
Games of No Chance 4
MSRI Publications
Volume 63, 2015

Computer analysis of sprouts with nimbers
JULIEN LEMOINE AND SIMON VIENNOT

Sprouts is a two-player topological game, invented in 1967 at the University
of Cambridge by John Conway and Michael Paterson. The game starts with
p spots, and ends in at most 3p− 1 moves. The first player who cannot play
loses.

The complexity of the p-spot game is very high, so that the best hand-
checked proof only shows who the winner is for the 7-spot game, and the best
previous computer analysis reached p = 11.

We have written a computer program, using mainly two new ideas. The
nimber (also known as Sprague–Grundy number) allows us to compute sepa-
rately independent subgames; and when the exploration of a part of the game
tree seems to be too difficult, we can manually force the program to search
elsewhere. Thanks to these improvements, we have settled every case up to
p = 32. The outcome of the 33-spot game is still unknown, but the biggest
computed value is the 47-spot game! All the computed values support the
Sprouts conjecture: the first player has a winning strategy if and only if p is 3,
4 or 5 modulo 6.

We have also used a check algorithm to reduce the number of positions
needed to prove which player is the winner. It is now possible to hand-check
all the games until p = 11 in a reasonable amount of time.

1. Introduction

Sprouts is a two-player pencil-and-paper game invented in 1967 in the University
of Cambridge by John Conway and Michael Paterson [Gardner 1967]. The game
starts with p spots and players alternately connect the spots by drawing curves
between them, adding a new spot on each curve drawn. A new curve cannot
cross or touch any existing one, leading necessarily to a planar graph. The first
player who cannot play loses.1

The last rule states that a spot cannot be connected to more than 3 curves,
and it induces the end of the game in a finite number of moves. If we consider

1The misère version of the game corresponds to the opposite rule, i.e., a player unable to move
wins. The analysis of the misère version is more difficult, and is the object of another article
[Lemoine and Viennot 2009].

161

162 JULIEN LEMOINE AND SIMON VIENNOT

Figure 1. A sample game of 2-spot Sprouts (the second player wins).

that a spot has 3 lives at the beginning of a game, there is a total number of 3p
lives. Each move then consumes 2 lives and creates a spot with 1 life, globally
decreasing by one the total number of lives. It follows that the game ends in at
most 3p− 1 moves.

Despite the small number of moves of a given game, it is difficult to determine
whether the winning strategy is for the first or the second player. The best
published and complete hand-checked proof is due to Focardi and Luccio [2004],
and shows who the winner is for the 7-spot game.

The first published computer analysis of Sprouts is due to Applegate, Jacobson
and Sleator [Applegate et al. 1991], who computed which player wins up to the
11-spot game. They noted a pattern in their results and proposed the Sprouts
conjecture: the first player has a winning strategy in the p-spot game if and only
if p is 3, 4 or 5 modulo 6. We have written a new program, using an improved
version of their original representation of Sprouts positions, and obtained sig-
nificant new results with the help of two main ideas: the theoretical concept of
nimber and the manual exploration of the game tree.

Our program enabled us to compute which player wins the p-spot game up to
32 spots, and also some values up to 47 spots. All the computed values support
the Sprouts conjecture. We then performed a second computation to validate the
results, in which our program tries to minimize the number of positions needed
to prove the value of a given p-spot game. It is then possible to generate graphs
corresponding to these minimized databases, which provides a hand-checkable
winning strategy for the p-spot game.

2. Game tree

We will call position a graph embedded in the plane, obtained with the rules of
Sprouts.

From any given Sprouts position, there is necessarily a winning strategy, either
for the player to move, or for the next player. If the winning strategy is for the
player to move, we will say that the outcome of the position is a win and in the
other case, that it is a loss. The main goal of our program is then to compute
the outcome of Sprouts positions, and particularly the starting positions with p
spots.

We call game tree of a position the tree where the root is the given position,
the nodes are the positions that can be reached by playing moves from the root,

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 163

Figure 2. Game tree of a given Sprouts position.

and where an edge links two positions if the child is obtained from the parent in
only one move. Figure 2 is an example of such a tree.

As we will see in Section 6, the outcome of a position is computed recursively
by developing its game tree.

3. Positions representation

As a pencil-and-paper game, Sprouts is not suitable for programming. We
describe here a representation of the game with strings that could be used with a
computer to develop game trees, and therefore deduce winning strategies.

3.1. Regions and boundaries. In a given position, a region is a connected com-
ponent of the plane and inside a given region, a boundary, is a connected
component of the curves drawn by the players. An isolated spot is considered as
a boundary in itself.

For example, Figure 3 contains 5 regions and 9 boundaries: there are 3
boundaries in region D, 2 boundaries in regions A and C and 1 boundary in
regions B and E.

Figure 3. A Sprouts position obtained after 10 moves in a 11-spot game.

3.2. String representation. In order to perform computations with a computer,
we need a way to represent the positions of Sprouts by strings of characters. We
follow the representation described in [Applegate et al. 1991].2 Basically, each
spot (vertex in the graph theory) will be denoted by a letter, and the graph is
described as follows:

2The equivalence between graphic and string representations is easy to see, but hard to demon-
strate. This is the goal of a full 400-page report [Draeger et al. 1990].

164 JULIEN LEMOINE AND SIMON VIENNOT

• The complete graph is represented by the list of strings of the regions that
it contains and is terminated by an end-of-position character: “!”

• A region is represented by the list of strings of the boundaries that it contains
and is terminated by an end-of-region character: “}”

• A boundary is represented by the list of its vertices and is terminated by an
end-of-boundary character: “.”

For a given boundary, we write the vertices in the order they appear while
following one side of the boundary. Inside a given region, the same orientation
must be respected.

In our example, we turn around all boundaries clockwise, except for the
(unique) boundary that surrounds a region, around which we turn counterclock-
wise. A string representing the above position is then:

AL.}AL.BNMCMN.}D.COFPGQFOCM.}E.HRISJSIUKTKUIR.FQGP.}KT.}!

The boundary AL. appears twice, because it is inside the same region as the 4
vertices B;N;M;C, and it also surrounds a region itself. Notice how the string
of the boundary containing B;N;M;C is obtained: starting at B, we follow the
bottom of the boundary, meeting first N, then M, and C. Then, we continue to
follow the top of the boundary, meeting M and N once again (but on the opposite
side), stopping when we are back at the starting point.

Remark. The strings of the starting positions are A.}! (for the 1-spot game),
A.B.}! (2-spot game), A.B.C.}! (3-spot game). . . .

3.3. Equivalent positions and strings. A single position can correspond to sev-
eral strings. For example, the first position in Figure 4 can lead to

BDCDBE.}BE.A.}! or A.EB.}DCDBEB.}!.

Similarly, a single string can represent several positions: BDCDBE.}BE.A.}! can
represent the two positions of Figure 4.

Figure 4. Two equivalent positions.

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 165

Figure 5. Two moves in a 3-spot game.

More precisely, a single string represents an infinite number of positions,
as we can draw lines of multiple shapes as long as the topology is respected.
Conversely, a single position corresponds to only a finite number of strings if we
only allow the strings to use the first letters of the alphabet.

3.4. Moves. The main interest of the string representation described above is
that moves can be easily defined and computed from it. Moves always take place
in a single region but they are of two different types, depending on whether we
link one boundary to itself or two different boundaries. The program we describe
below will thus produce finite game trees.

Move 1. A two-boundaries move consists in connecting two spots of different
boundaries.

Let x1 . . . xm and y1 . . . yn be two different boundaries in the same region,
with m ≥ 2 and n ≥ 2. We suppose that xi and yj are vertices that occur two
times or less in the whole string, with 1≤ i ≤ m and 1≤ j ≤ n.

Then the two-boundaries move consists in merging these two boundaries in
x1 . . . xizyj . . . yny1 . . . yjzxi . . . xm where z is the new created vertex.

The same definition holds if m = 1 or if n = 1, but in these cases, xi . . . xm

and yj . . . yn are empty boundaries.

Move 2. A one-boundary move consists in connecting two spots of the same
boundary.

Let x1 . . . xn be a boundary, with n ≥ 2. We suppose that xi and xj are vertices
that occur two times or less in the whole string, with 1≤ i ≤ m, 1≤ j ≤ n and
i 6= j , or that i = j and xi occurs only once in the whole string.

Then the one-boundary move consists in separating the other boundaries of
the same region in 2 sets B1 and B2, and the original region is divided into two
new regions: x1 . . . xizxj . . . xn.B1} and xi . . . xjz.B2}.

The same definition holds if n = 1, but in this case, xj . . . xn is an empty
boundary.

Let us give an example of the two types of moves with a 3-spot game. The
initial string is A.B.C.}!. First, we make a two-boundaries move, which leads
to A.BDCD.}!, and then we make a one-boundary move, which separates the po-
sition into two regions: BDCDBE.}BE.A.}!. Figure 5 shows three corresponding
positions.

166 JULIEN LEMOINE AND SIMON VIENNOT

These definitions are sufficient to create a first version of a program for
computing Sprouts. This program could determine the outcome of the p-spot
game for a few values of p, but there would be too many equivalent strings, and
the memory would saturate quite quickly.

4. Strings simplification

We will now explain several methods to simplify the strings, with two main goals.
Firstly, if we go back to Figure 2, the middle and the right children of the root
can be represented by the same string (we will know at the end of this section
that it is 22.}]!). These kind of simplifications will merge some equivalent
branches of the game tree and thus decrease the complexity of the computation.

Secondly, the simplified strings will be more suited to perform the canonization
step described in Section 5.

4.1. Deletion of the dead parts. First of all we delete the dead vertices (those
which occur 3 times in the string). Then, we delete the empty boundaries
(boundaries whose vertices are all dead) and finally, we delete the dead regions
(with 0 or 1 life).

Using our previous example, we would therefore delete 5 dead vertices. Then,
no boundary would be empty, but the region KT.}! would be dead. The new
string and position would be

AL.}AL.BNN.}D.OPGQO.}E.HRSJSUTUR.QGP.}!

4.2. Generic vertices. We replace the vertices that only occur once and in a
boundary with a single vertex, by the generic vertex “0”. We also replace the
vertices that only occur once but in a boundary with several vertices, by the
generic vertex “1”.

The generic vertex “2” can designate the vertices that occur twice in a row
along a single boundary, just as N or O in our example. However, it can also
designate the vertices that used to occur twice, and that now only occur once,
because of a dead region deletion (such as T in our example).

AL.}AL.12.}0.2PGQ.}0.1RS1SU2UR.QGP.}!

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 167

4.3. Lands. We cut the position into independent parts, named lands. A position
can be cut into 2 lands when those lands have no letter in common. The end-of-
land character is “]”. Our example has 2 lands, and its string becomes:

AL.}AL.12.}]0.2PGQ.}0.1RS1SU2UR.QGP.}]!

4.4. Renaming letters. At this point, letters designate vertices that occur twice
in the string, but we can distinguish between two different types: vertices that
occur twice in the same boundary (which we will designate with lower-case
letters) and vertices that appear in two different regions (which we will designate
with upper-case letters).

We rename these vertices from “a” and “A”, in the order of their appearance.
We start again from “a” when we meet a new boundary and we start again from
“A” when we meet a new land.

AB.}AB.12.}]0.2ABC.}0.1ab1bc2ca.CBA.}]!

4.5. Regions equivalences. When a region has 3 lives or less, we have an equiv-
alent game if we merge the boundaries. For instance, the region A.BC.} becomes
ABC.}, or 2.2.} becomes 22.}. These equivalences are a useful trick in our
program, reducing considerably the number of stored strings.

5. Strings canonization

We already know that several strings can represent the same position, e.g., the
previous position could also be represented by:

BA2C.0.}0.2ca1ab1bc.CBA.}]AB.21.}AB.}]!

As in [Applegate et al. 1991], we call canonization the choice of a single
string amongst all the equivalent strings. By merging equivalent branches in
a game tree, canonization decreases efficiently both memory consumption and
running time. On the other hand, canonization itself takes a lot of running time,
and we need to take this into consideration when writing the program.

5.1. Canonization. First, we define an equivalence on the set of strings. Two
strings are equivalent if they are equal modulo:

• the first vertex chosen in a boundary,

• the order of boundaries in a region,

• the order of regions in a land,

168 JULIEN LEMOINE AND SIMON VIENNOT

• the order of lands in the position,

• the orientation chosen for each region,

• a renaming of the vertices.

We can now define the term canonization: this is the choice of a single string
in each equivalence class. This choice should be as simple as possible, therefore,
we will choose the minimal string for the following lexicographical order:

0 < 1 < 2 < a < b < · · · < A < B < · · · < . < } <] < !

A little reflection shows then that the canonized string of our previous position
is 0.1ab1bc2ca.ABC.}0.2ABC.}]12.AB.}AB.}]!.

Remark. We are not allowed to change the orientation of a single boundary. We
can only change the orientation of a complete region, i.e., the orientation of all
the boundaries in the region.

For instance, 122a2a.22.2AB.}2A.}2C.}BC.}]1122.}]! represents a los-
ing position, while 122a2a.22.2BA.}2A.}2C.}BC.}]1122.}]! represents a
winning position.3

5.2. Pseudocanonization. We cannot actually perform the canonization, mainly
because choosing the name of the upper-case letters requires too much running
time. In particular, if a land has k upper-case letters, performing the true canon-
ization consists in choosing the minimal string for lexicographical order amongst
the k! possible strings.

Therefore, we only perform a pseudocanonization: the same position can be
represented by several strings, for instance the strings 0.AB.CD.}0.AB.}CD.}]!
and 0.AB.CD.}0.CD.}AB.}]! represent the same position. Our pseudocanon-
ization algorithm renames the upper-case letters from “A” in the order of their
appearance and then sorts the string. Experience shows that performing this
operation twice is the most efficient for both running time and memory usage.
Ultimately, we only lose a few percentages of memory compared to a true
canonization, whose time complexity prevents from computing p-spot games
for p ≥ 5 or 6.

We have developed the complete game tree of the p-spot games, for p ≤ 6, in
order to evaluate the performance of our pseudocanonization. Here is an extract
of the complete game tree of the 4-spot game:

3More obvious examples may exist, but this is the simplest that we know. However, to check
this example, a long computation is necessary.

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 169

ABCDEF.}ABCDEG.}FG.}]!
ABCDEF.}ABCDGF.}EG.}]!
ABCDEF.}ABCGEF.}DG.}]!
ABCDEF.}ABGDEF.}CG.}]!
ABCDEF.}BCDEFG.}AG.}]!

Since these strings represent the same position, a true canonization would
have displayed only one string instead of these five. However, this position is
not needed to compute the outcome of the 4-spot game. In fact, the performance
of the pseudocanonization (comparatively to the true canonization) is better in a
real computation that in a complete game tree development, because in a real
computation we meet strings easier to compute, with less upper-case letters.

The following table gives the number of pseudocanonized strings stored after
a complete game tree development for the p-spot game.

n = 2 3 4 5 7
number of strings = 18 157 1796 24784 393103

This table could be useful for evaluating the performance of our canonization,
in comparison with the canonization of other programs.

6. Main algorithm

6.1. Outcome computation algorithm. The standard recursive algorithm to com-
pute the outcome of a position4 can be described as follows:

Algorithm 1. function compute-win-loss(position P)

• compute the children of P

• for each child, do: if compute-win-loss(child)=Loss, return Win

• return Loss5

The core of our main algorithm uses this classical depth-first procedure. We
also store the outcomes of the computed positions in a database (a transposition
table), in order not to compute several times the same position. Figure 6 shows
how this algorithm works with the 2-spot game.

Surrounded positions are the losing ones. As Figure 6 shows, a position is
losing if all its children are winning. But on the contrary, only one losing child
is sufficient to prove that a position is winning, which implies that only a part of
the complete game tree is sufficient to determine the outcome of the game (only

4In the following, we use the term “position” even if we speak of the string that represents it.
5This step is reached only if no child is losing.

170 JULIEN LEMOINE AND SIMON VIENNOT

Figure 6. 2-spot game.

9 of the 18 positions of the complete game tree are needed here). We will detail
this point again in Section 7.2.

6.2. Sum of independent games. Sprouts positions can frequently be separated
into independent games, the lands. It would then be convenient to compute these
lands independently, and deduce the outcome of the complete position from the
outcome of the lands.

As explained in [Applegate et al. 1991], this can partially be done, because
the sum of two losing games is losing, and the sum of a losing and a winning
game is winning. However, the weakness of this method is that the sum of two
winning games can either be winning or losing. We had implemented it in our
program at first, and rather quickly, a large number of positions with several
lands was saturating our databases, preventing us from improving the results of
[Applegate et al. 1991] of more than 2 or 3 spots.

As described below, the concept of nimber can solve this problem, allowing
us to compute the lands separately.

6.3. Nimber theory. A more detailed view of this theory can be found, amongst
others, in [WW].

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 171

Definition. The nimber of a position P is denoted by |P|, and is defined as the
smallest nonnegative integer that is not a nimber of a child of P .

This definition implies that |P| = 0 if P is losing, and |P| ≥ 1 if P is winning.
We can also see that, if we know the complete game tree of P , we can recursively
compute |P|, but in fact it is not necessary to expand the complete game tree to
compute the nimber of a position, as the Algorithm 2 shows below.

The main result of the nimber theory can be stated as follows:

Theorem. If a position P is made of two independent positions P1 and P2, then
|P| is the “bitwise exclusive or” of |P1| and |P2|, denoted by |P1| ∧ |P2|.

For example, |1AB.}AB.}]!| = 3 and |22.}]!| = 1, so

|1AB.}AB.}]22.}]!| = 3∧ 1= 2.

6.4. Couples. In our program, instead of computing the outcome of a position,
we compute the outcome of a couple: (position + nimber), which represents
the sum of two independent games. The position part consists of the game of
Sprouts for the given position. The nimber part is the game of Nim for the given
nimber value. The outcome of (∅+ n) is a loss if n = 0, a win if n ≥ 1. The
original position P0 is replaced by the couple (P0+ 0).

We see that “(P + n) is losing” means that |P| = n. As we only store losing
positions in our program, it means that we will only store positions whose nimber
is known (and the winning positions that we do not store correspond to positions
whose nimber is only known to be different of certain values).

To determine the outcome of a couple, we can still use the Algorithm 1, by
extending to couples the definition of children: the children of a couple (P + n)
are the children of the position part, whose form is (child(P) + n), and the
children of the nimber part, whose form is (P +m), with m < n.

6.5. Computation of the nimber of a position. With Algorithm 1 applied to
a couple (P + n), we already are able to determine if n is the nimber of the
position P . If we need to compute the nimber |P| of this position, we use the
following (simple but efficient) method:

Algorithm 2. function nimber-of(position P)

• n := 0, found := false

• while found= false do:
if compute-win-loss(P + n)= Loss, then found := true, else n := n+ 1

• return n

It merely consists in trying 0, 1, 2 . . . until we find the right nimber. This
algorithm will only be used on single lands, as explained below.

172 JULIEN LEMOINE AND SIMON VIENNOT

6.6. Positions with several lands. If a position is made of two lands, as in
(P1]P2]!+n), and if we know the nimber |P2|, the above theorem shows that the
outcome of (P1]P2]! + n) will be the same as the outcome of (P1]! + n ∧ |P2|).

So when our main algorithm meets a position with several lands, it computes
with the Algorithm 2 the nimbers of all lands except one and merges the results
with the nimber part of the couple. Therefore, we always compute the lands
separately, and an indirect consequence is that we store only single lands in our
database.

6.7. Main algorithm. With the previous ideas, Algorithm 1 is now:

Algorithm 3. function compute-win-loss(couple(P + n))

• for the lands of P whose nimber is already stored in the database, merge
their nimber with the nimber part (with bitwise xor).

• compute the nimber of all the unknown lands of P with Algorithm 2 (except
for one land), and merge those nimbers with the nimber part (P is then a
single land).

• for each child6 of (P + n), do:
if compute-win-loss(child)=Loss, return Win

• store (P + n) in the database and return Loss

Figure 7 shows how this algorithm works with the 3-spot game.
Couples surrounded by a rectangle are those made of several lands. Their

nimber is computed from the nimber of their lands, which can be found lower in
the graph.

Couples surrounded by an ellipse are losing. Only those couples are stored by
the program. All their children are computed to find their position’s nimber.

The remaining couples are winning. The nimber of their position part is not
known. We only know the nimber to be different of one (or sometimes several)
value, because this value is already the nimber of some child of the position.

We see on this example the efficiency of this algorithm. There are 157 positions
in the complete game tree of the 3-spot game, but the program only needs 14
nodes to compute the outcome.

7. Computation improvement

7.1. Positions storage. As in [Applegate et al. 1991], we store only losing
couples in order to reduce the memory consumption: as the complexity of
the computation increases, losing couples become less frequent, so this choice
allows us to reduce the size of the transposition table. The profit is variable,

6Children of position part, and children of nimber part.

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 173

Figure 7. 3-spot game.

but we can take into consideration that the size of the database is divided by a
factor between 5 and 20, which is not negligible. In exchange, we need a little
more running time when computing again a winning couple that has already
been computed before. Since the couple is not stored in the database, its winning
outcome will be known only after a computation of its children, one of which
will be found to be losing in the database.

The main difference of our database compared to [Applegate et al. 1991] is that
we store losing couples (positions whose nimber is known), and not losing posi-
tions. Moreover, as explained before, we store only positions with a single land.

It is also possible in our program to export databases as text files, allowing us
to analyze them manually, or resume later an incomplete computation.

7.2. Children ordering. When a position (or a couple) is losing, there is no
short way to prove it: we need to compute all the children and prove that they

174 JULIEN LEMOINE AND SIMON VIENNOT

are all winning. On the contrary, when a position is winning, we only need to
find one losing child, so that there are several ways to search the game tree and
compute the outcome of the starting position. These ways are not of equivalent
difficulty, because Sprouts game trees are unbalanced, with some areas far more
complicated than others.

Consequently we sort the children by computational difficulty, in order to
find a losing child as quickly as possible. Thus, we lose the least possible time
possible in unnecessary computations of winning children and also find first the
losing children whose outcomes are easy to compute.

When ordering the children, we try to evaluate their difficulty only from
their string. The rules used to evaluate the difficulty and order the children are
an important part of the program, because a bad set of rules could push the
computation into complicated parts of the game tree. Our current set of rules is
as follows:
• priority to couples with minimal (number of lives + nimber);

• priority to positions with a lot of lands;

• priority to positions with a little estimated number of children.

Since it would require too much running time to compute the exact value, the
number of children is only estimated as follows:
• When linking a boundary to itself, the possible number of children is

(number of vertices)2
× (number of partitions), where

(number of partitions) is the number of ways to partition the other bound-
aries into two sets.

• When linking two different boundaries, the possible number of children is
the sum, for any couple (Bi , B j) of boundaries, of
(number of vertices of Bi)× (number of vertices of B j).

We must also make a choice when considering a position composed of several
lands. We decided to compute first the nimbers of the lands with the smallest
number of lives.

These rules significantly improve the computation compared to a random
exploration of the game tree, but they are still far from providing an optimal
exploration of the game tree. In fact, we believe that whatever the rules used to
order the children, their efficiency is eventually limited and more global search
algorithms are needed.

7.3. Manual exploration of the game tree. We have implemented an interface
to follow and interact in real-time with the computation process. When the
computation seems to be stuck in some part of the game tree, we can manually
decide to explore elsewhere.

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 175

During the computation, the program displays the list of currently studied
couples. At a given instant, the program is computing the outcome of a list of
couples, each one being the child of the previous one. For example, here is what
the program could display during a 12-spot game computation:

level position part nimber part

1 0.0.0.0.0.0.AB.}0.0.0.0.0.AB.}]! 0
2 0.0.0.0.0.}]0.0.0.A.}0.0.0.A.}]! 0
3 0.0.0.0.0.}]! 1
4 0.0.0.0.AB.}AB.}]! 1
5 0.0.0.0.}]! 1
6 0.0.1a1a.}]! 1

With a click in the interface, it is then possible to choose another child on a
given level, and so to compute another part of the game tree. For example, we
could decide to compute the couple (0.0.A.}0.0.A.}]!+1) in the fifth level.

When the position is composed of several lands, the program computes the
nimber of one of these lands with Algorithm 2 (here, it has already computed that
the nimber of 0.0.0.0.0.}]! is not 0, and is now trying with 1). In this case too,
we can click in the interface to compute first the nimber of another land. In our
example, we could decide to compute the nimber of 0.0.0.A.}0.0.0.A.}]!
in the third level.

We empirically decide where and when we should click: if the program spends
too much time on a branch of the game tree, we decide to change it. If a couple
on a level is almost computed to be losing (which means that almost all its
children have been computed to be winning), it is often efficient to click two
levels below, to try to quickly find losing children of the remaining unknown
children. We can also have a look at the position to try to choose easier couples
(positions are easier when they tend to be quickly cut into lands).

Being able to manually choose which part of the game tree to explore was
far more efficient that any automatic selection that we imagined. For example,
whereas a computation for the 12-spot game ends after having stored more than
100, 000 couples without human intervention, by clicking, somebody with some
experience can end this game in less than 2, 000 couples.

7.4. Check computation. User interactions proved to be powerful, but they have
a drawback: it is impossible to reproduce exactly the same computation twice.
For this reason, when a computation succeeds, we perform a stand-alone check
computation, which uses the previous results to guide itself in the game tree.
This check computation does not authorize any interaction from the user and is
of course reproducible for a given database of previous results.

176 JULIEN LEMOINE AND SIMON VIENNOT

Figure 8. A solution for the 5-spot game, positions with 12 lives or more.

The check computation also reduces the number of couples needed to prove the
result. Indeed, during the first computation, we compute many useless couples
(the winning children of winning couples are usually useless). When we meet a
new couple in the check computation, we look for its value in the database of
previous results, and if it is losing (i.e., a position whose nimber is known), we
compute again all its children to check it. But if it is winning, we look in the
previous database which child is losing, and we compute only this one.

The result of a check computation is then a solution tree, providing a winning
strategy without any unnecessary information. These solution trees are small
enough to provide hand-checkable proofs for p-spot games with little values of
p. For bigger values of p, it is mainly a way of reducing the size of the files
storing the winning strategies.

During the check computation, we can generate a file compatible with the
graph visualization tool Graphviz (www.graphviz.org) which enables us to draw
graphs describing how the computation proceeds (e.g., Figures 6 and 7). For
bigger values of p, the complete graph would be rather unreadable, but we can
choose to plot only the positions with a minimal number of lives. For example,
Figure 8 shows the upper part of the graph for the 5-spot game, with only the
positions with 12 lives or more.

Here, we can see how cutting positions into lands simplifies the computation:
to complete it, we only need to compute the nimber of 6 lands of less than 7
lives, and the outcome of a position of 12 lives. The most spectacular example is
the case of p = 17: in our computation, every position is cut into several lands
of less than 27 lives after only 3 moves from the starting position (which has 51
lives).

It is also possible to plot only reference numbers instead of the whole positions,
which is useful for bigger graphs. See, for instance, Figure 9, which shows the
complete 4-spot game. The numbers have no special meaning, the positions
which they refer to are listed in Table 1, with their computed values.

http://www.graphviz.org/

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 177

Figure 9. A complete solution for the 4-spot game.

8. Results

8.1. p-spot games already computed. The following table shows the number
of couples stored in the minimal databases for all the p-spot games computed up
to now. We have computed all p-spot games up to 32 spots. The 33-spot game
is the first unknown one, but the biggest computed one is the 47-spot game. The
results so far all support the conjecture emitted in [Applegate et al. 1991]: the
first player loses if and only if p is 0, 1 or 2 modulo 6.

p size p size p size p size p size p size

0 0 7 103 14 1580 21 9270 28 14813 35 18812
1 1 8 205 15 3252 22 5706 29 3414 . . . ?
2 3 9 63 16 1068 23 2837 30 58363 40 45782
3 6 10 140 17 471 24 9316 31 58365 41 48890
4 16 11 140 18 3233 25 9229 32 58204 . . . ?
5 38 12 475 19 3630 26 18567 33 ? 47 54542
6 64 13 577 20 4051 27 59117 34 21107 . . . ?

178 JULIEN LEMOINE AND SIMON VIENNOT

It is rather surprising that the number of stored couples does not increase
strictly with p. In fact, some patterns seem to occur modulo 6.

We found that p = 15, 21 and 27 were very difficult to compute, because
they are winning, and only have one losing child, which is the most complicated
one (its string is 0.0.0.(...)0.1a1a.}]!). The first value that we do not yet
know, p = 33, seems to follow the same path.

Conversely, p= 17, 23, 29, 35, 41 and 47 were much easier to compute. They
are winning positions, and the losing child is obtained by linking one spot to
itself and separating the remaining spots in two equal sets (this child is often the
easiest to compute).

We also noticed that the number of stored couples is almost equal for p = 15
and p= 18, 19: once the result of p= 15 is known, we only needed a little more
computation to deduce the result for p = 18, 19. The same phenomenon occurs
for p = 21 and p = 24, 25, or for p = 27 and p = 30, 31.

We tried to minimize the number of couples for p ≤ 25 (and p = 29), but
we did not take the time to do the same work for the other values, therefore the
reader needs to be aware that it is probably possible to reduce significantly the
number of couples for those values.

8.2. Nimber conjectures. We observed that the nimber of the winning starting
positions, for p ≤ 32, is 1, so we propose a stronger conjecture than the “Sprouts
conjecture” emitted in [Applegate et al. 1991]:

Conjecture. The nimber for the starting position with p spots is 0 if p is 0, 1 or
2 modulo 6, and 1 if p is 3, 4 or 5 modulo 6.

It is rather easy to imagine other conjectures around the nimber. For example,
if we compute the nimber of the position: 222(...)222.}]!, with p generic
vertices “2”, we obtain (starting from 22.}]!):

1; 0; 2; 1; 0; 3; 1; 0; 5; 1; 0; 3; 1; 0; 3; 1; 0; 3; 1; 0; 3; 1; 0.

We also imagined another extension of the Sprouts conjecture: the nimber
of the position is left unchanged by an addition of 6 boundaries “0.” into
a given region. This conjecture is false, since 0.22.}]! has nimber 0, and
0.0.0.0.0.0.0.22.}]! has nimber 2. But it does work for more than 90% of
the positions that we tried. The existence of such nearly true patterns tends to
infirm the Sprouts conjecture.

8.3. Hand-checkable proofs. Using a computer to determine mathematical re-
sults is not completely convincing, especially because there could be a program-
ming error, considering the size of the program. So, the most skeptic readers

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 179

position nimber
0 0.0.0.0.}]! 6= 0
1 0.0.AB.}0.AB.}]! 0
2 0.0.2.}]0.}]! 6= 0
3 0.0.AB.}AB.CD.}CD.}]! 6= 0
4 0.0.A.}1aAa.}]! 6= 0
5 0.0.}]0.2.}]! 6= 0
6 0.1aAa.}0.A.}]! 6= 0
7 0.AB.CD.}0.AB.}CD.}]! 6= 0
8 0.AB.}0.CD.}AB.CD.}]! 6= 0
9 0.AB.}1a1a.AB.}]! 6= 0

10 0.A.}0.A.}]0.}]! 6= 0
11 0.0.}]! 0
12 0.AB.}AB.}]! 6= 0
13 1a1a.}]! 6= 0
14 0.}]! 0
15 AB.}AB.}]! 1
16 ! 0
17 ABCD.}ABCD.}]! 0
18 2AB.}AB.}]! 6= 0 1
19 AB.}AC.}BC.}]! 6= 0
20 0.2.}]! 1
21 12.}]! 0
22 22.}]! 1
23 0.A.}0.A.}]! 1
24 0.}]12.}]! 0
25 0.AB.}2AB.}]! 0
26 0.0.2.}]! 6= 0
27 0.A.}2A.}]! 6= 0
28 0.}]22.}]! 6= 0
29 1aAa.}2A.}]! 6= 0
30 2AB.}AB.CD.}CD.}]! 6= 0
31 22.}]AB.}AB.}]! 0
32 0.0.}]12.}]! 0

position nim.
33 0.A.}1A.}]0.}]! 0
34 0.A.}1A.}]! 0
35 0.}]AB.}AB.}]! 6= 0
36 12.}]1.}]! 6= 0
37 1A.}ABC.}BC.}]! 6= 0
38 1.}]! 1
39 0.AB.}2AB.}]0.}]! 0
40 0.A.}0.A.}]AB.}AB.}]! 0
41 0.A.}ABC.}BC.}]! 0
42 0.A.}ABC.}BC.}]0.}]! 0
43 12.}]AB.}AB.}]! 6= 0
44 ABC.}ADE.}BC.}DE.}]! 6= 0
45 0.AB.}1CD.}AB.CD.}]! 0
46 0.2.}]1AB.}AB.}]! 6= 0
47 0.AB.}2AB.}]1.}]! 6= 0
48 0.AB.}2CD.}AB.CD.}]! 6= 0
49 0.AB.}ABC.}CDE.}DE.}]! 6= 0
50 0.AB.}AB.}]12.}]! 6= 0
51 0.A.}1B.}aAaB.}]! 6= 0
52 0.}]1AB.}2AB.}]! 6= 0
53 1aAa.}1BC.}ABC.}]! 6= 0
54 1AB.}AB.CD.} 6= 0

CD.EF.}EF.}]!
55 1AB.}AB.}]! 6= 1
56 1AB.}2AB.}]! 1
57 1.}]22.}]! 0
58 0.}]1.}]AB.}AB.}]! 0
59 12.}]1A.}2A.}]! 0
60 1A.}2A.}]! 0
61 2A.}2A.}]! 6= 0
62 1AB.}2AB.}]AB.}AB.}]! 0
63 2AB.}2AB.}]! 6= 1
64 2A.}ABC.}BC.}]! 6= 1

Table 1. Correspondence for Figure 9.

could use the program to generate files that would provide them with hand-
checkable proofs of the simplest results. For example, Figure 9 provides a proof
that the first player wins in the 4-spot game.

180 JULIEN LEMOINE AND SIMON VIENNOT

We printed the result of a check computation for the 9-spot game and manually
checked 66 losing couples (positions of known nimber), and 258 winning couples
(positions whose nimber is known to be different of certain values). For the
losing couples, we checked that we obtained the same sets of children as our
program, and for the winning ones, we had to check only one child, very seldom
two or more. This took us a few hours.

The table in Section 8.1 implies that we could use this method to check in
a reasonable amount of time the value of the p-spot game with p ≤ 11. The
program can also point in the right direction someone who would like to create
a totally manual proof, like the one in [Focardi and Luccio 2004].

Conclusion

The main obstacle for computing higher p-spot games is neither memory nor
computation time, but rather human time for the manual exploration of the game
tree. This human intervention is an embryo of a best-first search, which is
probably more suited for the game of Sprouts than the depth-first search currently
performed by our program. Therefore, implementing classical best-first search
algorithms, such as the PN-search, would probably lead to better results.

Distributed computing is also another solution to compute higher p-spot
games, and the check computation, by reducing the size of the databases, would
be really efficient for this. It is likely that in the coming years, we will know
who wins in the game of Sprouts when starting with more than fifty spots.

The program that we used for the computations is available with its source
code on our website, sprouts.tuxfamily.org, under a GNU license, together with
several resulting databases.

Acknowledgements

We wish to thank Jean-Paul Delahaye for his decisive contribution to the contin-
uation of our work.

References

[Applegate et al. 1991] D. Applegate, G. Jacobson, and D. Sleator, “Computer analysis of sprouts”,
Computer Science Technical Report CMU-CS-91-144, Carnegie Mellon University, 1991, http://
www.cs.cmu.edu/~sleator/papers/sprouts.pdf.

[Draeger et al. 1990] J. Draeger, S. Hahndel, G. Köstler, and P. Rossmanith, “Sprouts – Formal-
isierung eines topologischen Spiels”, Tech. Report TUM-I9015, Technische Universität München,
Institut für Informatik, 1990.

[Focardi and Luccio 2004] R. Focardi and F. L. Luccio, “A modular approach to Sprouts”, Discrete
Appl. Math. 144:3 (2004), 303–319.

http://sprouts.tuxfamily.org/
http://www.cs.cmu.edu/~sleator/papers/sprouts.pdf
http://dx.doi.org/10.1016/j.dam.2003.11.008

COMPUTER ANALYSIS OF SPROUTS WITH NIMBERS 181

[Gardner 1967] M. Gardner, “Mathematical games: Of sprouts and Brussels sprouts, games with
a topological flavor”, Scientific American 217 (1967), 112–115.

[Lemoine and Viennot 2009] J. Lemoine and S. Viennot, “Analysis of misère Sprouts game with
reduced canonical trees”, preprint, 2009. arXiv 0908.4407

[WW] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning ways for your mathematical plays,
vol. 1, 2nd ed., A K Peters Ltd., 2001, Natick, MA.

julien.lemoine@gmail.com France

sviennot@jaist.ac.jp Department of Information Science/Artificial Intelligence,
Japan Advanced Institute of Science and Technology,
1-1 Asahidai, Nomi 923-1211, Japan

http://msp.org/idx/arx/0908.4407
mailto:julien.lemoine@gmail.com
mailto:sviennot@jaist.ac.jp

	1. Introduction
	2. Game tree
	3. Positions representation
	3.1. Regions and boundaries
	3.2. String representation
	3.3. Equivalent positions and strings
	3.4. Moves

	4. Strings simplification
	4.1. Deletion of the dead parts
	4.2. Generic vertices
	4.3. Lands
	4.4. Renaming letters
	4.5. Regions equivalences

	5. Strings canonization
	5.1. Canonization
	5.2. Pseudocanonization

	6. Main algorithm
	6.1. Outcome computation algorithm
	6.2. Sum of independent games
	6.3. Nimber theory
	6.4. Couples
	6.5. Computation of the nimber of a position
	6.6. Positions with several lands
	6.7. Main algorithm

	7. Computation improvement
	7.1. Positions storage
	7.2. Children ordering
	7.3. Manual exploration of the game tree
	7.4. Check computation

	8. Results
	8.1. p-spot games already computed
	8.2. Nimber conjectures
	8.3. Hand-checkable proofs

	Conclusion
	Acknowledgements
	References

