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On a relationship between high rank cases
and rank one cases of

Hermitian random matrix models
with external source

JINHO BAIK AND DONG WANG

We prove an identity on Hermitian random matrix models with external source
relating the high rank cases to the rank 1 cases. This identity was proved and
used in a previous paper of ours to study the asymptotics of the top eigenvalues.
In this paper, we give an alternative, more conceptual proof of this identity
based on a connection between the Hermitian matrix models with external
source and the discrete KP hierarchy. This connection is obtained using the
vertex operator method of Adler and van Moerbeke. The desired identity then
follows from the Fay-like identity of the discrete KP � vector.

1. Introduction

The subject of this paper is an identity between a Hermitian random matrix model
with external source of rank m and m such models with external source of rank 1.
This identity allows us to reduce the asymptotic study of “spiked Hermitian
random matrix models” of rank higher than 1 to that of the models of rank 1.
This reduction formula was used in [Baik and Wang 2013] to evaluate the limiting
fluctuations of the top eigenvalue(s) of spiked models of arbitrary fixed rank with
a general class of potentials. In [Baik and Wang 2013] we gave a direct proof of
this identity using the formula of [Baik 2009] on the Christoffel–Darboux kernel.
Here we give a different, more conceptual proof using the relation between the
random matrix model with external source and discrete KP hierarchy. We show
how the general results of [Adler and van Moerbeke 1999] on the construction
of solutions of discrete KP hierarchy can be used on the partition functions of
the Hermitian matrix model with external source.

We now introduce the model. Let W .x/ be a piecewise continuous function
on R. We assume that W .x/ is nonnegative, has infinite support, and vanishes
sufficiently fast as jxj !1 so that (3) converges. Let A be a d � d Hermitian
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matrix with eigenvalues a1; : : : ; ad . We call A the external source matrix and
W .x/ the weight function. Consider the following measure on the set Hd of
d � d Hermitian matrix M :

P .M / dM WD
1

Zd .a1; : : : ; ad /
det.W .M //eTr.AM / dM; (1)

where W .M / is defined in terms of a functional calculus and

Zd .a1; : : : ; ad / WD

Z
M2Hd

det.W .M //eTr.AM / dM (2)

is the partition function. Note that the partition function depends only on the
eigenvalues of A, but not its eigenvectors. It is also symmetric in a1; : : : ; ad .
The Harish-Chandra–Itzykson–Zuber integral formula [Harish-Chandra 1957;
Itzykson and Zuber 1980] implies that
Zd .a1; : : : ; ad /

D
CdY

1�j<k�d

.ak�aj /

Z
Rd

detŒeaj�k �dj ;kD1

Y
1�j<k�d

.�k��j /

dY
jD1

W .�j / d�j (3)

for a constant Cd that depends only on d . There is a similar formula for the
density function of the eigenvalues.

If some of the eigenvalues of A are zero, we use the following short-hand:
For m� d ,

Zd .a1; : : : ; am/ WDZd .a1; : : : ; am; 0; : : : ; 0„ ƒ‚ …
d�m

/;

Zd WDZd .0; : : : ; 0„ ƒ‚ …
d

/:
(4)

The main theorem of this paper is about the following expectations. For
E � R, s 2 C, and m� d , we define

Ed .a1; : : : ; amIEI s/ WD E

� dY
jD1

.1� s�E.�j //

�

D

Z
Hd

dY
jD1

.1� s�E.�j //P .M / dM; (5)

where �1; : : : ; �d are eigenvalues of M and the expectation is with respect to
the measure (1) when the eigenvalues of the external source matrix A are

a1; : : : ; am; 0; : : : ; 0„ ƒ‚ …
d�m

:
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We note that the last integral is the partition function with new weight

.1� s�E.x//W .x/

divided by the original partition function with the weight W .x/. This observation
will be used in the proof later. When s D 1 the above expectation is a gap
probability. Set

Ed .a1; : : : ; amIEI s/ WD
Ed .a1; : : : ; amIEI s/

Ed .EI s/
: (6)

Let pj .x/ be orthonormal polynomials with respect to W .x/ dx. For a real
number a, define the constant

�j .a/ WD

Z
R

pj .s/e
asW .s/ ds: (7)

The main result is this:

Theorem 1.1. We have

Ed .a1; : : : ; amIEI s/D
det
�
�d�j .ak/Ed�jC1.ak IEI s/

�m
j ;kD1

detŒ�d�j .ak/�
m
j ;kD1

: (8)

if a1; : : : ; am are distinct and nonzero.

Since both sides of (8) are analytic in aj , the above identity still holds when
some of aj are the same or equal to zero if we interpret the right-hand side using
l’Hôpital’s rule.

The term Ed�jC1.ak IEI s/ on the right-hand side of (8) is given by (6) with
the rank mD 1 and the only nonzero eigenvalue of the external source A being
ak , and the dimension is changed to d � j C 1. Hence the identity (8) relates
the rank m case to m rank 1 cases.

In [Baik and Wang 2011], the asymptotics Ed�jC1.ak IEI s/, the rank 1 cases,
were obtained. The quantities �d�j .ak/ were also analyzed asymptotically in
the same paper as an intermediate step. In [Baik and Wang 2013] the higher
rank cases were then analyzed asymptotically using the identity (8). The main
result was that when the potential, assuming that it is real analytic, is convex to
the right of the right-end point of the support of the equilibrium measure, the
phase transition behavior of the fluctuations of the top eigenvalues is same as
in the Gaussian unitary ensemble. Otherwise, new types of jump transitions
are possible to occur. A characterization of possible new transitions was also
obtained.
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2. Proof

Set �.x/ WD
Q

1�j<k�d .xk � xj / D det.xk�1
j /d

j ;kD1
, for x D .x1; : : : ;xd /.

Recall that, setting aD .a1; : : : ; ad / and �D .�1; : : : ; �d /,

detŒeaj�k �d
j ;kD1

�.a/�.�/
D

X
`.�/�d

s�.�/s�.a/Qd
qD1.�qC d � q/!

; (9)

where the sum is over all partitions � with at most d parts. Here s� denotes
the Schur polynomial and `.�/ denotes the number of parts of partition �. This
identity can be proved as follows. First, from Andréief’s identity [Andréief 1886]
(equivalently the Cauchy–Binnet formula),

detŒeaj�k �dj ;kD1 D det
� 1X

nD0

an
j �

n
k

n!

�
D

1

d!

1X
n1;:::;ndD0

detŒanq

j � detŒ�nq

j �Qd
qD1 nq!

: (10)

Since the summand is symmetric in the nq and equals to zero when two of
the summation indices are the same, we can replace .1=d!/

P1
n1;:::;ndD0 byP

0�nd<���<n2<n1
.

Now set �q WD nq�dCq. Then the summation condition becomes �1 � � � � �

�d � 0, that is, all partitions with at most d parts. The identity (9) follows by
recalling the classical definition of the Schur polynomial

s�.a/D
det.a�qCd�q

j /

�.�/
:

Inserting (9) into (3), we obtain the Schur polynomial expansion of the partition
function:

Zd .a1; : : : ; ad /D Cd

X
`.�/�d

G�
s�.a/Qd

qD1.�qC d � q/!
(11)

where

G� WD

Z
Rd

s�.�/�.�/
2

dY
jD1

W .�j / d�j : (12)

Using the classical definition of the Schur function, the determinantal form of
�.�/, and the Andréief’s identity, we obtain

G� D d! � detŒM�pCd�pCq�1�
d
p;qD1; Mj WD

Z
R

xj W .x/ dx: (13)

Here Mj are the moments of the measure W .x/ dx.
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We insert (13) into (11) and use the Jacobi–Trudi identity,

s�.a/D detŒh�p�pCq.a/�
d
p;qD1;

where hj .a/ denotes the complete symmetric function. The sum is over the
partitions � D .�1; : : : ; �d / where �1 � � � � � �d � 0. We set jp WD �pC d �p.
Then j1 > � � �> jd � 0. Since the summand is symmetric in the jp and vanishes
when two indices are the same, we arrive at the formula

Zd .a1; : : : ; ad /D Cd

1X
j1;:::;jdD0

detŒMjpCq�1�
d
p;qD1

detŒhjp�dCq.a/�
d
p;qD1Qd

qD1 jq!
:

(14)
In the below, the notation tD .t1; t2; : : : / denotes a sequence of variables. We

also use the notation Œc�D .c; 1
2
c2; 1

3
c3; : : : / for the evaluation of t by powers

of c. The notation Œc1�C Œc2�C � � �C Œcm� stands for the evaluation of t obtained
by substituting tj D

Pm
iD1 c

j
i =j .

Following [Kac and Raina 1987, Definition 6.1], we define the so-called
“elementary Schur polynomials” hj .t/ by the generating function

1X
jD�1

hj .t/w
j
D e

P1
j D1 tjw

j

: (15)

If t D Œa1�C Œa2�C � � � C Œad � (i.e., tj D
Pd

iD1 a
j
i =j ), hj .t/ is the complete

symmetric function in a1; : : : ; ad , which we denoted earlier by hj .a/. This
abuse of notations is unfortunate but in the below we only use the definition h.t/

given in (15).
Now define the formal power series in t D .t1; t2; : : : /

yZd .t/ WD
1

d! yCd

1X
j1;:::;jdD0

detŒMjpCq�1�
d
p;qD1

detŒhjp�dCq.t/�
d
p;qD1Qd

kD1 jk !
; (16)

where yCd WD
1

d! Cd
. This definition is equivalent to [Wang 2009, (26)]. Then

Zd .a1; : : : ; ad /D yZd .Œa1�C � � �C Œad �/: (17)

Setting some of the parameters to zero, we also have for m� d

Zd .a1; : : : ; am/D yZd .Œa1�C � � �C Œam�/: (18)

We now show that yZd .t/ solves the discrete KP hierarchy following the vertex
operator construction of the general solutions due to Adler and van Moerbeke.
We then show that a general property of the vertex operator solution implies an
identity of which the identity (8) is a special case. Note that the definition (16)
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does not require the assumption that the weight function W .x/ is nonnegative.
In the next two subsections we drop this assumption.

Discrete KP � vectors.

Proposition 2.1. Let yZd .t/ be defined in (16) and set yZ0.t/ WD 1. Then the
sequence �

: : : ; yZ2.�t/; yZ1.�t/; yZ0.t/; yZ1.t/; yZ2.t/; : : :
�

(19)

constitutes a discrete KP � vector.

Discrete KP � vectors are solutions to a system of differential-difference
equations in the discrete KP hierarchy. In [Adler and van Moerbeke 1999]
several characterizations of discrete KP � vectors were established. Here we use
two of them: the vertex operator characterization (see Proposition 2.2 below)
and the Hirota bilinear identity characterization (see (34) below).

Remark. Each component of a discrete KP � vector is a KP � function. The
fact that yZd .t/ is a KP � function for each d 2N was proved in [Wang 2009].
In [Harnad and Orlov 2014] it was proved further that for each d 2 N, yZd .t/ is
a so-called 1-KP-Toda � function and moreover these 1-KP-Toda � functions
are derived from the same Grassmannian structure. It should also be possible to
prove the above proposition from this fact.

The vertex operator is a differential operator defined by

X.t; z/ WD exp
� 1X

kD1

tkzk

�
exp

�
�

1X
kD1

z�k

k

@

@tk

�
I (20)

see [Adler and van Moerbeke 1999, (0.22)]. The vertex operator acts on a formal
power series f .t/ as

X.t; z/f .t/D exp
� 1X

kD1

tkzk

�
f .t� Œz�1�/

D

� 1X
kD�1

hk.t/z
k

�
f .t� Œz�1�/: (21)

One can construct a discrete KP � vector from one KP � function and a sequence
of measures by applying the vertex operator repeatedly:

Proposition 2.2 [Adler and van Moerbeke 1999, Theorem 0.3]. Let �.t/ be a
KP � function. Let

�
: : : , ��1.z/ dz, �0.z/ dz, �1.z/ dz, : : :

�
be a sequence of

arbitrary measures. Then the infinite sequence .: : : ; ��1.t/; �0.t/; �1.t/; : : :/

defined by �0.t/ WD �.t/ and
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�d .t/ WD

�Z
X.t; z/�d�1.z/ dz

�
: : :

�Z
X.t; z/�0.z/ dz

�
�.t/; (22)

��d .t/ WD

�Z
X.�t; z/��d .z/ dz

�
: : :

�Z
X.�t; z/��1.z/ dz

�
�.t/; (23)

for d 2 N, forms a discrete KP � vector.

Remark. The original Theorem 0.3 of [Adler and van Moerbeke 1999] assumes
that the measures �k.z/ dz are defined on R. However, it is easy to check that the
proof to Proposition 2.2 in [Adler and van Moerbeke 1999] holds almost verbatim
if we change R into C (or more restrictively the unit circle fz 2 C j jzj D 1g that
we are going to use in this section).

Proof of Proposition 2.1. We set �.t/ D yZ0.t/ WD 1. This is trivially a KP �
function. Hence Proposition 2.1 is proved if we can construct a sequence of
measures .: : : ; ��1.z/ dz, �0.z/ dz; �1.z/ dz; : : : / such that yZd .t/ equals the
right-hand side of (22) (resp. (23)) with �.t/D 1 for d > 0 (resp. d < 0).

Define the measure on the circle fz 2 C W jzj D 1g as

�d .z/ dz WD
.�1/d yCd

2� i yCdC1

1X
jD0

MjCd

j !
zd�j�1 dz; d D 0; 1; 2; : : : ; (24)

where yC0 WD 1. We also define

�d .z/ WD ��d�1.z/ d D�1;�2; : : : : (25)

We now show that these measures satisfy the desired property.
For d D 0, since yZ0.t/D 1, (21) implies X.t; z/ yZ0.t/D

P1
kD�1 hk.t/z

k .
Hence we find from a direct evaluation of the integral using the Cauchy integral
formula (the integral is over the unit circle) thatI

X.t; z/ yZ0.t/�0.z/ dz D
1

yC1

1X
jD0

hj .t/Mj

j !
D yZ1.t/ (26)

from the definition (16).
We now consider d > 0. From (21),

X.t; z/ yZd .t/D
1

d! yCd

� 1X
kD�1

hk.t/z
k

�

�

1X
j1;:::;jdD0

detŒMjpCq�1�
d
p;qD1

det
�
hjp�dCq.t� Œz

�1�/
�d
p;qD1Qd

kD1 jk !
:

(27)
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Note that from (15) we have

1X
jD�1

hj .t� Œz
�1�/wj

D exp
� 1X

jD1

�
tj �

z�j

j

�
wj

�

D

�
1�

w

z

� 1X
jD�1

hj .t/w
j :

Comparing the coefficients of wj , we find that

hj .t� Œz
�1�/D hj .t/� z�1hj�1.t/: (28)

By (28), we have

detŒhjp�dCq.t� Œz
�1�/�dp;qD1 D

dX
lD0

z�l det
�
hjp�dCq�H Œl�q�.t/

�d
p;qD1

; (29)

where H is the discrete form of the Heaviside function such that H Œn�D 0 for
n < 0 and H Œn� D 1 for n � 0. Substituting (29) into (27), we have, after the
change of variable j0 D k � l C d , that

X.t; z/ yZd .t/D
1

d! yCd

dX
lD0

� 1X
j0D0

hj0�dCl.t/z
j0�d

�

�

1X
j1;:::;jdD0

detŒMjpCq�1�
d
p;qD1

detŒhjp�dCq�H Œl�q�.t/�
d
p;qD1Qd

kD1 jk !

We can reexpress this as follows, using that the right-hand side of (30) is sym-
metric in j0; j1; : : : ; jd :

X.t; z/ yZd .t/

D
.�1/d

.d C 1/! yCd

1X
j0;j1;:::;jdD0

nY
kD0

1

jk !

�

ˇ̌̌̌
ˇ̌̌̌
ˇ
Mj0

� � � Mj0Cd�1 j0! zj0�d

Mj1
� � � Mj1Cd�1 j1! zj1�d

:::
: : :

:::
:::

Mjd
� � � MjdCd�1 jn! zjd�d

ˇ̌̌̌
ˇ̌̌̌
ˇ

ˇ̌̌̌
ˇ̌̌̌
ˇ
hj0�d .t/ hj0�dC1.t/ � � � hj0

.t/

hj1�d .t/ hj1�dC1.t/ � � � hj1
.t/

:::
:::

: : :
:::

hjd�d .t/ hjd�dC1.t/ � � � hjd
.t/

ˇ̌̌̌
ˇ̌̌̌
ˇ : (30)

Note that in here there is one more summation index j0 than in (27) and the
determinants are of d C 1 by d C 1 matrices. Then from (30) and (16), and
noting that the variable z appears only in the last column of the first matrix in
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(30), we can check directly using the Cauchy integral formula thatI
X.t; z/ yZd .t/�d .z/ dz D yZdC1.t/; d > 0: (31)

Successive applications of the relation (31) imply that, for all d > 0,

yZd .t/D

�Z
X.t; z/�d�1.z/ dz

�
: : :

�Z
X.t; z/�0.z/ dz

�
yZ0.t/; (32)

which is same as (22).
Finally, (25) and (32) imply that

yZd .�t/D

�Z
X.�t; z/��d .z/ dz

�
: : :

�Z
X.�t; z/��1.z/ dz

�
yZ0.t/: (33)

This is same as (23). Hence the proposition is proved. �

Fay-like identity. An importance property of discrete KP � vector is that its
components satisfy a Hirota bilinear identity (see [Adler and van Moerbeke
1999, Theorem 0.2(iii)]). (Adler and van Moerbeke, moreover, showed that the
Hirota bilinear identity actually characterizes the discrete KP � vector.) For the
discrete KP � vector (19) in our situation, replacing the notations �n and �m for
components of a general KP � vector in [Adler and van Moerbeke 1999, (0.18)]
into our specific yZd1

and yZd2
, we find that the Hirota bilinear identity becomes

1

2� i

I
zD1

yZd1
.Qt� Œz�1�/ yZd2C1.tC Œz

�1�/

� exp
� 1X

jD1

.Qtj � tj /z
j

�
zd1�d2�1 dz D 0; (34)

for all d1 > d2 � 0. Here the formal integral of a formal Laurent series is
defined by

1

2� i

I
zD1

� 1X
jD�1

aj zj

�
dz D a�1: (35)

We now show that this Hirota bilinear identity implies a Fay-like identity (41).
Such a derivation of a Fay-like identity from the Hirota bilinear identity was
obtained in the Toda lattice hierarchy by [Teo 2006] and we adapt this approach.

We take the special choices d1 D d , d2 D d � 2 and Qt D tC Œa�C Œb� in (34).
Then the factor exp

�P1
jD1.Qtj � tj /z

j
�
zd1�d2�1 equals

z exp
� 1X

jD1

�
aj

j
C

bj

j

�
zj

�
: (36)
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After rewriting the sum in the exponential as � log.1� az/� log.1� bz/, and
using the simple identity

abz

.1� az/.1� bz/
D

1

.a� b/z

�
b

1� az
�

a

1� bz

�
C

1

z
;

we find that (36) equals

1

a.a� b/z

1X
jD0

aj zj
�

1

b.a� b/z

1X
jD0

bj zj
C

1

abz
:

Using this, (34) implies that

a

2� i

I
zD1

Q.z�1/

� 1X
jD0

bj zj

�
dz

z
�

b

2� i

I
zD1

Q.z�1/

� 1X
jD0

aj zj

�
dz

z

D
a� b

2� i

I
zD1

Q.z�1/
dz

z
; (37)

where Q is defined by

Q.w/ WD yZd .tC Œa�C Œb�� Œw�/ yZd�1.tC Œw�/: (38)

Observe that the Laurent series of Q.w/ consists only of nonnegative powers
of w. Hence

Q.w/D

1X
nD0

qnw
n; (39)

for some q0; q1; : : : . Thus, from (35) we have

1

2� i

I
zD1

Q.z�1/

� 1X
jD0

aj zj

�
dz

z
D

1X
nD0

qnan
DQ.a/

D yZd .tC Œa�/ yZd�1.tC Œb�/: (40)

Similar evaluations of the other integrals of (37) imply the following Fay-like
identity:

a yZd .tC Œa�/ yZd�1.tC Œb�/� b yZd .tC Œb�/ yZd�1.tC Œa�/

D .a� b/ yZd .tC Œa�C Œb�/ yZd�1.t/: (41)

In the remainder of this section we use identity (41) to prove the following:
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Proposition 2.3. For any d �m� 1 and a1; : : : ; am 2 C,

yZd .tC Œa1�C � � �C Œam�/

yZd .t/

D
1

�m.a1; : : : ; am/
det
�
a

m�j

k

yZdC1�j .tC Œak �/

yZdC1�j .t/

�m

j ;kD1

; (42)

where �m.a1; : : : ; am/ WD
Q

1�j<k�m

.aj � ak/.

Proof. After dividing the identity (41) by yZd .t/ yZd�1.t/, we obtain

yZd .tC Œa�C Œb�/

yZd .t/
D

1

a� b
det

266664
a
yZd .tC Œa�/

yZd .t/
b
yZd .tC Œb�/

yZd .t/

yZd�1.tC Œa�/

yZd�1.t/

yZd�1.tC Œb�/

yZd�1.t/

377775 : (43)

This is the identity (42) when mD 2 for all d � 2.
We now prove the general case using an induction in m. Suppose that (42)

holds with m�m�1 for all d �m�1 and a1; : : : ; am�1 2 C. We are to prove
that it holds with mDm for all d �m and a1; : : : ; am 2 C. For this purpose,
we set aD a1, b D am, and t 7! tC Œa2�C � � � C Œam�1� in (43). After pulling
out the denominators of the entries of the determinant outside, we obtain

.a1� am/ yZd .tC Œa1�C � � �C Œam�/ yZd�1.tC Œa2�C � � �C Œam�1�/

D det

"
a1
yZd .tC Œa1�C � � �C Œam�1�/ am

yZd .tC Œa2�C � � �C Œam�/
yZd�1.tC Œa1�C � � �C Œam�1�/ yZd�1.tC Œa2�C � � �C Œam�/

#
: (44)

Let us call the entries of the last determinant Aij , i; j D 1; 2. First we consider
Aij on the first row. From the induction hypothesis,

A11

yZd .t/
D

a1

�m�1.a1; : : : ; am�1/
det
�
a

m�1�j

k

yZdC1�j .tC Œak �/

yZdC1�j .t/

�m�1

j ;kD1

: (45)

If we multiply a2 � � � am�1 on both sides and bring the factor a1 � � � am�1 inside
the determinant, we find that

a2 � � � am�1

A11

yZd .t/
D

1

�m�1.a1; : : : ; am�1/
detŒBjk �1�j�m�1;1�k�m�1; (46)

where

Bjk WD a
m�j

k

yZdC1�j .tC Œak �/

yZdC1�j .t/
: (47)

Note that the power of ak has changed to m�j , from m�1�j in (45). Similarly,
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we find that

a2 � � � am�1

A12

yZd .t/
D

1

�m�1.a2; : : : ; am/
detŒBjk �1�j�m�1;2�k�m; (48)

with the same definition (47) of Bjk . Note the difference of the indices of the
determinant from (46).

Now we consider Aij in the second row. The induction hypothesis implies
that

A21

yZd�1.t/
D

1

�m�1.a1; : : : ; am�1/
det
�
a

m�1�j

k

yZd�j .tC Œak �/

yZd�j .t/

�m�1

j ;kD1

: (49)

Note that d is changed to d � 1 in the determinant from (46). If we shift the
index j by j � 1 in the determinant, we can write the above as

A21

yZd�1.t/
D

1

�m�1.a1; : : : ; am�1/
detŒBjk �2�j�m;1�k�m�1: (50)

Similarly,

A22

yZd�1.t/
D

1

�m�1.a2; : : : ; am/
detŒBjk �2�j�m;2�k�m: (51)

Consider the matrix B of size m whose entries are Bjk , j ; k D 1; : : : ;m. Let
Bb

a denote the matrix of size m� 1 obtained from B by deleting the row a and
the column b. The determinants in (46), (48), (50), and (51) are those of the
matrices Bm

m, B1
m, Bm

1
, and B1

1
, respectively. Hence we find that

a2 � � � am�1�m�1.a1; : : : ; am�1/�m�1.a2; : : : ; am/

yZd�1.t/ yZd .t/
det

�
A11 A12

A21 A22

�
D detŒBm

m� detŒB1
1�� detŒB1

m� detŒBm
1 �: (52)

Now the Desnanot–Jacobi identity, often attributed to Charles Ludwig Dodgson,
aka Lewis Carroll (see, e.g., [Krattenthaler 1999, Proposition 10] and references
therein) implies that the above equals detŒB� det

�
B1;m

1;m

�
where B1;m

1;m
is the matrix

of size m� 2 obtained by deleting the rows 1;m and the columns 1;m from B.
The determinant det

�
B
�

is precisely the determinant in (42) with mDm. On
the other hand,

det
�
B1;m

1;m

�
a2 � � � am�1

D det
�
a

m�1�j

k

yZdC1�j .tC Œak �/

yZdC1�j .t/

�m�1

j ;kD2

D det
�
a

m�2�j

kC1

yZd�j .tC ŒakC1�/

yZd�j .t/

�m�2

j ;kD1

: (53)



HERMITIAN RANDOM MATRIX MODELS 37

The last determinant is precisely the determinant in (42) with m D m � 1,
d replaced by d � 1, and the complex numbers given by a2; : : : ; am�1. The
induction hypothesis implies the identity

det
�
B1;m

1;m

�
a2 : : : am�1

D�m�2.a2; : : : ; am�1/
yZd�1.tC Œa2�C � � �C Œam�1�/

yZd�1.t/
: (54)

Combining (44), (52), and (54), and noting that

�m�2.a2; : : : ; am�1/

.a1� am/�m�1.a1; : : : ; am�1/�m�1.a2; : : : ; am/
D

1

�m.a1; : : : ; am/
; (55)

we obtain (42) with m D m. Hence the induction step is established and the
proposition is proved. �

Completion of proof of Theorem 1.1. For any subset E 2R and s 2C, consider
the new weight function WE;s.x/ WDW .x/.1�s�

E
.x//. Let Z

E;s
d
.a1; : : : ; ad /

be the partition function (2) with W replaced by WE;s . We also use a similar
short-hand notation as (4). Then

Ed .a1; : : : ; amIEI s/D
Z

E;s
d
.a1; : : : ; am/

Zd .a1; : : : ; am/
: (56)

Taking t D .0; 0; : : : / in (42) and recalling (17), we find

Zd .a1; : : : ; am/

Zd

D
1

�m.a1; : : : ; am/
det
�
a

m�j

k

ZdC1�j .ak/

ZdC1�j

�m

j ;kD1

: (57)

Note that this holds for any weight function W . We substitute W 7!WE;s in (57)
and divide this identity by (57) with W . From this we obtain

Ed .a1; : : : ; amIEI s/D
det
�
a

m�j

k
ZdC1�j .ak/EdC1�j .ak IEI s/

�m
j ;kD1

det
�
a

m�j

k
ZdC1�j .ak/

�m
j ;kD1

:

(58)
We now consider the terms a

m�j

k
ZdC1�j .ak/. For any dimension l , if al Da

and a1 D � � � D al�1 D 0, applying l’Hôpital’s rule to (3), we have a formula of
the partition function Zl.a/:

Zl.a/D
Cl

al�1
Ql�2

jD0 j !

Z
Rl

detŒV � detŒ�j�1
i �

lY
jD1

W .�j / d�j ; (59)

where V D .Vij /
l
i;jD1

, with Vij D �
j�1
i for j D 1; : : : ; l � 1 and Vil D ea�i .

Let pj be orthonormal polynomials with respect W .x/ dx. By using elementary
row operations, we get
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Zl.a/D
C 0

l

al�1

Z
Rl

detŒ zV � detŒpj�1.�i/�

lY
jD1

W .�j / d�j ; (60)

where zV D . zVij /
l
i;jD1

, with zVij Dpj�1.�i/ for j D 1; : : : ; l�1 and zVil D ea�i ,
and C 0

l
is a new constant which depends only on l and W . Using the Andréief’s

formula and the fact that pj are orthonormal polynomials, we obtain

Zl.a/D
l ! C 0

l

al�1

Z
R

ea�pl�1.�/W .�/ d�D l ! C 0ka�lC1�l�1.a/: (61)

Inserting this into (58), we obtain Theorem 1.1. �
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