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Generic elements in Zariski-dense subgroups
and isospectral locally symmetric spaces

GOPAL PRASAD AND ANDREI S. RAPINCHUK

The article contains a survey of our results on length-commensurable and
isospectral locally symmetric spaces and of related problems in the theory of
semisimple algebraic groups. We discuss some of the techniques involved
in this work (in particular, the existence of generic tori in semisimple alge-
braic groups over finitely generated fields and of generic elements in finitely
generated Zariski-dense subgroups) and some open problems.

1. Introduction

This article contains an exposition of recent results on isospectral and length-
commensurable locally symmetric spaces associated with simple real algebraic
groups [Prasad and Rapinchuk 2009; 2013] and related problems in the theory
of semisimple algebraic groups [Garibaldi 2012; Garibaldi and Rapinchuk 2013;
Prasad and Rapinchuk 2010a]. One of the goals of [Prasad and Rapinchuk 2009]
was to study the problem beautifully formulated by Mark Kac in [1966] as “Can
one hear the shape of a drum?” for the quotients of symmetric spaces of the
groups of real points of absolutely simple real algebraic groups by cocompact
arithmetic subgroups. A precise mathematical formulation of Kac’s question is
whether two compact Riemannian manifolds which are isospectral (i.e., have
equal spectra — eigenvalues and multiplicities — for the Laplace–Beltrami op-
erator) are necessarily isometric. In general, the answer to this question is in
the negative as was shown by John Milnor already in [1964] by constructing
two nonisometric isospectral flat tori of dimension 16. Later M.-F. Vignéras
[1980] used arithmetic properties of quaternion algebras to produce examples
of arithmetically defined isospectral, but not isometric, Riemann surfaces. On
the other hand, T. Sunada [1985], inspired by a construction of nonisomorphic
number fields with the same Dedekind zeta-function, proposed a general and
basically purely group-theoretic method of producing nonisometric isospectral
Riemannian manifolds which has since then been used in various ways. It is im-
portant to note, however, that the nonisometric isospectral manifolds constructed
by Vignéras and Sunada are commensurable, that is, have a common finite-
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sheeted cover. This suggests that one should probably settle for the following
weaker version of Kac’s original question: Are any two isospectral compact
Riemannian manifolds necessarily commensurable? The answer to this modified
question is still negative in the general case: Lubotzky, Samuels and Vishne
[Lubotzky et al. 2006], using the Langlands correspondence, have constructed
examples of noncommensurable isospectral locally symmetric spaces associated
with absolutely simple real groups of type An (see Problem 10.7). Nevertheless,
it turned out that the answer is actually in the affirmative for several classes
of locally symmetric spaces. Prior to our paper [Prasad and Rapinchuk 2009],
this was known to be the case only for the following two classes: arithmetically
defined Riemann surfaces [Reid 1992] and arithmetically defined hyperbolic
3-manifolds [Chinburg et al. 2008].

In [Prasad and Rapinchuk 2009], we used Schanuel’s conjecture from tran-
scendental number theory (for more about this conjecture, and how it comes up
in our work, see below) and the results of [Garibaldi 2012; Prasad and Rapinchuk
2010a] to prove that any two compact isospectral arithmetically defined locally
symmetric spaces associated with absolutely simple real algebraic groups of type
other than An .n>1/, D2nC1 .n>1/, or E6 are necessarily commensurable. One
of the important ingredients of the proof is the connection between isospectrality
and another property of Riemannian manifolds called isolength spectrality.

More precisely, for a Riemannian manifold M we let L.M / denote the weak
length spectrum of M, that is, the collection of the lengths of all closed geodesics
in M (note that for the existence of a “nice” Laplace spectrum, M is required
to be compact, but the weak length spectrum L.M / can be considered for any
M — i.e., we do not need to assume that M is compact). Then two Riemannian
manifolds M1 and M2 are called isolength spectral if L.M1/DL.M2/. Any
two compact isospectral locally symmetric spaces are isolength spectral; this was
first proved in [Gangolli 1977] in the rank-one case, then in [Duistermaat and
Guillemin 1975] and [Duistermaat et al. 1979] in the general case; see [Prasad
and Rapinchuk 2009, Theorem 10.1]. So, the emphasis in this last paper is really
on the analysis of isolength spectral locally symmetric spaces M1 and M2.

In fact, we prove our results under the much weaker assumption of length-
commensurability, which means that Q �L.M1/DQ �L.M2/. (The set Q �L.M /

is sometimes called the rational length spectrum of M ; its advantage, particularly
in the analysis of questions involving commensurable manifolds, is that it is
invariant under passing to a finite-sheeted cover — this property fails for the
Laplace spectrum or the length spectrum. At the same time, Q � L.M / can
actually be computed in at least some cases, while precise computation of L.M /

or the Laplace spectrum is not available for any compact locally symmetric space
at this point.) The notion of length-commensurability was introduced in [Prasad



ISOSPECTRAL LOCALLY SYMMETRIC SPACES 213

and Rapinchuk 2009], and the investigation of its qualitative and quantitative
consequences for general locally symmetric spaces is an ongoing project. For
arithmetically defined spaces, however, the main questions were answered in the
same paper, and we would like to complete this introduction by showcasing the
results for arithmetic hyperbolic spaces.

Let Hn be the real hyperbolic n-space. By an arithmetically defined real
hyperbolic n-manifold we mean the quotient Hn=� , where � is an arithmetic
subgroup of PSO.n; 1/ (which is the isometry group of Hn); see Section 3
regarding the notion of arithmeticity.

Theorem 1.1 [Prasad and Rapinchuk 2009, Corollary 8.17 and Remark 8.18].
Let M1 and M2 be arithmetically defined real hyperbolic n-manifolds.

If n 6� 1 .mod 4/, then in case M1 and M2 are not commensurable, after a
possible interchange of M1 and M2, there exists �1 2L.M1/ such that for any
�2 2 L.M2/, the ratio �1=�2 is transcendental over Q. (Thus, for such n the
length-commensurability, and hence isospectrality, of M1 and M2 implies their
commensurability.)

On the contrary, for any n� 1 .mod 4/, there exist M1 and M2 as above that
are length-commensurable, but not commensurable.

What is noteworthy is that there is no apparent geometric reason for this
dramatic distinction between the length-commensurability of hyperbolic n-mani-
folds when n 6� 1 .mod 4/ and n� 1 .mod 4/— in our argument the difference
comes from considerations involving Galois cohomology; see Theorem 4.2 and
subsequent comments.

Our general results for arithmetically defined length-commensurable locally
symmetric spaces (Section 5) imply similar (but not identical!) assertions for
complex and quaternionic hyperbolic manifolds. At the same time, one can ask
about possible relations between L.M1/ and L.M2/ (or between Q �L.M1/

and Q � L.M2/) if M1 and M2 are not length-commensurable. The results
we will describe in Section 8 assert that if Q �L.M1/ ¤ Q �L.M2/, then no
polynomial-type relation between L.M1/ and L.M2/ can ever exist; in other
words, these sets are very different. This is, for example, the case if M1 and M2

are hyperbolic manifolds of finite volume having different dimensions!

2. Length-commensurable locally symmetric spaces and weakly
commensurable subgroups

2.1. Riemann surfaces. Our analysis of length-commensurability of locally
symmetric spaces relies on a purely algebraic relation between their fundamental
groups which we termed weak commensurability. It is easiest to motivate this
notion by looking at the length-commensurability of Riemann surfaces. In this
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discussion we will be using the realization of H2 as the complex upper half-plane
with the standard hyperbolic metric ds2D y�2.dx2Cdy2/. The usual action of
SL2.R/ on H2 by fractional linear transformations is isometric and allows us to
identify H2 with the symmetric space SO2.R/nSL2.R/. It is well known that any
compact Riemann surface M of genus > 1 can be obtained as a quotient of H2

by a discrete subgroup � � SL2.R/ with torsion-free image in PSL2.R/. Now,
given any such subgroup � , we let � WH2!H2=� DWM denote the canonical
projection. It is easy to see that

t 7! et i D i �

�
et=2 0

0 e�t=2

�
; t 2 R;

is a unit-velocity parametrization of a geodesic c in H2. So, if 
 Ddiag.t
 ; t�1

 /2

� , then the image �.c/ is a closed geodesic c
 in M , whose length is given by
the formula

`�.c
 /D
2

n

� log t
 (1)

(assuming that t
 > 1), where n
 is an integer > 1 (winding number in case c
 is
not primitive). Generalizing this construction, one shows that every semisimple
element 
 2 � n f˙1g gives rise to a closed geodesic c
 in M whose length is
given by (1) where t
 is the eigenvalue of ˙
 which is > 1, and conversely, any
closed geodesic in M is obtained this way. As a result,

Q �L.M /DQ � flog t
 j 
 2 �nf˙1g semisimpleg:

Now, suppose we have two quotients M1DH2=�1 and M2DH2=�2 as above,
and let c
i

be a closed geodesic in Mi for i D 1; 2. Then

`�1
.c
1

/=`�2
.c
2

/ 2Q () tm

1
D tn


2
for some m; n 2 N;

or equivalently, the subgroups generated by the eigenvalues of 
1 and 
2 have
nontrivial intersection. This leads us to the following.

Definition 2.2. Let G1 � GLN1
and G2 � GLN2

be two semisimple algebraic
groups defined over a field F of characteristic zero.

(a) Two semisimple elements 
1 2G1.F / and 
2 2G2.F / are said to be weakly
commensurable if the subgroups of F� generated by their eigenvalues
intersect nontrivially.

(b) Two (Zariski-dense) subgroups �1 �G1.F / and �2 �G2.F / are weakly
commensurable if every semisimple element 
1 2 �1 of infinite order is
weakly commensurable to some semisimple element 
2 2 �2 of infinite
order, and vice versa.
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It should be noted that in [Prasad and Rapinchuk 2009] we gave a more
technical, but equivalent, definition of weakly commensurable elements, viz. we
required that there should exist maximal F -tori Ti of Gi for i D 1; 2 such that

i 2 Ti.F / and for some characters �i 2X.Ti/ we have

�1.
1/D �2.
2/¤ 1:

This (equivalent) reformulation of (a) immediately demonstrates that the notion
of weak commensurability does not depend on the choice of matrix realizations
of the Gi , and more importantly, is more convenient for the proofs of our results.

The above discussion of Riemann surfaces implies that if two Riemann sur-
faces M1 D H2=�1 and M2 D H2=�2 are length-commensurable, then the
corresponding fundamental groups �1 and �2 are weakly commensurable. Our
next goal is to explain why this implication remains valid for general locally
symmetric spaces.

2.3. Length-commensurability and weak commensurability: The general case.
First, we need to fix some notations related to general locally symmetric spaces.
Let G be a connected adjoint real semisimple algebraic group, let G D G.R/

considered as a real Lie group, and let XDKnG, where K is a maximal compact
subgroup of G, be the associated symmetric space endowed with the Riemannian
metric coming from the Killing form on the Lie algebra g of G. Furthermore,
given a torsion-free discrete subgroup � of G, we let X� D X=� denote the
corresponding locally symmetric space. Just as in the case of Riemann surfaces,
to any nontrivial semisimple element 
 2 � there corresponds a closed geodesic
c
 whose length is given by

`�.c
 /D
1

n

���.
 /;

where n
 is an integer > 1 and

��.
 /
2
WD

X
˛

.log j˛.
 /j/2; (2)

with the summation running over all roots of G with respect to a fixed maximal
R-torus T of G whose group of R-points contains 
 . This formula looks much
more intimidating than (1), so in order to make it more manageable we first make
the following observation. Of course, the R-torus T may not be R-split, so not
every root ˛ may be defined over R. However,

j˛.
 /j2 D �.
 /;

where �D ˛C˛ (with ˛ being the conjugate character in terms of the natural
action of Gal.C=R/ on X.T /, and, as usual, X.T / is viewed as an additive
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group) is a character defined over R and which takes positive values on T .R/.
Such characters will be called positive. So, we can now rewrite (2) in the form

��.
 /
2
D

pX
iD1

si.log�i.
 //
2; (3)

where �1; : : : ; �p are certain positive characters of T and s1; : : : ; sp are positive
rational numbers whose denominators are divisors of 4. The point to be made
here is that the subgroup P .T / � X.T / of positive characters may be rather
small. More precisely, T is an almost direct product of an R-anisotropic subtorus
A and an R-split subtorus S . Then any character of T which is defined over R

vanishes on A. This easily implies that the restriction map yields an embedding
P .T / ,!X.S/R DX.S/ with finite cokernel; in particular, the rank of P .T /

as an abelian group coincides with the R-rank rkR T of T .
Before formulating our results, we define the following property. Let G�GLN

be a semisimple algebraic group defined over a field F of characteristic zero.
We say that a (Zariski-dense) subgroup � � G.F / has property (A) if for any
semisimple element 
 2 � , all the eigenvalues of 
 lie in the field of algebraic
numbers Q (note that the latter is equivalent to the fact that for any maximal
F -torus T of G containing 
 and any character �2X.T /, we have �.
 /2Q

�
—

this reformulation shows, in particular, that this property does not depend on
the choice of a matrix realization of G). Of course, this property automatically
holds if � is arithmetic, or more generally, if � can be conjugated into SLN .K/

for some number field K.
Let us now consider the rank-one case first.

The rank-one case. Suppose rkR G D 1 (the examples include the adjoint groups
of SO.n; 1/, SU.n; 1/ and Sp.n; 1/; the corresponding symmetric spaces are
respectively the real, complex and quaternionic hyperbolic n-spaces). Then
given a nontrivial semisimple element 
 2 � , for any maximal R-torus T of G

containing 
 we have rkR T D 1, which implies that the group P .T / of positive
characters is cyclic and is generated, say, by �. Then it follows from (3) that

��.
 /D

p
m

2
� jlog�.t/j; (4)

where m is some integer > 1 depending only on G; note that this formula is
still in the spirit of (1), but potentially involves some irrationality which can
complicate the analysis of length-commensurability.

Now, suppose that G1 and G2 are two simple algebraic R-groups of R-rank
one. For i D 1; 2, let �i �Gi.R/DGi be a discrete torsion-free subgroup having
property (A). Given a nontrivial semisimple element 
i 2 �i , we pick a maximal
R-torus Ti of Gi whose group of R-points contains 
i and let �i be a generator
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of the group of positive characters P .Ti/. Then according to (4),

��1
.
1/D

p
m1

2
� jlog�1.
1/j and ��2

.
2/D

p
m2

2
� jlog�2.
2/j;

for some integers m1;m2 > 1. By a theorem proved independently by Gelfond
and Schneider in 1934 (which settled Hilbert’s seventh problem; see [Baker
1990]), the ratio

log�1.
1/

log�2.
2/

is either rational or transcendental. This implies that the `�1
.
1/=`�2

.
2/, or
equivalently the ratio ��1

.
1/=��2
.
2/, can be rational only if

�1.
1/
n1 D �2.
2/

n2 ;

for some nonzero integers n1; n2, which makes the elements 
1 and 
2 weakly
commensurable. (Of course, we get this conclusion without using the theorem of
Gelfond–Schneider if G1 DG2, hence m1 Dm2.) This argument shows that the
length-commensurability of X�1

and X�2
implies the weak commensurability

of �1 and �2.
Finally, we recall that if G � GLN is an absolutely simple real algebraic

group not isomorphic to PGL2 then any lattice � �G.R/ can be conjugated into
SLN .K/ for some number field K (see [Raghunathan 1972, 7.67 and 7.68]),
hence possesses property (A). This implies that if X�1

and X�2
are rank one

locally symmetric spaces of finite volume then their length-commensurability
always implies the weak commensurability of �1 and �2 except possibly in the
following situation: G1D PGL2 and �1 cannot be conjugated into PGL2.K/ for
any number field K�R while G2¤ PGL2 (in [Prasad and Rapinchuk 2009] this
was called the exceptional case .E/). Nevertheless, the conclusion remains valid
also in this case if one assumes the truth of Schanuel’s conjecture (see below) —
this follows from our recent results [Prasad and Rapinchuk 2013], which we will
discuss in Section 8 (see Theorem 8.1).

The general case. If rkR G > 1 then p may be > 1 in (3), hence ��.
 /, generally
speaking, is not a multiple of the logarithm of the value of a positive charac-
ter. Consequently, the fact that the ratio ��1

.
1/=��2
.
2/ is a rational number

does not imply directly that 
1 and 
2 are weakly commensurable. While the
implication nevertheless is valid (under some natural technical assumptions), it is
hardly surprising now that the proof requires some nontrivial information about
the logarithms of the character values. More precisely, our arguments in [Prasad
and Rapinchuk 2009; 2013] assume the truth of the following famous conjecture
in transcendental number theory (see [Ax 1971], for example).
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Conjecture 2.4 (Schanuel’s conjecture). If z1; : : : ; zn 2 C are linearly inde-
pendent over Q, the transcendence degree (over Q) of the field generated by
z1; : : : ; zn and ez1 ; : : : ; ezn is at least n.

In fact, we will only need the consequence of this conjecture that for nonzero
algebraic numbers a1; : : : ; an, (any values of) their logarithms log a1; : : : ; log an

are algebraically independent once they are linearly independent (over Q). In
order to apply this statement in our situation, we first prove the following ele-
mentary lemma.

Lemma 2.5. Let G1 and G2 be two connected semisimple real algebraic groups.
For i D 1; 2, let Ti be a maximal R-torus of Gi , 
i 2 Ti.R/ and let �.i/

1
; : : : ; �

.i/

di

be positive characters of Ti such that the set

Si D
˚
log�.i/

1
.
i/; : : : ; log�.i/

di
.
i/

	
� R

is linearly independent over Q. If 
1 and 
2 are not weakly commensurable then
the set S1[S2 is also linearly independent.

Proof. Assume the contrary. Then there exist integers s1; : : : ; sd1
; t1; : : : ; td2

,
not all zero, such that

s1 log�.1/
1
.
1/C�� �Csd1

log�.1/
d1
.
1/�t1 log�.2/

1
.
2/�� � ��td2

log�.2/
d2
.
2/D0:

Consider the characters

 .1/ WD s1�
.1/
1
C � � �C sd1

�
.1/

d1
and  .2/ WD t1�

.2/
1
C � � �C td2

�
.2/

d2

of T1 and T2 respectively. Then  .1/.
1/D  
.2/.
2/, and hence

 .1/.
1/D 1D  .2/.
2/;

because 
1 and 
2 are not weakly commensurable. This means that in

s1 log�.1/
1
.
1/C� � �Csd1

log�.1/
d1
.
1/D t1 log�.2/

1
.
2/C� � �C td2

log�.2/
d2
.
2/

both sides vanish. But the sets S1 and S2 are linearly independent, so all the
coefficients are zero, a contradiction. �

We are now ready to connect length-commensurability with weak commensu-
rability.

Proposition 2.6. Let G1 and G2 be two connected semisimple real algebraic
groups. For i D 1; 2, let �i � Gi.R/ be a subgroup satisfying property (A).
Assume that Schanuel’s conjecture holds. If semisimple elements 
12�1 and 
22

�2 are not weakly commensurable then ��1
.
1/ and ��2

.
2/ are algebraically
independent over Q.
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Proof. It follows from (3) that

��1
.
1/

2
D

pX
iD1

si.log�.1/i .
1//
2 and ��2

.
2/
2
D

qX
iD1

ti.log�.2/i .
2//
2; (5)

where si and ti are positive rational numbers, and �.1/i and �.2/i are positive
characters on maximal R-tori T1 and T2 of G1 and G2 whose groups of R-points
contain the elements 
1 and 
2, respectively. After renumbering the characters,
we can assume that

a1 WD log�.1/
1
.
1/; : : : ; am WD log�.1/m .
1/

(resp., b1 WD log�.2/
1
.
2/; : : : ; bnD log�.2/n .
2/) form a basis of the Q-subspace

of R spanned by log�.1/i .
1/ for i 6 p (resp., by log�.2/i .
2/ for i 6 q). It
follows from Lemma 2.5 that the numbers

a1; : : : ; am and b1; : : : ; bn; (6)

are linearly independent. By our assumption, �1 and �2 possess property (A),
so the character values �.j/i .
j / are all algebraic numbers. So, it follows from
Schanuel’s conjecture that the numbers in (6) are algebraically independent
over Q. As is seen from (5), ��1

.
1/ and ��2
.
2/ are represented by nonzero

homogeneous polynomials of degree two, with rational coefficients, in a1; : : : ; am

and b1; : : : ; bn, respectively, and therefore they are algebraically independent. �

This proposition leads us to the following.

Theorem 2.7. Let G1 and G2 be two connected semisimple real algebraic groups.
For i D 1; 2, let �i �Gi.R/ be a discrete torsion-free subgroup having property
(A). Assume that Schanuel’s conjecture holds. If �1 and �2 are not weakly
commensurable, then, possibly after reindexing, we can find �1 2L.X�1

/ which
is algebraically independent from any �2 2L.X�2

/. In particular, X�1
and X�2

are not length-commensurable.

Combining this with the discussion above of property (A) for lattices and of
the exceptional case .E/, we obtain the following.

Corollary 2.8. Let G1 and G2 be two absolutely simple real algebraic groups,
and for i D 1; 2 let �i be a lattice in Gi.R/ (so that the locally symmetric space
X�i

has finite volume). If X�1
and X�2

are length-commensurable then �1 and
�2 are weakly commensurable.

The results we discussed in this section shift the focus in the analysis of
length-commensurability and/or isospectrality of locally symmetric spaces to
that of weak commensurability of finitely generated Zariski-dense subgroups of
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simple (or semisimple) algebraic groups. In Section 3, we will first present some
basic results dealing with the weak commensurability of such subgroups in a
completely general situation, one of which states that the mere existence of such
subgroups implies that the ambient algebraic groups either are of the same type, or
one of them is of type Bn and the other of type Cn for some n> 3 (Theorem 3.1).
We then turn to much more precise results in the case where the algebraic groups
are of the same type and the subgroups are S-arithmetic (see Section 4), and
finally derive some geometric consequences of these results (see Section 5).
Next, Section 7 contains an exposition of the recent results of [Garibaldi and
Rapinchuk 2013], which completely characterize weakly commensurable S-
arithmetic subgroups in the case where one of the two groups is of type Bn

and the other is of type Cn .n > 3/. In Section 8 we discuss a more technical
version of the notion of weak commensurability, which enabled us to show in
[Prasad and Rapinchuk 2013] (under mild technical assumptions) that if two
arithmetically defined locally symmetric spaces M1 D X�1

and M2 D X�2
are

not length-commensurable then the sets L.M1/ and L.M2/ (or Q �L.M1/ and
Q � .M2/) are very different. The proofs of all these results use the existence
(first established in [Prasad and Rapinchuk 2003]) of special elements, which
we call generic elements, in arbitrary finitely generated Zariski-dense subgroups;
we briefly review these and more recent results in this direction in Section 9
along with the results that relate the analysis of weak commensurability with a
problem of independent interest in the theory of semisimple algebraic groups of
characterizing simple K-groups having the same isomorphism classes of maximal
K-tori (Section 6). Finally, in Section 10 we discuss some open problems.

3. Two basic results implied by weak commensurability
and the definition of arithmeticity

Our next goal is to give an account of the results from [Prasad and Rapinchuk
2009] concerning weakly commensurable subgroups of semisimple algebraic
groups. We begin with the following two theorems that provide the basic re-
sults about weak commensurability of arbitrary finitely generated Zariski-dense
subgroups of semisimple groups.

Theorem 3.1. Let G1 and G2 be two connected absolutely almost simple alge-
braic groups defined over a field F of characteristic zero. Assume that there
exist finitely generated Zariski-dense subgroups �i of Gi.F / which are weakly
commensurable. Then either G1 and G2 are of the same Killing–Cartan type, or
one of them is of type Bn and the other is of type Cn for some n> 3.

The way we prove this theorem is by showing that the Weyl groups of G1

and G2 have the same order, as it is well known that the order of the Weyl
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group uniquely determines the type of the root system, except for the ambiguity
between Bn and Cn. On the other hand, groups G1 and G2 of types Bn and Cn

with n> 2 respectively, may indeed contain weakly commensurable subgroups.
This was first shown in [Prasad and Rapinchuk 2009, Example 6.7] using a
cohomological construction which we will briefly recall in Section 7. Recently
in [Garibaldi and Rapinchuk 2013] another explanation was given using commu-
tative étale subalgebras of simple algebras with involution. We refer the reader
to Section 7 for this argument as well as a complete characterization of weakly
commensurable S -arithmetic subgroups in the algebraic groups of types Bn and
Cn (see Theorem 7.2).

Theorem 3.2. Let G1 and G2 be two connected absolutely almost simple alge-
braic groups defined over a field F of characteristic zero. For i D 1; 2, let �i be
a finitely generated Zariski-dense subgroup of Gi.F /, and K�i

be the subfield of
F generated by the traces Tr Ad 
 , in the adjoint representation, of 
 2 �i . If �1

and �2 are weakly commensurable, then K�1
DK�2

.

We now turn to the results concerning weakly commensurable Zariski-dense
S-arithmetic subgroups, which are surprisingly strong. In Section 4 we will
discuss the weak commensurability of S-arithmetic subgroups in absolutely
almost simple algebraic groups G1 and G2 of the same type, postponing the
case where one of the groups is of type Bn and the other of type Cn to Section 7.
Since our results rely on a specific way of describing S -arithmetic subgroups in
absolutely almost simple groups, we will discuss this issue first.

3.3. The definition of arithmeticity. Let G be an algebraic group defined over
a number field K, and let S be a finite subset of the set V K of all places of K

containing the set V K
1 of archimedean places. Fix a K-embedding G � GLN ,

and consider the group of S -integral points

G.OK .S// WDG \GLN .OK .S//:

Then, for any field extension F=K, the subgroups of G.F / that are commensu-
rable1 with G.OK .S// are called S -arithmetic, and in the case where S D V K

1

simply arithmetic (note that OK .V
K
1 /D OK , the ring of algebraic integers in K).

It is well known (see, for example, [Platonov and Rapinchuk 1994]) that the
resulting class of S-arithmetic subgroups does not depend on the choice of
K-embedding G �GLN . The question, however, is what we should mean by an
arithmetic subgroup of G.F / when G is an algebraic group defined over a field F

of characteristic zero that is not equipped with a structure of K-group over some

1We recall that two subgroups H1 and H2 of an abstract group G are called commensurable if
their intersection H1 \H2 is of finite index in each of the subgroups.



222 GOPAL PRASAD AND ANDREI S. RAPINCHUK

number field K�F . For example, what is an arithmetic subgroup of G.R/where
G D SO3.f / and f D x2C ey2 ��z2? For absolutely almost simple groups
the “right” concept that we will formalize below is given in terms of the forms
of G over the subfields K � F that are number fields. In our example, we can
consider the following rational quadratic forms that are equivalent to f over R:

f1 D x2
Cy2

� 3z2 and f2 D x2
C 2y2

� 7z2;

and set Gi D SO3.fi/. Then for each i D 1; 2, we have an R-isomorphism
Gi ' G, so the natural arithmetic subgroup Gi.Z/� Gi.R/ can be thought of
as an “arithmetic” subgroup of G.R/. Furthermore, one can consider quadratic
forms over other number subfields K � R that again become equivalent to f
over R; for example,

K DQ.
p

2/ and f3 D x2
Cy2

�
p

2z2:

Then for G3 D SO3.f3/, there is an R-isomorphism G3 'G which allows us to
view the natural arithmetic subgroup G3.OK /�G3.R/, where OK D ZŒ

p
2�, as

an “arithmetic” subgroup of G.R/. One can easily generalize such constructions
from arithmetic to S -arithmetic groups by replacing the rings of integers with the
rings of S -integers. So, generally speaking, by an S -arithmetic subgroup of G.R/

we mean a subgroup which is commensurable to one of the subgroups obtained
through this construction for some choice of a number subfield K�R, a finite set
S of places of K containing all the archimedean ones, and a quadratic form Qf over
K that becomes equivalent to f over R. The technical definition is as follows.

Let G be a connected absolutely almost simple algebraic group defined over
a field F of characteristic zero, G be its adjoint group, and � WG ! G be the
natural isogeny. Suppose we are given the following data:

� a number field K with a fixed embedding K ,! F ;

� an F=K-form G of G, which is an algebraic K-group such that there exists
an F -isomorphism F G'G, where F G is the group obtained from G by the
extension of scalars from K to F ;

� a finite set S of places of K containing V K
1 but not containing any nonar-

chimedean places v such that G is Kv-anisotropic.2

We then have an embedding �WG.K/ ,!G.F / which is well defined up to an
F -automorphism of G (note that we do not fix an isomorphism F G ' G). A
subgroup � of G.F / such that �.�/ is commensurable with �.�.G.OK .S////, for

2We note that if G is Kv-anisotropic then G.OK .S// and G.OK .S [fvg// are commensurable,
and therefore the classes of S - and .S[fvg/-arithmetic subgroups coincide. Thus, this assumption
on S is necessary if we want to recover it from a given S -arithmetic subgroup.
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some F -automorphism � of G, will be called a .G;K;S/-arithmetic subgroup,3

or an S -arithmetic subgroup described in terms of the triple .G;K;S/. As usual,
.G;K;V K

1 /-arithmetic subgroups will simply be called .G;K/-arithmetic.
We also need to introduce a more general notion of commensurability. The

point is that since weak commensurability is defined in terms of eigenvalues, a
subgroup � � G.F / is weakly commensurable with any conjugate subgroup,
while the latter may not be commensurable with the former in the usual sense.
So, to make theorems asserting that in certain situations weak commensurability
implies commensurability possible (and such theorems are in fact one of the goals
of our analysis) one definitely needs to modify the notion of commensurability.
The following notion works well in geometric applications. Let Gi , for i D

1; 2, be a connected absolutely almost simple F -group, and let �i WGi ! Gi

be the isogeny onto the corresponding adjoint group. We will say that the
subgroups �i of Gi.F / are commensurable up to an F -isomorphism between
G1 and G2 if there exists an F -isomorphism � WG1!G2 such that �.�1.�1//

is commensurable with �.�2/ in the usual sense. The key observation is that
the description of S-arithmetic subgroups in terms of triples .G;K;S/ is very
convenient for determining when two such subgroups are commensurable in the
new generalized sense.

Proposition 3.4. Let G1 and G2 be connected absolutely almost simple algebraic
groups defined over a field F of characteristic zero, and for i D 1; 2, let �i be
a Zariski-dense .Gi ;Ki ;Si/-arithmetic subgroup of Gi.F /. Then �1 and �2

are commensurable up to an F -isomorphism between G1 and G2 if and only if
K1 DK2 DWK, S1 D S2, and G1 and G2 are K-isomorphic.

It follows from the above proposition that the arithmetic subgroups �1, �2,
and �3 constructed above, of G.R/, where G D SO3.f /, are pairwise non-
commensurable: indeed, �3, being defined over Q.

p
2/, cannot possibly be

commensurable to �1 or �2 as these two groups are defined over Q; at the same
time, the noncommensurability of �1 and �2 is a consequence of the fact that
SO3.f1/ and SO3.f2/ are not Q-isomorphic since the quadratic forms f1 and
f2 are not equivalent over Q.

4. Results on weakly commensurable S -arithmetic subgroups

In view of Proposition 3.4, the central question in the analysis of weak com-
mensurability of S -arithmetic subgroups is the following: Suppose we are given
two Zariski-dense S -arithmetic subgroups that are described in terms of triples.
Which components of these triples coincide given the fact that the subgroups

3This notion of arithmetic subgroups coincides with that in Margulis’ book [1991] for absolutely
simple adjoint groups.
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are weakly commensurable? As the following result demonstrates, two of these
components must coincide.

Theorem 4.1. Let G1 and G2 be two connected absolutely almost simple al-
gebraic groups defined over a field F of characteristic zero. If Zariski-dense
.Gi ;Ki ;Si/-arithmetic subgroups �i of Gi.F /, where i D 1; 2; are weakly
commensurable for i D 1; 2, then K1 DK2 and S1 D S2.

In general, the forms G1 and G2 do not have to be K-isomorphic (see [Prasad
and Rapinchuk 2009], Examples 6.5 and 6.6, as well as the general construction
in Section 9). In the next theorem we list the cases where it can nevertheless be
asserted that G1 and G2 are necessarily K-isomorphic, and then give a general
finiteness result for the number of K-isomorphism classes.

Theorem 4.2. Let G1 and G2 be two connected absolutely almost simple al-
gebraic groups defined over a field F of characteristic zero, of the same type
different from An, D2nC1, with n > 1, or E6. If for i D 1; 2, Gi.F / con-
tain Zariski-dense weakly commensurable .Gi ;K;S/-arithmetic subgroups �i ,
then G1 ' G2 over K, and hence �1 and �2 are commensurable up to an
F -isomorphism between G1 and G2.

In this theorem, type D2n .n > 2/ required special consideration. The case
n > 2 was settled in [Prasad and Rapinchuk 2010a] using the techniques of
[Prasad and Rapinchuk 2009] in conjunction with results on embeddings of
fields with involutive automorphisms into simple algebras with involution. The
remaining case of type D4 was treated by Skip Garibaldi [2012], whose argument
actually applies to all n and explains the result from the perspective of Galois
cohomology, providing thereby a cohomological insight into the difference
between the types D2n and D2nC1. We note that the types excluded in the
theorem are precisely the types for which the automorphism ˛ 7! �˛ of the
corresponding root system is not in the Weyl group. More importantly, all these
types are honest exceptions to the theorem — a general Galois-cohomological
construction of weakly commensurable, but not commensurable, Zariski-dense
S -arithmetic subgroups for all of these types is given in [Prasad and Rapinchuk
2009, Section 9].

Theorem 4.3. Let G1 and G2 be two connected absolutely almost simple groups
defined over a field F of characteristic zero. Let �1 be a Zariski-dense .G1;K;S/-
arithmetic subgroup of G1.F /. Then the set of K-isomorphism classes of K-
forms G2 of G2 such that G2.F / contains a Zariski-dense .G2;K;S/-arithmetic
subgroup weakly commensurable to �1 is finite.

In other words, the set of all Zariski-dense .K;S/-arithmetic subgroups of
G2.F / which are weakly commensurable to a given Zariski-dense .K;S/-arith-
metic subgroup is a union of finitely many commensurability classes.
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A noteworthy fact about weak commensurability is that it has the following
implication for the existence of unipotent elements in arithmetic subgroups (even
though it is formulated entirely in terms of semisimple ones). We recall that a
semisimple K-group is called K-isotropic if rkK G > 0; in characteristic zero,
this is equivalent to the existence of nontrivial unipotent elements in G.K/.
Moreover, if K is a number field then G is K-isotropic if and only if every
S -arithmetic subgroup contains unipotent elements, for any S .

Theorem 4.4. Let G1 and G2 be two connected absolutely almost simple alge-
braic groups defined over a field F of characteristic zero. For i D 1; 2, let �i

be a Zariski-dense .Gi ;K;S/-arithmetic subgroup of Gi.F /. If �1 and �2 are
weakly commensurable then rkK G1 D rkK G2; in particular, if G1 is K-isotropic,
then so is G2.

We note that in [Prasad and Rapinchuk 2009, Section 7] we prove a somewhat
more precise result, viz. that if G1 and G2 are of the same type, then the
Tits indices of G1=K and G2=K are isomorphic, but we will not get into these
technical details here.

The following result asserts that a lattice4 which is weakly commensurable
with an S -arithmetic group is itself S -arithmetic.

Theorem 4.5. Let G1 and G2 be two connected absolutely almost simple alge-
braic groups defined over a nondiscrete locally compact field F of characteristic
zero, and for i D 1; 2, let �i be a Zariski-dense lattice in Gi.F /. Assume
that �1 is a .K;S/-arithmetic subgroup of G1.F /. If �1 and �2 are weakly
commensurable, then �2 is a .K;S/-arithmetic subgroup of G2.F /.

5. Geometric applications

We are now in a position to give the precise statements of our results on isospectral
and length-commensurable locally symmetric spaces. Throughout this subsection,
for i D 1; 2, Gi will denote an absolutely simple real algebraic group and Xi

the symmetric space of Gi D Gi.R/. Furthermore, given a discrete torsion-
free subgroup �i � Gi , we let X�i

D Xi=�i denote the corresponding locally
symmetric space. The geometric results are basically obtained by combining
Theorem 2.7 and Corollary 2.8 with the results on weakly commensurable
subgroups from the previous section. It should be emphasized that when X�1

and X�2
are both rank.one spaces and we are not in the exceptional case .E/

(which is the case, for example, for all hyperbolic n-manifolds with n> 4) our

4A discrete subgroup � of a locally compact topological group G is said to be a lattice in G if
G=� carries a finite G-invariant Borel measure.
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results are unconditional, while in all other cases they depend on the validity of
Schanuel’s conjecture.

Now, applying Theorems 3.1 and 3.2 we obtain the following.

Theorem 5.1. Let G1 and G2 be connected absolutely simple real algebraic
groups, and let X�i

be a locally symmetric space of finite volume, of Gi , for
i D 1; 2. If X�1

and X�2
are length-commensurable, then:

(i) either G1 and G2 are of same Killing–Cartan type, or one of them is of type
Bn and the other is of type Cn for some n> 3;

(ii) K�1
DK�2

.

It should be pointed out that assuming Schanuel’s conjecture in all cases, one
can prove this theorem (in fact, a much stronger statement; see Theorem 8.1)
assuming only that �1 and �2 are finitely generated and Zariski-dense.

Next, using Theorems 4.2 and 4.3 we obtain

Theorem 5.2. Let G1 and G2 be connected absolutely simple real algebraic
groups, and let Gi DGi.R/, for i D 1; 2. Then the set of arithmetically defined
locally symmetric spaces X�2

of G2, which are length-commensurable to a given
arithmetically defined locally symmetric space X�1

of G1, is a union of finitely
many commensurability classes. It in fact consists of a single commensurability
class if G1 and G2 have the same type different from An, D2nC1, with n > 1,
or E6.

Furthermore, Theorems 4.4 and 4.5 imply the following rather surprising
result which has so far defied all attempts of a purely geometric proof.

Theorem 5.3. Let G1 and G2 be connected absolutely simple real algebraic
groups, and let X�1

and X�2
be length-commensurable locally symmetric spaces

of G1 and G2 respectively, of finite volume. Assume that at least one of the spaces
is arithmetically defined. Then the other space is also arithmetically defined, and
the compactness of one of the spaces implies the compactness of the other.

In fact, if one of the spaces is compact and the other is not, the weak length
spectra L.X�1

/ and L.X�2
/ are quite different. See Theorem 8.6 for a precise

statement. (We note that the proof of this result uses Schanuel’s conjecture in all
cases.)

Finally, we will describe some applications to isospectral compact locally
symmetric spaces. So, in the remainder of this section, the locally symmetric
spaces X�1

and X�2
as above will be assumed to be compact. Then, as we

discussed in Section 1, the fact that X�1
and X�2

are isospectral implies that
L.X�1

/DL.X�2
/, so we can use our results on length-commensurable spaces.

Thus, in particular we obtain the following.
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Theorem 5.4. Assume X�1
and X�2

are isospectral. If �1 is arithmetic, then so
is �2.

Thus, the Laplace spectrum can see if the fundamental group is arithmetic or
not — to our knowledge, no results of this kind, particularly for general locally
symmetric spaces, were previously known in spectral theory.

The following theorem settles the question “Can one hear the shape of a
drum?” for arithmetically defined compact locally symmetric spaces.

Theorem 5.5. Let X�1
and X�2

be compact locally symmetric spaces associated
with absolutely simple real algebraic groups G1 and G2, and assume that at
least one of the spaces is arithmetically defined. If X�1

and X�2
are isospectral

then G1 D G2 WD G. Moreover, unless G is of type An, D2nC1 .n > 1/, or E6,
the spaces X�1

and X�2
are commensurable.

It should be noted that our methods based on length-commensurability or
weak commensurability leave room for the following ambiguity in the proof
of Theorem 5.5: either G1 D G2 or G1 and G2 are R-split forms of types Bn

and Cn for some n > 3 - and this ambiguity is unavoidable; see the end of
Section 7. The fact that in the latter case the locally symmetric spaces cannot be
isospectral was shown by Sai-Kee Yeung [2011] by comparing the traces of the
heat operator (without using Schanuel’s conjecture), which leads to the statement
of the theorem given above.

6. Absolutely almost simple algebraic groups having the same maximal
tori

The analysis of weak commensurability is related to another natural problem
in the theory of algebraic groups of characterizing absolutely almost simple
K-groups having the same isomorphism/isogeny classes of maximal K-tori —
the exact nature of this connection will be clarified in Theorem 9.8 and the
subsequent discussion. Some aspects of this problem over local and global fields
were considered in [Garge 2005] and [Kariyama 1989]. Another direction of
research, which has already generated a number of results — we mention [Bayer-
Fluckiger 2011; Garibaldi 2012; Lee 2012; Prasad and Rapinchuk 2010a] — is
the investigation of local-global principles for embedding tori into absolutely
almost simple algebraic groups as maximal tori (in particular, for embedding of
commutative étale algebras with involutive automorphisms into simple algebras
with involution); some number-theoretic applications of these results can be
found, for example, in [Fiori 2012]. A detailed discussion of these issues would
be an independent undertaking, so we will limit ourselves here to the following
theorem:
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Theorem 6.1 (Prasad and Rapinchuk 2009, Theorem 7.5; Garibaldi and Rapin-
chuk 2013, Proposition 1.3). (1) Let G1 and G2 be connected absolutely almost
simple algebraic groups defined over a number field K, and let Li be the smallest
Galois extension of K over which Gi becomes an inner form of a split group. If
G1 and G2 have the same K-isogeny classes of maximal K-tori then either G1

and G2 are of the same Killing–Cartan type, or one of them is of type Bn and the
other is of type Cn, and moreover, L1 DL2.

(2) Fix an absolutely almost simple K-group G. Then the set of isomorphism
classes of all absolutely almost simple K-groups G0 having the same K-isogeny
classes of maximal K-tori is finite.

(3) Fix an absolutely almost simple simply connected K-group G whose Killing–
Cartan type is different from An, D2nC1 .n> 1/ or E6. Then any K-form G0 of
G (in other words, any absolutely almost simple simply connected K-group G0

of the same type as G) that has the same K-isogeny classes of maximal K-tori
as G, is isomorphic to G.

The construction described in [Prasad and Rapinchuk 2009, Section 9] shows
that the types excluded in Theorem 6.1(3) are honest exceptions; that is, for each
of those types one can construct nonisomorphic absolutely almost simple simply
connected K-groups G1 and G2 of this type over a number field K that have the
same isomorphism classes of maximal K-tori. Furthermore, the analysis of the
situation where G1 and G2 are of types Bn and Cn, respectively, over a number
field K and have the same isomorphism/isogeny classes of maximal K-tori is
given in Theorem 7.3 below (see [Garibaldi and Rapinchuk 2013, Theorem 1.4
and 1.5]).

Of course, the question about determining absolutely almost simple algebraic
K-groups by their maximal K-tori makes sense over general fields. It is par-
ticularly interesting for division algebra where it can be reformulated as the
following question which is somewhat reminiscent of Amitsur’s famous theorem
on generic splitting fields [Amitsur 1955; Gille and Szamuely 2006]: What can
one say about two finite-dimensional central division algebras D1 and D2 over
the same field K given the fact that they have the same isomorphism classes of
maximal subfields? For recent results on this problem, see [Chernousov et al.
2012; Garibaldi and Saltman 2010; Krashen and McKinnie 2011; Rapinchuk
and Rapinchuk 2010].

7. Weakly commensurable subgroups in groups of types B and C

Let G1 and G2 be absolutely almost simple algebraic groups over a field K

of characteristic zero. According to Theorem 3.1, finitely generated weakly
commensurable Zariski-dense subgroups �1 � G1.K/ and �2 � G2.K/ can
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exist only if G1 and G2 are of the same Killing–Cartan type or one of them
is of type Bn and the other is of type Cn for some n > 3. Moreover, the
results we described in Section 4 provide virtually complete answers to the
key questions about weakly commensurable S -arithmetic subgroups in the case
where G1 and G2 are of the same type. In this section, we will discuss recent
results [Garibaldi and Rapinchuk 2013] that determine weakly commensurable
arithmetic subgroups when G1 is of type Bn and G2 is of type Cn .n> 3/.

First of all, it should be pointed out that S -arithmetic subgroups in groups of
types Bn and Cn can indeed be weakly commensurable. The underlying reason
is that if G1 is a split adjoint group of type Bn and G2 is a split simply connected
group of type Cn .n > 2/ over any field K of characteristic ¤ 2, then G1 and
G2 have the same isomorphism classes of maximal K-tori. For the reader’s
convenience we briefly recall the Galois-cohomological proof of this fact given
in [Prasad and Rapinchuk 2009, Example 6.7].

It is well known that for any semisimple K-group G there is a natural bijection
between the set of G.K/-conjugacy classes of maximal K-tori of G and the set

CK WD Ker
�
H 1.K;N /!H 1.K;G/

�
;

where T is a maximal K-torus of G and N is the normalizer of T in G

(see [Prasad and Rapinchuk 2009, Lemma 9.1]). Let W D N=T be the cor-
responding Weyl group and introduce the following natural maps in Galois
cohomology:

�K WH
1.K;N /!H 1.K;W / and �K WH

1.K;W /!H 1.K;Aut T /:

To apply these considerations to the groups G1 and G2, we will denote by Ti

a fixed maximal K-split torus of Gi and let Ni , Wi , C
.i/
K

, � .i/
K

and �.i/
K

be the
corresponding objects attached to Gi . It follows from an explicit description of
the root systems of types Bn and Cn that there exist K-isomorphisms 'WT1!T2

and  WW1!W2 such that for the natural action of Wi on Ti we have

'.w � t/D  .w/ �'.t/; for all t 2 T1; w 2W1:

Since Gi is K-split, we have � .i/
K
.C
.i/
K
/DH 1.K;Wi/ (see [Gille 2004; Kottwitz

1982; Raghunathan 2004]). So,  induces a natural bijection between � .1/
K
.C
.1/
K
/

and � .2/
K
.C
.2/
K
/. Finally, we observe that if Si is a maximal K-torus of Gi in

the Gi.K/-conjugacy class corresponding to ci 2 C
.i/
K

, then the K-isomorphism
class of Si is determined by �.i/

K
.�
.i/
K
.ci//, and if  .� .1/

K
.c1//D �

.2/
K
.c2/ then S1

and S2 are K-isomorphic. It follows that G1 and G2 have the same isomorphism
classes of maximal K-tori, as required.
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Subsequently, in [Garibaldi and Rapinchuk 2013] a more explicit explanation
of this fact was given. More precisely, let A be a central simple algebra over K

with a K-linear involution � (involution of the first kind). We recall that � is called
orthogonal if dimK A� D n.nC 1/=2 and symplectic if dimK A� D n.n� 1/=2.
Furthermore, if � is orthogonal and nD 2mC 1 .m> 2/ then ADMn.K/ and
the corresponding algebraic group G D SU.A; �/ coincides with the orthogonal
group SOn.q/ of a nondegenerate n-dimensional quadratic form q D q� over K,
hence is a simple adjoint algebraic K-group of type Bm (note that the K-rank
of G equals the Witt index of q). If � is symplectic then necessarily n D 2m

and G D SU.A; �/ is an almost simple simply connected K-group of type Cm;
moreover G is K-split if and only if ADMn.K/, in which case G is of course
isomorphic to Sp2m. Next, in all cases, any maximal K-torus T of G has the
form T D SU.E; �/ where E is a � -invariant n-dimensional commutative étale
K-subalgebra of A such that for � D � jE we have

dim E�
D

�
nC 1

2

�
: (7)

So, the question whether G D SU.A; �/, with A and � as above, has a maximal
K-torus of a specific type can be reformulated as follows: Let .E; �/ be an n-
dimensional commutative étale K-algebra with an involutive K-automorphism �

satisfying (7). When does there exist an embedding .E; �/ ,! .A; �/ as algebras
with involution? While in the general case this question is nontrivial (see [Prasad
and Rapinchuk 2010a]), the answer in the case where the group G splits over K

is quite straightforward.

Proposition 7.1 [Garibaldi and Rapinchuk 2013, 2.3 and 2.5]. Let ADMn.K/

with a K-linear involution � , and let .E; �/ be an n-dimensional commutative
étale K-algebra with involution satisfying (7). In each of the following situations,
there exists a K-embedding .E; �/ ,! .A; �/:

(1) � is symplectic.

(2) nD 2mC1 and � is orthogonal such that the corresponding quadratic form
q� has Witt index m.

(This proposition should be viewed as an analogue for algebras with involution
of the following result of Steinberg [1965]: Let G0 be a quasisplit simply
connected almost simple algebraic group over a field K. Then given an inner
form G of G0, any maximal K-torus T of G admits a K-embedding into G0.
While the proof of this result is rather technical, the proof of Proposition 7.1, as
well as of the corresponding assertion for the algebras with involution arising in
the description of algebraic groups of type A and D is completely elementary;
see [Garibaldi and Rapinchuk 2013, Section 2].)
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Now, fix n> 2 and let A1DMn1
.K/, where n1D 2nC1, with an orthogonal

involution �1 such that the Witt index of the corresponding quadratic form q�1

is n, and let A2 D Mn2
.K/, where n2 D 2n, with a symplectic involution

�2. According to Proposition 7.1, for i D 1; 2, the maximal K-tori of Gi D

SU.Ai ; �i/ are of the form Ti D SU.Ei ; �i/ for a commutative étale K-algebra
Ei of dimension ni with an involution �i satisfying (7). On the other hand, the
correspondence

.E2; �2/ 7! .E1; �1/ WD .E2 �K ; �2 � idK /

defines a natural bijection between the isomorphism classes of commutative étale
K-algebras with involution satisfying (7), of dimension n2 and n1, respectively.
Since SU.E1; �1/D SU.E2; �2/ in these notations, we again obtain that G1 and
G2 have the same isomorphism classes of maximal K-tori (see [Garibaldi and
Rapinchuk 2013, Remark 2.6]).

Now, let K be a number field and S be any finite set of places of K containing
the set V K

1 of archimedean places. Furthermore, let G1 be a split adjoint K-group
of type Bn, and G2 be a split simply connected K-group of type Cn .n > 2/.
Then the fact, discussed above, that G1 and G2 have the same isomorphism
classes of maximal K-tori immediately implies that the S -arithmetic subgroups
in G1 and G2 are weakly commensurable (see [Prasad and Rapinchuk 2009,
Examples 6.5 and 6.7]).

A complete determination of weakly commensurable S -arithmetic subgroups
in algebraic groups G1 and G2 of types Bn and Cn .n > 3/ respectively was
recently obtained by Skip Garibaldi and the second-named author [Garibaldi
and Rapinchuk 2013]. To formulate the result we need the following definition.
Let G1 and G2 be absolutely almost simple algebraic groups of types Bn and
Cn with n> 2, respectively, over a number field K. We say that G1 and G2 are
twins (over K) if for each place v of K, either both groups are split or both
are anisotropic over the completion Kv. (We note that since groups of these
types cannot be anisotropic over Kv when v is nonarchimedean, our condition
effectively says that G1 and G2 must be Kv-split for all nonarchimedean v.)

Theorem 7.2 [Garibaldi and Rapinchuk 2013, Theorem 1.2]. Let G1 and G2

be absolutely almost simple algebraic groups over a field F of characteristic
zero having Killing–Cartan types Bn and Cn .n> 3/ respectively, and let �i be
a Zariski-dense .Gi ;K;S/-arithmetic subgroup of Gi.F / for i D 1; 2. Then �1

and �2 are weakly commensurable if and only if the groups G1 and G2 are twins.

(We recall that according to Theorem 4.1, if Zariski-dense .G1;K1;S1/- and
.G2;K2;S2/-arithmetic subgroups are weakly commensurable then necessarily
K1DK2 and S1D S2, so Theorem 7.2 in fact treats the most general situation.)
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The necessity is proved using generic tori (Section 9) in conjunction with
the analysis of maximal tori in real groups of types Bn and Cn (which can also
be found in [Ðoković and Thǎńg 1994]). The proof of sufficiency is obtained
using the above description of maximal K-tori in terms of commutative étale
K-subalgebras with involution and the local-global results for the existence of an
embedding of commutative étale algebras with involution into simple algebras
with involution established in [Prasad and Rapinchuk 2010a]; an alternative
argument along the lines outlined in the beginning of this section can be given
using Galois cohomology of algebraic groups (see [Garibaldi and Rapinchuk
2013, Section 9]).

As we already mentioned in Section 6, the analysis of weak commensurability
involved in the proof of Theorem 7.2 leads to, and at the same time depends on,
the following result describing when groups of types Bn and Cn have the same
isogeny/isomorphism classes of maximal K-tori.

Theorem 7.3 [Garibaldi and Rapinchuk 2013, Theorem 1.4]. Let G1 and G2 be
absolutely almost simple algebraic groups over a number field K of types Bn

and Cn respectively for some n> 3.

(1) The groups G1 and G2 have the same isogeny classes of maximal K-tori if
and only if they are twins.

(2) The groups G1 and G2 have the same isomorphism classes of maximal K-
tori if and only if they are twins, G1 is adjoint, and G2 is simply connected.

Theorem 7.2 has the following interesting geometric applications [Prasad and
Rapinchuk 2013]. Again, let G1 and G2 be simple real algebraic groups of types
Bn and Cn respectively. For i D 1; 2, let �i be a discrete torsion-free .Gi ;K/-
arithmetic subgroup of Gi D Gi.R/, and let X�i

be the corresponding locally
symmetric space of Gi . Then if G1 and G2 are not twins, the locally symmetric
spaces X�1

and X�2
are not length-commensurable. As one application of

this result, we would like to point out the following assertion: Let M1 be an
arithmetic quotient of the real hyperbolic space Hp .p > 5/ and M2 be an
arithmetic quotient of the quaternionic hyperbolic space H

q
H .q > 2/. Then M1

and M2 are not length-commensurable. The results of [Garibaldi and Rapinchuk
2013] are used to handle the case p D 2n and q D n� 1 for some n > 3; for
other values of p and q, the claim follows from Theorem 5.1.

On the other hand, suppose G1 D SO.nC 1; n/ and G2 D Sp2n over R (i.e.,
G1 and G2 are the R-split forms of types Bn and Cn, respectively) for some
n> 3. Furthermore, let �i be a discrete torsion-free .Gi ;K/-arithmetic subgroup
of Gi for i D 1; 2, and let Mi D X�i

. If G1 and G2 are twins then

Q �L.M2/D � �Q �L.M1/; where �D

r
2nC 2

2n� 1
:
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Thus, despite the fact that they are associated with groups of different types, the
locally symmetric spaces M1 and M2 can be made length-commensurable by
scaling the metric on one of them; this, however, will never make them isospectral
[Yeung 2011]. What is interesting is that so far this is the only situation in our
analysis commensurability of isospectral and length-commensurable locally
symmetric spaces where isospectrality manifests itself as an essentially stronger
condition.

8. On the fields generated by the lengths of closed geodesics

In Section 5 (and also at the end of Section 7) we discussed the consequences
of length-commensurability of two locally symmetric spaces M1 and M2; our
focus in this section will be on the consequences of nonlength-commensurability
of M1 and M2. More precisely, we will explore how different in this case
the sets L.M1/ and L.M2/ (or Q �L.M1/ and Q �L.M2/) are and whether
they can in fact be related in any reasonable way? Of course, one can ask a
number of specific questions that fit this general perspective: for example, can
L.M1/ and L.M2/ differ only in a finite number of elements, in other words,
can the symmetric difference L.M1/4 L.M2/ be finite? Or can it happen
that Q �L.M1/DQ �L.M2/, where Q is the field of all algebraic numbers; in
other words, can the use of the field Q in place of Q in the definition of length-
commensurability essentially change this relation? One relation between L.M1/

and L.M2/ that would make a lot of sense geometrically is that of similarity,
requiring that there be a real number ˛ > 0 such that

L.M2/D ˛ �L.M1/ .or Q �L.M2/D ˛ �Q �L.M1//;

which means that M1 and M2 can be made isolength spectral (or length-commen-
surable) by scaling the metric on one of them. From the algebraic standpoint,
one can generalize this relation by considering arbitrary polynomial relations
between L.M1/ and L.M2/ instead of just linear relations although this perhaps
does not have a clear geometric interpretation. To formalize this general idea,
we need to introduce some additional notations and definitions.

For a Riemannian manifold M , we let F.M / denote the subfield of R gener-
ated by the set L.M /. Given two Riemannian manifolds M1 and M2, we set
Fi D F.Mi/ for i 2 f1; 2g and consider the following condition:

.Ti/ The compositum F1F2 has infinite transcendence degree over the field
F3�i .

Informally, this condition means that L.Mi/ contains “many” elements which
are algebraically independent from all the elements of L.M3�i/, implying the
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nonexistence of any nontrivial polynomial dependence between L.M1/ and
L.M2/. In particular, .Ti/ implies the following condition:

.Ni/ L.Mi/ 6�A �Q �L.M3�i/ for any finite set A of real numbers.

In [Prasad and Rapinchuk 2013], we have proved a series of results asserting
that if MiDX�i

for i D 1; 2, are the quotients of symmetric spaces Xi associated
with absolutely simple real algebraic groups Gi by Zariski-dense discrete torsion-
free subgroups �i �Gi.R/, then in many situations the fact that M1 and M2 are
not length-commensurable implies that conditions .Ti/ and .Ni/ hold for at least
one i 2 f1; 2g. To give precise formulations, in addition to the standard notations
used earlier, we let wi denote the order of the (absolute) Weyl group of Gi .
We also need to emphasize that all geometric results in [Prasad and Rapinchuk
2013] assume the validity of Shanuel’s conjecture. This assumption, however,
enables one to establish results that are somewhat stronger than the corresponding
results in Section 5 and do not require that �1 and �2 have property (A) (see
Theorem 2.7 and Corollary 2.8). We begin with the following result which
strengthens Theorem 5.1.

Theorem 8.1. Assume that the Zariski-dense subgroups �1 and �2 are finitely
generated (which is automatically the case if these subgroups are lattices).

(1) If w1 >w2 then .T1/ holds.

(2) If w1 D w2 but K�1
6�K�2

then again .T1/ holds.

Thus, unless w1 D w2 and K�1
DK�2

, the condition .Ti/ holds for at least one
i 2 f1; 2g; in particular, M1 and M2 are not length-commensurable.

As follows from Theorem 8.1, we only need to consider the case where
w1 D w2, which we will assume — recall that this entails that either G1 and G2

are of the same Killing–Cartan type, or one of them is of type Bn and the other
is of type Cn .n> 3/. Then it is convenient to divide our results for arithmetic
subgroups �1 and �2 into three theorems: the first one will treat the case where
G1 and G2 are of the same type which is different from An, D2nC1 .n> 1/ and
E6, the second one — the case where both G1 and G2 are one of the types An,
D2nC1 .n> 1/ and E6, and the third one – the case where G1 is of type Bn and
G2 is of type Cn for some n> 3.

Theorem 8.2. With notations as above, assume that G1 and G2 are of the same
Killing–Cartan type which is different from An, D2nC1 .n> 1/ and E6 and that
the subgroups �1 and �2 are arithmetic. Then either M1 D X�1

and M2 D X�2

are commensurable (hence also length-commensurable), or conditions .Ti/ and
.Ni/ hold for at least one i 2 f1; 2g.
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(This theorem strengthens part of Theorem 5.2. We also note that .Ti/ and
.Ni/ may not hold for both i D 1 and 2; in fact, it is possible that one of L.M1/

and L.M2/ is contained in the other.)

Theorem 8.3. Again, keep the above notations and assume that the common
Killing–Cartan type of G1 and G2 is one of the following: An, D2nC1 .n > 1/

or E6 and that the subgroups �1 and �2 are arithmetic. Assume in addition
that K�i

¤ Q for at least one i 2 f1; 2g. Then either M1 and M2 are length-
commensurable (although not necessarily commensurable), or conditions .Ti/

and .Ni/ hold for at least one i 2 f1; 2g.

To illustrate possible applications of these theorems, we will give in Theorem 1.1
explicit statements for real hyperbolic manifolds; similar results are available for
complex and quaternionic hyperbolic spaces.

Corollary 8.4. Let Mi .i D 1; 2/ be the quotients of the real hyperbolic space
Hdi with di ¤ 3 by a torsion-free Zariski-dense discrete subgroup �i of Gi.R/,
where Gi D PSO.di ; 1/.

(i) If d1 > d2 then conditions .T1/ and .N1/ hold.

(ii) If d1 D d2 but K�1
6�K�2

then again conditions .T1/ and .N1/ hold.

Thus, unless d1D d2 and K�1
DK�2

, conditions .Ti/ and .Ni/ hold for at least
one i 2 f1; 2g.

Assume now that d1 D d2 DW d and the subgroups �1 and �2 are arithmetic.

(iii) If d is either even or is congruent to 3 .mod 4/, then either M1 and M2 are
commensurable, hence length-commensurable, or .Ti/ and .Ni/ hold for at
least one i 2 f1; 2g.

(iv) If d � 1 .mod 4/ and in addition K�i
¤Q for at least one i 2 f1; 2g then

either M1 and M2 are length-commensurable (although not necessarily
commensurable), or conditions .Ti/ and .Ni/ hold for at least one i 2 f1; 2g.

Now, we consider the case where one of the groups is of type Bn and the other
of type Cn .n> 3/. The theorem below strengthens the results of Section 7.

Theorem 8.5. Notations as above, assume that G1 is of type Bn and G2 is of
type Cn for some n> 3 and the subgroups �1 and �2 are arithmetic. Then either
.Ti/ and .Ni/ hold for at least one i 2 f1; 2g, or

Q �L.M2/D � �Q �L.M1/; where �D

r
2nC 2

2n� 1
:

The following interesting result holds for all types (cf. Theorem 5.3):
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Theorem 8.6. For i D 1; 2, let Mi D X�i
be an arithmetically defined locally

symmetric space, and assume that w1 D w2. If M2 is compact and M1 is not,
then conditions .T1/ and .N1/ hold.

Finally, we have the following result, which shows that the notion of “length-
similarity” for arithmetically defined locally symmetric spaces is redundant if
G1 and G2 are of the same type (but compare Theorem 8.5 for the case where
G1 and G2 are of types Bn and Cn).

Corollary 8.7. Let Mi D X�i
, for i D 1; 2, be arithmetically defined locally

symmetric spaces. Assume that there exists � 2 R>0 such that

Q �L.M1/D � �Q �L.M2/:

(1) If G1 and G2 are of the same type which is different from An, D2nC1 .n> 1/

and E6, then M1 and M2 are commensurable, hence length-commensurable.

(2) If G1 and G2 are of the same type which is one of the following: An, D2nC1

.n> 1/ or E6, then, provided that K�i
¤Q for at least one i 2 f1; 2g, the

spaces M1 and M2 are length-commensurable (although not necessarily
commensurable).

The proofs of the results in this section use a generalization of the notion of
weak commensurability which we termed weak containment. To give a precise
definition, we temporarily return to the general set-up where G1 and G2 are
semisimple algebraic groups defined over a field F of characteristic zero, and �i

is a Zariski-dense subgroup of Gi.F / for i D 1; 2.

Definition 8.8. (a) Semisimple elements



.1/
1
; : : : ; 
 .1/m1

2 �1

are weakly contained in �2 if there are semisimple elements 
 .2/
1
; : : : ; 


.2/
m2

such
that

�
.1/
1

�


.1/
1

�
� � ��.1/m1

�

 .1/m1

�
D �

.2/
1

�


.2/
1

�
� � ��.2/m2

�

 .2/m2

�
¤ 1; (8)

for some maximal F -tori T
.j/

k
of Gj whose group of F -rational points contains

elements 
 .j/
k

and some characters �.j/
k

of T
.j/

k
for j 2 f1; 2g and k 6mj .5

(b) Semisimple elements 
 .1/
1
; : : : ; 


.1/
m1
2 �1 are multiplicatively independent

if for some (equivalently, any) choice of maximal F -tori T
.1/
i of G1 such that



.1/
i 2 Ti.F / for i 6m1, a relation of the form

�
.1/
1
.

.1/
1
/ � � ��.1/m1

.
 .1/m1
/D 1;

5Note that (8) means that the subgroups of F� generated by the eigenvalues of 
 .1/
1
; : : : ; 


.1/
m1

and by those of 
 .2/
1
; : : : ; 


.2/
m2

for some (equivalently, any) matrix realizations of G1 �GLN1
and

G2 � GLN2
, intersect nontrivially.
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where �i 2X.Ti/ implies that

�
.1/
1
.

.1/
1
/D � � � D �.1/m1

.
m1
/D 1:

(c) We say that �1 and �2 as above satisfy property .Ci/, where i D 1 or 2, if for
any m> 1 there exist semisimple elements 
 .i/

1
; : : : ; 


.i/
m 2 �i of infinite order

that are multiplicatively independent and are not weakly contained in �3�i .

Using Schanuel’s conjecture, we proved in [Prasad and Rapinchuk 2013,
Corollary 7.3] that if X�1

and X�2
are locally symmetric spaces as above with

finitely generated Zariski-dense fundamental groups �1 and �2, then the fact
that these groups satisfy property .Ci/ for some i 2 f1; 2g implies that the locally
symmetric spaces satisfy conditions .Ti/ and .Ni/ for the same i . So, the way
we prove Theorems 8.1–8.3 and 8.5–8.6 is by showing that condition .Ci/ holds
in the respective situations. For example, Theorem 8.1 is a consequence of the
following algebraic result.

Theorem 8.9. Assume that �1 and �2 are finitely generated (and Zariski-dense).

(i) If w1 >w2 then condition .C1/ holds.

(ii) If w1 D w2 but K�1
6�K�2

then again .C1/ hods.

Thus, unless w1 D w2 and K�1
D K�2

, condition .Ci/ holds for at least one
i 2 f1; 2g.

In [Prasad and Rapinchuk 2013] we prove much more precise results in the
case where the �i are arithmetic, which leads to the geometric applications
described above. We refer the interested reader to [Prasad and Rapinchuk 2013]
for the technical formulations of these results; a point we would like to make
here, however, is that our “algebraic” results (i.e., those asserting that condition
.Ci/ holds in certain situations) do not depend on Schanuel’s conjecture.

9. Generic elements and tori

The analysis of weak commensurability and its variations in [Garibaldi and
Rapinchuk 2013; Prasad and Rapinchuk 2009; 2013] relies on the remarkable
fact, first established in [Prasad and Rapinchuk 2003], that any Zariski-dense
subgroup of the group of rational points of a semisimple group over a finitely
generated field of characteristic zero contains special elements, to be called
generic elements here. It is convenient to begin our discussion of these elements
with the definition of generic tori.

Let G be a connected semisimple algebraic group defined over an infinite field
K. Fix a maximal K-torus T of G, and, as usual, let ˆDˆ.G;T / denote the
corresponding root system, and let W .G;T / be its Weyl group. Furthermore, we
let KT denote the (minimal) splitting field of T in a fixed separable closure K
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of K. Then the natural action of the Galois group Gal.KT =K/ on the character
group X.T / of T induces an injective homomorphism

�T WGal.KT =K/! Aut.ˆ.G;T //:

We say that T is generic (over K) if

�T .Gal.KT =K//�W .G;T /: (9)

For example, any maximal K-torus of G D SLn=K is of the form

T D R.1/
E=K

.GL1/;

for some n-dimensional commutative étale K-algebra E. Then such a torus is
generic over K if and only if E is a separable field extension of K and the Galois
group of the normal closure L of E over K is isomorphic to the symmetric
group Sn. It is well known that for each n> 2 one can write down a system of
congruences such that any monic polynomial f .t/ 2 ZŒt � satisfying this system
of congruences has Galois group Sn. It turns out that one can prove a similar
statement for maximal tori of an arbitrary semisimple algebraic group G over
a finitely generated field K of characteristic zero (see [Prasad and Rapinchuk
2003, Theorem 3]). In order to avoid technical details, we will restrict ourselves
here to the case of absolutely almost simple groups.

Theorem 9.1 [Prasad and Rapinchuk 2009, Theorem 3.1]. Let G be a connected
absolutely almost simple algebraic group over a finitely generated field K of
characteristic zero, and let r be the number of nontrivial conjugacy classes of
the Weyl group of G.

(1) There exist r inequivalent nontrivial discrete valuations v1; : : : ; vr of K

such that the completion Kvi
is locally compact and G splits over Kvi

for
all i D 1; : : : ; r .

(2) For any choice of discrete valuations v1; : : : ; vr as in (1), one can find
maximal Kvi

-tori T .vi/ of G, one for each i 2 f1; : : : ; rg, with the property
that any maximal K-torus T of G which is conjugate to T .vi/ by an element
of G.Kvi

/, for all i D 1; : : : ; r , is generic (i.e., the inclusion (9) holds).

The first assertion is an immediate consequence of the following, which
actually shows that we can find the vj ’s so that Kvj

DQpj
, where p1; : : : ;pr

are distinct primes.

Proposition 9.2 [Prasad and Rapinchuk 2002; 2003]. Let K be a finitely gener-
ated field of characteristic zero and R � K a finitely generated subring. Then
there exists an infinite set … of primes such that for each p 2… there exists an
embedding "pWK ,!Qp with the property "p.R/� Zp.
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To sketch a proof of the second assertion of Theorem 9.1, we fix a maximal K-
torus T0 of G. Given any other maximal torus T of G defined over an extension
F of K there exists g2G.F / such that T D �g.T0/, where �g.x/Dgxg�1. Then
�g induces an isomorphism between the Weyl groups W .G;T0/ and W .G;T /.
A different choice of g will change this isomorphism by an inner automorphism
of the Weyl group, implying that there is a canonical bijection between the sets
ŒW .G;T0/� and ŒW .G;T /� of conjugacy classes in the respective groups; we
will denote this bijection by �T0;T .

Now, let v be a nontrivial discrete valuation of K such that the completion
Kv is locally compact and splits T0. Using the Frobenius automorphism of the
maximal unramified extension Kur

v in conjunction with the fact that H 1.Kv; zG/,
where zG is the simply connected cover of G, vanishes (see [Bruhat and Tits
1987; Kneser 1965a; 1965b]),6 one shows that given a nontrivial conjugacy class
c 2 ŒW .G;T0/�, one can find a maximal Kv-torus T .v; c/ such that given any
maximal Kv-torus T of G that is conjugate to T .v; c/ by an element of G.Kv/,
for its splitting field KvT we have

�T .Gal.KvT =Kv//\ �T0;T .c/¤∅: (10)

Now, if v1; : : : ; vr are as in part (1), then using the weak approximation property
of the variety of maximal tori (see [Platonov and Rapinchuk 1994, Corollary 7.3]),
one can pick a maximal K-torus T0 which splits over Kvi

for all iD1; : : : ; r . Let
c1; : : : ; cr be the nontrivial conjugacy classes of W .G;T0/. Set T .vi/DT .vi ; ci/

for i D 1; : : : ; r in the above notation. Then it is not difficult to show that the
tori T .v1/; : : : ;T .vr / are as required.

The method described above enables one to construct generic tori with various
additional properties, in particular, having prescribed local behavior.

Corollary 9.3 [Prasad and Rapinchuk 2009, Corollary 3.2]. Let G and K be
as in Theorem 9.1, and let V be a finite set of inequivalent nontrivial rank 1
valuations of K. Suppose that for each v 2 V we are given a maximal Kv-torus
T .v/ of G. Then there exists a maximal K-torus T of G for which (9) holds and
which is conjugate to T .v/ by an element of G.Kv/, for all v 2 V .

It should be noted that the method of p-adic embeddings that we used in the
proof of Theorem 9.1, and which is based on Proposition 9.2, has many other
applications; see [Prasad and Rapinchuk 2010b].

6One can alternatively use the fact that if we endow zG with the structure of a group scheme
over Ov as a Chevalley group, then H 1.Kur

v =Kv ;
zG.Our

v //, where Kur
v is the maximal unramified

extension of Kv with the valuation ring Our
v , vanishes, which follows from Lang’s theorem [1956]

or its generalization due to Steinberg [1965]; see [Platonov and Rapinchuk 1994, Theorem 6.8].
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We are now prepared to discuss generic elements whose existence in any
finitely generated Zariski-dense subgroup is the core issue in this section.

Definition 9.4. Let G be a connected semisimple algebraic group defined over
a field K. A regular semisimple element g 2G.K/ is called generic (over K) if
the maximal torus T WDZG.g/

ı is generic (over K). We shall refer to T as the
torus associated with g.

Before proceeding with the discussion of generic elements, we would like to
point out that some authors adopt a slight variant of this definition by requiring
that the extension Kg of K generated by the eigenvalues of g be “generic”,
which is more consistent with the notion of a “generic polynomial” in Galois
theory. We note that Kg �KT making the Galois group Gal.Kg=K/ a quotient
of the group Gal.KT =K/. Then the requirement that the order of Gal.Kg=K/

be divisible by jW .G;T /j (which is probably one of the most natural ways to
express the “genericity” of Kg=K) a priori may not imply the inclusion (9),
which is most commonly used in applications (although, by Lemma 4.1 of [Prasad
and Rapinchuk 2009], the former does imply the latter if G is an inner form
of a split group — in particular, G is absolutely almost simple of type different
from An .n > 1/, Dn .n > 4/ and E6). On the other hand, even for a regular
element g 2 T .K/, where T is a maximal generic K-torus of G, the field Kg

may be strictly smaller than KT . (Example: Let G D PSL2 over K, and let T

be a maximal K-torus of G of the form R.1/
L=K

.GL1/ where L=K is a quadratic
extension; then an element g 2 T .K/ of order two is regular with Kg D K,
while KT DL). This problem, however, does not arise if G is absolutely simple,
T is generic and g 2 T .K/ has infinite order. Indeed, then the K-torus T is
irreducible; that is, it does not contain any proper K-subtori since W .G;T / acts
irreducibly on X.T /˝Z Q (cf. [Prasad and Rapinchuk 2001]). It follows that
every element g 2 T .K/ of infinite order generates a Zariski-dense subgroup
of T , hence Kg DKT , so the order of Gal.Kg=K/ is divisible by jW .G;T /j.
Recall that according to a famous result of Selberg [1972, Theorem 6.11], any
finitely generated subgroup � of G.K/ contains a torsion-free subgroup � 0 of
finite index, which therefore is also Zariski-dense. So, the following theorem
(Theorem 9.6) that asserts the existence of generic elements in an arbitrary
Zariski-dense subgroup in the sense of our definition also implies the existence
of generic elements in the sense of the other definition.

9.5. Let K be a field and G a connected absolutely almost simple K-group. Let
g 2 G.K/ be a generic element and let T D ZG.g/

ı. Then g 2 T .K/ (see
[Borel 1991, Corollary 11.12]). As T does not contain proper K-subtori, the
cyclic group generated by any t .2 T .K// of infinite order is Zariski-dense in T .
So ZG.t/DZG.T /D T ; which implies that t is generic (over K) and ZG.t/ is
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connected; in particular, if g is of infinite order, then ZG.g/ .D T / is connected.
Moreover, if n 2 G.K/ is such that ntn�1 commutes with t , then n lies in the
normalizer NG.T /.K/ of T in G.K/. If x is an element of G.K/ of infinite
order such that for some nonzero integer a, t WD xa lies in T .K/, then as x

commutes with t , it commutes with T and hence it lies in T .K/.
It is also clear that the tori associated to two generic elements are equal if and

only if the elements commute.
It is easily seen that the natural action of NG.T /.K/ on the character group

X.T / commutes with the natural action of Gal.KT =K/. Now since T is generic,
�T .Gal.KT =K// �W .G;T /, and as W .G;T / acts irreducibly on X.T /˝Z C,
we see that the elements of NG.T /.K/ act by ˙I on X.T /. Therefore, for
n2NG.T /.K/, n2 commutes with T and hence lies in T .K/. Now if n2G.K/

is such that ngn�1 commutes with g, then n belongs to NG.T /.K/ and n2 2

T .K/. So, if, moreover, n is of infinite order, then it actually lies in T .K/. Thus
an element of G.K/ of infinite order which does not belong to T .K/ cannot
normalize T .

Theorem 9.6. Let G be a connected absolutely almost simple algebraic group
over a finitely generated field K, and let � be a finitely generated Zariski-dense
subgroup of G.K/. Then � contains a generic element (over K) of infinite order.

(It is not difficult to show, e.g., using Burnside’s characterization of absolutely
irreducible linear groups, that any Zariski-dense subgroup � �G.K/ contains a
finitely generated Zariski-dense subgroup, so the assumption in the theorem that
� be finitely generated can actually be omitted.)

Sketch of the proof. Fix a matrix K-realization G � GLN , and pick a finitely
generated subring R � K so that � � G.R/ WD G \GLN .R/. Let r be the
number of nontrivial conjugacy classes in the Weyl group W .G;T /. Using
Proposition 9.2, we can find r distinct primes p1; : : : ;pr such that for each i 6 r

there exists an embedding "i WK ,!Qpi
such that "i.R/� Zpi

and G splits over
Qpi

. Let vi be the discrete valuation of K obtained as the pullback of the pi-adic
valuation of Qpi

so that Kvi
DQpi

. Pick maximal Kvi
-tori T .v1/; : : : ;T .vr /

as in part (2) of Theorem 9.1. Let †i be the Zariski-open Kvi
-subvariety of

regular elements in T .vi/. It follows from the implicit function theorem that the
image �i of the map

G.Kvi
/�†i.Kvi

/!G.Kvi
/; .g; t/ 7! gtg�1;

is open in G.Kvi
/ and intersects every open subgroup of the latter. On the other

hand, as explained in [Rapinchuk 2014, Section 3], the closure of the image
of the diagonal embedding � ,!

Qr
iD1 G.Kvi

/ is open, hence contains some
U D

Qr
iD1 Ui , where Ui � G.Kvi

/ is a Zariski-open torsion-free subgroup.
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Then
U0 WD

rQ
iD1

.Ui \�i/

is an open set that intersects � , and it follows from our construction that any
element g 2 � \U0 is a generic element of infinite order. �

Basically, our proof shows that given a finitely generated Zariski-dense sub-
group � of G.K/, one can produce a finite system of congruences (defined in
terms of suitable valuations of K) such that the set of elements 
 2 � satisfying
this system of congruences consists entirely of generic elements (and additionally
this set is in fact a coset of a finite index subgroup in � , in particular, it is
Zariski-dense in G). Recently, Jouve, Kowalski and Zywina [Jouve et al. 2013],
Gorodnik and Nevo [2011] and Lubotzky and Rosenzweig [2012] developed
different quantitative ways of showing that generic elements exist in abundance
(in fact, these results demonstrate that “most” elements in � are generic). More
precisely, the result of [Gorodnik and Nevo 2011] gives the asymptotics of the
number of generic elements of a given height in an arithmetic group, while
the results of [Lubotzky and Rosenzweig 2012], generalizing earlier results of
[Jouve et al. 2013], are formulated in terms of random walks on groups and apply
to arbitrary Zariski-dense subgroups in not necessarily connected semisimple
groups. These papers introduce several new ideas and techniques, but at the
same time employ the elements of the argument from [Prasad and Rapinchuk
2003] we outlined above.

The proofs of the results in [Prasad and Rapinchuk 2009; 2013] use not only
Theorem 9.6 itself but also its different variants that provide generic elements with
additional properties — e.g., having prescribed local behavior (Corollary 9.3).
We refer the interested reader to these papers for precise formulations (which
are rather technical), and will only indicate here the basic “multidimensional”
version of Theorem 9.6.

Theorem 9.7 [Prasad and Rapinchuk 2013, Theorem 3.4]. Let G, K and � �
G.K/ be as in Theorem 9.6. Then for any m> 1 one can find generic semisimple
elements 
1; : : : ; 
m 2 � of infinite order that are multiplicatively independent.

Finally, we would like to formulate a result that enables one to pass from the
weak commensurability of two generic semisimple elements to an isogeny, and
in most cases even to an isomorphism, of the ambient tori. This result relates the
analysis of weak commensurability to the problem of characterizing algebraic
group having the same isomorphism/isogeny classes of maximal tori.

Theorem 9.8 (isogeny theorem [Prasad and Rapinchuk 2009, Theorem 4.2]).
Let G1 and G2 be two connected absolutely almost simple algebraic groups
defined over an infinite field K, and let Li be the minimal Galois extension of K
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over which Gi becomes an inner form of a split group. Suppose that for i D 1; 2,
we are given a semisimple element 
i 2Gi.K/ contained in a maximal K-torus
Ti of Gi . Assume that:

(i) G1 and G2 are either of the same Killing–Cartan type, or one of them is of
type Bn and the other is of type Cn;

(ii) 
1 has infinite order;

(iii) T1 is K-irreducible; and

(iv) 
1 and 
2 are weakly commensurable.

Then:

(1) There exists a K-isogeny � WT2! T1 which carries 
m2

2
to 
m1

1
for some

integers m1;m2 > 1.

(2) If L1 DL2 DWL and �T1
.Gal.LT1

=L//�W .G1;T1/, then

��WX.T1/˝Z Q!X.T2/˝Z Q

has the property that ��.Q �ˆ.G1;T1// D Q �ˆ.G2;T2/. Moreover, if
G1 and G2 are of the same Killing–Cartan type different from B2 D C2,
F4 or G2, then a suitable rational multiple of �� maps ˆ.G1;T1/ onto
ˆ.G2;T2/, and if G1 is of type Bn and G2 is of type Cn, with n> 2, then a
suitable rational multiple � of �� takes the long roots in ˆ.G1;T1/ to the
short roots in ˆ.G2;T2/ while 2� takes the short roots in ˆ.G1;T1/ to the
long roots in ˆ.G2;T2/.

It follows that in the situations where �� can be, and has been, scaled so
that ��.ˆ.G1;T1//Dˆ.G2;T2/, it induces K-isomorphisms z� W zT2!

zT1 and
� WT 2! T 1 between the corresponding tori in the simply connected and adjoint
groups zGi and Gi , respectively, that extend to K-isomorphisms zG2!

zG1 and
G2!G1. Thus, the fact that Zariski-dense torsion-free subgroups �1 �G1.K/

and �2�G2.K/ are weakly commensurable implies (under some minor technical
assumptions) that G1 and G2 have the same K-isogeny classes (and under
some additional assumptions, even the same K-isomorphism classes) of generic
maximal K-tori that nontrivially intersect �1 and �2, respectively.

For a “multidimensional” version of Theorem 9.8, which is formulated using
the notion of weak containment (see Section 8) in place of weak commensura-
bility, see [Prasad and Rapinchuk 2013, Theorem 2.3].

9.9. We conclude this section with one new observation (Theorem 9.10) which
is directly related to the main theme of the workshop — thin groups. This
observation was inspired by a conversation of the first-named author with Igor
Rivin at the Institute for Advanced Study.
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Let G be a connected absolutely almost simple algebraic group over a field K

of characteristic zero, and let T be a maximal K-torus of G. We let ˆ>.G;T /
(resp., ˆ<.G;T /) denote the set of all long (resp., short) roots in the root system
ˆ.G;T /; by convention,

ˆ>.G;T /Dˆ<.G;T /Dˆ.G;T /

if all roots have the same length. Furthermore, we let G>
T

denote the K-subgroup
of G generated by T and the one-parameter unipotent subgroups Ua for a in
ˆ>.G;T /. Then G>

T
is a connected semisimple subgroup of G of maximal

absolute rank (so, in fact, just the Ua’s for a 2 ˆ>.G;T / generate G>
T

). By
direct inspection, one verifies that G>

T
¤G precisely when ˆ.G;T / has roots

of different lengths, and then G>
T

is a semisimple group of type .A1/
n if G is of

type Cn, and an absolutely almost simple group of type Dn, D4 and A2 if G is
of type Bn, F4 and G2, respectively. On the other hand, the subgroups Ua for
a 2ˆ<.G;T / generate G in all cases. Finally, for any connected subgroup of
G containing T there exists a subset ‰ �ˆ.G;T / such that G is generated by
T and Ua for all a 2‰.

Theorem 9.10. Let g be a generic element of infinite order and T WD ZG.g/

be the associated maximal torus. Let x 2G.K/ be any element of infinite order
not contained in T .K/. Furthermore, let � be the (abstract) subgroup of G.K/

generated by g and x, and let H be the identity component of the Zariski-closure
of � . Then either H D G or H D G>

T
. Consequently, g and x generate a

Zariski-dense subgroup of G if all roots in the root system ˆ.G;T / are of same
length.

Proof. As g is a generic element of infinite order, the cyclic group generated
by it is Zariski-dense in T , and so the cyclic group generated by xgx�1 is
Zariski-dense in the conjugate torus xT x�1. Since x 62 T .K/ and is of infinite
order, it cannot normalize T (see 9.5). Thus H contains at least two different
(generic) maximal K-tori, namely T and xT x�1. Assume that H ¤G. Since H

is connected and properly contains T , it must contain a one-parameter subgroup
Ua for some a 2ˆ.G;T /. Then being defined over K, H also contains Ub for
all b of the form bD �.a/ with � 2Gal.KT =K/. Now since T is generic, using
the fact that the Weyl group W .G;T / acts transitively on the subsets of roots of
same length (by [Bourbaki 1968, Chapter VI, Proposition 11]), we see that H

contains Ub for all roots b 2ˆ.G;T / of same length as a. If a were a short root
then the above remarks would imply that H DG, which is not the case. Thus,
a must be long, and therefore H contains G>

T
but does not contain Ub for any

short root b. This clearly implies that H DG>
T

. �
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Remark 9.11. It is worth noting that the types with roots of different lengths are
honest exceptions in Theorem 9.10 in the sense that for any absolutely almost
simple algebraic group G of one of those types over a finitely generated field K

one can find two generic elements 
1; 
2 2 G.K/ that generate G>
T
¤ G for a

generic maximal K-torus T . To see this, we first pick an arbitrary generic element

1 2G.K/ of infinite order provided by Theorem 9.6, and let T DZG.
1/ be
the corresponding torus. Since H WD G>

T
is semisimple, the group H.K/ is

Zariski-dense in H (by [Borel 1991, Corollary 18.3]). So, there exists h2H.K/

such that 
2 WD h
1h�1 62 T .K/. Then 
2 2 H.K/ is also generic over K,
and the Zariski-closure of the subgroup generated by 
1 and 
2 is contained in
(actually, is equal to) H .

10. Some open problems

The analysis of weak commensurability has led to a number of interesting
problems in the theory of algebraic and Lie groups (see Section 6, for example)
and its applications to locally symmetric spaces, and we would like to conclude
this article with a brief discussion of some of these problems.

According to Theorem 4.5, if two lattices in the groups of rational points of
connected absolutely almost simple groups over a nondiscrete locally compact
field are weakly commensurable and one of the lattices is arithmetic, then so
is the other. At the same time, it has been shown by means of an example (see
[Prasad and Rapinchuk 2009, Remark 5.5]) that a Zariski-dense subgroup weakly
commensurable to a rank-one arithmetic subgroup need not be arithmetic. It
would be interesting, however, to understand what happens with higher-rank
S -arithmetic subgroups.

Problem 10.1. Let G1 and G2 be two connected absolutely almost simple alge-
braic groups defined over a field F of characteristic zero, and let �1 �G1.F /

be a Zariski-dense .K;S/-arithmetic subgroup whose S-rank7 is at least 2. If
�2 � G2.F / is a Zariski-dense subgroup weakly commensurable to �1, is �2

necessarily S -arithmetic?

This problem appears to be very challenging; the answer is not known even
in the cases where �1 is SL3.Z/ or SL2.ZŒ1=p�/. One should probably start by
considering Problem 10.1 in a more specialized situation, e.g., assuming that F

is a nondiscrete locally compact field, �1 �G1.F / is a discrete Zariski-dense
(higher-rank) S-arithmetic subgroup, and �2 �G2.F / is a (finitely generated)
discrete Zariski-dense subgroup weakly commensurable to �1 (these restrictions
would eliminate SL2.ZŒ1=p�/ as a possibility for �1, but many interesting groups

7We recall that if � is .G;K;S/-arithmetic, then the S -rank of � is defined to be
P
v2S rkKv

G,
where rkF G denotes the rank of G over a field F �K.
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such as SL3.Z/ would still be included). The nature of these assumptions brings
up another question of independent interest.

Problem 10.2. Let G1 and G2 be connected absolutely almost simple algebraic
groups over a nondiscrete locally compact field F , and let �i be a finitely
generated Zariski-dense subgroup of Gi.F / for i D 1; 2. Assume that �1 and �2

are weakly commensurable. Does the discreteness of �1 imply the discreteness
of �2?

An affirmative answer to Problem 10.2 was given in [Prasad and Rapinchuk
2009, Propisition 5.6] for the case where F is a nonarchimedean local field, but
the case F DR or C remains open. Another interesting question is whether weak
commensurability preserves cocompactness of lattices.

Problem 10.3. Let G1 and G2 be connected absolutely almost simple algebraic
groups over F D R or C, and let �i �Gi.F / be a lattice for i D 1; 2. Assume
that �1 and �2 are weakly commensurable. Does the compactness of G1.F /=�1

imply the compactness of G2.F /=�2?8

We recall that the cocompactness of a lattice in a semisimple real Lie group is
equivalent to the absence of nontrivial unipotents in it; see [Raghunathan 1972,
Corollary 11.13]. So, Problem 10.3 can be rephrased as the question whether
for two weakly commensurable lattices �1 and �2, the existence of nontrivial
unipotent elements in one of them implies their existence in the other; in this form
the question is meaningful for arbitrary Zariski-dense subgroups (not necessarily
discrete or of finite covolume). The combination of Theorems 4.4 and 4.5 implies
the affirmative answer to Problem 10.3 in the case where one of the lattices is
arithmetic, but no other cases have been considered so far.

From the general perspective, one important problem is to try to generalize
our results on length-commensurable and/or isospectral arithmetically defined
locally symmetric spaces of absolutely simple real Lie groups to arithmetically
defined locally symmetric spaces of arbitrary semisimple Lie groups, or at least
those of R-simple Lie groups. To highlight the difficulty, we will make some
comments about the latter case. An R-simple adjoint group G can be written in
the form G D RC=R.H / (restriction of scalars) where H is an absolutely simple
complex algebraic group. Arithmetic lattices in G.R/'H.C/ come from the
forms of H over a number field admitting exactly one complex embedding. The
analysis of weak commensurability of even arithmetic lattices �1 �G1.R/ and
�2 �G2.R/, where Gi D RC=R.Hi/ for i D 1; 2, cannot be implemented via the

8It is well known that for a semisimple algebraic group G over a nondiscrete nonarchimedean
locally compact field F of characteristic zero and a discrete subgroup � � G.F /, the quotient
G.F /=� has finite measure if and only if it is compact, so the problem in this case becomes
vacuous.
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study of the forms of the Gi’s, forcing us to study directly the forms of the Hi’s.
But the relation of weak commensurability of semisimple elements 
1 2 �1 and

2 2 �2 in terms of G1 and G2 — i.e., the fact that �1.
1/ D �2.
2/ ¤ 1 for
some characters �i of maximal R-tori Ti of Gi such that 
i 2 Ti.R/— translates
into a significantly more complicated relation in terms of H1 and H2. Indeed,
pick maximal C-tori Si of Hi so that Ti D RC=R.Si/, and let ıi 2 Si.C/ be the
element corresponding to 
i under the identification Ti.R/' Si.C/. Then there
exist characters �0i ; �

00
i of Si such that �i.
i/D �

0
i.ıi/�

00
i .ıi/. So, the relation of

weak commensurability of 
1 and 
2 assumes the following form in terms of ı1
and ı2:

�01.ı1/�
00
1
.ı1/D �

0
2.ı2/�

00
2
.ı2/:

It is not clear if this type of relation would lead to the results similar to those
we described in this article for the weakly commensurable arithmetic subgroups
of absolutely almost simple groups. So, the general problem at this stage is to
formulate for general semisimple groups (or at least R-simple groups) the “right”
notion of weak commensurability and explore its consequences. We will now
formulate a particular case of this general program that would be interesting for
geometric applications.

Problem 10.4. Let G1 and G2 be almost simple complex algebraic groups. Two
semisimple elements 
i 2 Gi.C/ are called R-weakly commensurable if there
exist complex maximal tori Ti of Gi for i D 1; 2 such that 
i 2 Ti.C/ and for
suitable characters �i of Ti we have

j�1.
1/j D j�2.
2/j ¤ 1:

Furthermore, Zariski-dense (discrete) subgroups �i �Gi.C/ are R-weakly com-
mensurable if every semisimple element 
1 2 �1 of infinite order is R-weakly
commensurable to some semisimple element 
2 2 �2 of infinite order, and vice
versa. Under what conditions does the R-weak commensurability of Zariski-
dense (arithmetic) lattices �i �Gi.C/ .i D 1; 2/ imply their commensurability?

The result of [Chinburg et al. 2008] seems to imply that the R-weak commen-
surability of arithmetic lattices in SL2.C/ does imply their commensurability,
but no other results in this direction are available.

Turning now to the geometric aspect, we would like to reiterate that most of
our results deal with the analysis of the new relation of length-commensurability,
which eventually implies the results about isospectral locally symmetric spaces.
At the same time, the general consequences of isospectrality and isolength
spectrality are much better understood than those of length-commensurability.
So, as an overarching problem, we would like to propose the following.
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Problem 10.5. Understand consequences (qualitative and quantitative) of length-
commensurability for locally symmetric spaces.

(Here by quantitative consequences we mean results stating that in certain
situations a family of length-commensurable locally symmetric spaces consists
either of a single commensurability class or of a certain bounded number of com-
mensurability classes, and by qualitative consequences - results guaranteeing that
the number of commensurability classes in a given class of length-commensurable
locally symmetric spaces is finite.)

There are various concrete questions within the framework provided by
Problem 10.5 that were resolved in [Prasad and Rapinchuk 2009] for arith-
metically defined locally symmetric spaces but remain open for locally sym-
metric spaces which are not arithmetically defined. For example, according to
Theorem 5.3, if X�1

and X�2
are length-commensurable and at least one of the

spaces is arithmetically defined, then the compactness of one of them implies
the compactness of the other. It is natural to ask if this can be proved for locally
symmetric spaces which are not arithmetically defined.

Problem 10.6 (geometric version of Problem 10.3). Let X�1
and X�2

be length-
commensurable locally symmetric spaces of finite volume. Does the compactness
of X�1

always imply the compactness of X�2
?

In [Prasad and Rapinchuk 2009, Section 9], for each of the exceptional
types An, D2nC1 .n > 1/ and E6, we have constructed examples of length-
commensurable, but not commensurable, compact arithmetically defined locally
symmetric spaces associated with a simple real algebraic group of this type. It
would be interesting to see if this construction can be refined to provide examples
of isolength spectral or even isospectral compact arithmetically defined locally
symmetric spaces that are not commensurable.

Problem 10.7. For inner and outer types An .n> 1/, D2nC1 .n> 1/ and E6, con-
struct examples of isospectral compact arithmetically defined locally symmetric
spaces that are not commensurable.

Currently, such a construction is known only for inner forms of type An (see
[Lubotzky et al. 2006]); it relies on some delicate results from the theory of
automorphic forms [Harris and Taylor 2001], the analogues of which are not yet
available for groups of other types.

As we already mentioned, in [Prasad and Rapinchuk 2009] we focused on
the case where G1 and G2 are absolutely (almost) simple real algebraic groups.
From the geometric perspective, however, it would be desirable to consider
a more general situation where G1 and G2 are allowed to be either arbitrary
real semisimple groups (without compact factors), or at least arbitrary R-simple
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groups. This problem is intimately related to the problem, discussed above,
of generalizing our results on weak commensurability from absolutely almost
simple to arbitrary semisimple groups. In particular, a successful resolution
of Problem 10.4 would enable us to extend our results to the (arithmetically
defined) locally symmetric spaces associated with R-simple groups providing
thereby a significant generalization of the result of [Chinburg et al. 2008] where
the case G1 DG2 D RC=R.SL2/ (that leads to arithmetically defined hyperbolic
3-manifolds) was considered.

Finally, the proof of the result that connects the length-commensurability of
X�1

and X�2
to the weak commensurability of �1 and �2 relies (at least in the

higher-rank case) on Schanuel’s conjecture. It would be interesting to see if
our geometric results can be made independent of Schanuel’s conjecture. Some
results in this direction were obtained in [Bhagwat et al. 2012].
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