimensional Gaussian free field on H with zero boundary conditions.

Proposition 1. For any admissible function c(s, t) as above, there exists a gen-
eralized Gaussian process on H×R with the covariance kernel C(z, s;w, t) as
above. More exactly, for any finite family of test functions fm(z) ∈ C0(H×R)

the covariance matrix

cov( fk, fl)=

∫
H×R

∫
H×R

fk(z, s)fl(w, t)C(z, s;w, t) dz dz̄ ds dw dw̄ dt,

k, l = 1, . . . ,M,

is positive definite.

Denote the resulting generalized Gaussian process by Gc(s,t).
A proof of Proposition 1 will be given later.

Complex structure. Let A be a sequence of pairwise distinct integers. The
height function HA(x, y, t) (or H(x, y, t)= HN(x, y, t)) is naturally defined on
R×R≥1×R. Having the large parameter L , we would like to scale (x, y) 7→
(L−

1
2 x, L−1 y), which lands us in R×R>0×R.

Wigner’s semicircle law implies that for any t ∈R, with L� 1, x ∼ L
1
2 , y∼ L ,

after rescaling with overwhelming probability the eigenvalues (or, equivalently,
the places of growth of the height function in x-direction) are concentrated in
the domain {

(x, y) ∈ R×R>0 | −2
√

y ≤ x ≤ 2
√

y
}
.

Let us identify the interior of this domain with H via the map

� : (x, y) 7→ x
2
+ i

√
y−

( x
2

)2
.

Its inverse has the form

�−1(z)= (x(z), y(z))= (2<(z), |z|2).

Note that this map sends the boundary of the domain to the real line.
Thanks to � we can now speak of the height function HA as being defined on

H×R; we will use the notation

H�
A (z; t)= HA(L

1
2 x(z), Ly(z), t), z ∈ H.

Note that we have incorporated rescaling in this definition.
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Main result. Let X be a (real symmetric or Hermitian) time-dependent Wigner
matrix. We argue that the centralized random height function

H�(z; t)− EH�(z; t), z ∈ H, t ∈ R,

viewed as distribution, converges as L→∞ to the generalized Gaussian process
Gc(s,t) with c(s, t)= 1

2β EY1(s)Y1(t).
One needs to verify the convergence on a suitable set of test functions. The

exact statement that we prove is the following.

Theorem 2. Pick τ ∈ R, y > 0, and k ∈ Z≥0. Define a moment of the random
height function by

Mτ,y,k =

∫
+∞

−∞

xk(H(L 1
2 x, Ly, τ )− EH(L

1
2 x, Ly, τ )

)
dx .

Then as L →∞, these moments converge, in the sense of finite dimensional
distributions, to the moments of Gc(s,t) defined as

Mτ,y,k =

∫
z∈H
|z|2=y

(x(z))k Gc(s,t)(z; τ)
dx(z)

dz
dz.

Monotone sections as two-dimensional Gaussian free fields. Consider a time-
dependent Wigner matrix and assume that the function c(s, t)= 1

2β EY1(s)Y1(t)
is continuous and that it has the following monotonicity property: For any
s ∈ R, c(s, t) is strictly increasing in t ∈ (−∞, s] and it is strictly decreasing
in t ∈ [s,+∞). In other words, as time distance between matrices grows, the
correlation decays. Further, assume that c(s, t) 6= 0 for any s, t ∈ R.

Let φ : R → R>0 and ψ : R → R be a continuous nonincreasing and a
continuous nondecreasing functions, and assume that for at least one of these
functions the monotonicity is strict.

Our goal is to consider the joint fluctuations of spectra of matrices

X{1,2,...,[Lφ(t)]}(ψ(t)), t ∈ R, (1)

where L � 1 is a large parameter. By Wigner’s semicircle law, the spectrum of
such a matrix scaled by L

1
2 is concentrated on [−2

√
φ(t), 2

√
φ(t)].

The two extreme cases are φ(t)≡ const (the size of the matrices is fixed and
the time is moving) and ψ(t)≡ const (the time moment is fixed and the size of
the matrices is changing).

Let us choose a reference time moment t0 ∈ R and introduce a map

4 :
{
(x, t) ∈ R×R | −2

√
φ(t) < x < 2

√
φ(t)

}
→ H
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as

4(x, t)=


c(ψ(t0), ψ(t))

(
x
2
+ i

√
φ(t)−

( x
2

)2
)
, t ≥ t0,

1
c(ψ(t), ψ(t0))

(
x
2
+ i

√
φ(t)−

( x
2

)2
)
, t < t0.

The continuity and monotonicity assumptions on c, φ, and ψ are needed for 4
to be a bijection. Hence, its inverse is correctly defined, denote it as 4−1(ζ )=

(x(ζ ), t (ζ )).
We can now view the height function H for matrices (1) as a function on H

via
H4(ζ )= H

(
L

1
2 x(ζ ), Lφ(t (ζ )), ψ(t (ζ ))

)
.

Our main result implies that the centralized height function

H4(ζ )− EH4(ζ ), ζ ∈ H,

viewed as a distribution, converges as L→∞ to the Gaussian free field on H in
the sense of Theorem 2.

Moments as traces. Let us rescale the variable x = L−
1
2 u in the definition of

Mτ,y,k and then integrate by parts. Since the derivative of the height function
H(u, [Ly], t) in u is

d
du

H(u, [Ly], t)=−

√
βπ

2

[Ly]∑
s=1

δ(u− λs),

where {λs}1≤s≤[Ly] are the eigenvalues of X{1,...,[Ly]}(t), we obtain

Mτ,y,k = L−
k+1

2

√
βπ

2

( [Ly]∑
s=1

λk+1
s

k+ 1
− E

[Ly]∑
s=1

λk+1
s

k+ 1

)

=
L−

k+1
2

k+ 1

√
βπ

2

(
Tr(X k+1

{1,...,[Ly]}(t))− E Tr(X k+1
{1,...,[Ly]}(t))

)
.

We can now reformulate the statement of Theorem 2 as follows.

Theorem 2′. Let X(t) be a time-dependent (real symmetric or Hermitian) Wigner
matrix with

c(s, t)=
β

2
EY1(s)Y1(t).

Let k1, . . . , km ≥ 1 be integers, t1, . . . , tm real numbers, and y1, . . . , ym positive
real numbers. The m-dimensional random vector(

L−
k p
2
(
Tr(X kp

{1,...,[Lyp]}
(tp))− E Tr(X kp

{1,...,[Lyp]}
(tp))

))m

p=1
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converges (in distribution and with all moments) to the zero mean m-dimensional
Gaussian random vector (ξp)

m
p=1 with covariance

Eξpξq =
2kpkq

βπ

∮
|z|2=bp
=z>0

∮
|w|2=bq
=w>0

(x(z))kp−1(x(w))kq−1

×
1

2π
ln
∣∣∣∣c(tp, tq)min(yp, yq)− zw
c(tp, tq)min(yp, yq)− zw̄

∣∣∣∣ dx(z)
dz

dx(w)
dw

dz dw.

More general submatrices. In the spirit of [Borodin 2014], we will actually
prove a more general claim that involves arbitrary sequences of symmetric
submatrices of the Wigner matrix that are sufficiently well-behaved. The exact
statement is as follows.

Theorem 2′′. Let X (t) be a time-dependent (real symmetric or Hermitian)
Wigner matrix with

c(s, t)=
β

2
EY1(s)Y1(t).

Let k1, . . . , km ≥ 1 be integers, t1, . . . , tm ∈ R, and let B1, . . . , Bm be subsets of
N dependent on the large parameter L so that there exist limits

bp = lim
L→∞

|Bp|

L
> 0, bpq = lim

L→∞

|Bp ∩ Bq |

L
, p, q = 1, . . . ,m.

Then the m-dimensional random vector(
L−

k p
2
(
Tr(X kp

Bp
(tp))− E Tr(X kp

Bp
(tp))

))m

p=1
(2)

converges (in distribution and with all moments) to the zero mean m-dimensional
Gaussian random variable (ξp)

m
p=1 with covariance

Eξpξq =
2kpkq

βπ

∮
|z|2=bp
=z>0

∮
|w|2=bq
=w>0

(x(z))kp−1(x(w))kq−1

×
1

2π
ln
∣∣∣∣c(tp, tq)bpq − zw
c(tp, tq)bpq − zw̄

∣∣∣∣ dx(z)
dz

dx(w)
dw

dz dw. (3)

Theorem 2′′ can also be viewed as the moment convergence of the centralized
height function HA(x, y, t) to a limiting generalized Gaussian process but we do
not give further details here. The static variant of this convergence is discussed
in [Borodin 2014].

Proof of Theorem 2′′. The argument closely follows that given in Section 2.1.7 of
[Anderson et al. 2010] in the case of one set B j ≡ B, and the proof of Theorem 2′

in [Borodin 2014] in the static case. One proves the convergence of moments,
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which is sufficient to also claim the convergence in distribution for Gaussian
limits.

Any joint moment of the coordinates of (2) is written as a finite combination
of contributions corresponding to suitably defined graphs that are in their turn
associated to words. This reduction is explained in Section 2.1.7 of [Anderson
et al. 2010]. The key fact in the real symmetric case is that averages of products of
powers of matrix elements that involve at least one matrix element with exponent
1 vanish. The time-dependent analog of this fact is that averages of products
of powers of matrix elements taken at different time moments that involve one
matrix element with exponent 1 at only one time moment vanish. This clearly
holds by independence of matrix elements and our zero mean assumption. In the
static Hermitian case, one needs in addition that EZ2

12 = 0. The time-dependent
analog reads EZ12(s)Z12(t)= 0 for any s, t ∈R, which is one of our assumptions.
This allows the exact same reduction to go through in the time-dependent setting.

The only difference of the multiset case from the one-set case is that one needs
to keep track of the alphabets the words are built from: A word corresponding
to coordinate number p of (2) would have to be built from the alphabet that
coincides with the set Bp. Equivalently, the corresponding graphs will have their
vertices labeled by elements of Bp.

Since all sizes |Bp| have order L , and |B1 ∪ · · · ∪ Bm | = O(L), and also the
moments of matrix elements at all times are uniformly bounded, the estimate
showing that all contributions not coming from matchings are negligible in
[Anderson et al. 2010, Lemma 2.1.34] carries over without difficulty. It only
remains to compute the covariance.

We start with the case of the real symmetric Wigner matrices.
In the one-set case, the limits of the variances of the coordinates of (2) are

given by (2.1.44) in [Anderson et al. 2010]. It reads (with k = kp for a p
between 1 and m)

2k2C2
k−1

2
+ k2C2

k
2
+

∞∑
r=3

2k2

r

( ∑
ki≥0

2
∑r

i=1 ki=k−r

r∏
i=1

Cki

)2

, (4)

where {Ck}k≥0 are the Catalan numbers, and we set Ca = 0 if a /∈ {0, 1, 2, . . . }.
The Catalan number Ck counts the number of rooted planar trees with k edges,
and different terms of (4) have the following interpretation (see [Anderson et al.
2010] for detailed explanations):

• The first term comes from two trees with (k− 1)/2 edges each that hang from
a common vertex; the factor k2 originates from choices of certain starting points
on each tree united with the common vertex, and the extra 2 is actually EY 2

1 .
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• The second term comes from two trees with k/2 edges each that are glued
along one edge. There are k/2 choices of this edge for each of the trees, there is
an additional 2= EZ4

12−1, and another additional 2 responsible of the choice of
the orientation of the gluing.

• The third term comes from two graphs each of which is a cycle of length r with
pendant trees hanging off each of the vertices of the cycle; the total number of
edges in the extra trees being (k− r)/2 (this must be an integer). As for the first
term, there is an extra k2

= k · k coming from the choice of the starting points
and also an extra 2 for the choice of the gluing orientation along the cycle.

For each of the three terms the total number of vertices in the resulting graph
is equal to k, and if one labels each vertex with a letter from an alphabet of
cardinality |B| this would yield a factor of

|B|(|B| − 1) · · · (|B| − k+ 1)= |B|k + O(|B|k−1).

Normalization by |B|k yields (4).
In the general case, in order to evaluate the covariance

L−
k p+kq

2 E
[(

Tr(X kp
Bp
(tp))− E Tr(X kp

Bp
(tp))

)(
Tr(X kq

Bq
(tq))− E Tr(X kq

Bq
(tq))

)]
(5)

in the limit, we need to employ the same graph counting, except for the two
graphs being glued now correspond to different values kp and kq of k, and their
vertices are marked by letters of different alphabets Bp and Bq .

• The first term gives 2kpkqC k p−1
2

C kq−1
2

for the graph counting, and an extra

|Bp ∩ Bq | · (|Bp| − 1)(|Bp| − 2) · · ·
(
|Bp| −

1
2(kp + 1)

)
· (|Bq | − 1)(|Bq | − 2) · · ·

(
|Bq | −

1
2(kq + 1)

)
for the vertex labeling (the factor |Bp∩Bq | comes from the only common vertex).
Moreover, EY 2

1 is replaced by EY1(tp)Y1(tq)= c(tp, tq). Normalized by L−
k p+kq

2

this yields

2kpkqC k p−1
2

C kq−1
2

c(tp, tq)bpqb
k p−1

2
p b

kq−1
2

q .

• The second term has
kpkqC k p

2
C kq

2

from the graph counting and

c2
pqb

k p
2 −1

p b
kq
2 −1

q

from the label counting. In addition, EZ4
12− 1 is replaced by

EZ2
12(tp)Z2

12(tq)− 1= 2c2(tp, tq).
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The total contribution is

kpkqC k p
2

C kq
2

(
c(tp, tq)bpq

)2b
k p
2 −1

p b
kq
2 −1

q .

• For the third term in the same way we obtain

∞∑
r=3

2kpkq

r

( ∑
si≥0

2
∑r

i=1 si=kp−r

r∏
i=1

Csi

)( ∑
ti≥0

2
∑r

i=1 ti=kq−r

r∏
i=1

Cti

)
(c(tp, tq)bpq)

r b
k p−r

2
p b

kq−r
2

q

where cr (tp, tq) appeared as (EZ12(tp)Z12(tq))r , which in its turn came from the
edges of the r -cycle.

Thus, the asymptotic value of the covariance (5) is

2kpkqC k p−1
2

C kq−1
2

(
c(tp, tq)bpq

)
b

k p−1
2

p b
kq−1

2
q

+kpkqC k p
2

C kq
2

(
c(tp, tq)bpq

)2b
k p
2 −1

p b
kq
2 −1

q

+

∞∑
r=3

2kpkq

r

( ∑
si≥0

2
∑r

i=1 si=kp−r

r∏
i=1

Csi

)( ∑
ti≥0

2
∑r

i=1 ti=kq−r

r∏
i=1

Cti

)
(c(tp, tq)bpq)

r b
k p−r

2
p b

kq−r
2

q .

We now use the fact that for any S = 0, 1, 2, . . . ,

∑
si≥0∑r

i=1 si=S

r∏
i=1

Csi =

(
2S+ r

S

)
r

2S+ r
;

see [Graham et al. 1989, (5.70)]. This allows us to rewrite the asymptotic
covariance in terms of binomial coefficients: interdisplaylinepenalty0

2
(

kp

(kp − 1)/2

)(
kq

(kq − 1)/2

)(
c(tp, tq)bpq

)
b

k p−1
2

p b
kq−1

2
q

+ 4
(

kp

kp/2− 1

)(
kq

kq/2− 1

)(
c(tp, tq)bpq

)2b
k p−2

2
p b

kq−2
2

q

+

∞∑
r=3

2r
(

kp

(kp − r)/2

)(
kq

(kq − r)/2

)(
c(tp, tq)bpq

)r b
k p−r

2
p b

kq−r
2

q

=

∞∑
r=1

2r
(

kp

(kp − r)/2

)(
kq

(kq − r)/2

)(
c(tp, tq)bpq

)r b
k p−r

2
p b

kq−r
2

q .

Using the binomial theorem, we can write this expression as a double contour
integral
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(6)2
(2π i)2

∫∫
K1=|z|<|w|=K2

(
z+

bp

z

)kp
(
w+

bq

w

)kq c(tp, tq)bpq

bp

dz dw(c(tp, tq)bpq

bp
z−w

)2 ,

with K1, K2 fixed. Note that c(tp, tq)bpq/bp < 1, so (c(tp, tq)bpq z/bp −w)
−2

on our domain of integration can be expanded using a derivative of the geometric
series.

Consider the right-hand side of (3) and assume that |z|2 = bp < bq = |w|
2.

Observe that

2 ln
∣∣∣∣c(tp, tq)bpq − zw
c(tp, tq)bpq − zw

∣∣∣∣
=−2 ln

∣∣∣∣∣∣∣∣
c(tp, tq)bpq

bp
z−w

c(tp, tq)bpq

bp
z−w

∣∣∣∣∣∣∣∣
=− ln

(
c(tp, tq)bpq

bp
z−w

)
+ ln

(
c(tp, tq)bpq

bp
z−w

)
+ ln

(
c(tp, tq)bpq

bp
z−w

)
− ln

(
c(tp, tq)bpq

bp
z−w

)
.

This allows us to rewrite the right-hand side of (3) as a double contour integral
over complete circles in the form

−
kpkq

2βπ2

∮
|z|2=bp

∮
|w|2=bq

(x(z))kp−1(x(w))kq−1 ln
(

c(tp, tq)bpq

bp
z−w

)
·

dx(z)
dz

dx(w)
dw

dz dw.

Recalling that β = 1 and noting that

kp(x(z))kp−1 dx(z)
dz
=

d(x(z))kp

dz
, kq(x(w))kq−1 dx(w)

dw
=

d(x(w))kq

dw
,

we integrate by parts in z and w and recover (6). The proof for bp = bq is
obtained by continuity of both sides, and to see that the needed identity holds
for bp > bq it suffices to observe that both sides are symmetric in p and q .

The argument in the case of Hermitian Wigner matrices is exactly the same,
except in the combinatorial part for the first term the factor 2 is missing due to
the change in EY1(s)Y1(t), in the second term 2 is missing due to the change in
E|Z12(s)|2|Z12(t)|2, and in the third term 2 is missing because there is no choice
in the orientation of two r -cycles that are being glued together. �
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Proof of Proposition 1. We need to show that for any complex numbers {uk}
M
k=1,

M∑
k,l=1

ukul

∫
H×R

∫
H×R

fk(z, s) fl(w, t)C(z, s;w, t) dz dz̄ ds dw dw̄ dt ≥ 0.

We can approximate the integration over the three-dimensional domains by
finite sums of one-dimensional integrals over semicircles of the form |z| = const,
s= const. On each semicircle we further uniformly approximate the (continuous)
integrand by a polynomial in <(z). Finally, for the polynomials the nonnegativity
follows from Theorem 2′. �

Chebyshev polynomials. One way to describe the limiting covariance structure
in the one-matrix static case is to show that traces of the Chebyshev polynomials
of the matrix are asymptotically independent; see [Johansson 1998]. A similar
effect takes place for time-dependent submatrices as well.

For n = 0, 1, 2, . . . , let Tn(x) be the n-th degree Chebyshev polynomial of
the first kind:

Tn(x)= cos(n arccos x),

or equivalently,
Tn(cos x)= cos(nx).

For any a > 0, let T a
n (x)= Tn(x/a) be the rescaled version of Tn .

Proposition 5. In the assumptions of Theorem 2′′, for any p, q = 1, . . . ,m

lim
L→∞

E

[(
Tr
(
T

2
√

bp Lk p

kp
(X Bp(tp))

)
− E Tr

(
T

2
√

bp Lk p

kp
(X Bp(tp))

))
×

(
Tr
(
T

2
√

bq Lkq

kq
(X Bq (tq))

)
− E Tr

(
T

2
√

bq Lkq

kq
(X Bq (tq))

))]
= δkpkq

kp

2β

(
c(tp, tq)bpq√

bpbq

)kp

.

Proof. Using (6) and assuming bp < bq we obtain that the needed limit equals

2
β(2π i)2

∫∫
bp=|z|<|w|=bq

Tk p (cos arg z)Tkq (cos argw)
c(tp, tq)bpq

bp

dz dw(
c(tp, tq)bpq

bp
z−w

)2

=
1

2β(2π i)2

∫∫
bp=|z|<|w|=bq

((
z√
bp

)k p

+

(√
bp

z

)k p
)((

w√
bq

)kq

+

(√
bq

w

)kq
)

×
c(tp, tq)bpq

bp

dz dw(
c(tp, tq)bpq

bp
z−w

)2 .
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Writing (c(tp, tq)bpq z/bp − w)
−2 as a series in z/w we arrive at the result.

Continuity and symmetry of both sides of the limiting relation removes the
assumption bp < bq . �

Note that in the Gaussian specialization (when c(s, t)= exp(−|s− t |)) and
for a single size L time-dependent Wigner matrix (i.e., bp = bq = bpq = 1),
the centralized traces of Chebyshev polynomials of this matrix evolve as inde-
pendent Ornstein–Uhlenbeck processes with speeds equal to the degrees of the
polynomials.
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