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Microlocal theory of sheaves
in symplectic topology

PIERRE SCHAPIRA

This paper is a survey of papers by Guillermou, Kashiwara and Schapira (2012)
and Guillermou and Schapira (2011) in which we expose how the microlocal
theory of sheaves may be applied to symplectic topology, in particular to treat
nondisplaceability problems, an idea which first appeared in Tamarkin (2008).
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Introduction

D. Tamarkin [2008] gave a totally new approach for treating classical problems of
nondisplaceability in symplectic geometry. His approach is based on the microlo-
cal theory of sheaves, introduced and systematically developed in [Kashiwara
and Schapira 1982; 1985; 1990]. (Note however that the use of the microlocal
theory of sheaves also appeared in a related context in [Oh 1998; Nadler and
Zaslow 2009].)

In these notes, we will both explain the main ideas of Tamarkin’s paper,
following the presentation of [Guillermou and Schapira 2011], and also the
alternative approach to nondisplaceability, following [Guillermou et al. 2012].
Note that we restrict ourselves to the case where the symplectic manifold is
the cotangent bundle T �M to a real C1-manifold M . The case of compact
symplectic manifold was announced by Tamarkin, but nothing is yet published,
and this theory seems of extraordinary difficulty.

The main obstacle to applying the microlocal theory of sheaves (in the case
of a cotangent bundle) to symplectic geometry is that the first theory is related
to the homogeneous symplectic structure, that is the Liouville 1-form on T �M ,
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contrarily to the second one which deal with smooth Lagrangian submanifolds,
in general nonconic. There are two way to overcome this difficulty: the first
is to adapt the theory of sheaves, as did Tamarkin, the second is to translate
the nonhomogeneous geometrical problem to homogeneous ones, as we did in
[Guillermou et al. 2012]. This last method is much easier, and we shall begin by
recalling it, but the results obtained do not go as far as the first one and does not
allow one to expect to construct anything which looks like the Fukaya category,
contrarily to Tamarkin’s approach.

1. Microlocal theory of sheaves after Kashiwara and Schapira

In this section, we recall some definitions and results from [Kashiwara and
Schapira 1990], following its notations with the exception of slight modifications.
We consider a real manifold M of class C1.

Some geometrical notions [Kashiwara and Schapira 1990, Sections 4.2 and 6.2].
For a locally closed subset A of M , we denote by Int.A/ its interior and by A
its closure. We denote by �M or simply � the diagonal of M �M .

We denote by � WTM �! M and � WT �M �! M the tangent and cotangent
bundles toM . If L�M is a smooth submanifold, we denote by TLM its normal
bundle and T �LM its conormal bundle. They are defined by the exact sequences

0 �! TL �! L�M TM �! TLM �! 0; 0 �! T �LM �! L�M T �M �! T �L �! 0:

We identify M to T �MM , the zero-section of T �M . We set

PT �M WDT �M nT �MM

and denote by P�M W PT �M �!M the projection.
Let f WM �! N be a morphism of real manifolds. To f are associated the

tangent morphisms

TM

�
��

f 0 // M �N TN

�
��

f� // TN

�
��

M M
f // N:

(1-1)

By duality, we deduce the diagram

T �M

�
��

M �N T
�N

�
��

fdoo f� // T �N

�
��

M M
f // N:

(1-2)
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We set
T �MN WDKerfd D f

�1
d .T �MM/:

We say that the map f is noncharacteristic with respect to a closed conic subset
ƒ� T �N if the map fd is proper on f �1� .ƒ/. This is equivalent to saying that
T �MN \f

�1
� .ƒ/�M �N T

�
NN .

Now consider the homogeneous symplectic manifold T �M : it is endowed
with the Liouville 1-form given in a local homogeneous symplectic coordinate
system .xI �/ on T �M by

˛M D h�; dxi:

The antipodal map aM is defined by

aM WT
�M �! T �M; .xI �/ 7! .xI ��/: (1-3)

If A is a subset of T �M , we denote by Aa instead of aM .A/ its image by the
antipodal map. We shall use the Hamiltonian isomorphism

H WT �.T �M/ ���! T .T �M/

given in a local symplectic coordinate system .xI �/ by

H.h�; dxiC h�; d�i/D�h�; @�iC h�; @xi:

Microsupport. We consider a commutative unital ring k of finite global dimen-
sion (e.g., kD Z). We denote by D.kM / and Db.kM / the derived category and
bounded derived category of sheaves of k-modules on M .

Recall the definition of the microsupport (or singular support) SS.F / of a
sheaf F .

Definition 1.1 [Kashiwara and Schapira 1990, Definition 5.1.2]. LetF 2Db.kM /

and let p 2 T �M . We say that p … SS.F / if there exists an open neighbor-
hood U of p such that for any x0 2 M and any real C 1-function ' on M
defined in a neighborhood of x0 satisfying d'.x0/ 2 U and '.x0/D 0, we have
.R�fxI'.x/�0g.F //x0 ' 0.

In other words, p … SS.F / if the sheaf F has no cohomology supported by
“half-spaces” whose conormals are contained in a neighborhood of p.

� By its construction, the microsupport is closed and is RC-conic, that is,
invariant by the action of RC on T �M .

� SS.F /\T �MM D �M .SS.F //D Supp.F /.

� The microsupport satisfies the triangular inequality: if F1 �! F2 �! F3
C1
��!

is a distinguished triangle in Db.kM /, then SS.Fi /� SS.Fj /[SS.Fk/ for
all i; j; k 2 f1; 2; 3g with j 6D k.
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Using the notion of Whitney’s normal cone, we can define the notion of being
coisotropic for any locally closed subset of T �M . We do not recall this definition
here and refer to [Kashiwara and Schapira 1990, Definition 6.5.1].

Theorem 1.2 [Kashiwara and Schapira 1990, Theorem 6.5.4]. Let F 2 Db.kM /.
Then its microsupport SS.F / is coisotropic.

In the sequel, for a locally closed subset Z in M , we denote by kZ the
constant sheaf with stalk k on Z, extended by 0 on M nZ.

Example 1.3. (i) If F is a nonzero local system on a connected manifold M ,
then SS.F /D T �MM , the zero-section.

(ii) IfN is a smooth closed submanifold ofM and F DkN , then SS.F /DT �NM ,
the conormal bundle to N in M .

(iii) Let ' be C 1-function with d'.x/ 6D 0 when '.x/ D 0. Let U D fx 2
M I'.x/ > 0g and let Z D fx 2M I'.x/� 0g. Then

SS.kU /D U �M T �MM [f.xI�d'.x//I'.x/D 0; �� 0g;

SS.kZ/DZ �M T �MM [f.xI�d'.x//I'.x/D 0; �� 0g:

(iv) Assume M D V is a vector space and let 
 be a closed proper convex cone
with vertex at 0. Then SS.k
 /\ ��1M .f0g/ D 
ı where 
ı � V � is the polar
cone given by


ı0 D f� 2 V
�
I h�; vi � 0g for all v 2 
0: (1-4)

(v) Let .X;OX / be a complex manifold and let M be a coherent module over the
ring DX of holomorphic differential operators. (Hence, M represents a system
of linear partial differential equations on X .) Denote by F D RHomDX

.M;OX /

the complex of holomorphic solutions of M. Then SS.F /D char.M/, the char-
acteristic variety of M.

Functorial operations ( proper and noncharacteristic cases). LetM and N be
two real manifolds. We denote by qi (i D 1; 2) the i-th projection defined on
M �N and by pi (i D 1; 2) the i -th projection defined on

T �.M �N/' T �M �T �N:

Theorem 1.4 [Kashiwara and Schapira 1990, Section 5.4]. Let f WM �!N be a
morphism of manifolds, let F 2 Db.kM / and let G 2 Db.kN /.

(i) Assume that f is proper on Supp.F /. Then SS.RfŠF /� f�f �1d SS.F /.

(ii) Assume that f is noncharacteristic with respect to SS.G/. Then

SS.f �1G/� fdf
�1
� SS.G/:
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(iii) Assume that f is smooth, that is, submersive. Then SS.F /�M �N T �N if
and only if , for any j 2 Z, the sheaves H j .F / are locally constant on the
fibers of f .

The next result is a particular case of the microlocal Morse lemma (see [Kashiwara
and Schapira 1990, Cor. 5.4.19]) and follows immediately from Theorem 1.4 (ii).
The classical theory corresponds to the constant sheaf F D kM .

Corollary 1.5. Let F 2 Db.kM /, let 'WM �! R be a function of class C 1

and assume that ' is proper on supp.F /. Let a < b in R and assume that
d'.x/ … SS.F / for a � '.x/ < b. Then the natural morphism

R�.'�1.��1; bŒ/IF / �! R�.'�1.��1; aŒ/IF /

is an isomorphism.

Corollary 1.6. Let I be a contractible manifold and let pWM � I �!M be the
projection. If F 2 Db.kM�I / satisfies SS.F /� T �M �T �I I , then

F ' p�1Rp�F:

Corollary 1.7. Let I be an open interval of R and let qWM � I �! I be the
projection. Let F 2 Db.kM�I / such that

SS.F /\ .T �MM �T
�I /� T �M�I .M � I /

and q is proper on Supp.F /. Then we have isomorphisms

R�.M IFs/' R�.M IFt /

for any s; t 2 I , where Fs WDF jftDsg.

Theorem 1.4 and its corollaries are sufficient for proving the nondisplaceability
theorems obtained in [Guillermou et al. 2012]. However, Tamarkin’s approach
needs to consider characteristic inverse images or nonproper direct images for
which we refer to [Kashiwara and Schapira 1990].

Kernels [Kashiwara and Schapira 1990, Section 3.6].

Notation 1.8. Let Mi (i D 1; 2; 3) be manifolds. For brevity, we write Mij WD

Mi �Mj (1 � i; j � 3) and M123 D M1 �M2 �M3. We denote by qi the
projection Mij �!Mi or the projection M123 �!Mi and by qij the projection
M123 �!Mij . Similarly, we denote by pi the projection T �Mij �! T �Mi or the
projection T �M123 �! T �Mi and by pij the projection T �M123 �! T �Mij . We
also need to introduce the map p12a , the composition of p12 and the antipodal
map on T �M2.

Let A� T �M12 and B � T �M23. We set

A�T �M2a B D p
�1
12 .A/\p

�1
2a3.B/
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and

A
a
ıB D p13.A�T �M2a B/;

D
˚
.x1; x3I �1; �3/ 2 T

�M13I there exist .x2I �2/ 2 T �M2;

.x1; x2I �1; �2/ 2 A; .x2; x3I ��2; �3/ 2 B
	
: (1-5)

We consider the operation of composition of kernels:

ı
2
WDb.kM12/�Db.kM23/ �! Db.kM13/

.K1; K2/ 7!K1 ı
2
K2 WDRq13Š.q

�1
12 K1

L
˝ q�123 K2/: (1-6)

When there is no risk of confusion, we shall write ı instead of ı
2
.

Let Ai D SS.Ki /� T �Mi;iC1 and assume that

(i) q13 is proper on q�112 supp.K1/\ q�123 supp.K2/, and

(ii) the intersection p�112 A1\p2a3
�1A2\ .T

�
M1
M1�T

�M2�T
�
M3
M3/ is con-

tained in T �M1�M2�M3.M1 �M2 �M3/.

It follows from Theorem 1.4 that under these assumptions we have

SS.K1 ı
2
K2/� A1

a
ıA2: (1-7)

If there is no risk of confusion, we write ı instead of ı
2
.

Localization. Let T be a triangulated category, N a null system, that is a full
triangulated subcategory with the property that if there is an isomorphism F 'G

in T with F 2N, thenG 2N. The localization T=N is a well defined triangulated
category (we skip the problem of universes). Its objects are those of T and a
morphism uWF1�!F2 in T becomes an isomorphism in T=N if, after embedding
this morphism in a distinguished triangle

F1 �! F2 �! F3
C1
��!; (1-8)

we have F3 2 N.
Recall that the left orthogonal N?;l of N is the full triangulated subcategory

of T defined by

N?;l D
˚
F 2 TIHomT.F;G/' 0 for all G 2 N

	
:

By classical results (see [Kashiwara and Schapira 2006, Exercise 10.15], for
example), if the embedding N?;l ,!T admits a left adjoint, or equivalently, if
for any F 2 T, there exists a distinguished triangle

F 0 �! F �! F 00
C1
��!
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with F 0 2 N?;l and F 00 2 N, then there is an equivalence N?;l ' T=N.
Of course, there are similar results with the right orthogonal N?;r .
Now let U be an open subset of T �M and assume for simplicity that RC �U D

U . Let Z D T �M nU . The full subcategory Db
Z.kM / of Db.kM / consisting of

sheaves F such that SS.F /�Z is a null system. We set

Db.kM IU/ WDDb.kM /=D
b
Z.kM /;

the localization of Db.kM / by Db
Z.kM /. Hence, the objects of Db.kM IU/

are those of Db.kM / but a morphism uWF1 �! F2 in Db.kM / becomes an iso-
morphism in Db.kM IU/ if, after embedding this morphism in a distinguished
triangle

F1 �! F2 �! F3
C1
��!;

we have SS.F3/\U D∅.
For a closed subset A of U , Db

A.kM IU/ denotes the full triangulated sub-
category of Db.kM IU/ consisting of objects whose microsupports have an
intersection with U contained in A.

Quantized symplectic isomorphisms [Kashiwara and Schapira 1990, Section 7.2].
Consider two manifolds M and N , two conic open subsets U � T �M and
V � T �N and a homogeneous symplectic isomorphism �:

T �N � V ���!
�
U � T �M: (1-9)

Denote by V a the image of V by the antipodal map aN on T �N and by ƒ
the image of the graph of � by idU �aN . Hence ƒ is a conic Lagrangian
submanifold of U �V a. A quantized contact transformation (QCT) above � is
a kernel K 2 Db.kM�N / such that SS.K/\ .U �V a/�ƒ and satisfying some
technical properties that we do not recall here, so that the kernel K induces an
equivalence of categories

K ı � WDb.kN IV /
�
��! Db.kM IU/: (1-10)

Given � and q 2 V , p D �.q/ 2 U , there exists such a QCT after replacing U
and V by sufficiently small neighborhoods of p and q.

2. Quantization of Hamiltonian isotopies after Guillermou et al.

In this section, we recall the main theorem of [Guillermou et al. 2012].
We first recall some notions of symplectic geometry. Let X be a symplectic

manifold with symplectic form !. We denote by Xa the same manifold endowed
with the symplectic form �!. The symplectic structure induces the Hamiltonian
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isomorphism hWTX ���! T �X by h.v/D �v.!/, where �v denotes the contraction
with v. For a C1-function f WX �! R, the Hamiltonian vector field of f is by
definition Hf WD�h�1.df /.

Let I be an open interval of R containing the origin and let ˆWX� I �! X

be a map such that 's WDˆ. � ; s/WX �! X is a symplectic isomorphism for each
s 2 I and is the identity for s D 0. The map ˆ induces a time dependent vector
field on X

vˆ WD
@ˆ

@s
WX� I �! TX: (2-1)

The map ˆ is called a Hamiltonian isotopy if there exists some C1-function
f WX� I �! R such that

@ˆ

@s
DHfs :

The fact that the isotopy ˆ is Hamiltonian can be interpreted as a geometric
property of its graph as follows. For a given s 2 I we let ƒs be the graph of
'�1s and we let ƒ0 be the family formed by the ƒs:

ƒs D f.'s.v/; v/ I v 2 X
a
g � X�Xa;

ƒ0 D f.'s.v/; v; s/ I v 2 X
a; s 2 I g � X�Xa � I:

Thus ƒs is a Lagrangian submanifold of X�Xa and ˆ is a Hamiltonian isotopy
if and only if there exists a Lagrangian submanifold ƒ � X�Xa � T �I such
that ƒ0 is the projection of ƒ.

In this case ƒ is written

ƒD
˚�
ˆ.v; s/; v; s;�f .ˆ.v; s/; s/

�
I v 2 X; s 2 I

	
; (2-2)

where the function f WX�I �!R is defined up to addition of a function depending
on s by vˆ;s DHfs .

Homogeneous case. Let us come back to the case X D PT �M and consider
ˆW PT �M � I �! PT �M such that�

's is a homogeneous symplectic isomorphism for each s 2 I ,
'0 D id PT �M :

(2-3)

In this case ˆ is a Hamiltonian isotopy and the function f associated to ˆ is
given by

f D h˛M ; vˆiW PT
�M � I �! R: (2-4)

Since f is homogeneous of degree 1 in the fibers of PT �M , the Lagrangian
submanifold ƒ of PT �M � PT �M �T �I associated to f in (2-2) is RC-conic.
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The quantization theorem. We say that F 2 D.kM / is locally bounded if for
any relatively compact open subset U �M we have F jU 2 Db.kU /. We denote
by Dlb.kM / the full subcategory of D.kM / consisting of locally bounded objects.

Now, let M and N be two manifolds with the same dimension and denote by
v the map M �N �!N �M , .x; y/ 7! .y; x/. For F 2 Db.kM�N /, we set

F�1 D v�1RHom.F; !M � kN / 2 D
b.kN�M /; (2-5)

Theorem 2.1 [Guillermou et al. 2012]. Letˆ be a homogeneous Hamiltonian iso-
topy satisfying (2-3). Consider the following conditions on K 2 Dlb.kM�M�I /:

(a) SS.K/�ƒ[T �M�M�I .M �M � I /.

(b) K0 ' k�.

(c) Both projections Supp.K/�M � I are proper.

(d) Ks ıK�1s 'K
�1
s ıKs ' k�.

Then:

(i) Conditions (a) and (b) imply the other two conditions, (c) and (d).

(ii) There exists K satisfying (a)–(d).

(iii) Moreover such aK satisfying the conditions (a)–(d) is unique up to a unique
isomorphism.

We shall call K the quantization of ˆ on I , or the quantization of the family
f'sgs2I .

Nonhomogeneous case. Theorem 2.1 is concerned with homogeneous Hamil-
tonian isotopies. The next result will allow us to adapt it to nonhomogeneous
cases. Let ˆWT �M � I �! T �M be a Hamiltonian isotopy and assume that

for some C � T �M compact; 'sjT �MnC D identity for all s 2 I: (2-6)

Proposition 2.2 [Guillermou et al. 2012]. AssumeM is connected and dimM>1.
There exist a homogeneous Hamiltonian isotopy

ẑ W PT �.M �R/� I �! PT �.M �R/

and C1-functions uW .T �M/� I �! R and vW I �! R such that the diagram

PT �.M �R/� I��idI
ẑ //

��

PT �.M �R/�

��
T �M � I

ˆ // T �M
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commutes and that

ẑ ..xI �/; .t I �/; s/D
�
.x0I � 0/; .t Cu.x; �=�; s/I �/

�
; (2-7)

ẑ ..xI �/; .t I 0/; s/D
�
.xI �/; .t C v.s/I 0/

�
; (2-8)

where .x0I � 0=�/D 's.xI �=�/. Moreover, u.xI �=�; s/D v.s/ for .xI �=�/ 62 C .

Remark 2.3. If dimM D 1, T �M nM has two connected components, and we
must consider two functions v� and vC, one for each connected component.
Hence, as mentioned to us by Damien Calaque, Proposition A.6 of [Guillermou
et al. 2012] should be corrected accordingly. This has no consequence for the
rest of the paper.

Applications to nondisplaceability. We consider a homogeneous Hamiltonian
isotopy ˆD f'tgt2I W PT �M � I �! PT �M satisfying (2-3), a C1-map  WM �! R

such that the differential d .x/ never vanishes and we set

ƒ WD
˚
.xI d .x//I x 2M

	
� PT �M:

Theorem 2.4 [Guillermou et al. 2012]. Consider a homogeneous Hamiltonian
isotopy ˆD f'tgt2I and a C1-map  WM �!R as above. Let F0 2Db.kM / with
compact support such that R�.M IF0/ 6D 0. Then for any t 2 I ,

't .SS.F0/\ PT �M/\ƒ ¤∅:

Proof. We let ƒ � PT �.M �M � I / be the conic Lagrangian submanifold
associated to ˆ and we let K 2 Db.kM�M�I / be the quantization of ˆ on I
constructed in Theorem 2.1. We set

F DK ıF0 2 D
b.kM�I /;

Ft0 D F jftDt0g 'Kt0 ıF0 2 D
b.kM / for t0 2 I .

(2-9)

Then 8̂<̂
:

SS.F /� .ƒ ıSS.F0//[T �M�I .M � I /,
SS.F /\T �MM �T

�I � T �M�I .M � I /,
the projection Supp.F / �! I is proper.

(2-10)

In particular we have�
Ft has a compact support in M;

SS.Ft /\ PT �M D 't .SS.F0/\ PT �M/:
(2-11)

Hence, Ft has compact support and R�.M IFt / 6D 0 by Corollary 1.7. Since

SS.Ft /� 't .SS.F0/\ PT �M/[T �MM;

the result follows from Corollary 1.5. �
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Corollary 2.5. Let ˆD f'tgt2I and  WM �! R be as in Theorem 2.4. Let N
be a nonempty compact submanifold of M . Then for any t 2 I ,

't . PT
�
NM/\ƒ ¤∅:

By using Proposition 2.2 one deduces nondisplaceability results in the nonhomo-
geneous case and in particular the Arnold’s nondisplaceability conjecture (which
is a theorem since long). Moreover, there exists a refined version of all these
results using the Morse inequalities. We refer to [Guillermou et al. 2012].

3. Tamarkin’s nondisplaceability theorem

In this section we explain Tamarkin’s approach [2008], following the presentation
of [Guillermou and Schapira 2011].

We consider a trivial vector bundle

qWE DM �V �!M (3-1)

and a trivial cone 
 DM � 
0 �E such that


0 is a closed convex proper cone of V containing 0 and 
0 6D f0g. (3-2)

Recall that the polar cone 
ı0 � V
� is defined in (1-4).

In practice we shall use these results with V D R and 
0 D ft 2 RI t � 0g.
In the sequel, we shall say that a subset in T �M �V � is a cone if it is invariant

by the diagonal action of RC.
We denote by y�E or simply y� the projection

y�E WT
�E D T �M �V �V � �! T �M �V �:

We set
U
 WDT

�M �V � Int.
ı0 /;

Z
 WDT
�E nU
 :

(3-3)

Definition 3.1 [Guillermou and Schapira 2011]. A closed cone A� T �M �V �

is called a strict 
 -cone if

A� .T �M � Int
ı0 /[T
�
MM � f0g:

Definition 3.2. For F;G 2 Db.kE /, we set

F ?G WDRsŠ.q�11 F
L
˝ q�12 G/; (3-4)

F ?npG WDRs�.q�11 F
L
˝ q�12 G/; (3-5)

Hom�.G; F / WDRq1�RHom.q�12 G; sŠF /: (3-6)
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The morphism k
 �! kM�f0g gives the morphisms

F ?k
 �! F; F ?np k
 �! F: (3-7)

For F1; F2; F3 2 Db.kE / one proves the isomorphisms

.F1 ?F2/ ?F3 ' F1 ? .F2 ?F3/;

Hom�.F1 ?F2; F3/'Hom�.F1;Hom
�.F2; F3//;

RHom .F1 ?F2; F3/' RHom .F1;Hom�.F2; F3//:

Localization and convolution. Recall that E DM �V is a trivial vector bundle
over M , 
0 is a cone satisfying (3-2) and the sets U
 and Z
 are defined in (3-3).
By definition Db.kE IU
 / is a localization of Db.kE / and we let

Q
 WD
b.kE / �! Db.kE IU
 /

be the functor of localization.
We introduce the kernels

L
 WDk
?WD
b.kE / �! Db.kE /; (3-8)

R
 WDHom�.k
 ; � /WD
b.kE / �! Db.kE /: (3-9)

Proposition 3.3. (i) The functor L
 defined in (3-8) takes its values in

Db
Z

.kE /

?;l

and sends Db
Z

.kE / to 0. It factorizes through Q
 and induces a functor

l
 WD
b.kE IU
 / �! Db.kE / such that L
 ' l
 ıQ
 .

(ii) The functor l
 is left adjoint to Q
 and induces a natural equivalence
Db.kE IU
 /' Db

Z

.kE /

?;l .

Proposition 3.3 is visualized in the diagram

Db
Z

.kE /

� � // Db.kE /
Q
 //

L


%%

Db.kE IU
 /

l
�

��

Db
Z

.kE /

?;l :

(3-10)

There are similar results with R
 instead of L
 .

Notation 3.4. Let us set for short

Db.k


M / WDDb.kE IU
 /;

Db.k

;l
M / WDDb

Z

.kE /

?;l ;

Db.k

;r
M / WDDb

Z

.kE /

?;r :

(3-11)
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When M D pt, we set
Db.k
 / WDDb.k



pt/; (3-12)

and similarly with Db.k
;l/ and Db.k
;r/.

Denote by pWE DM �V �! V the projection. We get the diagram of categories
in which the horizontal arrows are equivalences

Db.k

;l
M /

RpŠ
��

Db.k


M /

l


�
oo

r


�
// Db.k


;r
M /

Rp�
��

Db.k
;l/ Db.k
 /
l


�
oo

r


�
// Db.k
;r/:

(3-13)

Consider the functor

‰
 WD
b.kM / �! Db.kE /; F 7! q�1F ˝k
 :

We have L
 ı‰
 ���!‰
 ; in the sequel, we consider ‰
 as a functor

‰
 WD
b.kM / �! Db.k



M /: (3-14)

Proposition 3.5. The functor ‰
 in (3-14) is fully faithful.

A separation theorem.

Lemma 3.6. Let F 2Db
Z

.kE /

?;l . We assume that there exists A� T �M �V �

such that

(i) A is a closed strict 
 -cone (see Definition 3.1), and

(ii) SS.F /\U
 � y��1E .A/.

Then SS.F /� .SS.F /\U
 /[T �EE.

This “cut-off” lemma is a crucial step in the proof of the theorem below, a slight
generalization of [Tamarkin 2008, Theorem 3.2]. Here, we write y� instead of
y�E for short.

Theorem 3.7 (separation theorem). Let A;B be two closed strict 
-cones in
T �M �V �. Let

F 2 Db
y��1.A/

.kE IU
 / and G 2 Db
y��1.B/

.kE IU
 /:

Assume that A\B � T �MM �f0g and that the projection M �V �! V is proper
on the set ˚

.x; v1� v2/I .x; v1/ 2 suppG; .x; v2/ 2 suppF
	
:

Then HomDb.kE IU
 /
.F;G/' 0.
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The Tamarkin category. We particularize the preceding results to the case where
V D R and 
0 D ft 2 RI t � 0g. Hence, with the notations of (3-3), we have
U
 D f� > 0g. We define the map

�WU
 D f� > 0g �! T �M; .x; t I �; �/ 7! .xI �=�/: (3-15)

According to Notation 3.4, we set

Db.k


M / WDDb.kM�RI f� > 0g; Db.k


;l
M / WDDb

f��0g.kM�R/
?;l :

For a closed subset A of T �M , we also set

Db
A.k



M / WDDb

��1.A/

�
kM�RI f� > 0g

�
:

Examples 3.8. (i) Let M D R endowed with the coordinate x and consider the
set

Z D f.x; t/ 2M �RI �1� x � 1; 0� 2t < �x2C 1g

Consider the sheaf kZ and denote by .x; t I �; �/ the coordinates on T �.M �R/.
The set SS.kZ/ is given by

ft D 0;�1� x � 1; � > 0; � D 0g[ f2t D�x2C 1; � D x�; � > 0g

[ fx D�1; t D 0; 0� �� � �; � > 0g

[ fx D 1; t D 0; 0� � � �; � > 0g

[Z � f� D � D 0g:

It follows that �.SS.kZ/\ .T �M � PT �R// in T �M (with coordinates .x; uD
�=�/) is the set

fuD 0;�1� x � 1g[ fuD x;�1� x � 1g

[ fx D�1;�1� u� 0g

[ fx D 1; 0� u� 1g:

(ii) Let a2R and consider the setZDf.x; t/2M�RI t �axg. Then �.SS.kZ//
in T �M is the set f.xIu/IuD ag.

(iii) If G is a sheaf on M and F DG� ks�0, then �.SS.F //D SS.G/.

Theorem 3.9 [Tamarkin 2008, Theorem 3.2]. Let A and B be two compact
subsets of T �M and assume that A\B D ∅. Let F 2 Db

A.k


M / and let G 2

Db
B.k



M /. Then HomDb.k



M /
.F;G/' 0.
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Torsion objects. Tamarkin [2008] introduces the notion of torsion objects, but
does not study the category of such objects systematically as we did in [Guiller-
mou and Schapira 2011].

Let us set for short f� � 0g instead of T �M � R � f� � 0g, and similarly
with f� � 0g and f� > 0g. Recall that Db

f��0g
.kM�R/ is the subcategory of

F 2Db.kM�R/ such that SS.F /� f� � 0g. We have F 2Db
f��0g

.kM�R/ if and
only if the we have the isomorphism

F ?np kM�Œ0;C1Œ
�
��! F: (3-16)

Define the map

Tc WM �R �!M �R; .x; t/ 7! .x; t C c/:

For F 2 Db
f��0g

.kM�R/ we have

F ?np kM�Œc;C1Œ
�
��! Tc�F: (3-17)

The inclusions Œd;C1Œ� Œc;C1Œ (c�d ) induce natural morphisms of functors
from Db

f��0g
.kM�R/ to itself

�c;d WTc� �! Td�; c � d:

Definition 3.10 (Tamarkin). An object F 2 Db
f��0g

.kM�R/ is called a torsion
object if �0;c.F /D 0 for some c � 0 (and hence all c0 � c).

For example, if F 2 Db
f��0g

.kM�R/ and F is supported by M � Œa; b� for
some compact interval Œa; b� of R, then F is a torsion object.

We let Ntor be the full subcategory of Db
f��0g

.kM�R/ consisting of torsion
objects.

Theorem 3.11. The subcategory Ntor is a null system in Db
f��0g

.kM�R/.

The subcategory Db.k

;l
M / of Db.kM�R/ is contained in Db

f��0g
.kM�R/: So we

can define torsion objects in Db.k

;l
M / or in the equivalent category Db.k



M /. We

let N


tor be the subcategory of torsion objects in Db.k



M /. Then N



tor is a null

system.

Definition 3.12. The triangulated category T.kM / is the localization of Db.k


M /

by the null system N


tor. In other words,

T.kM /D Db.k


M /=N



tor:

For a closed conic subsetW �f� >0g, we let TW .kM / be the full subcategory
of T.kM / consisting of objects which are isomorphic to the image of some
F 2 Db.k



M / such that SS.F /\f� > 0g is contained in W .
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Invariance by Hamiltonian isotopies. The next theorem, from [Tamarkin 2008],
asserts that the objects of the category Db.k



M / are invariant by Hamiltonian

isotopies, up to torsion. This result, together with Theorem 3.9 are to compare
with the main properties of the Floer homology. Note that the proof of this result
proposed in [Guillermou and Schapira 2011] is much simpler that Tamarkin’s
original one, thanks to Theorem 2.1.

Let ˆWT �M � I �! T �M be a Hamiltonian isotopy satisfying (2-6). We
associate to it a homogeneous Hamiltonian isotopy by using Proposition 2.2
and we consider the kernel K constructed in Theorem 2.1. This kernel naturally
defines a functor

‰sWD
b.k



M / �! Db.k



M /; F 7!Ks ıF:

Theorem 3.13. Let ˆWT �M � I �! T �M be a Hamiltonian isotopy satisfy-
ing (2-6). Then for A a closed subset of T �M and F 2 Db

A.k


M / we have, for all

s 2 I :

(i) ‰s.F / 2 Db
's.A/

.k


M / for any s 2 I .

(ii) F '‰s.F / in T.kM / for any s 2 I .

Tamarkin’s nondisplaceability theorem. Recall that two compact subsetsA and
B of T �M are called mutually non displaceable if, whatever be the Hamiltonian
isotopy ˆWT �M � I �! T �M satisfying (2-6), A \ 's.B/ 6D ∅ for all s 2
I . A compact subset A is called non displaceable if A and A are mutually
nondisplaceable.

Theorem 3.14. Let A and B be two compact subsets of T �M . Assume that there
exist F 2 Db

A.k


M / and G 2 Db

B.k


M / such that HomT.kM /

.F;G/ 6D 0. Then A
and B are mutually nondisplaceable in T �M .

In fact, Tamarkin’s original result is stronger, but we restrict ourselves to this
situation for sake of simplicity.

4. Exact Lagrangians and simple sheaves

We recall some results from [Guillermou and Schapira 2011; Guillermou 2012].

Simple sheaves [Kashiwara and Schapira 1990, Section 7.5]. Let ƒ� PT �M be
a locally closed conic Lagrangian submanifold and let p 2ƒ. Simple sheaves
along ƒ at p are defined in [Kashiwara and Schapira 1990, Definition 7.5.4].

When ƒ is the conormal bundle to a submanifold N �M , that is, when the
projection �M jƒWƒ �! M has constant rank, then an object F 2 Db.kM / is
simple along ƒ at p if F ' kN Œd � in Db.kM Ip/ for some shift d 2 Z.

If SS.F / is contained in ƒ on a neighborhood of ƒ, ƒ is connected and F is
simple at some point of ƒ, then F is simple at every point of ƒ.
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Exact Lagrangians. Recall that a (in general nonconic) Lagrangian submanifold
ƒ of T �M is exact if there exists f Wƒ �! R such that ˛M jƒ D df . Assuming
that ƒ is a compact exact Lagrangian connected submanifold of T �M , there
exists a smooth closed conic Lagrangian submanifold zƒ of PT �.M �R/ contained
in T �
f�>0g

.M �R/ such that the map � induces an isomorphism z�W zƒ=RC ���!ƒ.
Indeed, the conic submanifold

zƒ WD
˚
.x; t I �; �/I � > 0; .xI �=�/ 2ƒ and t D�f .xI �=�/

	
satisfies ˛M�Rj zƒ D 0 and, hence, is Lagrangian.

Theorem 4.1 [Guillermou and Schapira 2011; Guillermou 2012]. Letƒ� T �M
be a compact connected Lagrangian submanifold and let zƒ be as above. Assume
that there exists F 2 Db.k


;l
M / satisfying the following properties:

(a) the projection qRWM �R �! R is proper on supp.F /.

(b) SS.F /\ PT �.M �R/D zƒ.

(c) F is simple along zƒ.

(d) there exist a; b2R and r 2N such thatF jM���1;aŒ'0 andF jM��b;C1Œ'
k˚r
M��b;C1Œ

.

(e) F is cohomologically constructible.

Then

(i) ƒ is nondisplaceable,

(ii) the natural morphism kM �! R�M �kƒ induces an isomorphism

R�.M IkM / ���! R�.ƒIkƒ/:

Hence, assuming the existence of a sheaf F satisfying conditions (a)–(e)
from the theorem, we recover a classical result of [Fukaya et al. 2008] and
[Nadler 2009]. Claude Viterbo has informed us that he was able to construct
such a sheaf F under mild hypotheses on ƒ using Floer homology and Stéphane
Guillermou [2012] recently obtained such a sheaf by using only sheaf theoretical
methods.
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