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For a geometrically finite group 0 of G = SO(n, 1), we survey recent de-
velopments on counting and equidistribution problems for orbits of 0 in a
homogeneous space H\G where H is trivial, symmetric or horospherical.
Main applications are found in an affine sieve on orbits of thin groups as
well as in sphere counting problems for sphere packings invariant under a
geometrically finite group. In our sphere counting problems, spheres can be
ordered with respect to a general conformal metric.
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1. Introduction

In this article we discuss counting and equidistribution problems for orbits of
thin groups in homogeneous spaces.

Let G be a connected semisimple Lie group and H a closed subgroup. We
consider the homogeneous space V = H\G and fix the identity coset x0 = [e].
Let 0 be a discrete subgroup of G such that the orbit x00 is discrete, and let
{BT : T > 1} be a family of compact subsets of V whose volume tends to infinity
as T →∞. Understanding the asymptotic of #(x00 ∩ BT ) is a fundamental
problem which bears many applications in number theory and geometry. We
refer to this type of counting problem as an archimedean counting as opposed to
a combinatorial counting where the elements in x00 are ordered with respect to
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a word metric on 0; both have been used in applications to sieves; see [Kowalski
2010; 2014].

When 0 is a lattice in G, i.e., when 0\G admits a finite invariant measure,
this problem is well understood for a large class of subgroups H , e.g., when H
is a maximal subgroup: assuming that the boundaries of the BT are sufficiently
regular and that H∩0 is a lattice in H , the value of #(x00∩BT ) is asymptotically
proportional to the volume of BT , computed with respect to a suitably normalized
G-invariant measure in V [Duke et al. 1993; Eskin and McMullen 1993; Eskin
et al. 1996; Benoist and Oh 2012]. See also the survey paper [Oh 2010].

When 0 is a thin group, i.e., a Zariski dense subgroup which is not a lattice
in G, it is far less understood in a general setting. In this article we focus on
the case when G is the special orthogonal group SO(n, 1) and H is either a
symmetric subgroup or a horospherical subgroup (the case of H being the trivial
subgroup will be treated as well). In this case, we have a more or less satisfactory
understanding for the counting problem for groups 0 equipped with a certain
finiteness property, called the geometric finiteness (see Definition 2.1).

By the fundamental observation of Duke, Rudnick and Sarnak [Duke et al.
1993], the counting problem for x00 ∩ BT can be well approached via the
following equidistribution problem:

Describe the asymptotic distribution of 0\0Hg in 0\G as g→∞.

The assumption that H is either symmetric or horospherical is made so
that we can approximate the translate 0\0Hg locally by the matrix coefficient
function in the quasiregular representation space L2(0\G). This idea goes back
to Margulis’s 1970 thesis (translated in [Margulis 2004]; also see [Kleinbock
and Margulis 1996]), but a more systematic formulation in our setting is due to
Eskin and McMullen [1993].

The fact that the trivial representation is contained in L2(0\G) for 0 lattice
is directly related to the phenomenon that, when 0\0H is of finite volume,
the translate 0\0Hg becomes equidistributed in 0\G with respect to a G-
invariant measure as g→∞ in H\G. When 0 is not a lattice, the minimal
subrepresentation, that is, the subrepresentation with the slowest decay of matrix
coefficients of L2(0\G), is infinite-dimensional and this makes the distribution
of 0\0Hg much more intricate, and understanding it requires introducing several
singular measures in 0\G. A key input is the work of Roblin [2003] on the
asymptotic of matrix coefficients for L2(0\G), which he proves using ergodic
theoretic methods.

There is a finer distinction among geometrically finite groups depending on the
size of their critical exponents. When the critical exponent δ of 0 exceeds n−1
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work of Lax and Phillips [1982] implies a spectral gap for L2(0\Hn); which we
call a spherical spectral gap for L2(0\G) as it concerns only the spherical part of
L2(0\G). We formulate a notion of a spectral gap for L2(0\G) which deals with
both spherical and nonspherical parts, based on the knowledge of the unitary dual
of G. Under the hypothesis that L2(0\G) admits a spectral gap (this is known to
be true if δ > n−2), developing Harish-Chandra’s work on harmonic analysis on
G in combination with Roblin’s work on ergodic theory, we obtain an effective
version of the asymptotic of matrix coefficients for L2(0\G) in [Mohammadi
and Oh 2012b]. This enables us to state an effective equidistribution of 0\0Hg
in 0\G. Similar to the condition that 0\0H is of finite volume in the case of 0
lattice, there is also a certain restriction on the size of the orbit 0\0H in order to
deduce such an equidistribution. A precise condition is that the skinning measure
µPS

H of 0\0H , introduced in [Oh and Shah 2013], is finite; roughly speaking
|µPS

H | measures asymptotically the portion of 0\0H which returns to a compact
subset after flowed by the geodesic flow. When the skinning measure µPS

H is
compactly supported, the passage from the asymptotic of the matrix coefficient
to the equidistribution of 0\0Hg can be done by the so-called usual thickening
methods. However when µPS

H is not compactly supported, this step requires a
genuinely different strategy from the lattice case via the study of the transversal
intersections, carefully done in [Oh and Shah 2013].

The error term in our effective equidistribution result of 0\0Hg depends
only on the spectral gap data of 0. This enables us to state the asymptotic of
#(x00dγ ∩ BT ) effectively in a uniform manner for all γ ∈ 0 and for any family
{0d < 0} of subgroups of finite index which has a uniform spectral gap, if they
satisfy 0d ∩ H = 0 ∩ H . When 0 is a subgroup of an arithmetic subgroup of
G with δ > n− 2, the work of Salehi Golsefidy and Varjú [2012], extending an
earlier work of Bourgain, Gamburd and Sarnak [Bourgain et al. 2010a], provides
a certain congruence family {0d} satisfying this condition.

A recent development on an affine sieve [Bourgain et al. 2011] then tells us
that such a uniform effective counting statement can be used to describe the
distribution of almost prime vectors, as well as to give a sharp upper bound for
primes (see Theorem 6.6).

One of the most beautiful applications of the study of thin orbital counting
problem can be found in Apollonian circle packings. We will describe this
application as well as its higher-dimensional analogues. The ordering in counting
circles can be done not only in the Euclidean metric, but also in general conformal
metrics. It is due to this flexibility that we can also describe the asymptotic
number of circles in the ideal triangle of the hyperbolic plane ordered by the
hyperbolic area in the last section.
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2. 0-invariant conformal densities and measures on 0\G

In the whole article, let (Hn, d) be the n-dimensional real hyperbolic space with
constant curvature−1 and ∂(Hn) its geometric boundary. Set G := Isom+(Hn)'

SO(n, 1)◦. Let 0 be a discrete torsion-free subgroup of G. We assume that 0 is
nonelementary, or equivalently, 0 has no abelian subgroup of finite index.

We review some basic geometric and measure theoretic concepts for 0 and
define several locally finite Borel measures (Radon measures) on 0\G associated
to 0-invariant conformal densities on ∂(Hn). When 0 is a lattice, these measures
all coincide with each other, being simply a G-invariant measure. But for a thin
subgroup 0, they are all different and singular, and appear in our equidistribution
and counting statements. General references for this section are [Ratcliffe 2006;
Bowditch 1993; Patterson 1976; Sullivan 1979; 1984; Roblin 2003].

Limit set and geometric finiteness. We denote by δ0 = δ the critical exponent
of 0, i.e., the abscissa of convergence of the Poincaré series

∑
γ∈0 e−sd(o,γ (o))

for o ∈ Hn . We have 0 < δ ≤ n − 1. The limit set 3(0) is defined to be the
set of all accumulation points of 0(z) in the compactification Hn = Hn

∪ ∂(Hn),
z ∈ Hn . As 0 is discrete, 3(0) is contained in the boundary ∂(Hn).

Definition 2.1. (1) The convex core C(0) of 0 is the quotient by 0 of the
smallest convex subset of Hn containing all geodesics connecting points in
3(0).

(2) 0 is called geometrically finite (resp. convex cocompact) if the unit neigh-
borhood of the convex core of 0 has finite volume (resp. compact).

A lattice is clearly a geometrically finite group and so is a discrete group
admitting a finite sided convex fundamental domain in Hn . An important charac-
terization of a geometrically finite group is given in terms of its limit set. For
this, we need to define: a point ξ ∈3(0) is called a parabolic limit point for 0
if ξ is a unique fixed point in ∂Hn for an element of 0 and a radial limit point if
the projection of a geodesic ray ξt toward ξ in 0\Hn meets a compact subset for
an unbounded sequence of time t .

Now 0 is geometrically finite if and only if 3(0) consists only of parabolic
and radial limit points [Bowditch 1993]. For 0 geometrically finite, its critical
exponent δ is equal to the Hausdorff dimension of 3(0), and is n−1 only when
0 is a lattice in G [Sullivan 1979].

Conformal densities. To define a conformal density, we first recall the Busemann
function βξ (x, y) for x, y ∈ Hn and ξ ∈ ∂(Hn):

βξ (x, y)= lim
t→∞

d(x, ξt)− d(y, ξt)



HARMONIC ANALYSIS, ERGODIC THEORY AND COUNTING 183

where ξt is a geodesic toward ξ . Hence βξ (x, y) measures a signed distance
between horospheres based at ξ passing through x and y (a horosphere based at
ξ is a Euclidean sphere in Hn tangent at ξ ).

Definition 2.2. A 0-invariant conformal density of dimension δµ > 0 is a family
{µx : x ∈ Hn

} of finite positive measures on ∂(Hn) satisfying

(1) γ∗µx = µγ (x) for any γ ∈ 0, and

(2) dµx
dµy

(ξ)= eδµβξ (y,x) for all x, y ∈ Hn and ξ ∈ ∂(Hn).

It is easy to construct such a density of dimension n−1, as we simply need to
set mx to be the StabG(x)-invariant probability measure on Hn . This is a unique
up to scaling, and does not depend on 0. We call it the Lebesgue density.

How about in other dimensions? A fundamental work of Patterson [1976],
generalized by Sullivan [1979], shows the following by an explicit construction:

Theorem 2.3. There exists a 0-invariant conformal density of dimension δ0 = δ.

Assuming that 0 is of divergence type, i.e., its Poincaré series diverges at
s = δ, Patterson’s construction can be summarized as follows: Fixing o ∈ Hn ,
for each x ∈ Hn , consider the finite measure on Hn given by

νx,s =
1∑

γ∈0 e−sd(o,γ (o))

∑
γ∈0

e−sd(x,γ (o))δγ (o).

Then νx is the (unique) weak-limit of νx,s as s→ δ+, and {νx : x ∈ Hn
} is the

desired density of dimension δ.

In the following, we fix a 0-invariant conformal density {νx} of dimension δ,
and call it the Patterson–Sullivan density (or simply the PS density). It is known
to be unique up to scaling, when 0 is of divergence type, e.g., geometrically
finite groups.

Denoting by 1 the hyperbolic Laplacian on Hn , the PS density is closely
related to the bottom of the spectrum of 1 for its action on smooth functions on
0\Hn . If we set φ0(x) := |νx | for each x ∈ Hn , then

φ0(x)=
∫
ξ∈3(0)

dνx(ξ)=

∫
ξ∈3(0)

dνx

dνo
(ξ) dνo(ξ)=

∫
ξ∈3(0)

eδβξ (o,x)dνo(ξ).

Since γ∗νx = νγ (x), we note that φ0(γ (x)) = φ0(x), i.e., φ0 is a function on
0\Hn , which is positive everywhere! Furthermore:

(1) 1(φ0)= δ(n− 1− δ)φ0.

(2) If 0 is geometrically finite, then φ0 ∈ L2(0\Hn) if and only if δ > n−1
2 .
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Measures on 0\G associated to a pair of conformal densities. For v ∈T1(Hn),
we denote by v+ and v− the forward and backward endpoints of the geodesic
determined by v. Fixing o ∈ Hn , the map v 7→ (v+, v−, s = βv−(o, v)) gives a
homeomorphism between T1(Hn) and (∂(Hn)×∂(Hn)−diagonal)×R. Therefore
we may use the coordinates (v+, v−, s = βv−(o, v)) of v in order to define
measures on T1(Hn).

Let {µx} and {µ′x} be 0-invariant conformal densities on ∂(Hn) of dimensions
δµ and δµ′ respectively. After [Roblin 2003], we define a measure m̃µ,µ′ on
T1(Hn) associated to {µx} and {µ′x} by

dm̃µ,µ′(v)= eδµβv+ (o,v) eδµ′βv− (o,v) dµo(v
+) dµ′o(v

−) ds. (2.4)

It follows from the 0-invariant conformal properties of {µx} and {µ′x} that
the definition of m̃µ,µ′ is independent of the choice of o ∈ Hn and that m̃µ,µ′ is
left 0-invariant. Hence it induces a Radon measure mµ,µ′ on the quotient space
T1(0\Hn)= 0\T1(Hn).

We will lift the measure mµ,µ′ to 0\G. This lift depends on the choice of
subgroups K , M and A = {at } of G. Here K is a maximal compact subgroup of
G and M is the stabilizer of a vector X0 ∈ T1(Hn) based at o ∈Hn with K = Go.
Via the isometric action of G, we may identify the quotient spaces G/K and
G/M with Hn and T1(Hn) respectively. Let A = {at } be the one parameter
subgroup of diagonalizable elements of G such that the right multiplication by
at on G/M corresponds to the geodesic flow on T1(Hn) for time t .

By abuse of notation, we use the same notation mµ,µ′ for the M-invariant
extension of mµ,µ′ on 0\G/M = 0\T1(Hn) to 0\G, that is, for 9 ∈ Cc(0\G),

mµ,µ′(9)=

∫
x∈0\G/M

9M(x) dmµ,µ′(x)

where 9M(x)=
∫

M 9(xm) dm for the probability M-invariant measure dm on
M .

The measures mµ,µ′ on 0\G where µ and µ′ are the PS-density {νx} or the
Lebesgue density {mx} are of special importance. We name them as follows:

• Bowen–Margulis–Sullivan measure: mBMS
:= mν,ν

• Burger–Roblin measure: mBR
:= mm,ν

• Burger–Roblin ∗-measure: mBR
∗
:= mν,m

• Haar measure: mHaar
:= mm,m .

For brevity, we refer to these as BMS, BR, BR∗, and Haar measures, respectively.
As the naming indicates, mHaar turns out to be a G-invariant measure. For g ∈G,
we use the notation g± for (gM)± with gM considered as a vector in T1(Hn).
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It is clear from the definition that the supports of BMS, BR, BR∗ measures are
respectively given by {g ∈ 0\G : g± ∈ 3(0)}, {g ∈ 0\G : g− ∈ 3(0)}, and
{g ∈ 0\G : g+ ∈3(0)}. In particular, the support of BMS measure is contained
in the convex core of 0. Sullivan showed that |mBMS

|<∞ if 0 is geometrically
finite.

The BMS, BR and BR∗ measures are respectively invariant under A, N+

and N− where N+ and N− denote the expanding and contracting horospherical
subgroups of G for at :

N± = {g ∈ G : at ga−t → e as t→±∞}.

The finiteness of mBMS turns out to be a critical condition for the ergodic
theory on 0\G.

Theorem 2.5. Suppose that |mBMS
|<∞ and that 0 is Zariski dense.

(1) mBMS is A-mixing: for any 91, 92 ∈ L2(0\G),

lim
t→∞

∫
0\G

91(gat)92(g) dmBMS(g)=
1

|mBMS|
mBMS(91) ·mBMS(92).

(2) Any locally finite N+-ergodic invariant measure on 0\G is either supported
on a closed N+M0-orbit where M0 is an abelian closed subgroup of M or
mBR.

(3) mBR is a finite measure if and only if 0 is a lattice in G.

Claim (1) was first made in [Flaminio and Spatzier 1990]. However there
is a small gap in their proof which is now fixed in [Winter ≥ 2012]. Winter
also obtained Claim (1) in a general rank one symmetric space. For M-invariant
functions, this claim was earlier proved by Babillot [2002] and in this case the
Zariski density assumption is not needed. Claim (2) was first proved by Burger
[1990] for a convex cocompact surface with critical exponent bigger than 1/2.
In a general case, Winter obtained Claim (2) from Roblin’s work [2003] and
Claim (1).

Claim (3) is proved in [Oh and Shah 2013], using Ratner’s measure classifi-
cation [1991] of finite measures invariant under unipotent flows. Namely, we
show that mBR is not one of those homogeneous measures that her classification
theorem lists for finite invariant measures.

In the spirit of Ratner’s measure classification theorem, we pose the following
question:

Problem 2.6. Under the assumption of Theorem 2.5, let U be a connected
unipotent subgroup of G or more generally a connected subgroup generated by
unipotent one-parameter subgroups.
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(1) Classify all locally finite U -invariant ergodic measures in 0\G.

(2) Describe the closures of U -orbits in 0\G.

The emphasis here is that we want to understand not only finite measures but
all Radon measures. In general, this seems to be a very challenging question.
We mention a recent related result from [Mohammadi and Oh 2012a]: if 0 is a
convex cocompact subgroup of G and U is a connected unipotent subgroup of
N+ of dimension k, mBR is U -ergodic if δ > (n− 1)− k. Precisely speaking,
this is proved only for n = 3 in [Mohammadi and Oh 2012a], but the methods of
proof works for a general n ≥ 3 as well.

3. Matrix coefficients for L2(0\G)

Let 0 be a discrete, torsion-free, nonelementary subgroup of G = SO(n, 1)◦.
The right translation action of G on L2(0\G,mHaar) gives rise to a unitary
representation, as mHaar is G-invariant. For 91, 92 ∈ L2(0\G), the matrix
coefficient function is a smooth function on G defined by

g 7→ 〈g.91, 92〉 :=

∫
0\G

91(xg)92(x)dmHaar(x).

Understanding the asymptotic expansion of 〈at .91, 92〉 (as t→∞) is a basic
problem in harmonic analysis as well as a main tool in our approach to the
counting problem.

The quality of the error term in this type of the asymptotic expansion usually
depends on Sobolev norms of 9i ’s. For 9 ∈ C∞(0\G) and d ∈ N, the d-th
Sobolev norm of 9 is given by Sd(9)=

∑
‖X (9)‖2 where the sum is taken

over all monomials X in some fixed basis of the Lie algebra of G of order at
most d and ‖X (9)‖2 denotes the L2-norm of 9.

In order to describe our results as well as a conjecture, we begin by describing
the unitary dual of G, i.e., the set of equivalence classes of all irreducible unitary
representations of G.

The unitary dual Ĝ. Let K be a maximal compact subgroup of G and fix a
Cartan decomposition G = K A+K . We parametrize A+ = {at : t ≥ 0} so that
at corresponds to the geodesic flow on T1(Hn)= G/M where M := CK (A+) is
the centralizer of A+ in K .

A representation π ∈ Ĝ is said to be tempered if for any K -finite vectors v1, v2

of π , the matrix coefficient function g 7→ 〈π(g)v1, v2〉 belongs to L2+ε(G) for
any ε > 0. We write Ĝ = Ĝ temp ∪ Ĝnontemp as the disjoint union of tempered
representations and nontempered representations.



HARMONIC ANALYSIS, ERGODIC THEORY AND COUNTING 187

The work of Hirai [1962] on the classification of Ĝ implies that nontempered
part of the unitary dual Ĝ consists of the trivial representation, and complementary
series representations U(υ, s − n + 1) parameterized by υ ∈ M̂ and s ∈ Iυ ,
where M̂ is the unitary dual of M and Iυ is an interval contained in (n−1

2 , n−1),
depending on υ (see also [Knapp and Stein 1971, Propositions 49, 50]). Moreover
U(υ, s− n+ 1) is spherical if and only if υ is the trivial representation 1 of M .
By choosing a Casimir operator C of the Lie algebra of G normalized so that
it acts on C∞(G)K

= C∞(Hn) by the negative Laplacian, the normalization is
made so that C acts on U(1, s− n+ 1)∞ by the scalar s(s− n+ 1).

Lattice case: |mHaar|<∞. Set

L2
0(0\G) := {9 ∈ L2(0\G) :

∫
9 dmHaar

= 0}.

When 0 is a lattice, we have L2(0\G) = C ⊕ L2
0(0\G). It is well-known

that there exists n−1
2 < s0 < (n − 1) such that L2

0(0\G) does not contain any
complementary series representation of parameter s ≥ s0 [Borel and Garland
1983]. This implies:

Theorem 3.1 [Shalom 2000; Kontorovich and Oh 2011, Proposition 5.3]. Sup-
pose 0 is a lattice in G, that is, |mHaar

| <∞. There exists ` ∈ N such that for
any 91, 92 ∈ L2(0\G)∩C(0\G)∞, we have, as t→∞,

〈at .91, 92〉 =
1

|mHaar|
mHaar(91)mHaar(92)+ O(S`(91)S`(92)e(s0−n+1)t)

where mHaar(9i )=
∫
0\G 9i (x) dmHaar(x) for i = 1, 2.

We note that the constant function 1/
√
|mHaar| is a unit vector in L2(0\G) and

the main term 1
|mHaar|

mHaar(91)mHaar(92) is simply the product of the projections
of 91 and 92 to the minimal subrepresentation space, which is C, of L2(0\G).

Discrete groups with |mBMS|<∞. When0 is not a lattice, we have L2(0\G)=
L2

0(0\G). By the well-known decay of the matrix coefficients of unitary rep-
resentations with no G-invariant vectors due to Howe and Moore [Howe and
Moore 1979], we have, for any 91, 92 ∈ L2(0\G),

lim
t→∞
〈at .91, 92〉 = 0.

However we have a much more precise description on the decay of 〈at .91, 92〉

due to Roblin:
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Theorem 3.2 [Roblin 2003]. Let 0 be Zariski dense with |mBMS
|<∞. For any

91, 92 ∈ Cc(0\G),

lim
t→∞

e(n−1−δ)t
〈at .91, 92〉 =

mBR(91) ·mBR
∗
(92)

|mBMS|
.

Roblin proved this theorem for M-invariant functions using the mixing of the
geodesic flow due to Babillot [2002]. His proof extends without difficulty to
general functions, based on the A-mixing in 0\G stated as in Theorem 2.5.

Geometrically finite groups with δ > n−1
2 . In this subsection, we assume that

0 is a geometrically finite, Zariski dense, discrete subgroup of G with δ > n−1
2 .

Under this assumption, the works of Lax and Phillips [Lax and Phillips 1982]
and Sullivan [Sullivan 1984] together imply that there exist only finitely many
(n − 1) ≥ s0 > s1 ≥ · · · ≥ s` > n−1

2 such that the spherical complementary
series representation U(1, s− n+ 1) occurs as a subrepresentation of L2(0\G)
and s0 = δ. In particular, there is no spherical complementary representation
U(1, s−n+1) contained in L2(0\G) for δ < s < s1; hence we have a spherical
spectral gap for L2(0\G).

Using the classification of Ĝnontemp, we formulate the notion of a spectral gap.
Recall that a unitary representation π is said to be weakly contained in a unitary
representation π ′ if any diagonal matrix coefficients of π can be approximated,
uniformly on compact subsets, by convex combinations of diagonal matrix
coefficients of π ′.

Definition 3.3. We say that L2(0\G) has a strong spectral gap if

(1) L2(0\G) does not contain any U(υ, δ− n+ 1) with υ 6= 1;

(2) there exists s0(0) with n−1
2 < s0(0) < δ and such that L2(0\G) does not

weakly contain any U(υ, s− n+ 1) with s ∈ (s0(0), δ) and υ ∈ M̂ .

For δ ≤ n−1
2 , the Laplacian spectrum of L2(0\Hn) is continuous; this implies

that there is no spectral gap for L2(0\G).

Conjecture 3.4 (spectral gap conjecture, [Mohammadi and Oh 2012b]). If 0 is
a geometrically finite and Zariski dense subgroup of G with δ > n−1

2 , L2(0\G)
has a strong spectral gap.

If δ > n−1
2 for n = 2, 3, or if δ > (n − 2) for n ≥ 4, then L2(0\G) has a

strong spectral gap. This observation follows from the classification of Ĝnontemp

which says that there is no nonspherical complementary series representation
U(υ, s− n+ 1) of parameter n− 2< s < n− 1 [Hirai 1962].

Our theorems are proved under the following slightly weaker spectral gap
property assumption:
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Definition 3.5. [Mohammadi and Oh 2012b] We say that L2(0\G) has a spectral
gap if there exist n−1

2 < s0 = s0(0) < δ and n0 = n0(0) ∈ N such that

(1) the multiplicity of U(υ, δ−n+1) contained in L2(0\G) is at most dim(υ)n0

for any υ ∈ M̂ ;

(2) L2(0\G) does not weakly contain any U(υ, s− n+ 1) with s ∈ (s0, δ) and
υ ∈ M̂ .

The pair (s0(0), n0(0)) will be referred to as the spectral gap data for 0.

The spectral gap hypothesis implies that for 91, 92 ∈ L2(0\G), the lead-
ing term of the asymptotic expansion of the matrix coefficient 〈at .91, 92〉 is
determined by 〈at .Pδ(91), Pδ(92)〉 where Pδ is the projection operator from
L2(0\G) to H†

δ , which is the sum of all complementary series representations
U(υ, δ− n+ 1), υ ∈ M̂ occurring in L2(0\G) as subrepresentations.

Building up on the work of Harish-Chandra on the asymptotic behavior of
the Eisenstein integrals (see [Warner 1972a; 1972b]), we obtain an asymptotic
formula for 〈atv,w〉 for all K -isotypic vectors v,w ∈H†

δ . This extension alone
does not quite explain the leading term of 〈at Pδ(91), Pδ(92)〉 in terms of 91

and 92; however, with the help of Theorem 3.2, we are able to prove this:

Theorem 3.6 [Mohammadi and Oh 2012b]. Suppose that L2(0\G) possesses a
spectral gap. There exist η0 > 0 and `∈N such that for any91, 92 ∈C∞c (0\G),
as t→∞,

e(n−1−δ)t
〈at91, 92〉 =

mBR(91) ·mBR
∗
(92)

|mBMS|
+ O(S`(91)S`(92)e−η0t).

We reiterate that the leading term in Theorem 3.6 is from the ergodic theory
and the error term is from the harmonic analysis and the spectral gap.

Effective mixing for mBMS. Theorem 3.6 can be used to obtain an effective
mixing for the BMS measure (i.e., an effective version of Theorem 2.5(1)) for
geometrically finite, Zariski dense subgroups with a spectral gap [Mohammadi
and Oh 2012b].

For geometrically finite groups with δ≤ n−1
2 , we cannot expect Theorem 3.6 to

hold for such groups. However Guillarmou and Mazzeo [2012] have established
meromorphic extensions of the resolvents of the Laplacian and of the Poincaré
series.

For 0 convex cocompact, Stoyanov obtained, via the spectral properties of
Ruelle transfer operators, an effective mixing of the geodesic flow for the BMS
measure, regardless of the size of the critical exponent (see [Stoyanov 2011]).
We remark that the idea of using spectral estimates of Ruelle transfer operators
in obtaining an effective mixing originated in [Dolgopyat 1998].
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It will be interesting to see if the results in [Guillarmou and Mazzeo 2012]
can be used to answer the question:

Problem 3.7. Prove an effective mixing of the geodesic flow for the BMS
measure for all geometrically finite groups.

We close this section with an open problem:

Problem 3.8. Find a suitable analogue of Theorem 3.6 for a higher rank simple
Lie group G such as SL2(R)×SL2(R) or SL3(R).

4. Distribution of 0 in G

For a family {BT : T > 1} of compact subsets in G, the study of the asymptotic
of #(0 ∩ BT ) can be approached directly by Theorems 3.2 and 3.6. The link is
given by the following function on 0\G×0\G:

FT (g, h) :=
∑
γ∈0

χBT (g
−1γ h)

where χBT denotes the characteristic function of BT . Observing that FT (e, e)=
#(0∩ BT ), we will explain how the asymptotic behavior of FT (e, e) is related to
the matrix coefficient function for L2(0\G). For g = k1at k2 ∈ K A+K , we have
dmHaar(g)= ξ(t) dt dk1 dk2 where ξ(t)= e(n−1)t(1+O(e−βt)) for some β > 0.

Now assume that 0 admits a spectral gap, so that Theorem 3.6 holds. For
any real-valued 91, 92 ∈ C∞c (0\G), if we set 9k

i (g) := 9i (gk), then we can
deduce from Theorem 3.6 that

〈FT , 91⊗92〉0\G×0\G

=

∫
g∈BT

〈91, g.92〉L2(0\G) dmHaar(g)

=

∫
k1at k2∈BT

〈9
k−1

1
1 , at .9

k2
2 〉 · ξ(t) dt dk1 dk2

=
1

|mBMS|

∫
k1at k2∈BT

(
mBR
∗
(9

k−1
1

1 )mBR(9
k2
2 )e

δt
+ O(e(δ−η)t)

)
dt dk1 dk2 (4.1)

for some η > 0, with the implied constant depending only on the Sobolev norms
of 9i ’s.

Therefore, if FT (e, e) can be effectively approximated by 〈FT , 9ε ⊗9ε〉 for
an approximation of identity 9ε in 0\G, a condition which depends on the
regularity of the boundary of BT relative to the Patterson–Sullivan density, then
FT (e, e) can be computed by evaluating the integral (4.1) for 91 =92 =9ε and
by taking ε to be a suitable power of e−t .

To state our counting theorem more precisely, we need:
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Definition 4.2. Define a Borel measure MG on G as follows: for ψ ∈ Cc(G),

MG(ψ)=
1

|mBMS|

∫
k1at k2∈K A+K

ψ(k1at k2)eδt dνo(k1) dt dνo(k−1
2 )

here νo is the M-invariant lift to K of the PS measure on ∂(Hn)= K/M viewed
from o ∈ Hn with K = StabG(o).

Definition 4.3. For a family {BT ⊂G} of compact subsets with MG(BT ) tending
to infinity as T →∞, we say that {BT } is effectively well-rounded with respect
to 0 if there exists p > 0 such that for all small ε > 0 and T � 1:

MG(B+T,ε − B−T,ε)= O(ε p
·MG(BT ))

where B+T,ε = GεBT Gε and B−T,ε = ∩g1,g2∈Gε
g1 BT g2. Here Gε denotes a sym-

metric ε-neighborhood of e in G.

For the next two theorems, we assume that 0′ < 0 is a subgroup of finite
index and both 0 and 0′ have spectral gaps.

Theorem 4.4 [Mohammadi and Oh 2012b]. If {BT } is effectively well-rounded
with respect to 0, then there exists η0 > 0 such that for any γ ∈ 0,

#(0′γ ∩ BT )=
1

[0 : 0′]
MG(BT )+ O(MG(BT )

1−η0)

where η0 > 0 depends only on a uniform spectral gap for 0 and 0′, and the
implied constant is independent of 0′ and γ .

If ‖ · ‖ is a norm on the space Mn+1(R) of (n+ 1)× (n+ 1) matrices, then
the norm ball BT = {g ∈ SO(n, 1) : ‖g‖ ≤ T } is effectively well-rounded with
respect to 0, and hence Theorem 4.4 applies.

Consider the set BT = �1 AT�2 where �i ⊂ K and AT = {at : 0 ≤ t ≤ T }.
Then {BT } is effectively well-rounded with respect to 0 if there exists β ′ > 0
such that the PS-measures of the ε-neighborhoods of the boundaries of �1 M/M
and �−1

2 M/M are at most of order εβ
′

for all small ε > 0. These conditions
on �i are satisfied for instance if their boundaries in K/M are disjoint from
the limit set 3(0). But also many (but not all) compact subsets with piecewise
smooth boundary also satisfy this condition (see Section 7 of [Mohammadi and
Oh 2012b]).

Hence one can deduce the following:

Theorem 4.5 [Mohammadi and Oh 2012b]. If {BT = �1 AT�2} is effectively
well-rounded with respect to 0, then, as T →∞,

#(0′γ ∩�1 AT�2)=
4(0,�1, �2)

[0 : 0′]
eδT
+ O(e(δ−η0)T ),



192 HEE OH

where 4(0,�1, �2) :=
νo(�1)νo(�

−1
2 )

δ · |mBMS|
and the implied constant is independent

of 0′ and γ ∈ 0.

The fact that the only dependence of 0′ on the right hand side of the above
formula is on the index [0 : 0′] is of crucial importance for our intended applica-
tions to an affine sieve (page 197). Bourgain, Kontorovich and Sarnak [Bourgain
et al. 2010b] showed Theorem 4.5 for the case G = SO(2, 1) via an explicit
computation of matrix coefficients using the Gauss hypergeometric functions,
and Vinogradov [2012] generalized their method to G = SO(3, 1). We note that
in view of Theorem 3.2, the noneffective versions of Theorems 4.4 and 4.5 hold
for any Zariski dense 0 with |mBMS

|<∞; this was obtained in [Roblin 2003]
(see also [Oh and Shah 2013]) with a different proof. For 0 lattice, Theorem 4.5
is known in much greater generality [Gorodnik and Oh 2007].

5. Asymptotic distribution of 0\0Hat

The counting problem in H\G for H a nontrivial subgroup can be approached
via studying the asymptotic distribution of translates 0\0Hat as mentioned in
the introduction. We will assume in this section that H is either a symmetric
subgroup or a horospherical subgroup of G. Recall that H is symmetric means
that H is the subgroup of fixed points under an involution of G. In this case,
we can relate the distribution of 0\0Hat to the matrix coefficient function of
L2(0\G).

We fix a generalized Cartan decomposition G = H AK (for H horospherical,
it is just an Iwasawa decomposition) where K is a maximal compact subgroup
and A is a one-dimensional subgroup of diagonalizable elements. As before, we
parametrize A = {at : t ∈ R} so that the right multiplication by at on G/M =
T1(Hn) corresponds to the geodesic flow for time t .

When H is horospherical, we will assume that H = N+, i.e, the expanding
horospherical subgroup with respect to at .

Any symmetric subgroup H of G is known to be locally isomorphic to
SO(k, 1)× SO(n− k) for some 0 ≤ k ≤ n− 1, and the H -orbit of the identity
coset in G/K (resp. G/M) is (resp. the unit normal bundle to) a complete totally
geodesic subspace Hk of Hn of dimension k. The right multiplication by at on
G/M corresponds to the geodesic flow and the image of Hat in G/M represents
the expansion of the totally geodesic subspace of dimension k by distance t .

Measures on 0\0H associated to a conformal density. The leading term in
the description of the asymptotic distribution of 0\0Hat turns out to be a new
measure on 0\0H associated to the PS density (see [Oh and Shah 2013]). We
assume that 0\0H is closed in 0\G in the rest of this section.

For a 0-invariant conformal density {µx} on ∂(Hn) of dimension δµ, define a
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measure µ̃H on H/(H ∩M) by

dµ̃H ([h])= eδµβ[h]+ (o,[h]) dµo([h]+)

where o∈Hn and [h]∈H/(H∩M) is considered as an element of G/M=T1(Hn)

under the injective map H/(H ∩M)→ G/M .
By abuse of notation, we use the same notation µ̃H for the H ∩M-invariant

lift of µ̃H to H : for ψ ∈ Cc(0\G),

µ̃H (ψ)=

∫
H/(H∩M)

ψH∩M(x) dµ̃H (x)

where ψH∩M(x)=
∫

H∩M ψ(xm) dH∩M(m) for the H ∩M-invariant probability
measure dH∩M . This definition is independent of the choice of o ∈ Hn and the
measure µ̃H is H ∩0-invariant from the left, and hence induces a measure µH

on (H ∩0)\H or equivalently on 0\0H .
For the PS density {νx} and the Lebesgue density {mx}, the following two

locally finite measures on 0\0H are of special importance:

• Skinning measure: µPS
H = νH .

• H -invariant measure: µLeb
H = m H .

We remark that µPS
H is different from µLeb

H in general even when H ∩0 is a
lattice in H .

Finiteness of the skinning measureµPS
H . The finiteness of the skinning measure

µPS
H turns out to be the precise replacement for the finiteness of the volume

measure µLeb
H , in extending the equidistribution statement from 0 lattices to thin

subgroups.
When is the skinning measure µPS

H finite? This question is completely an-
swered in [Oh and Shah 2013] for 0 geometrically finite. First, when H is a
horospherical subgroup, the support of µPS

H is compact. When H is a symmetric
subgroup, i.e., isomorphic to SO(k, 1)× SO(n− k) locally, the answer to this
question depends on the notion of the parabolic corank of 0 ∩ H : let 3p(0)

denote the set of all parabolic limit points of 0. For ξ ∈3p(0), the stabilizer
0ξ has a free abelian subgroup of finite index, whose rank is defined to be the
rank of ξ (or the rank of 0ξ ).

Definition 5.1. The parabolic corank of 0∩H in 0 is defined to be the maximum
of the difference rank(0ξ )− rank(0 ∩ H)ξ over all ξ ∈3p(0)∩ ∂(H

k).

Theorem 5.2 [Oh and Shah 2013]. Let 0 be geometrically finite.

(1) µPS
H is compactly supported if and only if the parabolic corank of 0 ∩ H is

zero.

(2) |µPS
H |<∞ if and only if δ is bigger than the parabolic corank of 0 ∩ H.
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As we show rank(0ξ )− rank(0∩H)ξ ≤ n− k for all ξ ∈3p(0)∩∂(H
k), we

have:

Corollary 5.3 [Oh and Shah 2013]. If δ > (n− k), then |µPS
H |<∞.

For instance, if we assume δ > n−1
2 , then |µPS

H |<∞ whenever k ≥ (n+ 1)/2.

Distribution of 0\0Hat . We first recall:

Theorem 5.4. Suppose that 0 is a lattice in G and that H ∩0 is a lattice in H.
In other words, |mHaar

|<∞ and |mLeb
H |<∞. Then there exist η0> 0 (depending

only on the spectral gap for 0) and ` ∈ N such that for any 9 ∈ C∞c (0\G), as
t→∞,∫

0\0H
9(hat) dµLeb

H (h)=
|µLeb

H |

|mHaar|
·mHaar(9)+ O(S`(9) · e−η0t).

In fact, this theorem holds in much greater generality of any connected semisim-
ple Lie group: the noneffective statement is due to Duke et al. [1993] (also see
[Eskin and McMullen 1993]). For the effective statement, see [Duke et al. 1993]
for the case when H ∩0\H is compact and [Benoist and Oh 2012] in general.

An analogue of Theorem 5.4 for discrete groups that are not necessarily lattices
is this:

Theorem 5.5 [Oh and Shah 2013]. Let 0 be Zariski dense with |mBMS
| <∞.

Suppose |µPS
H |<∞. Then for any 9 ∈ Cc(0\G),

lim
t→∞

e(n−1−δ)t
∫

h∈0\0H
9(hat)dµLeb

H (h)=
|µPS

H |

|mBMS|
mBR(9).

Theorem 5.6 [Mohammadi and Oh 2012b]. Let 0 be a geometrically finite
Zariski dense subgroup of G with a spectral gap (e.g., δ > n − 2). Suppose
|µPS

H |<∞. Then there exist η0 > 0 and ` ∈ N such that for any 9 ∈ C∞c (0\G),
as t→∞,

e(n−1−δ)t
∫

h∈0\0H
9(hat) dµLeb

H (h)=
|µPS

H |

|mBMS|
mBR(9)+ O(S`(9) · e−η0t).

In the case when µPS
H is compactly supported, we can show that there exists

a compact subset OH (depending on 9) of 0\0H such that for any t ∈ R,
9(hat)= 0 for all h /∈ OH . Therefore∫

9(hat) dµLeb
H =

∫
OH

9(hat) dµLeb
H .

Now the assumption on H being either symmetric or horospherical ensures
the wave front property of [Eskin and McMullen 1993], which can be used to
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establish, as t→∞,∫
OH

9(hat) dµLeb
H ≈ 〈at9, ρOH ,ε〉L2(0\G) (5.7)

where ρOH ,ε ∈ C∞c (0\G) is an ε-approximation of OH . Therefore the estimates
on the matrix coefficients in Theorems 3.2 and 3.6 can be used to establish
Theorems 5.5 and 5.6.

The case when µPS
H is not compactly supported turns out to be much more

intricate, the main reason being that we are taking the integral with respect to
µLeb

H as well as multiplying the weight factor e(n−1−δ)t in the left hand side of
Theorem 5.5, whereas the finiteness assumption is made on the skinning measure
µPS

H . In this case, we first develop a version of thick-thin decomposition of the
nonwandering set, that is, W := {h ∈ 0\0H : hat ∈ supp(9)}, which resembles
that of the support of µPS

H . This together with (5.7) takes care of the integral∫
9hat dµ

Leb
H (h) over a thick part as well as a very thin part of W. What is left is

the integration over an intermediate range, which is investigated by comparing
the two measures (at)∗µ

PS
H and (at)∗µ

Leb
H via the transversal intersections of the

orbits 0\0Hat with the weak-stable horospherical foliations . A key reason that
this approach works is that these transversal intersections are governed by the
topological properties of the orbit 0\0Hat , independent of the measures put on
0\0H .

In the special case of n = 2, 3 and H horospherical, Theorem 5.6 was proved
in [Lee and Oh 2013] by a different method.

6. Distribution of 0 orbits in H\G and affine sieve

Distribution of 0 orbits in H\G. Let H be as in the previous section (i.e.,
symmetric or horospherical subgroup) and let {BT } be a family of compact
subsets in H\G which is getting larger and larger as T →∞. We assume that
[e]0 is discrete in H\G. The study of the asymptotic of #([e]0 ∩ BT ) can be
now approached by Theorems 5.5 and 5.6 via the following counting function
on 0\G:

FT (g) :=
∑

γ∈H∩0\0

χBT (γ g)

as FT (e)= #([e]0∩ BT ). Depending on the subgroup H , we have G = H A+K
or G= H A+K∪H A−K . For the sake of simplicity, we will consider the sets BT

contained in H A+K . We have for g = hat k, dmHaar(g)= ρ(t) dµLeb(h) dt dk
where ρ(t) = e(n−1)t(1+ O(e−βt)) for some β > 0. Let µ be a G-invariant
measure on H\G normalized so that dmHaar

= dµLeb
H ⊗dµ locally. Then, under

the assumption that 0 has a spectral gap and |µPS
H | < ∞, we deduce from
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Theorem 5.6 that

〈FT , 9〉 =

∫
g∈BT

∫
h∈0\0H

9(hg) dµLeb
H (h) dµ(g)

=

∫
[e]at k∈BT

∫
h∈0\0H

9k(hat)dµLeb
H (h)ρ(t) dt dk

=

∫
[e]at k∈BT

(
|µPS

H |

|mBMS|
mBR(9k)eδt + O(e(δ−η0)t)

)
dt dk (6.1)

for some η0 > 0.
Therefore, similarly to the discussion in Section 4, if FT (e) can be effectively

approximated by 〈FT , 9ε〉 for an approximation of identity 9ε in 0\G, a condi-
tion which depends on the regularity of the boundary of BT relative to the PS
density, then FT (e) can be computed by evaluating the integral (6.1) for 9 =9ε
and by taking ε a suitable power of e−t .

For H horospherical or symmetric, we have

G = H A+K

or
G = H A+K ∪ H A−K

(as a disjoint union except for the identity element), where A± = {a±t : t ≥ 0}.

Definition 6.2. Define a Borel measure MH\G on H\G as follows: for ψ ∈
Cc(H\G),

MH\G(ψ)=


|µPS

H |

|mBMS|

∫
at k∈A+K

ψ([e]at k)eδt dt dνo(k−1) if G = HA+K ,

∑ |µPS
H,±|

|mBMS|

∫
a±t k∈A±K

ψ([e]a±t k)eδt dt dνo(k−1) otherwise,

where o ∈ Hn is the point fixed by K , νo is the right M-invariant measure on K ,
which projects to the PS-measure νo on K/M = ∂(Hn) and µPS

H,− is the skinning
measure on 0 ∩ H\H in the negative direction.

Definition 6.3. For a family {BT ⊂ H\G} of compact subsets with MH\G(BT )

tending to infinity as T →∞, we say that {BT } is effectively well-rounded with
respect to 0 if there exists p > 0 such that for all small ε > 0 and T � 1:

MH\G(B+T,ε − B−T,ε)= O(ε p
·MH\G(BT ))

where B+T,ε = BT Gε and B−T,ε = ∩g∈Gε
BT g.

In the next two theorems 6.4 and 6.5, we assume that 0′ <0 is a subgroup of
finite index with H ∩0 = H ∩0′ and that both 0 and 0′ have spectral gaps.
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Theorem 6.4 [Mohammadi and Oh 2012b]. When H is symmetric, we assume
that |µPS

H |<∞. Suppose that {BT } is effectively well-rounded with respect to 0.
Then for any γ ∈ 0, there exists η0 > 0 (depending only on the uniform spectral
gaps of 0 and 0′) such that

#([e]0′γ ∩ BT )=
1

[0 : 0′]
MH\G(BT )+ O(MH\G(BT )

1−η0)

with the implied constant independent of 0′ and γ ∈ 0.

For a given family {BT }, understanding its effective well-roundedness can be
the hardest part of the work in general. However verifying the family of norm
balls is effectively well-rounded is manageable (see Section 7 of [Mohammadi
and Oh 2012b]). Consider an example of the family {BT = [e]AT�} where
�⊂ K and AT = {at : 0≤ t ≤ T }. In this case, it is rather simple to formulate the
effective well-rounded condition: there exists β ′ > 0 such that the PS-measure of
the ε-neighborhood of ∂(�−1 M/M) is at most of order εβ

′

for all small ε >0. As
mentioned before, this holds when the boundary of �−1 M/M does not intersect
the limit set 3(0) (see [loc. cit.] for a more general condition).

Then, setting

4(0,�) :=
|µPS

H | · νo(�
−1)

δ · |mBMS|
,

one can deduce this from (6.1):

Theorem 6.5 [Mohammadi and Oh 2012b]. Under the same assumption on µPS
H

and 0′, there exists η0 > 0 (depending only on the uniform spectral gaps of 0
and 0′) such that for any γ ∈ 0

#([e]0′γ ∩ [e]AT�)=
4(0,�)

[0 : 0′]
eδT
+ O(e(δ−η)T ),

with implied constant independent of 0′ and γ .

We note that in view of (4.1), the noneffective version of this theorem holds
for any Zariski dense 0 with |mBMS

|<∞ and |µPS
H |<∞, as proved in [Oh and

Shah 2013].

Affine sieve. For applications to an affine sieve, we consider the case when the
homogeneous space H\G is defined over Z. More precisely, we assume that
G is defined over Z and acts linearly and irreducibly on a finite-dimensional
vector space W defined over Z in such a way that G(Z) preserves W (Z). Let
w0 ∈W (Z) be a nonzero vector such the stabilizer of w0 is a symmetric subgroup
or the stabilizer of the line Rw0 is a parabolic subgroup. We set V := w0G.
Let 0 be a geometrically finite Zariski dense subgroup of G with a spectral gap,
which is contained in G(Z).
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Let F be an integer-valued polynomial on the orbit w00. Salehi Golsefidy
and Sarnak [2013], generalizing [Bourgain et al. 2010a], showed that for some
R > 1, the set of x ∈w00 such that F(x) has at most R prime factors is Zariski
dense in V .

For a square-free integer d , let 0d <0 be a subgroup which contains {γ ∈ 0 :
γ ≡ e mod d} and satisfies Stab0d (w0) = Stab0(w0). For instance, we can set
0d = {γ ∈ 0 : w0γ ≡ w0 mod d}.

We say the family {0d} has a uniform spectral gap if supd s0(0d) < δ and
supd n0(0d) <∞ (see Definition 3.5 for notation).

Salehi Golsefidy and Varjú [2012], generalizing [Bourgain et al. 2010a],
showed that the family of Cayley graphs of 0/0d’s (with respect to the pro-
jections of a fixed symmetric generating set of 0) forms expanders as d runs
through square-free integers with large prime factors. If δ > n−1

2 , the transfer
property from the combinatorial spectral gap to the archimedean one estab-
lished in [Bourgain et al. 2011] (see also [Kim 2012]) implies that the family
{0d : d square-free} has a uniform spherical spectral gap. Together with the
classification of Ĝ, it follows that {0d} admits a uniform spectral gap if δ > n−1

2
for n = 2, 3 or if δ > n− 2 for n ≥ 4.

For the following discussion, we assume that there is a finite set of primes
S such that the family 0d with d square-free with no prime factors in S admits
a uniform spectral gap. Then we can apply Theorem 6.5 to 0d’s. By a recent
development on the affine linear sieve on homogeneous spaces ([Bourgain et al.
2010a], [Nevo and Sarnak 2010]), we are able to deduce: let F be an integer-
valued polynomial on w00. Letting F = F1 F2 · · · Fr be a factorization into
irreducible polynomials, assume that all F j ’s are integral on w00 and distinct
from each other. Let λ be the log of the largest eigenvalue of a1 on the R-span
of w0G.

Theorem 6.6 [Mohammadi and Oh 2012b]. For any norm ‖ · ‖ on V ,

(1) #{x ∈ w00 : ‖x‖< T, F j (x) is prime for j = 1, . . . , r} � T δ/λ

(log T )r
;

(2) there exists R = R(F, w00)≥ 1 such that

#{x ∈ w00 : ‖x‖< T, F(x) has at most R prime factors} �
T δ/λ

(log T )r
.

The significance of T δ/λ in the above theorem is that for H = StabG(w0),

MH\G{w ∈ w0G : ‖w‖< T } � #{x ∈ w00 : ‖x‖< T } � T δ/λ.

In view of the above discussion, it is also possible to state Theorem 6.6 for more
general sets BT , instead of the norm balls, which then provides a certain uniform
distribution of almost prime vectors.
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When 0 is an arithmetic subgroup of a simply connected semi-simple algebraic
Q-group G, and H is a symmetric subgroup, the analogue of Theorem 6.6 was
obtained in [Benoist and Oh 2012]. Strictly speaking, Theorem 1.3 of that
reference is stated only for a fixed group; however it is clear from its proof
that the statement also holds uniformly over its congruence subgroups with the
correct main term. Based on this, one can use the combinatorial sieve to obtain
an analogue of Theorem 6.6, as was done for a group variety in [Nevo and Sarnak
2010]. Theorem 6.6 on lower bound for arithmetic was obtained in [Gorodnik
and Nevo 2012] further assuming that H ∩0 is cocompact in H .

7. Application to sphere packings

In this section we will discuss counting problems for sphere packings in Rn as an
application of an orbital counting problem for thin subgroups of SO(n, 1). By a
sphere packing in the Euclidean space Rn for n ≥ 1, we simply mean a union of
(possibly intersecting) (n−1)-dimensional spheres; here an (n−1)-dimensional
plane is regarded as a sphere of infinite radius.

Fixing a sphere packing P in Rn , a basic problem is to understand the asymp-
totic of the number #{S ∈P :Radius(S)> t} or equivalently #{S ∈P :Vol(S)> t}
where Vol(S)means the volume of the ball enclosed by S. For the sake of brevity,
we will simply refer Vol(S) to the volume of S. We will consider this problem
in a more general setting, that is, allowing the volume of the sphere S to be
computed in various conformal metrics.

Let U be an open subset of Rn and f a positive continuous function on U .
A conformal metric associated to the pair (U, f ) is a metric on U of the form
f (x) dx , where dx is the Euclidean metric on Rn . Given a conformal metric
(U, f ), we set Vol f (S) :=

∫
B f (x)ndx where B is the ball enclosed by S. When

S is a plane, we put Vol f (S)=∞.
For any compact subset E of U and t > 0, set

Nt(P, f, E) := #{S ∈ P : Vol f (S) > t, E ∩ S 6=∅}.

For simplicity, we will omit P in the notation Nt(P, f, E). When (U, f ) =
(Rn, 1), i.e., the standard Euclidean metric, we simply write Nt(E) instead of
Nt(1, E). We call P locally finite if Nt(E) <∞ for all E bounded.

In order to approach the problem of the computation of the asymptotic of
Nt( f, E), a crucial condition is that P admits enough symmetries of Mobius
transformations of Rn . By the Poincaré extension, the group MG(Rn) of Mobius
transformations of Rn can be identified with the isometry group of the upper
half space Hn+1

= {(z, r) : z ∈ Rn, r > 0}. We assume that P is invariant under
a nonelementary discrete subgroup 0 of G := Isom+(Hn+1). As before, let δ
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denote the critical exponent of 0 and {νx : x ∈Hn+1
} a Patterson–Sullivan density

for 0.
We recall from [Oh and Shah 2012]:

Definition 7.1 (0-skinning size of P). For a sphere packing P invariant under
0, define 0≤ sk0(P)≤∞ as follows:

sk0(P) :=
∑
i∈I

∫
s∈Stab0(S

†
i )\S

†
i

eδβs+ (o,s)dνo(s+)

where o ∈ Hn+1, {Si : i ∈ I } is a set of representatives of 0-orbits in P, and
S†

i ⊂ T1(Hn+1) is the set of unit normal vectors to the convex hull of Si .

Definition 7.2. For the pair (U, f ), we define a Borel measure ω0, f on U : for
ψ ∈ Cc(U ) and for o ∈ Hn+1,

ω0, f (ψ)=

∫
z∈U

ψ(z) f (z)δeδβz(o,(z,1)) dνo(z).

Alternatively, we have the simple formula

dω0, f = f (z)δ(|z|2+ 1)δdνen+1,

where en+1 = (0, . . . , 0, 1) ∈ Hn+1.

Example 7.3. (1) For the spherical metric (Rn, 2/(1+ |z|2)) (also called the
chordal metric) on Rn , Vol f (S) is the spherical volume of the ball enclosed
by S and dω0, f = 2δ · dνen+1 .

(2) For the hyperbolic metric (Hn
= {z ∈ Rn

: zn > 0}, 1/zn), Vol f (S) is the
hyperbolic volume of the ball enclosed by S and

dω0, f =
(1+ |z|2)δ

zδn
dνen+1 .

Definition 7.4. By an infinite bouquet of tangent spheres glued at a point ξ ∈
Rn
∪{∞}, we mean a union of two collections, each consisting of infinitely many

pairwise internally tangent spheres with the common tangent point ξ and their
radii tending to 0, such that the spheres in each collection are externally tangent
to the spheres in the other at ξ .

We denote by vn := Vol(B(0, 1)) the Euclidean volume of the unit ball
B(0, 1) := {x ∈ Rn

: ‖x‖ < 1}; vn is equal to (2π)n/2/(2 · 4 · · · n) if n is even
and 2(2π)(n−1)/2/(1 · 3 · · · n) if n is odd.

Theorem 7.5. Let P be a locally finite sphere packing invariant under a geomet-
rically finite group 0 with finitely many 0-orbits. In the case of δ ≤ 1, we also
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assume that P has no infinite bouquet of spheres glued at a parabolic fixed point
of 0.

Then for any conformal metric (U, f ) and for any compact subset E of U
whose boundary has zero Patterson–Sullivan density, as t→ 0,

lim
t→0

Nt( f, E)tδ/n
=

sk0(P) · v
δ/n
n ·ω0, f (E)

δ · |mBMS|
.

The assumption on the nonexistence of an infinite bouquet in P is to ensure
that the 0-skinning size for P is finite.

In the case when (U, f )= (Rn, 1), Theorem 7.5 was proved in [Oh and Shah
2012] for the case of n = 2 and and the proof given there extends easily for any
n ≥ 2 using the general equidistribution result in [Oh and Shah 2013]. See also
[Oh and Shah 2010] for the case when f defines the spherical metric. To give an
interpretation of Theorem 7.5 as a special case of the orbital counting problem
discussed at the beginning of Section 6, fixing H to be the stabilizer of a sphere
S0 in P, we may think of H\G as the space of all totally geodesic planes in
Hn+1. Then a key point is to describe a particular subset Bt(E) in H\G such
that Nt(E) is same as #[e]0 ∩ Bt(E).

The extension to a general conformal metric (U, f ) is possible basically due to
the uniform continuity of f on a compact subset E and a covering argument. We
give a brief sketch as follows (the argument below was established in a discussion
with Shah): denote by Qz(η) the cube {z′ ∈Rn

:max1≤i≤n |zi− z′i | ≤ η} centered
at z ∈ Rn with radius η.

First, Theorem 7.5 for f = 1, together with the uniform continuity of f on
E , implies that for any ε > 0, there exists η = η(ε) > 0 (depending only on E
and f ) such that for any cube Qz(η) centered at z ∈ E

Nt( f, Qz(η))tδ/n

v
δ/n
n

= (1+ O(ε))
sk0(P)
δ · |mBMS|

f (z)δω0(Qz(η)). (7.6)

Let k be the minimal integer such that a k-dimensional sphere, say, P charges
a positive PS density. As the PS density is atom-free, we have k > 0 and the limit
set 3(0) is contained in P (see [Roblin 2003, Proposition 3.1]). We cover E∩ P
with cubes {Qz(η) : z ∈ Iη} with disjoint interiors for a finite subset Iη of E ∩ P .
As each cube is centered at a point of P which is a sphere, the intersection of its
boundary with P is contained in a (k−1)-dimensional sphere for all small η > 0.
It follows that the boundary of each cube has zero PS density by the minimality
assumption on k. Let C(η) := {Qz(η) : z ∈ Ĩη} be a covering of E with Ĩη ⊃ Iη.
Note that the boundary of each cube in C(η) has zero PS density. We can find
compact subsets E±ε of U with E−ε ⊂ E ⊂ E+ε and a positive integer mε so that
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ω0, f (E
+
ε − E−ε ) < ε and E+ε (resp. E) contains all cubes centered at E (resp.

E−ε ) and of size less than η possibly except at most mε number of such cubes.
We may also assume that f (z) = (1 + O(ε)) f (z′) for all z′ ∈ Qz(η) ∈

C(η) where the implied constant is uniform for all z ∈ E . We may now apply
Equation (7.6) for f = 1 to each cube in the covering of C(η) to obtain that

Nt( f, E)tδ/n

v
δ/n
n

= (1+ O(ε))
sk0(P)
δ · |mBMS|

∑
z∈ Ĩη

f (z)δω0(Qz(η))

= (1+ O(ε))
sk0(P)
δ · |mBMS|

ω0, f (E
+

ε )+ O(ε)

= (1+ O(ε))
sk0(P)
δ · |mBMS|

ω0, f (E)+ O(ε).

As ε > 0 is arbitrary, this proves Theorem 7.5.

8. On Apollonian circle packings

Construction. In the case of Apollonian circle packings in the plane R2
= C,

Theorem 7.5 can be made more explicit as the measure ω0, f turns out to be the
δ-dimensional Hausdorff measure with respect to (U, f ), restricted to 3(0).

We begin by recalling Apollonian circle packings, whose construction is based
on the following theorem of Apollonius of Perga:

Theorem 8.1 (Apollonius, 200 BC). Given 3 mutually tangent circles in the
plane (with distinct tangent points), there exist precisely two circles tangent to
all three circles.

Consider four mutually tangent circles in the plane with distinct points of
tangency. By Apollonius’ theorem, one can add four new circles each of which
is tangent to three of the given ones. Continuing to repeatedly add new circles
tangent to three of the previous circles, we obtain an infinite circle packing,
called an Apollonian circle packing. Figure 1 shows the first three generations of
this procedure where each circle is labeled with its curvature (the reciprocal of
its radius).

Apollonian packing and Hausdorff measure. We start by recalling:

Definition 8.2. For s > 0, the s-dimensional Hausdorff (also known as covering)
measure Hs of a closed subset E of R2 is defined as follows:

Hs(E) := lim
ε→0

inf
{∑

i∈I

diam(Di )
s
: E ⊂

⋃
i∈I

Di , diam(Di )≤ ε

}
.

The Hausdorff dimension of E is then given as
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Figure 1. An Apollonian circle packing.

dimH(E) := sup{s :Hs(E)=∞} = inf{s ≥ 0 :Hs(E)= 0}.

For s a positive integer, the s-dimensional Hausdorff measure is proportional to
the usual Lebesgue measure on Rs .

For an Apollonian circle packing P, the residual set Res(P) is defined to be
the closure of the union of all circles in P. Its Hausdorff dimension, say α, is
independent of P and known to be approximately 1.30568(8) [McMullen 1998].

Theorem 8.3. Let P be any Apollonian circle packing. For any conformal metric
(U, f ) and for any compact subset E ⊂U with smooth boundary, we have

lim
t→0

tα/2 · #{C ∈ P : area f (C) > t,C ∩ E 6=∅} = cA ·H
α
f (Res(P)∩ E)

where cA > 0 is independent of P and dHα
f (z)= f (z)α · dHα(z).

The symmetry group 0P := {g ∈ PSL2(C) : g(P)=P} satisfies the following:

(1) 0P is geometrically finite.

(2) The limit set of 0P coincides with Res(P); in particular, its critical exponent
is α.

(3) There are only finitely many 0P-orbits of circles in P.

Let νP, j denote the PS measure viewed from j = (0, 0, 1) ∈ H3 for the
group 0P. As 0P has no rank 2 parabolic limit points and α > 1, Sullivan’s
work [Sullivan 1984] implies that the α-dimensional Hausdorff measure Hα is a
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locally finite measure on Res(P) and that

1
|νP, j |

(|z|2+ 1)α dνP, j = dHα.

Therefore Theorem 8.3 is a special case of Theorem 7.5. Moreover the constant
cA is given by

cA =
πα/2 · sk0P(P) · |νP, j |

α · |mBMS|

for any Apollonian circle packing P. We propose to call cA the Apollonian
constant.

Problem 8.4. Compute (or estimate) cA!

When P is a bounded Apollonian circle packing, the existence of the asymp-
totic formula #{C ∈P : area(C) > t, } ∼ cP · tα/2 was first shown in [Kontorovich
and Oh 2011] without an error term, and later in [Lee and Oh 2013] with an error
term (see also [Vinogradov 2012]). In view of [Oh and Shah 2012], Theorem 5.6
can be used to prove an effective circle count in a compact region E for general
Apollonian packings, provided the boundary of E satisfies a regularity property.

There is also a beautiful arithmetic aspect of Apollonian circle packings which
is entirely omitted in this article; see [Sarnak 2011; Oh 2011; Bourgain and
Fuchs 2011; Bourgain and Kontorovich 2012].

Apollonian sphere packing for n = 3. Given n + 1 mutually tangent spheres
in Rn with disjoint interiors, it is known that there is a unique sphere, called a
dual sphere, passing through their points of tangency and orthogonal to all n+ 1
spheres [Graham et al. 2006, Theorem 7.1]. Hence for n+ 2 mutually tangent
spheres with disjoint interiors S1, . . . , Sn+2 in Rn , there are n+ 2 dual spheres,
say, S̃1, . . . , S̃n+2. The Apollonian group A=A(S1, . . . , Sn+2) is generated by
the inversions with respect to S̃i , 1≤ i ≤ n+ 2.

Only for n= 2 or 3, the Apollonian group A is a discrete subgroup of MG(Rn)

[Graham et al. 2006, Theorem 4.1] and in this case its orbit P :=
⋃n+2

i=1 A(Si )

consists of spheres with disjoint interiors. For n = 2, P is an Apollonian circle
packing. For n = 3, P is called an Apollonian sphere packing. Note that A is
geometrically finite and that P is locally finite, as the spheres in P have disjoint
interiors, Hence Theorem 7.5 applies to P. The critical exponent of A for n = 3
has been estimated to be 2.473946(5) in [Borkovec et al. 1994].

Dual apollonian cluster ensemble for any n≥ 2. Given n+2 mutually tangent
spheres with disjoint interiors S1, . . . , Sn+2 in Rn , let A∗ denote the group
generated by the inversions with respect to Si , 1≤ i ≤ n+2. The dual Apollonian
group A∗ is a discrete geometrically finite subgroup of MG(Rn) for all n ≥ 2
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and the orbit P :=
⋃n+2

i=1 A∗(Si ) is a sphere packing, in our sense, consisting
of spheres nested in Si ’s. We note that P is locally finite, as nested spheres are
getting smaller and smaller and hence Theorem 7.5 applies to P.

9. Packing circles of the ideal triangle in H2

Consider an ideal triangle T in H2 i.e., a triangle whose sides are hyperbolic lines
connecting vertices on the boundary of H2. An ideal triangle exists uniquely up
to hyperbolic congruences. Consider P(T) the circle packing of an ideal triangle
by filling in largest inner circles. The notation P(T) denotes the closure of P(T)

and areaHyp(C) is the hyperbolic area of the disk enclosed by C .

Theorem 9.1 (packing circles of the ideal triangle). Let T be the ideal triangle
of H2. Then

lim
t→0

tα/2 · #{C ∈ P(T) : areaHyp(C) > t} = cA ·

∫
P(T)

y−α dHα(z)

where cA denotes the Apollonian constant.

Fix the Apollonian circle packing P0 generated by two vertical lines x =±1
and the unit circle {|z| = 1}. The corresponding Apollonian group 00 = 0(P0)

is generated by the inversions with respect to horizontal lines y = 0 and y =−2i
and the circles {|z − (±1 − i)| = 1}. We set R2

+
:= {x + iy : y > 0}. Now

for the conformal metric (U, f ) = (R2
+
, 1/y) = H2, we note that {C ∈ P(T) :

areaHyp(C) > t} = {C ∈ P0 : area f (C) > t,C ∩T 6=∅}.
However Theorem 9.1 does not immediately follow from Theorem 8.3 since

the ideal triangle T is not a compact subset of H2.
We need to understand the Hα

f -measure of neighborhoods of cusps in the
triangle for f = 1/y. For the next two theorems, consider a conformal metric
(R2
+
, f ).

Theorem 9.2. If f (x + iy)� y−k for some real number k > α−1 with implied
constant independent of |x | ≤ 1, then for any η > 0,

Hα
f {|x | ≤ 1, y > η}<∞.

Moreover for any Borel subset E ⊂ {|x | ≤ 1, y > η} (not necessarily compact)
with smooth boundary,

lim
t→∞

tα/2 · #{C ∈ P0 : area f (C) > t,C ∩ E 6=∅} ∼ cA ·H
α
f (E).

Proof. It suffices to show the claim for η = 1, since {|x | ≤ 1, η ≤ y ≤ 1} is
a compact subset. So we put η = 1 and set UR := {|x | ≤ 1, y > R}. Define
Ft(E) := {C ∈P0 : area f (C)> t,C∩E 6=∅} and En := {|x | ≤ 1, n≤ y< n+1}.
Then Ft(U1)=

⋃
n≥1 Ft(En).
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For C ∈ Ft(En), C − (n− 1)i ∈ Ft(E1) and

area(C − (n− 1)i)=
∫

C−(n−1)i
f (z)2dz

=

∫
C

f (z+ (n− 1)i))2dz� n−2karea(C).

Hence we get an injective map Ft(En) to Ftn−2k (E1) and hence for R0 ≥ 1,

#Ft(UR0)=
∑

n≥R0

#Ftn−2k (E1).

By Theorem 8.3, for ε > 0, there exists tε such that for all t < tε ,

#Ft(E1)≤ t−α/2cA(H
α
f (E1)+ ε)

and hence there exists Nε > 1 such that for all t ≤ 1 and n > Nε ,

#Ftn−2k (E1)≤ t−α/2n−kαcA(H
α
f (E1)+ ε)

and hence

#Ft(UNε )t
α/2
≤

(∑
n≥Nε

n−kα
)

cA(H
α
f (E1)+ ε).

Since
(∑

n≥Nε n−kα
)
< ∞ as kα > 1, if Nε � 1 is sufficiently large, we

can make #Ft(UNε )t
α/2
≤ ε and Hα

f (UNε ) < ε. This implies Hα
f (UNε ) <∞.

Moreover,

lim sup #Ft(U1)tα/2 = lim sup #
∑

1≤n<Nε

Ft(En)tα/2+O(ε)= cA ·H
α
f (U1)+O(ε).

As ε > 0 is arbitrary, we have

lim sup #Ft(U1)tα/2 = cA ·H
α
f (U1).

Similarly we have lim inf #Ft(U1)tα/2 = cA ·H
α
f (U1). Hence

lim #Ft(U1)tα/2 = cA ·H
α
f (U1).

In the same way, we can deduce the claim for any Borel set E using the fact that
Hα

f (E ∩UNε )= O(ε). �

We note that the boundary of R2
+

meets with Res(P0) at three points 1,−1,∞
and these three points are in one 00-orbit. Note that 00 contains an element γ0:
γ0(x + yi)= x + (y+ 2)i .

Theorem 9.3. Let (R2
+
, f ) be a conformal metric such that f (x+ iy)� y−k for

k ∈ R.

(1) If α−1 < k < 2−α−1, we have Hα
f (R

2
+
) <∞.

(2) If either k < α−1 or k > 2−α−1, we have Hα
f (R

2
+
)=∞.
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Proof. Let γ (z) = z̄−i
z̄−1−i . Then γ ∈ 00 and γ (∞) = 1. Hence if we set

Uη := {|x | ≤ 1, y > η}, γ (Uη) is a neighborhood of 1 for all large η > 1. We
will show that Hα

f (γ (Uη)) <∞ if k < 2−α−1.
We have

Hα
f (γ (Uη))=

∫
z∈γ (Uη)

f (z)αdHα(z)=
∫
w∈Uη

f (γ (w))α|γ ′(w)|αdHα(w).

Since |γ ′(w)| = |w− 1+ i |−2 and =(γ (w))� y−1, we have

f (γ (w))|γ ′(w)| � yk−2.

Hence by Theorem 9.2, if 2− k > α−1,

Hα
f (γ (Uη)) <∞.

The remaining cases can be proved similarly and we leave them to the reader. �

Note that T := P0 ∩R2
+

is a circle packing of the curvilinear triangle made
by largest inner circles.

As α > 1, Theorem 9.1 is a special case of the following:

Theorem 9.4. Let (R2
+
, f ) be a conformal metric such that f (x + iy) � y−k

where α−1 < k < 2−α−1. Then, for any (not necessarily compact) Borel subset
E ⊂ R2

+
with smooth boundary, we have

lim
t→∞

tα/2 · #{C ∈ T : area f (C) > t, C ∩ E 6=∅} ∼ cA ·H
α
f (E).
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