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The structure and classification
of misère quotients

AARON N. SIEGEL

A bipartite monoid is a commutative monoid Q together with an identified
subset P ⊂ Q. In this paper we study a class of bipartite monoids, known
as misère quotients, that are naturally associated to impartial combinatorial
games.

We introduce a structure theory for misère quotients with |P| = 2, and
give a complete classification of all such quotients up to isomorphism. One
consequence is that if |P| = 2 and Q is finite, then |Q| = 2n

+ 2 or 2n
+ 4.

We then develop computational techniques for enumerating misère quo-
tients of small order, and apply them to count the number of nonisomorphic
quotients of order at most 18. We also include a manual proof that there is
exactly one quotient of order 8.

1. Introduction

An impartial combinatorial game 0 is a two-player game with no hidden infor-
mation and no chance elements, in which both players have exactly the same
moves available at all times. When 0 is played under the misère play convention,
the player who makes the last move loses.

Thirty years ago, Conway [] showed that the misère-play combinatorics of such
games are often frighteningly complicated. However, new techniques recently
pioneered by Plambeck [2005] have reinvigorated the subject. At the core of
these techniques is the misère quotient, a commutative monoid that encodes the
additive structure of an impartial combinatorial game (or a set of such games).
See [Siegel 2015] for a gentle introduction to misère quotients, and [Plambeck
and Siegel 2008] for a more rigorous one; see [Plambeck 2009] for a survey of
the theory.

The introduction of misère quotients opens up a fascinating new area of study:
the investigation of their algebraic properties. Such investigations are intrinsically
interesting, and also have the potential to reveal new insights into the misère-play
structure of combinatorial games. In this paper, we introduce several new results
that expose quite a bit of structure in misère quotients.
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Bipartite monoids and misère quotients. We recall some basic facts about mis-
ère quotients from Plambeck and Siegel [2008]. A bipartite monoid is a commu-
tative monoid Q together with an identified subset P⊂Q. Two elements x, y ∈Q
are indistinguishable if, for all z ∈ Q, we have xz ∈ P ⇔ yz ∈ P . A bipartite
monoid (Q,P) is reduced if the elements of Q are pairwise distinguishable.
In [Plambeck and Siegel 2008] it is shown that every bipartite monoid has a
unique reduced quotient (up to isomorphism), the reduction of (Q,P). We’ll
write r.b.m. as shorthand for reduced bipartite monoid.
(Q,P) is a subbipartite monoid of (S,R) if Q is a submonoid of S and

R∩Q= P . In this case we write (Q,P) < (S,R).
For a closed set A of impartial combinatorial games, the indistinguishability

relation on A is given by

G ≡ H (mod A ) if and only if o−(G+ X)= o−(H + X) for all X ∈ A ,

where o−(G) denotes the misère-play outcome of G. We write [G] for the
equivalence class of G modulo ≡. Then the misère quotient of A is the bipartite
monoid (Q,P), where Q is the quotient monoid of A modulo ≡, and P is the
corresponding P-portion:

Q= {[G] : G ∈ A }; P = {[G] : G ∈ A , o−(G)=P}.

We denote the misère quotient of A by Q(A ). It is necessarily reduced, and
therefore isomorphic to the reduction of A . The quotient map 8 : A → Q is
given by 8(G)= [G].

If Q is a finite commutative monoid, then the intersection of all its ideals is
called the kernel of Q. The kernel K is itself an ideal; it is the smallest ideal
of Q, and is also the largest group that can be written as a homomorphic image
of Q. A misère quotient (Q,P) is said to be normal if K∩P = {z}, where z is
the group identity of K.

The basic theory of misère quotients is introduced in [Plambeck 2005; Plam-
beck and Siegel 2008; Siegel 2015], and some familiarity with it is assumed
throughout this paper.

Tame and restive quotients. The following facts were also established in [Plam-
beck 2005; Plambeck and Siegel 2008], and are discussed in [Siegel 2015] in
this volume. When every element of A is tame (in the sense of [ONAG]), then
its quotient is isomorphic to one of the tame quotients Tn . Here T0 = {1} (with
empty P-portion); T1 = {1, a} (with the structure of Z2 and P = {a}); and

Tn ∼= 〈a, b1, b2, . . . , bn−1 | a2
= 1, b3

1 = b1, b3
2 = b2, . . . , b3

n−1 = bn−1,

b2
1 = b2

2 = · · · = b2
n−1〉
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for n ≥ 2, with P = {a, b2
1}. (The condition that (Q,P)∼= Tn , for some n, can

be taken as an equivalent definition of tame.) The structure of Tn , for n ≥ 2, is
best described as:
• a kernel Kn isomorphic to Zn

2 , with identity element z = b2
1, and generators

az, b1, b2, . . . , bn−1;

• a separate component {1, a} isomorphic to Z2, which maps onto {z, az}
under multiplication by z.

Thus the cardinality of Tn (n ≥ 2) is 2n
+ 2.

Related to the tame quotients is the sequence of restive quotients R2n+4, for
n ≥ 2, obtained by adjoining a new element t to Tn with t z = t2

= z (so that t is
nilpotent to Kn). We have R2n+4 = Tn ∪ {t, at}, so that |R2n+4| = 2n

+ 4; and
P = {a, b2

}, so that R2n+4 also has just two P-positions.

Tame extensions. The first result of this paper is a complete classification of
misère quotients whose P-portion has cardinality 2. If (Q,P) is a misère
quotient, then the tame extension T (Q,P) is a certain extension of (Q,P) (to
be defined in Section 3) that adds no new P-positions. It is defined in such a
way that

T3 = T (T2), T4 = T (T3), T5 = T (T4), . . .

If we replace the “base” T2 by R8, then we recover the family of restive quotients:

R12 = T (R8), R20 = T (R12), R36 = T (R20), . . .

The main result is that every finite quotient with |P| = 2 is isomorphic to a
quotient in one of these two families. It will follow that every finite quotient
with |P| = 2 has order 2n

+ 2 or 2n
+ 4, for some n ≥ 2. Furthermore, if (Q,P)

is an infinite quotient with |P| = 2, then (Q,P)∼= either T∞ or R∞, the limits
of the two families (in a sense to be defined in Section 2).

“Almost tame” octal games. Tame extensions also have a useful application to
octal games. Fix a (finite-length) octal game 0 and an integer M , and consider
the partial quotient (Q,P)=QM(0) and quotient map 8M . Assume that (Q,P)
is normal and Q is finite, and let K ⊂ Q be the kernel of Q. In Section 3, we
will show that if 8M(Hn) ∈K for sufficiently many heaps Hn , then QM+1(0) is
either (Q,P) or T (Q,P), and 8M+1(HM+1) ∈ K. “Sufficiently many” will be
in the sense of [Guy and Smith 1956]: there exists n0 such that n0 ≤ n< 2n0+d ,
where d is the octal length of 0.

This theorem can be iterated, with strong consequences. In particular, if we
determine that 8M(Hn) ∈ K for sufficiently many n, then we can conclude that
Q(0) is one of

(Q,P), T (Q,P), T (T (Q,P)), . . . ,
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n 2 4 6 8 10 12 14 16 18

Quotients of order n 1 0 1 1 1 6 9 50 211

Table 1. The number of misère quotients of order n ≤ 18 (up to isomorphism).

or possibly the limit T ∞(Q,P) of this sequence. Furthermore, 8(Hn) ∈ K for
all but finitely many n. Since Q(0) is normal, normal and misère play coincide
on K; so we conclude that misère play reduces to normal play unless all the
heaps are small. In practice, this means that once we have computed QM(0),
then we have completely characterized the “misère-play divergence” of 0; and
its misère-play solution now depends only on finding a normal-play solution.

An example is the game 0.414, which we mentioned in [Plambeck and Siegel
2008]. Its normal-play solution is unknown, despite the computation of at least
224 G -values by Flammenkamp [2012]. However, it is easy enough to compute
Q18(0.414), and to verify using the above logic that 8(Hn) ∈ K for all n > 18.
Thus we know Q(0.414)∼= T k(Q18), for some k, and we need invest no further
worry in the misère play of 0.414: we may sit back and await a normal-play
solution.

Recall the misère-play strategy for NIM: play normal NIM unless your move
would leave only heaps of size 1. In that case, play to leave an odd number of
heaps of size 1. We can now state an analogous strategy for 0.414: play normal
0.414 unless your move would leave only heaps of size≤ 18. In that case, consult
the fine structure of Q18. We can state this reduction with confidence, despite
the fact that the fullnormal-play strategy for 0.414 remains unknown.

Quotients of small order. We’ll prove in Section 6 that R8 is the only quotient
of order 8 (up to isomorphism). The succeeding sections focus instead on
developing computational techniques for classifying quotients of small order.

In Section 7, we show that an arbitrary r.b.m. (Q,P) is a misère quotient if and
only if there exists a valid transition table for (Q,P)— a certain combinatorial
structure superimposed on (Q,P). This yields a computational method for
testing whether (Q,P) is a misère quotient, which is optimized and applied in
Section 8. The fruits of this effort are summarized in Table 1.

Preliminaries. We recall a few more key facts from [Plambeck and Siegel 2008].

Definition 1.1. Let (Q,P) be a bipartite monoid and fix x ∈ Q. The meximal
set of x in (Q,P), denoted Mx , is defined by

Mx = {y ∈Q : there is no z ∈Q such that xz ∈ P and yz ∈ P}.

The following statement is slightly more general than the rule given in [Plam-
beck and Siegel 2008], but the proof is identical.
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Fact 1.2 (generalized mex rule). Let (Q,P)=Q(A ), and let (Q,P) < (S,R).
Fix G with opts(G)⊂ A and fix x ∈ S. The following are equivalent.

(a) Q(A ∪ {G})∼= (S,R) and 8(G)= x.

(b) S is generated by Q∪ {x}, and the following two conditions hold.

(i) 8′′G ⊂Mx .
(ii) For each Y ∈ A and n ≥ 0 such that xn+18(Y ) 6∈ P , we have either:

xn+18(Y ′) ∈ P for some option Y ′ of Y ; or else xnx ′8(Y ) ∈ P for
some x ′ ∈8′′G.

In [Plambeck and Siegel 2008] we stated Fact 1.2 for the special case S =Q.
This will often be the case of greatest interest, but we shall have several occasions
to use the more general form.

2. Limits and one-stage extensions

In this section we show that every misère quotient is the limit of a sequence
of finitely generated quotients. Furthermore, each term of this sequence is an
extension of the previous term, in a way we now make precise.

Definition 2.1. Let (Q,P), (Q+,P+) be reduced bipartite monoids. We say
that (Q+,P+) is an extension of (Q,P) if there is some submonoid (S,R) <
(Q+,P+) such that (Q,P) is (isomorphic to) the reduction of (S,R). If Q+

is generated by S ∪ {x} for some single element x ∈ Q+ \ S, then we say that
(Q+,P+) is a one-stage extension of (Q,P).

Note that Definition 2.1 does not require that Q be a submonoid of Q+: it is
only required that (Q,P) be the reduction of a subbipartite monoid of (Q+,P+).

Lemma 2.2. Let (Q,P) be a finitely generated misère quotient. Then there is a
sequence of misère quotients

0= (Q0,P0), (Q1,P1), . . . , (Qn,Pn)= (Q,P)

such that each (Qi+1,Pi+1) is a one-stage extension of (Qi ,Pi ).

Proof. Write (Q,P) = Q(A ) and choose a finite set H ⊂ A so that 8′′H
generates Q. (Here and throughout the sequel, 8′′H = {8(H) : H ∈ H }.)
Since the hereditary closure of a finite set is finite, we may assume that H is
hereditarily closed. Enumerate

H = {H0, H1, . . . , Hm}

so that the successive Hi ’s have nondecreasing birthdays, and put

(Qi ,Pi )=Q(H0, . . . , Hi ).
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It is easily seen that either (Qi+1,Pi+1) = (Qi ,Pi ), or else it is a one-stage
extension of (Qi ,Pi ). A suitable reindexing gives the lemma. �

Now let (Qn,Pn) be a sequence of bipartite monoids, and suppose that for
each n, there exists (Q+n ,P+n )< (Qn+1,Pn+1) such that (Qn,Pn) is the reduction
of (Q+n ,P+n ), with quotient map πn :Q+n →Qn . We call (Qn,Pn, πn) a partial
inverse system.

Let QE= (Qn,Pn, πn) be a partial inverse system. It is convenient to regard
the underlying sets of the Qn as formally disjoint. A thread of QEstarting at n
is a sequence (xn, xn+1, xn+2, . . .), where xn ∈Qn and for each i > n we have
xi+1 ∈Q+i and πi (xi+1)= xi . We say two threads xEand yEare equivalent, and
write xE∼ yE, if one is a terminal segment of the other.

If xE= (xm, xm+1, xm+2, . . .) and yE= (yn, yn+1, yn+2, . . .) are threads, we can
define their product as follows. Without loss of generality, assume that m ≤ n,
and put

xE· yE= (xn yn, xn+1 yn+1, xn+2 yn+2, . . .).

It is easy to check that xE·yEis a thread and that the product respects the equivalence
∼. Further, 1E· xE= xE, where 1E= (1, 1, 1, . . .) is a list of the identity elements of
each Qn . Thus the threads modulo ∼ form a commutative monoid Q. We can
define a subset P ⊂Q by

P = {(xn, xn+1, xn+2, . . .) ∈Q : some xi ∈ Pi }.

(Note that the condition that some xi ∈ Pi is equivalent to all xi ∈ Pi , since each
πi is a bipartite monoid homomorphism.) This makes (Q,P) into a bipartite
monoid, which we call the partial inverse limit of the system QE. We write
(Q,P)= lim QE= limn(Qn,Pn).

The following lemma is an easy exercise.

Lemma 2.3. If (Qn,Pn) is reduced for infinitely many values of n, then so is
limn(Qn,Pn).

Theorem 2.4. Suppose that A0 ⊂ A1 ⊂ A2 ⊂ · · · is a chain of closed sets of
games. Then the quotients Q(An) form a partial inverse system, and we have

Q
(⋃

n

An

)
∼= lim

n
Q(An).

Proof. Let8n :An→Q(An) be the quotient maps and put Q+n =8′′n+1An . Define
πn :Q+n →Q(An) by πn(8n+1(X))=8n(X). Now if X ≡ Y (mod An+1), then
necessarily X ≡ Y (mod An), so πn is well-defined.
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Now by Lemma 2.3, limn Q(An) is reduced. To complete the proof, it suffices
to exhibit a surjective homomorphism 8 :

⋃
n An→ limn Q(An). Let n be least

so that X ∈ An , and put

8(X)= (8n(X),8n+1(X),8n+2(X), . . .).

It is easily verified that 8 has the desired properties. �

An easy corollary of Theorem 2.4 will be central to the classification theory.

Corollary 2.5. Suppose that (Q,P) is a misère quotient that is not finitely
generated. Then there is some partial inverse system (Qn,Pn, πn) of finitely
generated misère quotients such that:

(i) (Q0,P0)= 0;

(ii) each (Qn+1,Pn+1) is a one-stage extension of (Qn,Pn); and

(iii) (Q,P)= limn(Qn,Pn).

Proof. Write (Q,P)=Q(A ) with A closed. Enumerate A = {H0, H1, H2, . . .}

so that the birthdays of the Hn are nondecreasing. (This can always be done,
since there are only finitely many games of each fixed birthday.) Then for each n,
we have opts(Hn)⊂ {H0, . . . , Hn−1}. Put

(Qn,Pn)=Q(H0, . . . , Hn),

with quotient map 8n . Let Q+n be the submonoid of Qn+1 generated by

{8n+1(H0), . . . , 8n+1(Hn)}.

The map πn :Q+n →Qn defined by

πn(8n+1(H))=8n(H)

is well-defined, since each G ≡ G ′ (mod An+1) implies G ≡ G ′ (mod An).
Now (i) is immediate, since necessarily H0 = 0, and (ii) follows easily (after
reindexing to eliminate cases where Qn+1 =Qn). Now by Lemma 2.3, we know
that limn(Qn,Pn) is reduced. To prove (iii), it therefore suffices (by uniqueness
of reductions) to show that limn(Qn,Pn) is a quotient of A .

Let 8n : cl({H0, . . . , Hn}) → Qn be the usual quotient map, and define
8 : A →Q by

8(Hn)= (8n(Hn),8n+1(Hn),8n+2(Hn), . . .).

It is easily checked that8 is a surjective homomorphism of bipartite monoids. �
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3. Normal quotients and tame extensions

In this section we introduce a certain algebraic property known as faithful normal-
ity, and we study one-stage extensions of faithfully normal quotients. In particular,
we show that certain one-stage extensions of faithfully normal quotients behave
just like extensions in normal play. The vast majority of quotients encountered
in practice are faithfully normal, so this work has useful applications to octal
games.

Definition 3.1. Let (Q,P) be a misère quotient with kernel K, and let z ∈ K be
the kernel identity. We say that (Q,P) is regular if |K∩P| = 1, and normal if
K∩P = {z}.

Definition 3.2. Let (Q,P) = Q(A ) and let 8 : A → Q be the quotient map.
Suppose that

8(G)=8(H)H⇒ G (G)= G (H) for all G, H ∈ A .

Then we say that 8 is faithful. If in addition (Q,P) is normal, then we say that
8 is faithfully normal.

(Here and throughout, we write G (G) for the normal-play nim value of G.)
Often we will abuse terminology and refer to the quotient as being faithful (or
faithfully normal), rather than the quotient map. We recall the following fact
from [Plambeck and Siegel 2008].

Fact 3.3. Suppose 8 :A →Q is faithfully normal. Then K is isomorphic to the
normal quotient of A .

Roughly speaking, therefore, faithful normality asserts that normal and misère
play coincide on K. We have K ∼= Zn

2 for some n, and for each i < 2n there is a
unique zi ∈K representing games of nim value i . For convenience, when E ⊂K,
we write zm =mex(E) to mean m =mex{i : zi ∈ E}.

Now fix a faithfully normal quotient Q(A ) with kernel K, and let G 6= 0 be
a game such that opts(G) ⊂ A . Then Q(A ∪ {G}) is necessarily a one-stage
extension of Q(A ). For the remainder of this section, we will focus on the special
case where8′′G⊂K. We will show that in this case, one-stage extensions behave
exactly like normal-play extensions. In particular:

• Extensions by a proper subset of the kernel follow the mex rule. Formally,
if 8′′G $ K, then Q(A ∪ {G})∼=Q(A ) and 8(G)=mex(8′′G).

• Extensions by the entire kernel cause the kernel to grow (from Zn
2 to Zn+1

2 ).
They behave like normal-play extensions whose nim values are new powers
of 2. Formally, if8′′G=K, then Q(A ∪{G})∼=T (Q(A )), where T (Q(A ))
is a certain “tame extension” of Q(A ) generalizing the extension Zn

2 <Zn+1
2 .
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We begin with the case 8′′G $ K.

Lemma 3.4. Suppose (Q,P)=Q(A ) is faithfully normal with kernel K. Let G
be a game with opts(G)⊂A and suppose8′′G $K. Then Q(A ∪{G})∼=Q(A )
and 8(G)=mex(8′′G).

Proof. We verify conditions (i) and (ii) of the generalized mex rule, with (S,R)=
(Q,P) and x =mex(8′′G). Note that x = zm , where m = G (G).

For (i), normality implies that K \ {zm} ⊂Mx . Since 8′′G ⊂ K \ {zm}, this
suffices. For (ii), fix Y ∈ A and n ≥ 0, and suppose xn+18(Y ) 6∈ P . If n is odd,
then since x ∈ K and the quotient is faithfully normal, we have G (Y ) > 0. Thus
G (Y ′)= 0 for some Y ′, whence xn+18(Y ′) ∈ P .

Conversely, suppose that n is even. Then G (Y ) 6= m. If G (Y ) > m, then
G (Y ′)=m for some Y ′, whence xn+18(Y ′)∈P . Otherwise, let i = G (Y ). Since
8′′G ⊂K and zm =mex(8′′G), we necessarily have zi ∈8

′′G. But zi8(Y )= z,
so xnzi8(Y )= z ∈ P . �

Tame extensions. We now consider the case where 8′′G = K. Let (Q,P) be a
bipartite monoid with kernel K, and define

K = {x : x ∈ K},

where each x is taken to be a formal symbol.

Definition 3.5. The first tame extension T (Q,P) = (Q+,P+) is defined as
follows. Q+ =Q∪K, P+ = P , and multiplication is extended by:

x · y = xy (x ∈Q, y ∈ K); x · y = xy (x, y ∈ K).

The n-th tame extension T n(Q,P) is defined by

T 0(Q,P)= (Q,P); T n+1(Q,P)= T (T n(Q,P)).

Finally, we define
T ∞(Q,P)= lim

n
T n(Q,P).

Observe that the sequence of normal quotients

0,Z2,Z2
2,Z3

2, . . . ,ZN
2

can be written
T 0(0), T 1(0), T 2(0), T 3(0), . . . , T ∞(0)

while the sequence of tame misère quotients

T0, T1, T2, T3, T4, . . . , T∞
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can be written

T0, T1, T 0(T2), T 1(T2), T 2(T2), . . . , T ∞(T2).

Thus the normal quotients can be viewed as a tame sequence with base 0, and
the tame misère quotients can be viewed as a tame sequence with base T2.

If (Q,P) is a misère quotient, then so is T (Q,P), as the following lemma
establishes (cf. Lemma 3.4). (Here we say that (Q,P) is a misère quotient if it
is isomorphic to Q(A ), for some set A of impartial games.)

Lemma 3.6. Suppose (Q,P) = Q(A ) is faithfully normal with kernel K. Let
G be a game with opts(G) ⊂ A and suppose 8′′G = K. Then Q(A ∪ {G}) ∼=
T (Q(A )) and 8(G)= z.

Proof. Identical to the proof of Lemma 3.4. �

Corollary 3.7. Suppose Q(A ) is faithfully normal with kernel K. Then for all
n ∈ N∪ {∞}, T n(Q(A )) is a misère quotient.

Proof. Let G0 = 0, A0 =A . Recursively choose Gn+1 so that opts(Gn+1)⊂An

and 8′′Gn+1 = kerQ(An). Put An+1 = cl(An ∪ {Gn+1}).
By repeated application of Lemma 3.6, we have Q(An) ∼= T n(Q(A )), and

Theorem 2.4 therefore gives Q
(⋃

n An
)
= T ∞(Q(A )). �

The quotients R2n+4. If we start with a different base (Q,P), we obtain another
sequence of quotients T n(Q,P). For example, if (Q,P)=R8, then for all n≥ 2,
T n−2(Q,P) is a quotient of order 2n

+ 4, which we denote by R2n+4. Likewise,
we define R∞ = T ∞(R8). Since |P| = 2, all the Rn’s have P-portions of size 2.
A major goal of this paper is to prove the following theorem.

Theorem 3.8. Suppose (Q,P) is a misère quotient with |P| = 2. Then either
(Q,P)∼= Tn or (Q,P)∼=Rn , for some n ∈ N∪ {∞}.

Thus if (Q,P) is a misère quotient with |P|= 2, it follows that either |Q|=∞,
or |Q| = 2n

+2 or 2n
+4 for some n ≥ 2. Furthermore, there is exactly one such

quotient of each permissible finite order, and exactly two such infinite quotients.

“Almost tame” octal games. Lemmas 3.4 and 3.6 have useful implications for
octal games, as summarized by the following theorem.

Theorem 3.9. Let 0 be an octal game with last nonzero code digit d. Fix n0, and
suppose that (Q,P)=Q2n0+d−1(0) is faithfully normal with kernel K. Suppose
furthermore that

8(Hn) ∈ K for all n such that n0 ≤ n < 2n0+ d.

Then:
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(i) Q(0) is a faithfully normal quotient.

(ii) Q(0)∼= T k(Q,P) for some k ∈ N∪ {∞}.

(iii) 8(Hn) ∈ kerQ(0), for all n ≥ n0.

Proof. We first show that (i)–(iii) hold for Qn(0), for all n. By hypothesis we
may assume that n ≥ 2n0+d . Then a typical option of Hn is a position Ha+Hb,
with a+b≥ 2n0. Without loss of generality, we have a ≥ n0, so that 8(Ha)∈K.
Thus 8(Ha)x ∈ K for all x , and in particular 8(Ha + Hb) ∈ K. This shows that
8′′Hn ⊂ K, and Lemmas 3.4 and 3.6 immediately imply (i)–(iii).

If the partial quotients Qn(0) eventually converge to some T k(Q,P), then
Q(0)∼= T k(Q,P). Otherwise Q(0)∼= T ∞(Q,P); and in either case (i)–(iii) are
immediate. �

Thus when the hypotheses of Theorem 3.9 are satisfied, we know that beyond
heap n0, the misère-play analysis of 0 is no harder than its normal-play analysis.
It follows that we can stop computing partial quotients of 0 and revert to the
much easier task of calculating nim values. We say that 0 is tame relative to
heap n0.

The hypotheses of Theorem 3.9 may seem rather restrictive, but there are
several three-digit octal games that satisfy them; for example, 0.414, 0.776, and
4.76. The misère-play solutions to these games now depend only on finding
normal-play solutions, and we can regard them as “relatively solved.”

The hexadecimal game 0.9092 is another interesting case. It is known to be
arithmetic periodic in normal play (using methods due to Austin [1976] and
Howse and Nowakowski [2004]). Furthermore, in misère play we can show
that it is tame relative to heap 12 (using MisereSolver, say; see [Plambeck and
Siegel 2007]). Now Q12(0.9092)∼=R8, so by Theorem 3.9 (suitably generalized
to hexadecimal games) we have Q(0.9092) ∼= T k(R8) for some k. Since the
G -values of 0.9092 are unbounded, k is necessarily∞. Therefore Q(0.9092) is
exactly R∞.

4. One-stage extensions of Tn

We next focus our attention on proving Theorem 3.8. The crux of the proof is
an analysis of one-stage extensions of Tn and R2n+4. This analysis also yields
a useful structure theory for these quotients. In particular, we will prove the
following two theorems.

Theorem 4.1. If (Q,P) is a one-stage extension of Tn and |P| = 2, then either
(Q,P)∼= Tn , or (Q,P)∼= Tn+1, or else (Q,P)∼=R2n+4.

Theorem 4.2. If (Q,P) is a one-stage extension of R2n+4 and |P| = 2, then
either (Q,P)∼=R2n+4, or else (Q,P)∼=R2n+1+4.
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In this section we focus on Theorem 4.1, and we prove Theorem 4.2 in the
following section.

Throughout the discussion there will be the implicit assumption that all quo-
tients encountered are faithful. This is a slightly suspicious assumption, since
it is unknown whether there exists an unfaithful quotient. However, since the
argument proceeds “ground-up” by one-stage extensions, we are safe: a careful
check of the proofs reveals that every extension under consideration preserves
faithfulness. Therefore, if there exists an unfaithful quotient, it must necessarily
satisfy |P|> 2, and so will not interfere with the present argument. We will not
be too careful about stating and restating this assumption of faithfulness, but in
all cases the checks are routine.

The structure of Tn. For the remainder of this section, fix a set of games A ,
and suppose that Q(A ) ∼= Tn , where n ≥ 2. The structure of (Q,P) = Q(A )
is described as follows. Q = K∪ {1, a}, where K ∼= Zn

2 and a2
= 1. We write

K = {z0, z1, . . . , z2n−1}, where z0 is the identity, z1 = az0, and zi corresponds
to nim value i .

Now fix a game G 6∼= 0 with opts(G) ⊂ A , and write m = G (G), B =

cl(A ∪ {G}), and (Q+,P+)=Q(B).

Definition 4.3. Let E ⊂Q. We say that E is complemented if E ∩{a, z} 6=∅ and
E ∩ {1, az} 6=∅.

Lemma 4.4. If 8′′G is complemented, then 2n ·G is a P-position for all n ≥ 1.

Proof. Write the copies of G in pairs, as n · (G+G). Second player follows the
mirror-image strategy on each pair until her move would remove the last copy of
G. If that is the case, then the position must be

G+G ′+ Y, with Y ∈ A ,

and since second player has been following the mirror-image strategy, we neces-
sarily have G (Y )= 0.

Case 1: 8(G ′+ Y ) ∈ K. Then second player moves to G ′+G ′+ Y . Now

G (G ′+G ′+ Y )= G (G ′+G ′)+G (Y )= 0+ 0.

Since also 8(G ′+G ′+ Y ) ∈ K, faithful normality implies that

8(G ′+G ′+ Y )= z ∈ P.

Case 2: 8(G ′ + Y ) = 1. Then second player chooses an H ∈ opts(G) with
8(H) ∈ {a, z}, as guaranteed by complementarity, and we have

8(H +G ′+ Y )=8(H) ·8(G ′+ Y )=8(H) · 1 ∈ P.
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Case 3: 8(G ′+ Y )= a. Then second player chooses H with 8(H) ∈ {1, az},
to the same effect.

Since Q= K∪ {1, a}, this exhausts all possibilities for 8(G ′+ Y ). �

Lemma 4.5. Assume that |P+| ≥ 2, 8′′G is complemented, and m = 0 or 1. Fix
Y ∈ A with 8(Y ) ∈ K and G (Y ) 6= G (G). Then G+ Y is an N -position.

Proof. The m = 0 and 1 cases are similar, so suppose m = 0. By Lemma 4.4,
G+G is a P-position, so that 8(G+G)∈ {a, z}. But 4 ·G is also a P-position
(again by Lemma 4.4), and a2

= 1, so necessarily 8(G +G) 6= a. Therefore
8(G+G)= z. Moreover, since 8(Y ) ∈ K, we necessarily have 8(Y + Y )= z,
so that G+G ≡ Y + Y (mod B).

Now consider G + G + G. A typical option is G ′ + G + G ≡ G ′ + Y + Y
(mod B); but G (G ′) 6= 0, so

8(G ′+ Y + Y )=8(G ′)z 6∈ P.

Therefore G+G+G is also a P-position. Assume (for contradiction) that G+Y
is also a P-position. Then either G+Y ≡∗ (mod B) or G+Y ≡Y+Y (mod B).
But G+G+Y+Y is also a P-position, since it is equivalent to 4·Y , so necessarily
G+ Y ≡ Y + Y (mod B). But now

G+G+G ≡ G+ Y + Y ≡ Y + Y + Y (mod B),

a contradiction, since Y + Y + Y is an N -position. �

Definition 4.6. Fix E ⊂Q. The discriminant 1=1(E) is given by

1= E ∩ {1, a, z, az}.

We say that E is restive if 1= {1, z} or {a, az}, restless if 1= {a, z} or {1, az},
and tame otherwise. We say that E is wild if it is restive or restless.

Lemma 4.7. Assume that 8′′G is tame. If m < 2n , then Q(B)∼= Tn; if m = 2n ,
then Q(B)∼= Tn+1. In either case, we have

8(G)=


1 if 1= {a},
a if 1= {1},
zm otherwise,

where 1=1(8′′G).

Proof. Let E =8′′G. In each of the three possibilities for 1, it is easily seen that
E satisfies condition (i) of the generalized mex rule. We now verify condition (ii).

Case 1: 1={a}. With x = 1, condition (ii) is equivalent to: for every N -position
Y ∈A , either 8(Y ′) ∈ P for some Y ′, or else x ′8(Y ) ∈ P for some x ′ ∈ E . But
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if Y 6= 0, then the first of these two conditions is satisfied a priori; while if Y = 0,
then x ′ = a suffices for the second.

Case 2: 1 = {1}. We must verify (ii) with x = a. Fix Y ∈ A and n ≥ 0 and
suppose an+18(Y ) 6∈ P . If n is odd, then Y is an N -position, so either Y = 0
or some Y ′ is a P-position. If Y = 0, then we have an

· 1 ·8(Y ) = a ∈ P; if
Y ′ is a P-position, then an+18(Y ′) ∈ P . Finally, if n is even, then Y +∗ is an
N -position. So either Y is a P-position, in which case an

·1·8(Y )=8(Y )∈P;
or else Y ′+∗ is a P-position, in which case an+18(Y ′)= a8(Y ′) ∈ P .

Case 3: 1 6= {a}, {1}. Fix Y ∈ A and n ≥ 0 and suppose xn+18(Y ) 6∈ P . If n
is odd, then xn+1

= z, so 8(Y ) 6= 1, z. Therefore G (Y ) 6= 0, and Y has some
option Y ′ with G (Y ′)= 0. Therefore xn+18(Y ′)= z ∈ P .

If n is even, then xn+1
= zk , so G (Y ) 6= k. If G (Y ) > k, then there is some

option Y ′ with G (Y ′) = m; hence xn+18(Y ′) = z ∈ P . So suppose G (Y ) < m.
Then there is some option G ′ of G with G (G ′)= G (Y ). There are three subcases.

Subcase 3a: n > 0 or 8(G ′) ∈ K or 8(Y ) ∈ K. Then we have immediately that
xn8(G ′)8(Y )= z ∈ P .

Subcase 3b: n = 0 and 8(G ′)=8(Y )= 1. Then 1 ∈1. Now 1 6= {1} (since
we are in Case 3), and furthermore 1 6= {1, az} (since 8′′G is tame). So either
a ∈8′′G or z ∈8′′G. But if x ′ = a or z, then x ′8(Y ) ∈ P , as needed.

Subcase 3c: n = 0 and 8(G ′)=8(Y )= a. Then a ∈1. Now 1 6= {a} (since
we are in Case 3), and furthermore 1 6= {a, z} (since 8′′G is tame). So either
1 ∈8′′G or az ∈8′′G. But if x ′ = 1 or az, then x ′8(Y ) ∈ P , as needed. �

Lemma 4.8. Assume that 8′′G is restless. Then |P+| ≥ 3.

Proof. As in Lemma 4.7, we write E =8′′(G) and 1=1(E).
Case 1: 1= {1, az}. Then {a, z}∩E =∅, so G is a P-position. Furthermore, if
G ′ is an option with8(G ′)= 1 (resp. az), then8(G ′)z ∈P (resp.8(G ′)az ∈P).
This shows that G+∗22 (resp. G+∗23) is an N -position. Therefore G 6≡ ∗22

(mod B) and G 6≡ ∗ (mod B); since G is a P-position, this implies |P+| ≥ 3.

Case 2: 1 = {a, z}. Then {1, az} ∩ E = ∅, so {a, z} ∩ aE = ∅, and hence
G+∗ is a P-position. Just as in Case 1, we see that G+∗ 6≡ ∗ (mod B) and
G+∗ 6≡ ∗22 (mod B), so again |P+| ≥ 3. �

Lemma 4.9. Assume that 8′′G is restive and |P+| = 2. Then Q(B) ∼= R2n+4

and

8(G)=
{

t if 1= {a, az},
at if 1= {1, z}.

(Here t denotes the same element as in the discussion of R2n+4 in Section 1, and
1=1(8′′G) as in Lemma 4.7.)
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Proof. As before, let E = 8′′(G). The argument is similar in both cases, so
suppose that 1= {a, az}. Now in R2n+4 it is easy to compute Mt =Q\{1, t, z}.
Since E∩{1, z}=∅, condition (i) of the generalized mex rule is therefore trivially
satisfied.

For (ii), fix Y ∈A and n ≥ 0 and suppose that tn+18(Y ) 6∈P . There are three
cases.

Case 1: n>0. Then tn+1
= z, so necessarily G (Y )>0. Therefore tn+18(Y ′)∈P ,

where Y ′ is any option with G (Y ′)= 0.

Case 2: n = 0 and 8(Y ) 6∈ K. If 8(Y ) = 1, then we have a8(Y ) ∈ P; if
8(Y )= a, then az8(Y ) ∈ P . Since a, az ∈ E , this suffices.

Case 3: n = 0 and 8(Y ) ∈ K. Then G (Y ) 6= 0. If 8(Y ′)= z for some Y ′, then
we are done, since t8(Y ′) ∈ P , so assume 8(Y ′) 6= z for all Y ′.

Now since G is restive, it is complemented, so by Lemma 4.5 G + Y is an
N -position. Consider a typical G+Y ′. By assumption,8(Y ′) 6= z. If8(Y ′)= 1,
then G ′+Y ′ is a P-position, where8(G ′)= a. If8(Y ′)= a or az, then G ′+Y ′

is a P-position, where 8(G ′)= az. If G (Y ′)≥ 2, then by Lemma 4.5 G+Y ′ is
a priori an N -position. (We automatically have m = 0 or 1, since G is restive;
cf. [ONAG].) So in all cases, G+ Y ′ is an N -position.

But G + Y is an N -position, so we must have G ′ + Y a P-position, for
some G ′. Then x ′8(Y ) ∈ P , where x ′ =8(G ′), completing the proof. �

Proof of Theorem 4.1. Immediate from the preceding lemmas. �

5. One-stage extensions of R2n+4

In this section we generalize much of the machinery of Section 4. Recall (from
Section 1) that R2n+4 = Tn ∪ {t, at}, where t2

= t z = z, and P = {a, z}.
For the rest of this section, assume that (Q,P) = Q(A ) is faithful, with

(Q,P) ∼= R2n+4. Fix G with opts(G) ⊂ A , and write B = cl(A ∪ {G}),
(Q+,P+)=Q(B), E =8′′G, and m = G (G). Assume throughout this section
that |P+| = 2.

We can very quickly reduce to the case where E is complemented (in the sense
of Definition 4.3: E ∩ {a, z} 6=∅ and E ∩ {1, az} 6=∅).

Lemma 5.1. Assume that 8′′G is not complemented. Then Q(B)∼=Q(A ).

Proof. Case 1: {a, z} ∩ E =∅. Since P = {a, z}, this immediately implies that
G is a P-position, so since |P+| = |P| = 2, we must have G ≡ Y (mod B) for
some Y ∈ A . Therefore Q(B)∼=Q(A ).

Case 2: {1, az}∩E =∅. If G is a P-position, then the argument is just as in Case
1. Otherwise, consider G+∗. Since {1, az} ∩ E =∅, we have P ∩ aE =∅, so
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every G ′+∗ is an N -position. Since G+ 0 is also an N -position, we conclude
that G+∗ is a P-position.

But this implies G +∗ ≡ Y (mod B) for some Y ∈ A , whence G ≡ Y +∗
(mod B), and again we have Q(B)∼=Q(A ). �

We now consider the case when E is complemented. The key fact about
complementarity is the following (cf. Lemma 4.4).

Lemma 5.2. If 8′′G is complemented, then 2n ·G is a P-position for all n ≥ 1.

Proof. Identical to the proof of Lemma 4.4. �

Lemma 5.3. Assume that 8′′G is complemented and m = 0 or 1, and fix Y ∈A

with G (Y )≥ 2. Then G+ Y is an N -position.

Proof. Identical to the proof of Lemma 4.5. �

Lemma 5.4. Assume that m ≥ 2, and fix Y ∈A with8(Y )∈ {t, at}. Then G+Y
is an N -position.

Proof. Since m ≥ 2 and G (Y ) ≤ 1, there must exist an option G ′ such that
G (G ′)= G (Y ). Then G (G ′+Y )= 0, so that 8(G ′+Y ) ∈ {1, t, z}. In all cases,
8(G ′+Y )z ∈ P . Fix Z ∈A with 8(Z)= z; then G+Y + Z is an N -position
and Z + Z a P-position, so G+ Y 6≡ Z (mod B).

Next choose an option G ′ with G (G ′) = G (Y )⊕ 1. Then G (G ′ + Y ) = 1,
so 8(G ′ + Y ) ∈ {a, at, az}. In all cases, 8(G ′ + Y )az ∈ P . Fix W ∈ A with
8(W ) = az; then G + Y +W is an N -position and ∗ +W a P-position, so
G+ Y 6≡ ∗ (mod B).

Thus G+Y 6≡ Z (mod B), and G+Y 6≡ ∗ (mod B). But |P+| = 2, so these
are the only two classes of P-position in B, and it follows that G + Y is an
N -position. �

Lemma 5.5. Assume that 8′′G is complemented and m ≥ 2, and fix Y ∈ A .
Then G+ Y is a P-position if and only if 8(Y )= zm .

Proof. If 8(Y )= zi , for some i < m, then G ′+ Y (with G (G ′)= i) is a priori
a P-position, so G + Y is an N -position. If 8(Y ) = zi for some i > m, then
G (Y ′)= m for some Y ′, so 8(Y ′)= zm . By induction on the birthday of Y , we
have that G+ Y ′ is a P-position, so again G+ Y is an N -position.

If 8(Y ) = zm , then by induction every G + Y ′ is an N -position. Likewise,
for every G ′ we have G (G ′+ Y ) 6= 0 and 8(G ′+ Y ) ∈ K, so every G ′+ Y is
also an N -position. Therefore G+ Y is a P-position.

This leaves only the cases 8(Y ) ∈ {1, a, t, at}. But if 8(Y ) = 1 (resp. a),
then G ′+Y is a P-position, where 8(G ′) ∈ {a, z} (resp. {1, az}), as guaranteed
by complementarity. Therefore G+ Y is an N -position. Conversely, if 8(Y ) ∈
{t, at}, then Lemma 5.4 guarantees that G+ Y is an N -position. �
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We now proceed with the proof of Theorem 4.2. There are two fundamental
cases, each stated as a separate lemma: m ≥ 2, and m ∈ {0, 1}.

Lemma 5.6. Assume that8′′G is complemented and m≥2. Then Q(B)∼=R2n+4

or R2n+1+4.

Proof. This is much like Lemma 3.4. It suffices to verify conditions (i) and (ii)
in the generalized mex rule. Since m ≥ 2, we have Mzm = Q \ {zm}. Since
G (G) = m, this suffices for (i). For (ii), fix Y ∈ A and n ≥ 0, and suppose
zn+1

m 8(Y ) 6∈ P .
If n is odd, then G (Y ) > 0, so zn+1

m 8(Y ′) ∈ P , where G (Y ′)= 0.
If n is even, then G (Y ) 6= m. If G (Y ) > m, then zn+1

m 8(Y ′) ∈ P , where
G (Y ′) = m. If 2 ≤ G (Y ) < m, then let i = G (Y ). In this case zi is the unique
element of Q with G -value i , so necessarily zi ∈ E . Since zi · zi ∈P , this suffices.

If G (Y ) = 0, then we have 8(Y ) ∈ {1, t, z}. If 8(Y ) = z, then x ′8(Y ) ∈ P
for any x ′ ∈ E ∩ {1, t, z}. (This intersection must be nonempty, since 1, t, z are
the only elements of Q corresponding to G -value 0.) If 8(Y ) = 1, then since
E is complemented, we have E ∩ {a, z} 6= ∅; and either choice suffices. This
leaves only the case 8(Y ) = t . If x ′t ∈ P for some x ′ ∈ E , then we are done.
Otherwise, G ′+ Y is an N -position for every G ′. But by Lemma 5.4 (and the
assumption |P+| = 2), we know that G+ Y is an N -position, so some G+ Y ′

must be a P-position. By Lemma 5.5, we have specifically 8(Y ′)= zm , whence
zn+1

m 8(Y ′)= z ∈ P , as needed.
Finally, if G (Y )= 1, then 8(Y ) ∈ {a, at, az}, and the proof proceeds just as

in the G (Y )= 0 case. �

Lemma 5.7. Assume that 8′′G is complemented and m = 0 (resp. 1). Then
Q(B)∼=R2n+4, and 8(G)= t (resp. at).

Proof. The two cases are essentially identical, so assume m = 0. As always, we
use the generalized mex rule. Note that

Mt =Q \ {1, t, z} = {x : G (x) 6= 0},

and since G (G) = 0, this suffices for (i). For (ii), fix Y ∈ A and n ≥ 0, and
suppose tn+18(Y ) 6∈ P . There are four cases.

Case 1: n ≥ 1. Then tn+1
= z, so z8(Y ) 6∈P . Thus 8(Y ) 6= 1, t, z, so G (Y ) 6= 0.

We conclude that tn+18(Y ′) ∈ P , where Y ′ is any option with G (Y ′)= 0.

Case 2: n = 0 and G (Y ) = 0. Then 8(Y ) ∈ {1, t, z}, and since t8(Y ) 6∈
P , necessarily 8(Y ) = 1. But since E is complemented, E ∩ {a, z} 6= ∅, so
x ′8(Y ) ∈ P , where x ′ = a or z.
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Case 3: n= 0 and G (Y )= 1. Since E is complemented, we have E∩{1, az} 6=∅.
Since m = 0, we know that 1 6∈ E , so necessarily az ∈ E . Since G (Y ) = 1, we
always have az8(Y ) ∈ P , so this suffices.

Case 4: n = 0 and G (Y )≥ 2. If t ∈8′′Y or z ∈8′′Y , then t8(Y ′)= z and there
is nothing to prove. Otherwise, put i = G (Y ); to complete the proof, it suffices
to show that zi ∈ E , because zi8(Y )= z ∈ P . So consider G+Y . We first show
that every G+Y ′ is an N -position. If G (Y ′)= 0, then 8(Y ′)= 1 (since we are
assuming t, z 6∈8′′Y ). Since G is complemented and G (G)= 0, we necessarily
have a ∈8′′G, so a8(Y ′)∈P and hence G+Y ′ is an N -position. If G (Y ′)= 1,
then since G is complemented and G (G)= 0, we necessarily have az ∈8′′G,
so az8(Y ′) ∈ P and again G+ Y ′ is an N -position. Finally, if G (Y ′)≥ 2, then
the desired conclusion follows from Lemma 5.3.

This shows that every G+Y ′ is an N -position. But by Lemma 5.3, G+Y
itself is an N -position. Therefore some G ′ + Y is necessarily a P-position.
Since 8(Y )= zi , we conclude that 8(G ′)= zi as well, completing the proof. �

6. Uniqueness of R8

The following theorem emerges readily from previous work.

Theorem 6.1. R8 is the only misère quotient of order 8 (up to isomorphism).

Proof. Let (Q,P) be a misère quotient of order 8. By Lemma 2.2, (Q,P) must
arise as a one-stage extension of T2 (since |T2| has order 6, and all nontrivial
quotients must have even order, as shown in [Plambeck and Siegel 2008]). So
there is some closed set A , and some G with opts(G)⊂ A , such that

Q(A )∼= T2 and Q(A ∪ {G})∼= (Q,P).

Let 8 : cl(A ∪ {G})→Q be the quotient map, and write

a =8(∗), b =8(∗2), t =8(G).

Since Q(A )∼= T2 and Q(A ∪{G}) 6∼= T2, t is not in the submonoid generated by
a, b. Thus neither is at (since a2

= 1), and it follows immediately that

Q= T2 ∪ {t, at}.

Now put E = 8′′G. E cannot be tame, since then Lemma 4.7 would imply
that (Q,P)∼= T2 or T3, neither of which has order 8.

If E is restive, then either {1, z} ⊂ E or {a, az} ⊂ E , and it follows that G
and G+∗ are both N -positions (since 8′′G contains either z or a directly, and
8′′(G+∗) contains either 1 ·a or az ·a, equal to a or z respectively). Therefore
t, at 6∈ P , so |P| = 2. By Theorem 4.1, we have (Q,P)∼=R8.
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We complete the proof by assuming E to be restless and obtaining a contra-
diction. There are two cases.

Case 1: 1 = {1, az}. Then a, z 6∈ E , so G is a P-position. Therefore ∗2+G
is an N -position; and since 8(∗2+ G) = bt , we have bt 6∈ P , so that bt ∈
{1, b, ab, az, at}. To obtain a contradiction, we show that ∗2+G is distinguish-
able from some representative of each of these possibilities.

The table below summarizes. The first column of each row lists one possibility
for bt , along with an inequality x 6= y that rules out this possibility. In each
case, x is known to be in P , and the second column exhibits an N -position Y
that witnesses y 6∈ P . The winning move Y ′ is shown in the third column; the
notation 8−1(x) is used to represent a typical option of G with 8(G)= x .

Distinction(s) Typical N -position Winning Move

1 6= bt ⇐ a 6= abt
az 6= bt ⇐ z 6= abt ∗+∗2+G ∗+∗+G
at 6= bt ⇐ t 6= abt

b 6= bt ⇐ z 6= zt ∗2+∗2+G ∗2+∗2+8−1(1)

ab 6= bt ⇐ z 6= azt ∗+∗2+∗2+G ∗+∗2+∗2+8−1(az)

Case 2: 1 = {a, z}. This is similar. Clearly G is an N -position, so since
1, az 6∈ E , we have that ∗+G is a P-position. As before, this implies that ∗2+G
is an N -position. The following table parallels the table from Case 1.

Distinction(s) Typical N -position Winning Move

1 6= bt ⇐ a 6= abt
az 6= bt ⇐ z 6= abt ∗+∗2+G ∗+G
t 6= bt ⇐ at 6= abt

b 6= bt ⇐ z 6= zt ∗2+∗2+G ∗2+∗2+8−1(z)

ab 6= bt ⇐ z 6= azt ∗+∗2+∗2+G ∗+∗2+∗2+8−1(a)

This exhausts all possibilities and completes the proof. �

Theorem 6.1 can be extended: for example, T3 is the unique misère quotient
of order 10. But the proof of Theorem 6.1 gives us pause. The uniqueness of
R8 takes shape through a somewhat subtle combinatorial analysis. To prove
the uniqueness of T3 by hand, we would need to sharpen the restless cases of
Theorem 6.1, and then show that every one-stage extension of R8 has order
≥ 12. This appears to be quite a lot of work, so we now refocus our efforts on
automating this sort of analysis.
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7. Valid transition tables

Transition algebras were introduced in [Plambeck and Siegel 2008], and there
they proved to be useful in the study of mex functions. We now abstract out
some of their structure.

Definition 7.1. Let Q be a commutative monoid. A transition table on Q is a
subset T ⊂Q×Pow(Q).

Note that if A is a closed set of games, then T (A ) is a transition table on
Q(A ).
Definition 7.2. Let T be a transition table on a bipartite monoid (Q,P). T is
said to be valid if and only if the following four conditions hold.

(i) (parity) For each (x, E) ∈ T , we have

x ∈ P⇐⇒ E 6=∅ and E ∩P =∅.

(ii) (completeness) For each x ∈Q, there is some set E such that (x, E) ∈ T .

(iii) (closure) If (x, E), (y,F) ∈ T , then (xy, xF ∪ yE) ∈ T .

(iv) (well-foundedness) There exists a map R :Q→ N (a rank function for Q)
with the following property. R(1)= 0, and for each x ∈Q, there is some
(x, E) ∈ T such that R(y) < R(x) for all y ∈ E .

We note that condition (iv) implies (ii), but nonetheless we include (ii) for
clarity. Note also that condition (iii) implies a monoid structure.

Definition 7.3. A transition table T is a transition algebra if it is closed (in the
sense of Definition 7.2(iii)).

We will use the terms “valid transition table” and “valid transition algebra”
interchangeably. The main result is the following.

Theorem 7.4. Let (Q,P) be a r.b.m. with 1 6∈ P . The following are equivalent.

(i) There exists a closed set of games A with Q(A )= (Q,P).
(ii) There exists a valid transition table T on (Q,P).

Proof. (i)⇒ (ii): Put T = T (A ). It is straightforward to check that T is valid.
A suitable rank function is given by R(x)=min{birthday(G) :8(G)= x}.

(ii)⇒ (i): First define, for each x ∈Q, a game Hx as follows. The definition is
by induction on R(x). Let (x, E) ∈ T be such that R(y) < R(x) for each y ∈ E ,
and put

Hx = {Hy : y ∈ E}.

Now define a game Ht for each t ∈ T :

H(x,E) = {Hy : y ∈ E}.
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Let
A = cl({Ht : t ∈ T }).

We claim that Q(A )= (Q,P).
Since (Q,P) is a r.b.m., it suffices (by [Plambeck and Siegel 2008, Propo-

sition 4.7]) to exhibit a surjective homomorphism 8 : A → Q. Regarding A

as a free commutative monoid on the generators Ht , we define 8 as a monoid
homomorphism by

8(H(x,E))= x .

By completeness (condition (ii) in the definition of validity), 8 is surjective. To
complete the proof, we need to show that, for all G ∈ A ,

8(G) ∈ P⇐⇒ G 6= 0 and 8(G ′) 6∈ P for any option G ′.

So fix G = Ht1 +· · ·+ Htk , and write ti = (xi , Ei ). Write x = x1x2 · · · xk , and
denote by x/xi the product x1x2 · · · xi−1xi+1 · · · xk . Put

E =
⋃

1≤i≤k

x
xi
Ei ,

and let t = (x, E). By closure (condition (iii) in the definition of validity), t ∈ T .
By parity (condition (i)), we have

x ∈ P⇐⇒ E 6=∅ and E ∩P =∅.

But clearly 8(G) = x , and E = 8′′G. This suffices except for the case when
E =∅; but then G has no options, so 8(G)= 1. Since we assumed that 1 6∈ P ,
this completes the proof. �

Theorem 7.4 yields an algorithm for counting the number of misère quotients
of order n: for each r.b.m. of order n, iterate over all transition tables and check
whether any are valid. This is an atrociously poor algorithm, however; even if
one could effectively enumerate the r.b.m.’s of order n, each one admits 2n2n

transition tables! Theorem 7.4 is still important, however, since it reduces the
search for misère quotients to a finite problem.

8. Enumerating quotients of small order

We now show how the techniques of the previous section can be made (reasonably)
efficient. We first show that every misère quotient can be represented by a certain
restricted type of transition algebra.

Definition 8.1. Let (Q,P) be a bipartite monoid. Fix x1, . . . , xk ∈ Q, and for
0 ≤ i ≤ k let Si be the submonoid of Q generated by x1, . . . , xi . We say that
x1, . . . , xk is a construction sequence for (Q,P) if:
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(i) Sk =Q;

(ii) for each i , xi 6∈ Si−1;

(iii) for each i < k, the reduction of (Si ,P ∩Si ) is a misère quotient.

Definition 8.2. Let (Q,P) be a bipartite monoid. A transition algebra T on
(Q,P) is said to be a minimex algebra if there exists a construction sequence
x1, . . . , xk ∈Q that generates T in the following sense. Write Ei =Mxi ∩Si−1,
where the Si ’s are as in the previous definition. Then T is generated by

(x1, E1), . . . , (xk, Ek).

We say that T is the minimex algebra constructed by x1, . . . , xk .

Lemma 8.3. Suppose T is a transition algebra on a finite r.b.m. (Q,P). Fix
generators x1, . . . , xk ∈ Q and suppose that, for each i , there is an Ei ⊂ Si−1

such that (xi , Ei ) ∈ T . Then T admits a rank function.

Proof. Define a map R∗ :Q→ Nk as follows. For each x ∈Q, write

x = xn1
1 xn2

2 · · · x
nk
k ,

choosing the lexicographically least expression on the generators x1, . . . , xk . Put
R∗(x)= (n1, . . . , nk).

Now order the elements of Nk lexicographically. We claim that R∗ is a “rank
function” under this ordering. For if R∗(x)= (n1, . . . , nk), then let

(x, E)= (x1, E1)
n1(x2, E2)

n2 · · · (xk, Ek)
nk .

By the assumptions on the Ei , we know that R∗(y) < R∗(xi ) for each y ∈ Ei .
Therefore R∗(y) < R∗(x) for each y ∈ E .

Finally, R∗ can be converted into a suitable rank function R : Q→ N by
enumerating the finite range of R∗. �

Theorem 8.4. Let (Q,P) be a finitely generated r.b.m. with 1 6∈P . The following
are equivalent.

(i) There exists a closed set of games A with Q(A )= (Q,P).
(ii) There exists a valid minimex algebra on (Q,P).

Proof. (ii)⇒ (i) is immediate from Theorem 7.4, since every minimex algebra
is automatically a valid transition table. So we must prove (i)⇒ (ii).

Since Q is finitely generated, we may assume that A is also finitely generated
(passing, if necessary, to a suitable finitely generated subset of A , and noting
that the closure of a finitely generated set is finitely generated). Choose gener-
ators H1, . . . , Hl for A such that opts(Hi )⊂ 〈H1, . . . , Hi−1〉 for each i . (Here
〈H1, . . . , Hi−1〉 denotes the submonoid of A generated by H1, . . . , Hi−1.)
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Put yi = 8(Hi ) and consider the sequence y1, . . . , yl ∈ Q. Define a subse-
quence y j1, . . . , y jk inductively: let ji be the least index such that

y ji 6∈ Si−1 = 〈y j1, . . . , y ji−1〉,

and stop when the subsequence y j1, . . . , y jk generates Q. To avoid excessive use
of nested subscripts, put xi = y ji .

We claim that x1, . . . , xk is a construction sequence. Conditions (i) and (ii)
are immediate from the inductive definition, and for (iii) note that

(Si ,P ∩Si ) reduces to Q(H1, H2, H3, . . . , H ji ).

Next let Ei = 8
′′H ji and let U be the submonoid of T (A ) generated by

(xi , Ei ). We claim that U is valid. Conditions (i) and (iii) (in the definition of
“valid”) are immediate, since U is a submonoid of a valid transition table; and
condition (ii) follows because the xi ’s generate Q. Finally, the choice of xi ’s
guarantees that Ei ⊂ Si−1, so (iv) is a consequence of Lemma 8.3.

Finally, let E ′i =Mxi ∩ Si−1. Let U ′ be generated by (xi , E ′i ). To complete
the proof, we show that U ′ is valid; then U ′ will satisfy all the requirements of
a minimex algebra. Conditions (ii), (iii) and (iv) follow as before. It remains
to prove (i). Now for each i , we know that Ei ⊂ Si−1. Since U is valid, we
have furthermore that Ei ⊂Mxi . Therefore Ei ⊂ E ′i . It follows that, whenever
(x, E ′) ∈U ′, then there is some E ⊂ E ′ with (x, E) ∈U .

To conclude, fix any (x, E ′) ∈ U ′. If x ∈ P , then E ∩ P = ∅ because each
E ′i ⊂Mxi . If x 6∈ P , then choose E ⊂ E ′ with (x, E) ∈U . Since U is valid, we
know that E ∩P 6=∅. Therefore E ′∩P 6=∅. This proves (i), showing that U ′ is
a minimex algebra. �

We now describe the algorithm for enumerating quotients of order n. Define
a construction scheme to be a tuple (Q,P, x1, . . . , xk), such that (Q,P) is
a bipartite monoid and x1, . . . , xk is a construction sequence for Q. A simple
extension of (Q,P, x1, . . . , xk) is a construction scheme (Q+,P+, x1, . . . , xk+1)

such that Q⊂Q+ and P+ ∩Q= P .
It is worth emphasizing a subtle, but crucial, technicality in the definition of

construction scheme. No restrictions are placed on the b.m. (Q,P). However,
it is required that every proper initial segment (Si ,P ∩Si ) reduce to a genuine
misère quotient. Therefore, simple extensions are meaningful only in the special
case where (Q,P) is indeed a misère quotient.

By the above theorems, (Q,P) is a misère quotient if and only if there is
a construction scheme (Q,P, x1, . . . , xk) such that the minimex algebra con-
structed by x1, . . . , xk is valid. To find all misère quotients of order n, we can
therefore enumerate all construction schemes of order n and check which ones
generate valid minimex algebras.
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Q P G

S12 〈a, b, c | a2
= 1, b4

= b2, b2c= b3, c2
= 1〉 {a, b2, ac} ∗2#1

S ′12 〈a, b, c | a2
= 1, b3

= b, c2
= 1〉 {a, b2, c} ∗2#321

R12
〈a, b, c, d | a2

= 1, b3
= b, b2c= c,

{a, b2
} ∗2##54321

c2
= b2, bd = b, cd = c, d2

= b2
〉

〈a, b, c | a2
= 1, b4

= b2, b2c= b3, c2
= b2
〉 {a, b2, c} ∗H2##

〈a, b, c, d | a2
= 1, b3

= b, bc= b, c2
= b2,

{a, b2, d} ∗H#
bd = ab, d2

= b2
〉

〈a, b, c, d | a2
= 1, b4

= b2, b2c= ab3,
{a, b2, c} ∗H K 2##0

c2
= abc〉

Table 2. The six misère quotients of order 12. H =∗2##321, K =∗2##2#.

∗ 2#0
∗G2#32
∗ H#G320
∗ (G2#)(G2#22#)

∗ (G2#)(G2#22#1)
∗ (G2#)(G2#32#1)
∗ (G2#22#1)(G2#32#1)
∗ 2##4254320
∗ K2K1K G2#321

Table 3. Nine games that generate nonisomorphic quotients of order 14.
G = ∗2#320, H = ∗2##321, K = ∗2##2#32.

This method is made useful by a crucial optimization. Built into the def-
inition of construction sequence is the assumption that each proper initial
segment reduces to a known misère quotient. We can therefore use the fol-
lowing strategy. First, recursively compute all misère quotients of order < n.
Now start with the trivial construction scheme ({1},∅). Given a construc-
tion scheme 6 = (Q,P, x1, . . . , xk), consider every possible simple extension
6+ = (Q+,P+, x1, . . . , xk+1) such that |Q+| ≤ n. The key is that if |Q+|< n,
then (Q+,P+) must reduce to a known quotient. If it does not, then we can
discard 6+ from further consideration.

We have therefore reduced the search space to small simple extensions of
known quotients. Since a simple extension is just a monoid extension by a single
generator, there are relatively few possibilities, and the algorithm is tractable. It
is summarized as Algorithm 1 on the next page.
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1: Recursively compute all quotients of size < n
2: X ←∅
3: Put the trivial construction scheme ({1},∅) into X

4: for all 6 = (Q,P, x1, . . . , xk) in X do
5: Y ← the set of all simple extensions of 6 of order ≤ n
6: for all (Q+,P+, x1, . . . , xk+1) in Y do
7: if |Q+| = n then
8: T ← the minimex algebra on (Q+,P+)

constructed by x1, . . . , xk+1

9: if (Q+,P+) is reduced and T is valid then
10: Output (Q+,P+) F It’s a misère quotient
11: end if
12: else F |Q+| ≤ n− 2
13: (S,R)← the reduction of (Q+,P+)
14: if (S,R) is a misère quotient then
15: Put (Q+,P+, x1, . . . , xk+1) into X

16: end if
17: end if
18: end for
19: end for

Algorithm 1. Classification algorithm.
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