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Universality conjecture for all Airy, sine and
Bessel kernels in the complex plane
GERNOT AKEMANN AND MICHAEL J. PHILLIPS

We address the question of how the celebrated universality of local correlations
for the real eigenvalues of Hermitian random matrices of size N × N can be
extended to complex eigenvalues in the case of random matrices without
symmetry. Depending on the location in the spectrum, particular large-N
limits (the so-called weakly non-Hermitian limits) lead to one-parameter
deformations of the Airy, sine and Bessel kernels into the complex plane.
This makes their universality highly suggestive for all symmetry classes. We
compare all the known limiting real kernels and their deformations into the
complex plane for all three Dyson indices β = 1, 2, 4, corresponding to real,
complex and quaternion real matrix elements. This includes new results for
Airy kernels in the complex plane for β = 1, 4. For the Gaussian ensembles
of elliptic Ginibre and non-Hermitian Wishart matrices we give all kernels
for finite N , built from orthogonal and skew-orthogonal polynomials in the
complex plane. Finally we comment on how much is known to date regarding
the universality of these kernels in the complex plane, and discuss some open
problems.

1. Introduction

The topic of universality in Hermitian random matrix theory (RMT) has attracted
a lot of attention in the mathematics community recently, particularly in the
context of matrices with elements that are independent random variables, as
reviewed in [Tao and Vu 2012; Erdős and Yau 2012]. The question that one tries
to answer is this: under what conditions are the statistics of eigenvalues of N×N
matrices with independent Gaussian variables the same (for large matrices) as
for more general RMT where matrix elements may become coupled? This has
been answered under very general assumptions, and we refer to some recent
reviews on invariant [Kuijlaars 2011; Deift and Gioev 2009] and noninvariant
[Tao and Vu 2012; Erdős and Yau 2012] ensembles.

In this short note we would like to advocate the idea that non-Hermitian
RMT with eigenvalues in the complex plane also warrants the investigation of
universality. Apart from the interest in its own right, these models have important
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applications in physics and other sciences (see, e.g., [Akemann et al. 2011a]). We
will focus here on RMT that is close to Hermitian, a regime that is particularly
important for applications in quantum chaotic scattering (see [Fyodorov and
Sommers 2003] for a review) and quantum chromodynamics (QCD), for example.
In the latter case, the non-Hermiticity may arise from describing the effect of
quark chemical potential (as reviewed in [Verbaarschot 2011; Akemann 2007]),
or from finite lattice spacing effects of the Wilson–Dirac operator (see [Damgaard
et al. 2010; Akemann et al. 2011b] as well as [Kieburg 2012] for the solution of
this non-Hermitian RMT).

Being a system of N coupled eigenvalues, Hermitian RMT already offers a
rich variety of large-N limits, where one has to distinguish the bulk and (soft)
edge of the spectrum for Wigner–Dyson (WD) ensembles, and in addition the
origin (hard edge) for Wishart–Laguerre (WL, or chiral) RMT. Not surprisingly
complex eigenvalues offer even more possibilities. The limit we will investigate is
known as the weakly non-Hermitian regime; it connects Hermitian and (strongly)
non-Hermitian RMT, and was first introduced in [Fyodorov et al. 1997a; 1997b]
in the bulk of the spectrum. For strong non-Hermiticity — which includes the
well-known circular law and the corresponding universality results — we refer to
[Khoruzhenko and Sommers 2011] and references therein, although the picture
there is also far from being complete; an important breakthrough was published
recently in [Tao and Vu 2014].

In the next section we give a brief list of the six non-Hermitian WD and WL
ensembles, and indicate where they were first solved in the weak limit. There are
three principal reasons why we believe that universality may hold. First, in some
cases two different Gaussian RMT both give the same answers. Second, there
are heuristic arguments available for i.i.d. matrix elements using supersymmetry
[Fyodorov et al. 1998], as well as for invariant non-Gaussian ensembles using
large-N factorisation and orthogonal polynomials (OP) [Akemann 2002]. Third,
the resulting limiting kernels of (skew-) OP look very similar to the corresponding
kernels of real eigenvalues, being merely one-parameter deformations of them.
One of the main goals of this paper is to illustrate this fact. For this purpose
we give a complete list of all the known Airy, sine, and Bessel kernels for real
eigenvalues, side-by-side with their deformed kernels in the complex plane,
where some of our results are new.

2. Random matrices and their limiting kernels

In this section we briefly introduce the Gaussian random matrix ensembles that
we consider, and give a list of the limiting kernels they lead to, for both real and
complex eigenvalues. For simplicity we have restricted ourselves to Gaussian
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ensembles in the Hermitian cases, in order to highlight the parallels to their
non-Hermitian counterparts.

We begin with the classical WD and Ginibre ensembles in Section 2.1, dis-
playing Airy (Section 2.2) and sine (Section 2.3) behaviour at the (soft) edge
and in the bulk of the spectrum respectively, as well as their deformations.
We then introduce the WL ensembles and their non-Hermitian counterparts in
Section 2.4, in order to access the Bessel behaviour (Section 2.5) at the origin
(or hard edge). The corresponding orthogonal and skew-orthogonal Hermite and
Laguerre polynomials are given in Appendix A, and precise statements of the
limits that lead to the microscopic kernels can be found in Appendix B.

2.1. Gaussian ensembles with eigenvalues on R and C. The three classical
Gaussian Wigner–Dyson ensembles (the GOE, GUE and GSE) are defined as
[Mehta 2004]

Z
GβE
N =

∫
d H exp[−β Tr H 2/4]

= cN ,β

N∏
j=1

∫
R

dx j wβ(x j ) |1N ({x})|β . (2.1)

The random matrix elements Hkl are real, complex, or quaternion real numbers
for β = 1, 2, 4 respectively, with the condition that the N × N matrix H (N is
taken to be even for simplicity) is real symmetric, complex Hermitian or complex
Hermitian and self-dual for β = 1, 2, 4. In the first equation we integrate over all
independent matrix elements denoted by d H . The Gaussian weight completely
factorises and thus the independent elements are normal random variables; for
β = 1, for example, the real elements are distributed N(0, 1) for off-diagonal
elements, and N(0, 2) for diagonal elements.

In the second equality of (2.1), we diagonalised the matrix

H =U diag(x1, . . . , xN )U−1,

where U is an orthogonal, unitary or unitary-symplectic matrix for β = 1, 2, 4.
The integral over U factorises and leads to the known constants cN ,β . We obtain
a Gaussian weight wβ(x) and the Vandermonde determinant 1N ({x}) from the
Jacobian of the diagonalisation,

wβ(x)= exp[−βx2/4], 1N ({x})=
∏

1≤l<k≤N

(xk − xl). (2.2)

The integrand on the right-hand side of (2.1) times cN ,β/Z
GβE
N defines the nor-

malised joint probability distribution function (jpdf) of all eigenvalues. The
k-point correlation function Rβk , which is proportional to the jpdf integrated over
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N −k eigenvalues, can be expressed through a single kernel K β=2
N of orthogonal

polynomials (OP) for β = 2, or through a 2× 2 matrix-valued kernel involving
skew-OP for β = 1, 4:

Rβ=2
k (x1, . . . , xk)= det

i, j=1,...,k
[K β=2

N (xi , x j )],

Rβ=1,4
k (x1, . . . , xk)= Pf

i, j=1,...,k

[(
K β=1,4

N (xi , x j ) −Gβ=1,4
N (xi , x j )

Gβ=1,4
N (x j , xi ) −W β=1,4

N (xi , x j )

)]
.

(2.3)

The matrix kernel elements KN and WN are not independent of G N but are
related by differentiation and integration, respectively. These relations will be
given later for the limiting kernels.

The three parameter-dependent Ginibre (i.e., elliptic or Ginibre–Girko) en-
sembles, denoted by GinOE, GinUE, and GinSE, can be written as

Z
GinβE
N (τ )=

∫
d J exp

[
−γβ

1− τ 2 Tr
(

J J †
−
τ

2
(J 2
+ J † 2)

)]
=

∫
d H1 d H2 exp

[
−
γβ Tr H 2

1

1+ τ
−
γβ Tr H 2

2

1− τ

]
, (2.4)

with τ ∈ [0, 1). We use the parametrisation of [Khoruzhenko and Sommers
2011], with γβ=2 = 1 and γβ=1,4 =

1
2 . The matrix elements of J are of the

same types as for H for all three values of β, but without any further symmetry
constraint. Decomposing J = H1+ i H2 into its Hermitian and anti-Hermitian
parts, these ensembles can be viewed as Gaussian two-matrix models. For
τ = 0 (maximal non-Hermiticity) the distribution for all matrix elements again
factorises. In the opposite, that is, Hermitian, limit (τ → 1), the parameter-
dependent Ginibre ensembles become the Wigner–Dyson ensembles. The jpdf
of complex (and real) eigenvalues can be computed by transforming J into the
following form, J =U (Z + T )U−1. For β = 2 this is the Schur decomposition,
with Z = diag(z1, . . . , zN ) containing the complex eigenvalues, and T being
upper triangular:1

ZGinUE
N (τ )= cβ=2

N ,C

N∏
j=1

∫
C

d 2z j w
C
β=2(z j ) |1N ({z})|2,

wC
β=2(z)= exp

[
−1

1− τ 2

(
|z|2− τ

2
(z2
+ z∗ 2)

)]
.

(2.5)

For β = 1, 4 we follow [Khoruzhenko and Sommers 2011] where the two
ensembles have been cast into a unifying framework. For simplicity we choose

1 The resulting jpdf of complex eigenvalues for normal matrices with T ≡ 0 at β = 2 is the
same.
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N to be even. Here the matrix Z can be chosen to be 2× 2 block diagonal and
T to be upper block triangular. The calculation of the jpdf reduces to a 2× 2
calculation, yielding

ZGinO/SE
N (τ )= cβ=1,4

N ,C

N∏
j=1

∫
C

d 2z j

N/2∏
k=1

FC
β=1,4(z2k−1, z2k)1N ({z}), (2.6)

where we have introduced an antisymmetric bivariate weight function. For β = 1,
this is given by

FC
β=1(z1, z2)= w

C
β=1(z1)w

C
β=1(z2)

×
(
2iδ2(z1− z∗2) sign(y1)+ δ

1(y1)δ
1(y2) sign(x2− x1)

)
,

(wC
β=1(z))

2
= erfc

(
|z− z∗|√
2(1− τ 2)

)
exp

[
−1

2(1+ τ)
(z2
+ z∗ 2)

]
, (2.7)

and for β = 4 by

FC
β=4(z1, z2)= w

C
β=4(z1)w

C
β=4(z2) (z1− z2) δ(z1− z∗2),

(wC
β=4(z))

2
= wC

β=2(z).
(2.8)

For β= 1, it should be noted that the integrand in (2.6) is not always positive, and
so a symmetrisation must be applied when determining the correlation functions
below.2 For β = 4, the parameter N in (2.6) should — in our convention — be
taken to be the size of the complex-valued matrix that is equivalent to the original
quaternion real matrix.

The correlation functions can be written in a similar form as for the real
eigenvalues

Rβ=2
k,C (z1, . . . , zk)= det

i, j=1,...,k
[K β=2

N ,C (zi , z∗j )],

Rβ=1,4
k,C (z1, . . . , zk)= Pf

i, j=1,...,k

[(
K β=1,4

N ,C (zi , z j ) −Gβ=1,4
N ,C (zi , z j )

Gβ=1,4
N ,C (z j , zi ) −W β=1,4

N ,C (zi , z j )

)]
,

(2.9)

where the elements of the matrix kernels are related through

Gβ=1,4
N ,C (zi ,z j )=−

∫
C

d 2z K β=1,4
N ,C (zi ,z)FC

β=1,4(z,z j ),

W β=1,4
N ,C (zi ,z j )=

∫
C2

d 2z d 2z′FC
β=1,4(zi ,z)K

β=1,4
N ,C (z,z′)FC

β=1,4(z
′,z j )

−FC
β=1,4(zi ,z j ).

(2.10)

2It is, however, possible to write the partition function ZGinOE
N as an integral over a true

(i.e., positive) jpdf, by, for example, appropriately ordering the eigenvalues; however, such a
representation is technically more difficult to work with.
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The kernels K β

N ,C(z, z′) are given explicitly in Appendix A.
For β = 1, we can write

Gβ=1
N ,C(z1, z2)= δ

1(y2)G
β=1
N ,C,real(z1, x2)+Gβ=1

N ,C,com(z1, z2),

W β=1
N ,C (z1, z2)= δ

1(y1)δ
1(y2)W

β=1
N ,C,real,real(x1, x2)

+ δ1(y1)W
β=1
N ,C,real,com(x1, z2)+ δ

1(y2)W
β=1
N ,C,com,real(z1, x2)

+W β=1
N ,C,com,com(z1, z2)−FC

β=1(z1, z2),

(2.11)

whereas, for β = 4, (2.8) implies the following relations:

Gβ=4
N ,C(z1, z2)= (z2−z∗2)w

C
β=2(z2)K

β=4
N ,C (z1, z∗2),

W β=4
N ,C (z1, z2)=−(z1−z∗1)(z2−z∗2)w

C
β=2(z1)w

C
β=2(z2)K

β=4
N ,C (z

∗

1, z
∗

2),
(2.12)

where in the final expression we have dropped the term representing the perfect
correlation between an eigenvalue z and its complex conjugate z∗. For this reason,
for β = 4 we will only give one of the matrix kernel elements in the following.

Note that β = 1 is special as the eigenvalues of a real asymmetric matrix
are either real or come in complex conjugate pairs. Therefore we will have to
distinguish kernels (and k-point densities) of real, complex or mixed arguments.

In order to specify the limiting kernels we first need the behaviour of the mean
(or macroscopic) spectral density. At large N , and for all three values of β, the
(real) eigenvalues in the Hermitian ensembles are predominantly concentrated
within the Wigner semicircle ρsc(x)= (2πN )−1

√
4N − x2 on [−2

√
N , 2
√

N ],
whereas in the non-Hermitian ensemble, the complex eigenvalues lie mostly
within an ellipse with half-axes of lengths (1+ τ)

√
N and (1− τ)

√
N , with

constant density ρel(z)= (Nπ(1− τ 2))−1. Depending on where (and how) we
magnify the spectrum locally, we obtain different asymptotic Airy or sine kernels
for each β = 1, 2, 4. In the following we will give all of the known real kernels;
see [Kuijlaars 2011], for example, for a complete list and references, together
with their deformations into the complex plane. For the Bessel kernels which
will be introduced later we need to consider different matrix ensembles, see
Section 2.4 below.

2.2. Limiting Airy kernels on R and C. When appropriately zooming into the
“square root” edge of the semicircle, the three well-known Airy kernels (matrix-
valued for β = 1, 4) are obtained for real eigenvalues. For complex eigenvalues
we have to consider the vicinity of the eigenvalues on a thin ellipse which have
the largest real parts, and where the weakly non-Hermitian limit introduced in
[Bender 2010] is defined such that

σ = N
1
6
√

1− τ (2.13)
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remains fixed (see Appendix B for the precise details of the scaling of the
eigenvalues). This leads to one-parameter deformations of the Airy kernels in
the complex plane. Whilst the results for β = 2 are already known [Bender
2010; Akemann and Bender 2010], our results for β = 1, 4, stated below, are
new [Akemann and Phillips 2014]:

β = 2:

K β=2
Ai (x1, x2)=

Ai(x1)Ai′(x2)−Ai′(x1)Ai(x2)

x1− x2

=

∫
∞

0
dt Ai(x1+ t)Ai(x2+ t), (2.14)

K β=2
Ai,C(z1, z2)=

1
σ
√
π

exp
(
−

y2
1 + y2

2

2σ 2 +
σ 6

6
+
σ 2(z1+ z2)

2

)
×

∫
∞

0
dt eσ

2t Ai
(

z1+ t + σ
4

4

)
Ai
(

z2+ t + σ
4

4

)
. (2.15)

In the Hermitian limit σ → 0 we obtain

K β=2
Ai,C(z1, z2)→

√
δ1(y1)δ1(y2)K

β=2
Ai (x1, x2),

with the factor in front of the integral in (2.15) projecting the imaginary parts
of the eigenvalues to zero. For the integral itself — which is obtained from
the limit of the sum of the OP on C given in (A.4) — the deformation in σ
is very smooth. The same deformed Airy kernel can be obtained from the
corresponding WL ensemble equation (2.29) [Akemann and Bender 2010] with
kernel equation (A.5), and is thus universal.

β = 4:

Gβ=4
Ai (x1,x2)=−

1
2 K β=2

Ai (x1, x2)+
1
4 Ai(x1)

∫
∞

x2

dt Ai(t),

K β=4
Ai (x1, x2)=

∂

∂x2
Gβ=4

Ai (x1, x2),

W β=4
Ai (x1, x2)=−

∫
∞

x1

ds Gβ=4
Ai (s, x2) (2.16)

=−
1
4

∫
∞

0
ds
∫ s

0
dt
(
Ai(x2+t)Ai(x1+s)−Ai(x2+s)Ai(x1+t)

)
,
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Gβ=4
Ai,C(z1, z2)=

iy2

4σ 3√π
exp

(
−

y2
1 + y2

2

2σ 2 +
σ 6

6
+
σ 2(z1+ z∗2)

2

)
×

∫
∞

0
ds
∫ s

0
dt e

1
2σ

2(s+t)

×

(
Ai
(

z∗2+s+ σ
4

4

)
Ai
(

z1+t+ σ
4

4

)
−(z1↔ z∗2)

)
. (2.17)

The integral in (2.17) which is also present in the other two kernel elements —
see (2.12) — clearly reduces to that in (2.16) in the Hermitian limit, whereas the
prefactors provide the appropriate Dirac delta functions. When analysing the
Hermitian limit in detail, the real kernel elements Gβ=4

Ai and K β=4
Ai follow from

a Taylor expansion of W β=4
Ai,C ; see [Akemann and Basile 2007] for a discussion

of the analogous Hermitian limit of the Bessel kernel.

β = 1:

Gβ=1
Ai (x1, x2)=−

∫
∞

0
dt Ai(x1+ t)Ai(x2+ t)− 1

2 Ai(x1)

(
1−

∫
∞

x2

dt Ai(t)
)
,

K β=1
Ai (x1, x2)=

∂

∂x2
Gβ=1

Ai (x1, x2),

W β=1
Ai (x1, x2)= −

∫
∞

x1

ds Gβ=1
Ai (s, x2)−

1
2

∫ x2

x1

dt Ai(t)

+
1
2

∫
∞

x1

ds Ai(s)
∫
∞

x2

dt Ai(t)− 1
2 sign(x1− x2), (2.18)

Gβ=1
Ai,C,real(x1, x2)=− exp

(
σ 6

6
+
σ 2(x1+ x2)

2

)
×

∫
∞

0
dt eσ

2t Ai
(

x1+ t + σ
4

4

)
Ai
(

x2+ t + σ
4

4

)
−

1
2 exp

(
σ 6

12
+
σ 2x1

2

)
Ai
(

x1+
σ 4

4

)
×

(
1− eσ

6/12
∫
∞

x2

dt eσ
2t/2 Ai

(
t + σ

4

4

))
,

Gβ=1
Ai,C,com(z1, z2)=−

i
2σ 2 sign(y2)(z1− z∗2) exp

(
σ 6

6
+
σ 2(x1+ x2)

2

)
×

√
erfc

(
|y1|/σ

)
erfc

(
|y2|/σ

)
×

∫
∞

0
dt (eσ

2t
− 1)Ai

(
z1+ t + σ

4

4

)
Ai
(

z∗2 + t + σ
4

4

)
,
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K β=1
Ai,C(z1, z2)=

i
2

sign(y2)G
β=1
Ai,C,com(z1, z∗2),

W β=1
Ai,C(z1, z2)=

(
−2A(x1, x2)+ B(x1)B(x2)+ B(x2)− B(x1)

)
δ1(y1)δ

1(y2)

+ 2i sign(y2)G
β=1
Ai,C,real(z

∗

2, x1)δ
1(y1)

− 2i sign(y1)G
β=1
Ai,C,real(z

∗

1, x2)δ
1(y2)

− 2i sign(y1)G
β=1
Ai,C,com(z

∗

1, z2)

− 2iδ2(z1− z∗2) sign(y1)− δ
1(y1)δ

1(y2) sign(x2− x1),

A(x1, x2)= exp
(
σ 6

6
+
σ 2(x1+ x2)

2

)
×

∫
∞

0
ds
∫ s

0
dt e

1
2σ

2(s+t) Ai
(

x1+ s+ σ
4

4

)
Ai
(

x2+ t + σ
4

4

)
,

B(x)= exp
(
σ 6

12
+
σ 2x

2

)∫
∞

0
dt e

1
2σ

2t Ai
(

x + t + σ
4

4

)
. (2.19)

Clearly Gβ=1
Ai,C,real(x1, x2)→ Gβ=1

Ai (x1, x2) as σ → 0, whereas the complex part
vanishes in this Hermitian limit: Gβ=1

Ai,C,com(z1, z2)→ 0. We have also explicitly
verified the corresponding limits for K β=1

Ai,C(z1, z2) and W β=1
Ai,C(z1, z2).

2.3. Limiting sine kernels on R and C. For real eigenvalues the sine kernels
are obtained by zooming into the bulk of the spectrum, sufficiently far away
from the edges. The weakly non-Hermitian limit of the complex eigenvalues
introduced in [Fyodorov et al. 1997a; 1997b] is taken such that

σ = N 1/2
√

1− τ (2.20)

remains finite (see Appendix B for further details). In this limit the macroscopic
support of the spectral density on an ellipse shrinks to the semicircle distribu-
tion on the real axis, whereas microscopically we still have correlations of the
eigenvalues in the complex plane.

The list of the known one-parameter deformations of the sine kernels for β= 2
is as follows:

β = 2:

K β=2
sin (x1, x2)=

sin(x1−x2)

π(x1−x2)
=

1
π

∫ 1

0
dt cos[(x1−x2)t], (2.21)

K β=2
sin,C(z1, z2)=

1
σπ3/2 e−(y

2
1+y2

2 )/(2σ
2)

∫ 1

0
dt e−σ

2t2
cos[(z1−z2)t]. (2.22)
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The corresponding spectral density of complex eigenvalues was first derived in
[Fyodorov et al. 1997a] using supersymmetry, and the kernel with all correlation
functions in [Fyodorov et al. 1997b; 1998] using OP; see (A.4). In the Hermitian
limit σ → 0, we have

K β=2
sin,C(z1, z2)→

√
δ1(y1)δ1(y2)K

β=2
sin (x1, x2).

In [Fyodorov et al. 1998] it was shown using supersymmetric techniques that
the same result holds for the microscopic density of random matrices with i.i.d.
matrix elements for β = 1, 2. Further arguments in favour of universality were
added in [Akemann 2002] for the kernel for β = 2 using large-N factorisation
and asymptotic OP. The universal parameter is the mean macroscopic spectral
density ρ(x0).

β = 4:

Gβ=4
sin (x1, x2)=−

sin[2(x1− x2)]

2π(x1− x2)
,

K β=4
sin (x1, x2)=

∂

∂x1
Gβ=4

sin (x1, x2),

W β=4
sin (x1, x2)=

∫ x1−x2

0
dt Gβ=4

sin (t, 0)=
1

2π

∫ 1

0

dt
t

sin[2(x1− x2)t], (2.23)

Gβ=4
sin,C(z1, z2)=

i2
√

2 y2

π3/2σ 3 e−2y2
2/σ

2
∫ 1

0

dt
t

e−2σ 2t2
sin[2(z1− z∗2)t]. (2.24)

The corresponding spectral density of complex eigenvalues was derived in
[Kolesnikov and Efetov 1999] using supersymmetry, and the kernel with all
correlation functions was derived in [Kanzieper 2002] using skew-OP leading to
(A.9).

β = 1:

Gβ=1
sin (x1, x2)=−K β=2

sin (x1, x2),

K β=1
sin (x1, x2)=

∂

∂x1
Gβ=1

sin (x1, x2)=
1
π

∫ 1

0
dt t sin[(x2− x1)t],

W β=1
sin (x1, x2)=

∫ x1−x2

0
dt Gβ=1

sin (t, 0)+ 1
2 sign(x1− x2), (2.25)

Gβ=1
sin,C,real(z1, x2)=−

1
π

∫ 1

0
dt e−σ

2t2
cos[(z1− x2)t],

Gβ=1
sin,C,com(z1, z2)=− 2i sign(y2) erfc

∣∣∣ y1
σ

∣∣∣K β=1
sin,C(z1, z∗2),
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K β=1
sin,C(z1, z2)=

1
π

∫ 1

0
dt t e−σ

2t2
sin[(z2− z1)t],

W β=1
sin,C(z1, z2)=−

(
1
π

∫ 1

0

dt
t

e−σ
2t2

sin[(x2− x1)t]
)
δ1(y1)δ

1(y2) (2.26)

− 2i sign(y2) erfc
∣∣∣ y2
σ

∣∣∣Gβ=1
sin,C,real(z

∗

2, x1)δ
1(y1)

+ 2i sign(y1) erfc
∣∣∣ y1
σ

∣∣∣Gβ=1
sin,C,real(z

∗

1, x2)δ
1(y2)

+ 4 sign(y1) sign(y2) erfc
∣∣∣ y1
σ

∣∣∣ erfc
∣∣∣ y2
σ

∣∣∣K β=1
sin,C(z

∗

1, z∗2)

−

√
erfc

∣∣∣ y1
σ

∣∣∣ erfc
∣∣∣ y2
σ

∣∣∣(2i δ2(z1− z∗2) sign(y1)

+ δ1(y1)δ
1(y2) sign(x2− x1)

)
.

The kernel elements Gβ=1
sin,C(z1, z2) and K β=1

sin,C(z1, z2) were derived in [Forrester
and Nagao 2008] using skew-OP; see also (A.11). The same resulting spectral
densities of complex and real eigenvalues were derived previously in [Efetov
1997a; 1997b] using a sigma-model calculation, which again indicates universal-
ity. It can easily be verified that the Hermitian limit σ → 0 of Gβ=1

sin,C,real(x1, x2)

is indeed Gβ=1
sin (x1, x2), and that Gβ=1

sin,C,com(z1, z2) vanishes in this limit.

2.4. Wishart–Laguerre ensembles with eigenvalues on R and C. In order to
be able to access the Bessel kernels for real and complex eigenvalues as well,
we briefly introduce the Wishart–Laguerre (or chiral) ensembles (LβE) and
their non-Hermitian counterparts (CLβE). We begin with the former which are
defined as

Z
LβE
N =

∫
dW exp[−β Tr W W †/2]

= cN ,β,ν

N∏
j=1

∫
R+

dx j w
ν
β(x j ) |1N ({x})|β . (2.27)

The elements of the rectangular N × (N + ν) matrix W are again real, com-
plex, or quaternion real for β = 1, 2, 4, without further symmetry constraints.
The integration denoted by dW runs over all the independent matrix elements.
Because we want to access the so-called hard edge of the spectrum we will
only consider fixed ν = O(1) in the following. The distribution of the (positive
definite) eigenvalues x j of W W † in the Wishart picture (or equivalently the
distribution of the singular values of W in the Dirac picture used in QCD) is of
the same form as (2.1), but with different weight functions

wνβ(x)= x
1
2β(ν+1)−1 exp[−βx/2], (2.28)
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that now depend on β in a nontrivial way. Consequently the k-point correlation
functions take the same form as in (2.3), with the corresponding kernels.

In analogy to the Ginibre ensembles we define a parameter-dependent family
of non-Hermitian Wishart–Laguerre (also called complex chiral) ensembles as
the following two-matrix model

Z
CLβE
N (τ )

=

∫
dW dV exp

[
−

1
1−τ

Tr
(
W W †

+ V †V − τ(W V + V †W †)
)]
, (2.29)

with W and V † being two rectangular N × (N + ν) matrices. Here we follow
the notation of [Akemann and Bender 2010]. This two-matrix model was first
introduced and solved for β = 1 [Akemann et al. 2009; 2010b], β = 2 [Osborn
2004] and β= 4 in [Akemann 2005]. For τ = 0 the jpdf of all the matrix elements
again factorises, and in the opposite limit we have

Z
CLβE
N (τ )→ Z

LβE
N

as τ→ 1. Here we are seeking the complex (and real) eigenvalues of the product
matrix W V (W and V are the off-diagonal blocks of the Dirac matrix that we
diagonalise). Its jpdf takes the same form as in (2.5) and (2.6), but with different
weight functions that are no longer Gaussian

w
ν,C
β=2(z)= |z|

ν exp
[
τ(z+ z∗)

1− τ 2

]
Kν

(
2|z|

1− τ 2

)
,

w
ν,C
β=4(z)=

√
w

2ν,C
β=2 (z).

(2.30)

The function Kν(z) here is the modified Bessel function. For β = 4 the antisym-
metric weight function is defined as in (2.8). For β = 1 we explicitly specify two
functions in the antisymmetric weight function

Fν,C
β=1(z1, z2)= igν(z1, z2) sign(y1) δ

2(z1− z∗2)

+
1
2 hν(x1)hν(x2)δ(y1)δ(y2) sign(x2− x1),

hν(x)= 2|x |
ν
2 exp

[
τ x

1− τ 2

]
K ν

2

(
|x |

1− τ 2

)
, (2.31)

gν(z1, z2)= 2|z1z2|
ν
2 exp

[
τ(z1+ z2)

1− τ 2

]
×

∫
∞

0

dt
t

exp
[
−
(z2

1+ z2
2)t

(1− τ 2)2
−

1
4t

]
× K ν

2

(
2z1z2t
(1− τ 2)2

)
erfc

(
|z2− z1|

√
t

1− τ 2

)
,
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which are related by gν(z, z∗)→ hν(x)2 as y→ 0. We give the corresponding
kernels in Appendix A.

In the large-N limit (with ν = O(1) fixed), for all three β the real positive
Wishart eigenvalues of W W † are concentrated on the interval (0, 4N ], with a
density ρ(x)= (2πN )−1√(4N − x)/x . This is a special case of the Marchenko–
Pastur density. After mapping to Dirac eigenvalues λ=

√
x , this becomes the

same semicircle distribution as for WD, but with eigenvalues coming in ±λ pairs.
The density of the Wishart eigenvalues has a singularity at the origin; however,
after mapping to the Dirac picture, we obtain a macroscopic density function
that is flat on an ellipse, just as in the Ginibre ensemble3.

We now give a list of all the known Bessel kernels. For real eigenvalues we
follow [Deift et al. 2007; Nagao and Forrester 1995] where a most comprehensive
list and references can be found. In some cases the parallel between kernels of
real and complex eigenvalues is more transparent after using some identities for
Bessel functions.

2.5. Limiting Bessel kernels on R and C. The hard-edge limit is defined by
zooming into the origin (see Appendix B), where for the complex eigenvalues
we have to keep σ =

√
N (1− τ) fixed as in the weakly non-Hermitian bulk limit

equation (2.20). The corresponding limiting kernels are given as follows:

β = 2:

K β=2
Bes (x1, x2)=

Jν(
√

x1)
√

x2 Jν−1(
√

x2)− (x1↔ x2)

2(x1− x2)

=
1
2

∫ 1

0
dt t Jν(

√
x1 t)Jν(

√
x2 t), (2.32)

K β=2
Bes,C(z1, z2)=

1
8πσ 2 Kν

(
|z1|

4σ 2

)1/2

Kν

(
|z2|

4σ 2

)1/2

exp
(

x1+ x2

8σ 2

)
×

∫ 1

0
dt t e−2σ 2t2

Jν(t
√

z1 )Jν(t
√

z2). (2.33)

It can be shown that

K β=2
Bes,C(z1, z2)→

√
δ1(y1)δ1(y2)2(x1)2(x2)K

β=2
Bes (x1, x2)

as σ → 0, where 2(x) is the Heaviside step function. The kernel of complex
eigenvalues was derived in [Osborn 2004]. The same density following from this
kernel was obtained from a different Gaussian non-Hermitian one-matrix model
[Splittorff and Verbaarschot 2004] using replicas, and is in that sense universal.

3Note that the ν exact eigenvalues do not contribute to the macroscopic spectral density.
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β = 4:

K β=4
Bes (x1, x2)=−

∂

∂x2
Gβ=4

Bes (x1, x2),

Gβ=4
Bes (x1, x2)=−2

√
x1

∫ 1

0
dt
∫ 1

0
ds s2(J2ν(2

√
x1 st)J2ν+1(2

√
x2 s)

− t J2ν(2
√

x1 s)J2ν+1(2
√

x2 st)
)
,

W β=4
Bes (x1, x2)=

√
x1x2

∫ 1

0
dt
∫ 1

0
ds s

(
J2ν(2
√

x1 st)J2ν(2
√

x2 s)− (x1↔ x2)
)

=

∫ x2

x1

dx ′ Gβ=4
Bes (x1, x ′), (2.34)

K β=4
Bes,C(z1, z2)=

1
σ 4

∫ 1

0
dt
∫ 1

0
ds s e−2σ 2s2(1+t2)

×
(
J2ν(2
√

z1 st)J2ν(2
√

z2 s)− (z1↔ z2)
)
. (2.35)

The complex kernel was first derived in [Akemann 2005], whereas the matching
in the Hermitian limit — which can best be seen when comparing the kernels
K β=4

Bes and K β=4
Bes,(C) — is discussed in detail in [Akemann and Basile 2007].

β = 1:

K β=1
Bes (x1, x2)=

−1
8
√

x1x2

∫ 1

0
ds s2 (√x1 Jν+1(s

√
x1)Jν(s

√
x2)− (x1↔ x2)

)
= −

∂

∂x2
Gβ=1

Bes (x1, x2),

Gβ=1
Bes (x1, x2)= −

1
2

∫ 1

0
dt t Jν−1(

√
x1 t)Jν−1(

√
x2 t)

−
1

4
√

x1
Jν(
√

x1)

∫
∞

√
x2

ds Jν−2(s),

W β=1
Bes (x1, x2)= −

∫ x2

x1

ds Gβ=1
Bes (s, x2)−

1
2 sign(x1− x2), (2.36)

K β=1
Bes,C(z1, z2)=

1
256πσ 2

∫ 1

0
ds s2 e−2σ 2s2

×
(√

z1 Jν+1(s
√

z1)Jν(s
√

z2)− (z1↔ z2)
)
,

Gβ=1
Bes,C,com(z1, z2)=−2i sign(y2) ex2/(4σ 2)

∫
∞

0

dt
t

exp
(
−

t (z2
2+ z∗ 2

2 )

64σ 4 −
1
4t

)
× K ν

2

(
t

32σ 4 |z2|
2
)

erfc
(√

t |y2|

4σ 2

)
K β=1

Bes,C(z1, z∗2),
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Gβ=1
Bes,C,real(x1, x2) (2.37)

=−
2 ex2/(8σ 2)K ν

2

(
|x2|/8σ 2

)
[sign(x2)]ν/2

×

{(
(−i)ν

∫ 0

−∞

dy+
2

[sign(x2)]
ν
2

∫ x2

0
dy
)

K β=1
Bes,C(x1, y)2 ey/(8σ 2)K ν

2

(
|y|
8σ 2

)
−

1
32
√
π

[
−

1
σ

e−σ
2

Jν(
√

x1)

+
2σ ν

0
(
ν+1

2

) ∫ 1

0
ds e−σ

2s2
sν+2

×

(√
x1

2
E 1−ν

2
(σ 2s2) Jν+1(s

√
x1 )

− σ 2s
(
E −1−ν

2
(σ 2s2)− E 1−ν

2
(σ 2s2)

)
Jν(s
√

x1)

)]}
.

In the final equation above,

En(x)=
∫
∞

1
dt

e−xt

tn (2.38)

is the exponential integral. The kernels K β=1
Bes,C(z1, z2) and Gβ=1

Bes,C,com(z1, z2)

were derived in [Akemann et al. 2010b], and Gβ=1
Bes,C,real(x1, x2) in [Akemann

et al. 2011c; Phillips 2011]; the latter case is somewhat subtle, since we cannot
simply commute the (weakly non-Hermitian) large-N limit operation with the
integral that appears in the finite-N expression, to give an integral over the
limit of the integrand. We also note that there is numerical evidence from
studying some examples of non-Gaussian RMT that the density of the real
eigenvalues resulting from Gβ=1

Bes,C,real(x1, x2) and the corresponding distribution
of the smallest eigenvalues may be universal [Phillips 2011].

The Hermitian limit is much more involved here; but compare K β=1
Bes,C(z1, z2)

and K β=1
Bes (z1, z2)— in particular, as N →∞ and σ → 0, we find that

Gβ=1
Bes,C,com(z1, z2)→ 0 and Gβ=1

Bes,C,real(x1, x2)→ Gβ=1
Bes (x1, x2),

and we refer to [Akemann et al. 2011c; Phillips 2011] for more details.

3. Discussion and open problems

In this short article we have collected together all the known kernels for RMT
with real eigenvalues along with all the known and new kernels for RMT with
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complex eigenvalues at weak non-Hermiticity. This comprises the Airy, sine
and Bessel kernels of the three Wigner–Dyson and the three Wishart–Laguerre
ensembles, as well as their non-Hermitian counterparts. In order to highlight
the nature of this deformation we have used real integral representations for
the kernels of real eigenvalues, rather than the asymptotic forms resulting from
the Christoffel–Darboux identity for β = 2 or from the rewriting à la Tracy–
Widom for β = 1, 4. The extra exponential factor (and shift for the Airy case)
in the integral representation of the kernels on C is a very smooth deformation.
This makes it very plausible that the universality which is very well studied for
real eigenvalues extends to the weakly non-Hermitian limit for all ensembles,
beyond what is already known for β = 2. The universality of the factor in
front of the integral which contains special functions such as the complementary
error function or modified Bessel function will be more difficult to establish.
However, the presence of these factors is crucial when taking the Hermitian limit,
in projecting the imaginary parts of the eigenvalues to zero.

Whilst we have already mentioned what is known about universality in the
weak limit so far, let us give some more open problems. To date, a mathematically
rigorous derivation of most of the limiting kernels on C is lacking, apart from the
complex Airy kernel for β = 2 [Bender 2010]. There is no doubt that the kernels
we have listed and which have been derived using different techniques such as
asymptotic OP, supersymmetry or replicas are correct. This is based not only
on numerical evidence but also, and more importantly, on a comparison with
complex eigenvalue spectra in physics; see, for example, [Verbaarschot 2011;
Akemann 2007] and references therein, where the complex Bessel kernels for
β = 2 and 4 were successfully compared with complex spectra from QCD and
QCD-like theories. Because the latter are field theories and not Gaussian RMT
this gives a further indication that universality holds in this regime. Preliminary
numerical investigations with non-Gaussian, non-Hermitian RMT appear to
confirm this [Phillips 2011] for β = 1.

A much more challenging problem will be to show the universality of these
kernels on C, either by going to non-Gaussian potentials of polynomial or
harmonic form, or by considering non-Hermitian Wigner matrix ensembles, with
elements being independent random variables.

A further reason why we believe that this universality question is important
is that some of the kernels on C reappear in the same integral form (with real
arguments) when looking at symmetry transitions between two different Hermit-
ian RMTs, say from one GUE to another GUE, in a corresponding “weak” limit.
Their eigenvalue correlations are also called parametric. For β = 2 this fact can
be observed for the Bessel, sine [Akemann et al. 2007; Forrester et al. 1999] and
Airy [Macêdo 1994; Forrester et al. 1999] kernels.
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Appendix A: finite-N (skew-) orthogonal polynomials and kernels on C

In this appendix we specify the orthogonal polynomials (OP) and skew-OP
as well as their (skew-) symmetric scalar products. These may be used to
construct the kernels — which we will list for all the above matrix ensembles
with complex eigenvalues — in terms of which all k-point correlation functions
can be expressed; see (2.3) and (2.9). We also highlight the relations between
expectation values of characteristic polynomials on the one hand and (skew-) OP
and their kernels on the other, valid on both R and C.

Starting with β = 2 we define the monic OP on R (and C) by

∫
R(C)

d(2)zw(ν,C)β=2 (z)Pk(z)Pl(z)(∗) = hβ=2
k(ν,C)δkl, (A.1)

with squared norms hβ=2
k(ν,C). The symbol ν labels the rectangular N × (N + ν)

matrices of the Wishart–Laguerre ensembles considered in Section 2.4. Because
all moments exist in our examples these OP can be constructed via the Gram–
Schmidt procedure. Alternatively, they can be written as

Pk(z)= 〈det[z− H ]〉k =
1

ZGUE
k

∫
d H det[z− H ] exp[−Tr H 2/2], (A.2)

and similarly for the GinUE and (C)LUE, replacing the k×k matrix H inside the
determinant with J , or with the Wishart matrices W W † and W V , respectively. In
fact, this relation holds for general weight functions. For the Gaussian ensembles
we obtain Hermite, and for the WL ensembles Laguerre polynomials on R

and on C. The corresponding kernels are then obtained by summing over the
normalised OP (multiplied by the weights). Most conveniently, a second relation
to characteristic polynomials exists [Akemann and Vernizzi 2003],

K β=2
N ,C (u, v)= w

C
β=2(u)

1
2wC

β=2(v)
1
2

1

hβ=2
N−1,C

〈det[u− J ] det[v− J †
]〉N−1, (A.3)

which we state here for the GinUE. Correspondingly it holds for the GUE and
β = 2 WL ensembles, and, indeed, for arbitrary weights. We can now give the
two β = 2 kernels in the complex plane, following [Fyodorov et al. 1998] and
[Osborn 2004] respectively:
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β = 2:

K β=2
N ,C (u, v)= w

C
β=2(u)

1
2wC

β=2(v)
1
2

1

π
√

1−τ 2

N−1∑
j=0

τ j

2 j j !
H j

(
u
√

2τ

)
H j

(
v
√

2τ

)
,

(A.4)

K β=2
N ,ν,C(u, v)= w

ν,C
β=2(u)

1
2w

ν,C
β=2(v)

1
2

2
π(1−τ 2)

N−1∑
j=0

τ 2 j j !
( j + ν)!

Lνj

(
u
τ

)
Lνj

(
v

τ

)
.

(A.5)

For the skew-OP related to β = 1, 4, we have to distinguish between the
skew products for complex and real eigenvalues. Because the latter are very
well known (see, e.g., [Mehta 2004]) we will focus on the former, which can be
written in a unified way [Akemann et al. 2010a] as

∫
C2

d 2z1d 2z2 F(ν)C
β=1,4(z1, z2) det

[
Qβ=1,4

2k (z1) Qβ=1,4
2l+1 (z1)

Qβ=1,4
2k (z2) Qβ=1,4

2l+1 (z2)

]
= hβ=1,4

k,(ν)Cδkl,

(A.6)
for skew-OP of even-odd degree, and which is vanishing for even-even and
odd-odd degree. Here and in the following we again choose N even. Once more,
the skew-OP satisfying this can be written as follows for β = 4 [Kanzieper 2002]
and β = 1 [Akemann et al. 2010a]:

Qβ=1,4
2k (z)= 〈det[z− J ]〉2k, Qβ=1,4

2k+1 (z)= 〈det[z− J ](z+c+Tr J )〉2k . (A.7)

Note that, for β = 4, the matrix J here should be taken as the complex-valued
matrix of size 2k × 2k. The odd skew-OP in (A.7) are defined only up to a
constant c times the even skew-OP. The same relation holds for real eigenvalues
and arbitrary weights, see [Akemann et al. 2010a] for references. Moreover, the
antisymmetric kernel matrix element K β=1,4

N ,C (sometimes called the prekernel)
enjoys a similar relation to that in (A.3), as was observed for β = 4 [Akemann
and Basile 2007] and β = 1 [Akemann et al. 2009]:

K β=1,4
N ,C (u, v)= (u− v)

1

hβ=1,4
N
2 −1,C

〈det[u− J ] det[v− J †
]〉N−2. (A.8)

An analogous relation holds for the Wishart–Laguerre ensembles (see, e.g., in
[Akemann et al. 2010a]). We list the corresponding kernel matrix elements.
From [Kanzieper 2002] and [Akemann 2005], respectively, we have:
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β = 4:

K β=4
N ,C (u, v)=

1

π(1− τ)
√

1− τ 2

N/2−1∑
k=0

k∑
l=0

1
(2k+ 1)!!(2l)!!

(
τ

2

)k+l+ 1
2

×

(
H2k+1

(
u
√

2τ

)
H2l

(
v
√

2τ

)
− (u↔ v)

)
, (A.9)

K β=4
N ,ν,C(u, v)=−

2
π(1− τ 2)2

N/2−1∑
k=0

k∑
j=0

22k−2 j k!(k+ ν)!(2 j)!
(2k+ 2ν+ 1)! j !( j + ν)!

τ 2k+2 j+1

×

(
L2ν

2k+1

(u
τ

)
L2ν

2 j

(
v

τ

)
− (u↔ v)

)
, (A.10)

recalling that N here is the size of the complex-valued matrix that is equivalent
to the original quaternion real matrix. From [Forrester and Nagao 2008] and
[Akemann et al. 2009] we have

β = 1:

K β=1
N ,C (u, v)=

1

2
√

2π(1+ τ)

N−2∑
l=0

1
l!

×

(
τ

2

)l+ 1
2
(

Hl+1

(
u
√

2τ

)
Hl

(
v
√

2τ

)
− (u↔ v)

)
, (A.11)

K β=1
N ,ν,C(u, v)=−

1
8π(1− τ 2)

N−2∑
l=0

(l + 1)!
(l + ν)!

τ 2l+1

×

(
Lνl+1

(u
τ

)
Lνl
(
v

τ

)
− (u↔ v)

)
. (A.12)

The other elements of the matrix-valued kernel follow by integration.

Appendix B: large-N limits at weak non-Hermiticity

In this appendix we will specify the different large-N limits that lead to the
limiting kernels listed in Section 2. Let us emphasise that these are not all of
the possible large-N limits of the above finite-N kernels that one can take. We
will give only those limits where (1− τ)N δ

= σ is kept fixed for some δ > 0,
limits where the degree of non-Hermiticity is weak. The reason is that it is only
these particular limiting kernels that relate closely to the known universal kernels
on R. However, many of the results at strong non-Hermiticity (i.e., where τ is
N -independent) can be recovered from the weak limit by taking σ →∞ and
rescaling the complex eigenvalues accordingly.
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Soft edge limit. We consider fluctuations around the right end-point of the long
half-axis of the supporting ellipse, to obtain from (A.4) [Bender 2010]

z = (1+ τ)
√

N +
X

N 1/6 + i
Y

N 1/6 , σ = N 1/6
√

1− τ , (B.1)

K β=2
Ai,C(X1+ iY1, X2+ iY2)≡ lim

N→∞
τ→1

1
N 1/3 K β=2

N ,C (z1, z2). (B.2)

The same limit applies to the WL kernel on C given in (A.5) [Akemann and
Bender 2010]. By symmetry we expect the same limiting behaviour around the
left end-point −(1+ τ)

√
N as well as for ν = O(N ). The limiting kernels for

β = 1, 4 are defined in the same way. Note that the eigenvalues in the bulk of the
spectrum are at strong non-Hermiticity in this limit, since σsine= N 1/3σAiry→∞

as N →∞. In fact, in order to reach weak non-Hermiticity in the bulk we need
to consider the following scaling limit.

Bulk limit. Without loss of generality we consider fluctuations around the origin,
being representative of the Gaussian ensembles equation (2.4). On rescaling, we
obtain from (A.4) [Fyodorov et al. 1997a; 1997b]

z =
X

N 1/2 + i
Y

N 1/2 , σ = N 1/2
√

1− τ , (B.3)

K β=2
sin,C(X1+ iY1, X2+ iY2)≡ lim

N→∞
τ→1

1
N

K β=2
N ,C (z1, z2), (B.4)

and likewise for β = 1, 4. The macroscopic spectral density collapses onto the
real axis, and becomes the semicircle for our Gaussian ensembles. The functions
Rk,C given by the determinant or Pfaffian of the rescaled kernels describe the
microscopic correlations in the complex plane.

If we magnify around any other point |x0|< 2
√

N inside the bulk, then we
rescale the fluctuations z− x0 as in (B.3). The correlations are then universal
when measured in units of the local mean density πρsc(x0) [Fyodorov et al. 1998;
Akemann 2002].

Hard edge limit. Whilst we expect that in the bulk of the spectrum the WL and
Gaussian ensembles (Equation (2.29) and (2.4) respectively) show the same
behaviour, the origin is singled out in the latter case. The rescaling here is given
by [Osborn 2004]

z =
X

4N
+ i

Y
4N

, σ = N 1/2
√

1− τ , (B.5)

K β=2
Bes,C(X1+ iY1, X2+ iY2)≡ lim

N→∞
τ→1

1
(4N )2

K β=2
N ,ν,C(z1, z2), (B.6)
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with the Laguerre polynomials in (A.5) displaying a Bessel function asymptotic.

In all three scaling limits the asymptotic kernels are obtained by replacing
the sums with integrals (the Christoffel–Darboux identity does not hold for
OP in the complex plane), and the Hermite and Laguerre polynomials by their
corresponding Plancherel–Rotach asymptotics (proven for real arguments) in the
corresponding region.

An additional problem arises from the integrations with the antisymmetric
weight function F used to obtain the limiting kernel elements G and W . For
β = 1 these integrals are not absolutely convergent, and hence the limit N→∞
and the integration cannot be interchanged. For a detailed discussion we refer to
[Akemann et al. 2011c; Phillips 2011].
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