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Navigating the MAZE

NEIL MCKAY, RICHARD NOWAKOWSKI AND ANGELA SIEGEL

The game of MAZE was introduced in 2006 by Albert, Nowakowski and

Wolfe, and is an instance of an option-closed game and as such each position

has reduced canonical form equal to a number or a switch. It was conjectured

that because of the 2-dimensional structure of the board there was a bound

on the denominator of the numbers which appeared as numbers or in the

switches. We disprove this by constructing, for each number and each switch,

a MAZE position whose reduced canonical form is that value. Surprisingly,

we can also restrict the interior walls to be in one direction only, seemingly

giving an advantage to one player. This also gives a linear time algorithm that

determines the best move up to an infinitesimal.

1. Introduction

MAZE was introduced in [Albert et al. 2007], but apart from a few scattered

observations, nothing was known about the values of the game. In the original

article, MAZE is played on a rectangular grid oriented 45◦ to the horizontal.

The token starts at the top of the board and highlighted edges are walls that

may not be crossed. Left is allowed to move a token any number of cells in a

southwesterly direction and Right is allowed to move similarly in a southeast-

erly direction. However, for ease of referring to specific places in the position,

we re-orient the sides parallel to the page so that Left moves downward and

Right moves to the right; see Figure 1. One interesting feature is that any num-

ber of consecutive Left (Right) moves also can be accomplished in one move.

This feature had been noted in several games, including HACKENBUSH strings

[Berlekamp et al. 2001], and given the name of option-closed in [Nowakowski

and Ottaway 2011], a reference we henceforth abbreviate as [NO]. Siegel [2011]

notes that the partial order of option-closed games born on day n forms a planar

lattice.

For a game G, GL (G R) is a left (right) option of G; GL (GR) is the set of

all left (right) options of G; and for a set of games S, SL (SR) is the set of all

left (right) options that can be reached from any game in S (i.e. GLL is the set

Keywords: option-closed, reduced canonical form, HACKENBUSH string, CRICKET PITCH,

MAZE.
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{2|−1} {2|−1} −1 {1|0} 0
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0 0

Figure 1. A MAZE board rotated so that Left and Right move down

and right, respectively. Reduced canonical form of values included on

board.

of all options that can be reached in two consecutive left moves from G). Most

of combinatorial game theory considers the canonical forms of games, those

where GL and GR have had dominated options removed and reversible options

bypassed. We need the form of the game G = {GL|GR} with all the options,

even the bad ones. We call this the literal form of the game.

Definition 1 [NO]. A game G is called option-closed if, in the literal form,

GLL ⊂ GL, GRR ⊂ GR and, recursively, all the followers of G are option-

closed.

For example, even though the canonical form of G = {0 | {1 | 0} , 0} and H =

{0 | {1 | −1} , 0} are the same, G is option-closed but H = {0 | {1 | −1} , 0} is

not since Right can move to −1 in two moves but not in one. The fact that a

game is option-closed is intrinsic to the game and is not necessarily identifiable

from the canonical form [NO].

The canonical form of an option-closed game can be quite complicated. How-

ever, often the differences between many of the options in the canonical form are

infinitesimals. The reduced canonical form (simplest game infinitesimally close,

[Grossman and Siegel 2009]) should be much less complicated and indeed, in

[NO], it was shown that the reduced canonical form of an option-closed game

is either a number or a switch {a|b} of numbers a > b.

In [NO], the authors noted that MAZE is an option-closed game and asked for

an analysis of the game. It was thought that the two-dimensionality of the board

would restrict the powers of 2 that could occur as a denominator of numbers

that occur in reduced canonical forms. We show that this is false and give an
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algorithm to construct all numbers and all switches. Surprisingly, the algorithm

constructs a position which is rectangular and all interior walls are vertical, that

is, they prevent only Right moves.

In the next section, we present an overview of the required theory of the

reduced canonical form and option-closed games before moving on to prove

our main result in Section 4. Also, in Section 5 (Theorem 14), we obtain a

linear time algorithm to find the reduced canonical form of any MAZE position.

We follow the combinatorial game theory notation and definitions of [Albert

et al. 2007; Berlekamp et al. 2001].

2. Reduced canonical form and option-closed background.

Definition 2 [Grossman and Siegel 2009]. Two games G and H are equalish,

written G =I H , if G−H is an infinitesimal. A game G is numberish if there is a

dyadic rational x such that G−x is an infinitesimal. A game G is infinitesimally-

dominated by H if there is some integer n, such that H +n. ↑ −G ≥ 0; written

as H ≥I G. A left option, GL , of G is infinitesimally-reversible if there is some

GL R ≤I G.

Definition 3 [Grossman and Siegel 2009]. A game G is in reduced canonical

form, denoted rcf(G), if for any follower H of G, either (i) H is a number in

simplest form, or (ii) H is neither a number nor numberish and H contains no

infinitesimally-dominated or infinitesimally-reversible options.

Lemma 4 [Grossman and Siegel 2009]. [Thm 4.8] If G is not numberish, then

rcf(G) is obtained by (i) replacing options with simpler options infinitesimally

close to the original option, (ii) eliminating infinitesimally-dominated options,

and (iii) bypassing infinitesimally-reversible options.

Lemma 5 [NO]. If a and b are numbers with a ≥ b, then a ≥I {a | b} ≥I b.

To illustrate the above concepts, we sketch the proof of Lemma 5. Let a

and b be as in Lemma 5. Note that a and {a | b} are incomparable. Consider

a −{a | b}+3 ·↑ = a +{−b | −a}+3 ·↑. Left wins by moving to a −b+3 ·↑ >

3 · ↑ > 0. By the Number Avoidance Theorem, if Right can win then she must

have a good move in either {a | b} or in 3 ·↑. But a −a +3 ·↑ > 0 while moving

in 3 · ↑ leaves a + {−b| − a} + ⇑∗, in which case Left wins by responding to

a − b +⇑∗ ≥ ⇑∗ > 0.

We need two other relatively trivial but necessary results about the transitivity

of ≥I that we will use without mention.

Lemma 6. If x ≥I y and y ≥I z then x ≥I z.

Lemma 7. If x ≥I y and y > z with y and z numbers, then x > z.
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3. The structure of MAZE

The main result of [NO] is that the reduced canonical form of an option-closed

game is either a number or a switch.

Lemma 8 [NO]. If G is an option-closed game, then rcf(G) = rcf ({a | b}) for

some numbers a and b.

In the special case of MAZE, this result is a corollary of the results needed to

prove that our construction of Section 4 works.

Let G be an option-closed game where it and all of its followers are given in

their literal forms. A right option G ′ is a first right option of G if G ′ ∈ GR\GRR,

i.e., can be reached in one right move but not in two right moves. A right-option-

closed sequence of G is a sequence of right options of G, α = 〈y1, y2, . . . , yn〉

where y1 is a first right option of G, yi+1 is a first right option of yi , for 0< i <n,

and the value of yn is a number. A first left option and a left-option-closed

sequence are defined analogously. Let α be a right (left)-option-closed sequence.

The norm of α, written α is the minimum (maximum) of all numbers in the

sequence. The norm of 〈?〉 is not defined.

Lemma 9. Let H be an option-closed game α = 〈y0, y1, . . . , yn〉 be a right- or

left-option-closed sequence. Let i be the least index such that yi is a number.

Then yi = α.

Proof. Suppose that α is a right-option-closed sequence and let i be the least

index such that yi is a number. Suppose y j , j > i is a number then y j is a right

option of yi and hence yi < y j . The proof for a left-option-closed sequence is

similar. ˜

Let M be a MAZE position. Then listing the options in order, 〈GL〉 and 〈GR〉

are, respectively, a left- and a right-option-closed sequence. This is an important

fact but it doesn’t define MAZE. Extra conditions must hold, if, from a cell, Left

can move p cells and then Right q and reversing the order gives a legal move

then the two resulting positions are the same.

If M is not a number then 〈GL〉 is the left stop of M and 〈GR〉 is the right

stop and in those terms we could invoke results from [NO]. However, we need

to know more details about the order relations between the options in the special

case of MAZE. The following results can be and are generalized to games where

GL and GR contain more than one option-closed sequence.

Theorem 10. Let G be a MAZE position and set 〈GR〉 = 〈x1, x2, . . . , xm〉 and

〈GL〉 = 〈y1, y2, . . . , yn〉. Then

(i) rcf(G) = rcf
({

〈GL〉
∣

∣〈GR〉
})

;
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(ii) If G is a number, then GL < G < G R for all GL ∈ GL and G R ∈ GR.

Moreover, G =
{

〈GL〉
∣

∣〈GR〉
}

.

(iii) If G is not a number, then 〈GL〉 ≥I G ≥I 〈GR〉.

Proof. We induct on the size, i.e. number of cells, of the MAZE position. If

the position has one cell (i.e. GL = GR = ?), then the claims are trivially true.

Suppose that the result is true for all positions with at most s cells.

Let G be a position with s cells. We may assume that G R is not empty and

that 〈GR〉 = xk for some 1 ≤ k ≤ m.

(i) If k = 1, then x1 is a number and by (ii), x1 < xi for all i . If k 6= 1, then

for 1 ≤ i < k, xi is not a number and by induction from (iii), xi ≥I xk . For

i > k, xk < xi by (ii). Combining these results gives xk ≤I xi for all i . Thus,

rcf(G) = rcf
({

〈GL〉
∣

∣xk

})

.

(ii) If G is a number, then G < xk since xk ∈ GR. For all i we have G < xk ≤I xi

from above, and so by Lemma 7, G < xi . If GL=?, then G ={. | xk}. Otherwise,

〈GL〉 < G < xk , so G =
{

〈GL〉
∣

∣xk

}

.

(iii) If G is not a number, then GL 6= ? and 〈GL〉 = y j for some 1 ≤ j ≤ n,

and rcf(G) = rcf({y j |xk}). If y j < xk , then yi ≤I y j < xk < xl for all i, l, so

G = {y j |xk} is a number, which is a contradiction. Hence, y j ≥ xk . Combining

the above results, G ≡I {y j |xk}≥I xk =〈GR〉 by Lemma 5. Thus, G ≡I {y j |xk}.

Thus, y j ≥ xk and G ≡I {y j |xk} and so ≥I xk by Lemma 5. ˜

In the case that G is not a number, then 〈G R〉 and 〈GL〉 are the right and left

stops of G. In this language, Theorem 10 is an extension of [NO], applied to

the specific case of Maze.

4. The construction

All positions will be rectangular mazes with vertical walls plus the horizontal

walls on the lower edge of the rectangle. For brevity, we refer to such a position

as a vertical position. An interior wall has its endpoints non-adjacent along the

outside boundary. In any MAZE layout, each cell has a value corresponding to

that position where the token is on that cell. The value of the cell at the top left

of the maze the value of the rectangle. With a number a, we associate m(a), any

MAZE position with a reduced canonical form of value a. First, we must show

how to adjust the height of any MAZE position without changing its value.

Lemma 11. Let M be a MAZE position. Let M ′ be the MAZE position obtained

by: deleting the bottom and right-hand walls of the position; adding another

row at the bottom and a column on the right hand side with walls on the bottom
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M = M ′ =

1
2 1

0 0

1
2 1 2

0 0 1

−2 −1 0

Figure 2. MAZE boards of equivalent value.

⊗ x1 · · · xi · · · xq b y1 · · · yr

a x
L1

1
· · · x

L1

i
· · · x L1

q · · · p − 1

...
...

...
...

...

x
L p

1
· · · x

L p

i
· · · 0 · · · 0

Figure 3. Outline of the Construction. Values without subscripts are

actual values. Thick black lines represent existing walls, dashed lines

walls that do not exist and thin lines walls that may or may not exist.

of the new row and on the right-hand side of the new column. (Each dimension

has increased by 1.) The values of M and M ′ are equal.

Proof. Let the rows of M be indexed 1, 2 . . . , p and the columns 1, 2, . . . , q

and let the rows and columns of M ′ be indexed 0, 1, 2 . . . , p and 0, 1, 2 . . . , q

respectively, where (0,0) and (1,1) are the bottom-right corners of M ′ and M ,

respectively.

The cells on the bottom row of M ′ have the values 0, −1, −2, . . . , −q, from

right to left, and the right-hand cells have values 0, 1, 2, . . . , q, from bottom to

top.

The cell (1,1) in M ′ has value {−1 | 1}=0, which equals the value of the (1,1)

cell in M . We now proceed by induction on i + j . Note that the value of (i, j)

is ≤ i since Left has at most i moves and similarly the value is ≥ − j . Therefore,

any moves from (i, j) to the zero row or to the zero column are dominated and

the values of the cells then the values in the rest of M ′ are the same as those

of M . ˜
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⊗ b

a

m′(a)

m′(b)

Figure 4. Outline of the Construction. Conventions are as in the pre-

vious figure.

The Construction. The idea is the following: if we wish to construct G with

rcf(G) = rcf({a | b}), a and b numbers, then take the MAZE positions m(a)

and m(b) obtained via the Construction, adjust the heights and adjoin the two

positions as in Figure 4. We need one more piece of notation. Let x = y/2m

where y is odd and m > 0, put ‖x‖ = m. If x = {a | b}), the naming convention

of numbers only allows the power of 2 in the denominator of x to to increase

slightly over that of a and b.

Lemma 12. If p and q, p < q, are dyadic rationals and x = {p | q} then ‖x‖ ≤

max{‖p‖, ‖q‖} + 1. If x is in canonical form then ‖x‖ = max{‖p‖, ‖q‖} + 1

and ‖x‖ < ‖s‖ for any dyadic rational p < s < q.

Theorem 13. Let g be a MAZE position in canonical form.

(1) Suppose g is an integer. If g = 0. then let M be a single cell; if g > 0 then

let M be a row of g +1 cells; if g < 0 then let M be a column of g +1 cells.

In all cases, M has no interior walls.

(2) Suppose g is not an integer. Then g = {a | b} where a and b are dyadic

rationals. Take the MAZE positions obtained via the Construction for a and

b. Adjust the height, if necessary, to obtain m′(a), a p × (q + 1) rectangle

and m′(b), a (p + 1) × (r + 1) rectangle with the same values as m(a)

and m(b) respectively. Let m′′(a) be formed from m′(a) by removing the

top outside walls and adding a new top row with no interior walls. Form

the MAZE position M by concatenating the rows of m′′(a) and m′(b). (See

Figure 4.)

The value of rcf(M) is g.
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Figure 5. MAZE boards for g = n + 1/2k .

Proof. (1) Suppose g is an integer then M = rcf(M) = g is clear.

(2) Let g = n + 1/2k , n an integer and k ≥ 1. Then g can be constructed as

follows. We only put in representative cases as the general case is clear but

tedious.

Note that for any entry x of M other than the top left cell (which has value

g) then ‖x‖ < ‖g‖ = k.

Suppose now that g is not an integer nor is g = n+1/2k (i.e. a not an integer).

Let g = {a | b} in canonical form, with a and b be dyadic rationals. Let M be

the MAZE position whose reduced canonical form is claimed to be g. Note that

both m′′(a) and m′(b) are obtained by the Construction and so contain no interior

walls in their top rows. Moreover, if c is a cell in m′(a), other than the top-left

cell, then ‖c‖<‖a‖. See Figure 3 for the naming of the values of the cells. Since

there are no walls in the top row of m(b), 〈x1, x2, . . . , xq , b, y1, y2, . . . , yr =

p〉 is a right-option-closed sequence, and the values in the first column, a and

below, form a left-option-closed sequence. Thus, 〈⊗L〉 = a by Lemma 9 and

since 〈b, y1, y2, . . . , yr 〉 is also a right-option-closed sequence, then yi > b by

Theorem 10. Thus,

rcf(⊗)= rcf
(

{a| 〈x1, x2, . . . , xq , b, y1, y2, . . . , yr 〉}
)

=
(

{a| 〈x1, x2, . . . , xq , b〉}
)

and we need to show that

〈x1, x2, . . . , xq , b〉 = b.

Now, if no xi is a number, then by Lemma 9, 〈x1, x2, . . . , xq , b〉 = b.
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Therefore, we may let i be the greatest index such that xi is a number. Nec-

essarily then, xi < b since b is a right option of xi . Since there are no walls in

the top row of m′(a), i.e. between a and any x
L1

i , 〈x
L1

1 , . . . , x
L1

q−1, x L1
q = p −1〉

is a right-option-closed sequence. Also, x
L1

i is a Right option of a and so by

Theorem 10, x
L1

i > a.

Now suppose a > b. We have the inequalities x
L1

i > a > b > xi which is a

contradiction since for any game G, GL 6> G. Therefore, there is no i such that

xi is a number and thus rcf(⊗) = {a | b}.

Now suppose a < b and let g = {a | b} =
y

2k for some integers y odd, and

k ≥ 1. The case a is an integer is already covered, thus we may assume that

‖a‖ ≥ 1. Repeated use of Theorem 10 gives a < x
L1

i < x1 < b. Since {a | b} is

in canonical form, then ‖xi‖ > k by Lemma 12. Since xi comes from a cell in

a MAZE position then, by Theorem 10,

xi =
{

〈xL

i 〉
∣

∣〈xR

i 〉
}

=
{

〈xL

i 〉
∣

∣b
}

= {c | b}

for some c in m′(a) and so ‖c‖ < ‖a‖ by induction. By Lemma 12, ‖a‖ < ‖g‖

and so ‖c‖ < ‖g‖ = k. If a < c < b, then by Lemma 12 ‖c‖ ≥ ‖g‖, which is a

contradiction. Thus, c < a.

Hence no xi is a number and thus rcf(⊗) = g = {a | b}.

Note that the entries in m′(a) and m′(b) are the same as in m(a) and m(b) ex-

cept for the addition of integers around the bottom and right-hand sides. Hence,

the values other than a in m′(a) have norms less than ‖a‖. The values in

m′′(a) not in m′(a) are the xi , i = 1, . . . , p and none of them are numbers,

so ‖ ⊗ ‖ = max{‖a‖, ‖b‖}+ 1 which occurs only at the top-left cell. ˜

5. Evaluating MAZEs

Grossman & Siegel [Grossman and Siegel 2009] note that for most situations

the reduced canonical form is sufficient to evaluate a position since the infinites-

imals, at most, change the parity of who gets the last move. Calculating the

reduced canonical form can be done in linear time with regard to the number of

cells in the position.

Theorem 14. The reduced canonical form of an p × q MAZE position can be

calculated in O(pq) time.

Note that for ease of describing the proof, the MAZE position is implicitly

embedded in a rectangle and the reduced canonical form of every cell is found

regardless of whether it can be reached from the top left hand cell.

Proof. The evaluation goes row by row starting at the bottom and always starting

at the righthand cell. By Theorem 10, we only need look for the nearest number
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down a column and to the right along a row. To that end, let Si j be the value of

the cell (i, j) where (1, 1) refers to the bottom-right corner.

(1) Define variables Ri , i = 1, 2, . . . , p and and C j , j = 1, 2, . . . , q. Initially,

set Ri = −pq and all C j = pq for all i and j .

(2) For j from 1 to q do

For i from 1 to p do

For cell Si j , if there is a right wall from (i, j) then set C j = ∞; if

there is a left wall from (i, j) then set Ri = −∞; set Si j = {Ri |C j } and if

Ri < C j then set Ri = C j = {Ri |C j }.

Note that for each pair (i, j), Ri is the norm of the left-option-closed sequence

starting at Si−1, j the first left option of Si j and C j is the norm of the right-option-

closed sequence. That rcf(Ci j ) = {Ri |C j } follows from Theorem 10. Each cell

is looked at and there is a constant number of operations associated with each

cell. (Note that evaluating {a | b} for numbers a and b, a < b is linear.) ˜

See [McKay et al. 2010] for a fanciful interpretation of this method.

6. Open questions

For any numbers a and b we have constructed, G, a MAZE position with rcf(G)=

{a | b}.

Question 15. For numbers a and b, is there a MAZE position G with G =

{a | b}?

From [NO] we know that for any option closed game G, ⇓+∗ < G − rcf(G) <

⇑+∗. It is easy to see that the Construction also gives games of the form ∗n.

Question 16. What infinitesimals occur in MAZE?
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