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Sieves in discrete groups, especially sparse

EMMANUEL KOWALSKI

We survey the recent applications and developments of sieve methods related to
discrete groups, especially in the case of infinite index subgroups of arithmetic
groups.

1. Introduction

Sieve methods appeared in number theory as a tool to try to understand the
additive properties of prime numbers, and then evolved over the twentieth century
into very sophisticated tools. Not only did they provide extremely strong results
concerning the problems most directly relevant to their origin (such as Goldbach’s
conjecture, the twin primes conjecture, or the problem of the existence of infinitely
many primes of the form n2 + 1), but they also became tools of crucial important
in the solution of many problems which were not so obviously related (examples
are the first proof of the Erdés—Kac theorem, and more recently sieve appeared
in the progress, and solution, of the quantum unique ergodicity conjecture of
Rudnick and Sarnak).

It is only quite recently that sieve methods have been applied to new problems,
often obviously related to the historical roots of sieve, which involve complicated
infinite discrete groups (of exponential growth) as basic substrate instead of
the usual integers. Moreover, both “small” and “large” sieves turn out to be
applicable in this context to a wide variety of very appealing questions, some of
which are rather surprising. We will attempt to present this story in this survey.

The basic outline is the following: in Section 2, we present a sieve framework
that is general enough to describe both the classical examples and those involving
discrete groups; in Section 3, we show how to implement a sieve, with emphasis
on small sieves. In Section 5, we take up the large sieve, which we discuss in a
fair amount of details since it is only briefly mentioned in [Kowalski 2010] and
has the potential to be a very useful general tool even outside of number-theoretic
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contexts. Finally, we conclude with a sampling of problems and further questions
in Section 6.

We include a general version of the Erdés—Kac theorem in the context of
affine sieve (Theorem 4.12), which follows easily from the method of [Granville
and Soundararajan 2007] (it generalizes a result from [Djankovi¢ 2011] for
Apollonian circle packings).

Apart from this, the writing will follow fairly closely the notes for the course
at MSRI, and in particular there will be relatively few details and no attempts
at the greatest known generality. The final section had no parallel in the actual
lectures, for reasons of time. More information can be gathered from the author’s
Bourbaki lecture [Kowalski 2010], or from [Salehi Golsefidy 2014] in these
proceedings, and of course from the original papers. Overall, we have tried to
emphasize general principles and some specific applications, rather than to repeat
the more comprehensive survey of known results found in [Kowalski 2010].

Notation. The letter p will always refer to a prime number; for a prime p, we
write [F, for the finite field Z/ pZ. For aset X, | X'| is its cardinality, a nonnegative
integer or +00.

The Landau and Vinogradov notation = O(g) and f < g are synonymous,
and f(x) = O(g(x)) for all x € D means that there exists an “implied” constant
C = 0 (which may be a function of other parameters) such that | f(x)| < Cg(x)
for all x € D. This definition differs from that of [Bourbaki 1976, Chapter V]
since the latter is of topological nature. We write f < gif f < gand g < f.
On the other hand, the notation f(x) ~ g(x) and f = o(g) are used with the
asymptotic meaning of loc. cit.

References. As a general reference on sieves in general, the best book available
today is the masterful [Friedlander and Iwaniec 2010]. Concerning the large sieve,
[Kowalski 2008] contains very general results. We also recommend [Sarnak
2010] on the affine sieve. Another survey of sieves in discrete groups, with a
particular emphasis on small sieves, is the Bourbaki seminar [Kowalski 2010],
and Salehi Golsefidy’s paper [2014] in this volume gives an account of the most
general version of the affine sieve, due to Sarnak and him.

2. The setting for sieve in discrete groups

Sieve methods attempt to obtain estimates on the size of sets constructed using
local-global and inclusion-exclusion principles. We start by describing a fairly
general framework for this type of questions, tailored to applications to discrete
groups (there are also other settings of great interest, for example, concerning
the distribution of Frobenius conjugacy classes related to families of algebraic
varieties over finite fields; see [Kowalski 2008, Chapter 8]).
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We will consider a group I', viewed as a discrete group, which will usually
be finitely generated, and which is given either as a subgroup I' C GL, (Z) for
some r = 1, or more generally is given with a homomorphism

¢:T — GL,(2),

which may not be injective (and of course is typically not surjective). Here are
three examples.

Examples 2.1. (1) We can take [' = Z, embedded in GL,(Z) for instance, using

the map
o=y ")

This case is of course the most classical.

(2) Consider a finite symmetric set S C SL,(Z), and let I' = (S) C GL,(2).
Of particular interest for us is the case when I' is large, in the sense that it is
Zariski-dense in SL,. Recall that this means that there exist no polynomial
relations among all elements g € I' except for those which are consequence of
the equation det g = 1. A concrete example is as follows: for k > 1, let

=10 ()

and let T be the subgroup of SL;,(Z) generated by Si. It is well-known that
for k = 1, this is a Zariski-dense subgroup of SL,.

We are especially interested in situations where I" is nevertheless “small”, in
the sense that the index of I" in the arithmetic group SL, (Z) is infinite. We will
call this the sparse case (though the terminology thin is also commonly used,
we will wish to speak later of thin subsets of SL,, as defined by Serre, and I is
not thin in this sense).

In the example above, the groups I'") = SL,(Z) and T'® are of finite index
in SL,(Z) (the latter is the kernel of the reduction map modulo 2), but I'®) ig
sparse for all k£ = 3. In particular, the subgroup I'® is sometimes known as the
Lubotzky group.

(3) Here is an example where the group I' is not given as a subgroup of a linear
group: for an integer g = 1, let I' be the mapping class group of a closed surface
X g of genus g, and let

¢ : T — Sp,,(Z) C GLyy(2)

be the map giving the action of I" on the first homology group H;(Zg, Z) =~ 7°8,
which is symplectic with respect to the intersection pairing on H;(Xg, 7). Here
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it is known (for instance, through the use of specific generators of I' mapping
to elementary matrices in Sp,,(Z)) that ¢ is surjective. (All facts on mapping
class groups that we will use are fairly elementary and are contained in [Farb
and Margalit 2011].)

The next piece of data are surjective maps
7wy ' — Ty,

where p runs over prime numbers (or possibly over a subset of them) and T’
are finite groups. We view each such map as giving “local” information at the
prime p, typically by reduction modulo p. Indeed, in all cases in this text, the
homomorphism 7, is the composition

r % GL,(2) — GL, (F,)

of ¢ with the reduction map of matrices modulo p, and I', is defined as the
image of this map.

Examples 2.2. (1) For I' = Z, reduction modulo p is surjective onto I', =7/ pZ
for all primes.

(2) If T" is Zariski-dense in SL,, and we use reduction modulo p to define mp, it
is a consequence of general strong approximation statements that there exists
a finite set of primes 7'(I") such that m, has image equal to SL,(F,) for all
p & T(I'), and in particular for all primes large enough.! For instance, in the
case of the subgroups I'®) C SL,(Z), this property is visibly valid with

T(F(k)) = {primes p dividing k}.

We refer to the survey [Rapinchuk 2014] in these proceedings for a general
account of strong approximation.

(3) For the mapping class group I" of X¢, and ¢ given by the action on homology,
the image of reduction modulo p is equal to Sp,4(Fp) for all primes p (simply
because ¢ is onto, and Sp,4(Z) surjects to Sp,, (Fp) for all p).

We want to combine the maps 7, corresponding to local information, modulo
many primes in order to get “global” results. This clearly only makes sense if
using more than a single prime leads to an increase of information. Intuitively,
this is the case when the reduction maps 7, 74, associated to distinct primes
p and g are independent: knowing the reduction modulo p of an element of I"
should give no information concerning the reduction modulo g. We therefore
make the following assumption on the data:

I'This is directly related to the fact that SL, is, as a linear algebraic group, connected and
simply connected.
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Assumption 2.3 (independence). There exists a finite set of primes 77 (I'), some-
times called the I'-exceptional primes, such that for any finite set / of primes
p € T1(I), the simultaneous reduction map

m:I‘—>1—[I‘p
pel

modulo primes in / is onto.

FI:HFa QIZHP-

pel pel

We will write

Note that g is a squarefree integer, coprime with 77 (T").

Examples 2.4. (1) For I' = Z, the Chinese remainder theorem shows that for
any finite set of primes /, we have

[12/piz~2/q12.
pel

and hence the map m; above can be identified with reduction modulo g;. In
particular, it is surjective, so that the assumption holds with an empty set of
exceptional primes.

(2) If ' C GL,(Z) has Zariski closure SL,, then the independence assumption
holds for the same set of primes 7' (I') = T'(I") such that m,, is surjective onto
SL,(Fp) for p ¢ T(T"), simply for group-theoretic reasons: any subgroup of a
finite product

[ st ).

pel

which surjects to each factor SL, (F,) is equal to the whole product. (This type
of result is known as Goursat’s lemma, as in [Chavdarov 1997, Proposition 5.1],
or Hall’s lemma, as in [Dunfield and Thurston 2006, Lemma 3.7].) Again a
similar property holds if the Zariski closure of I is an almost simple, connected,
simply connected algebraic group.

(3) In particular, the independence assumption holds with 77 (") = @ for the
mapping class group of X, acting on the homology of the surface, because
Goursat’s lemma applies to the finite groups Spy. (Fp).

(4) The independence assumption may fail, for instance in the context of orthog-
onal groups, when there is a global invariant which can be read off any reduction.
The simplest example of such an invariant is the determinant: if I' C GL,(Z) is
not contained in SL, (Z), the compatibility condition

detm,(g) =detg e {1} CF;,
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valid for all p and g € GL,(Z), shows that the image of r; is always contained
in the proper subgroup

{(gp) €T’y |detg, =detg, forall p,gel}

(identifying all copies of {#1}). This issue appears, concretely, in the example
of the Apollonian group and Apollonian circle packings, since the latter is a
subgroup of an indefinite orthogonal group intersecting both cosets of the special
orthogonal group, see [Fuchs 2011; Fuchs and Sanden 201 1] for a precise analysis
of this case, and [Fuchs 2013] for a survey.

It should be emphasized that this failure of the independence assumption is
not dramatic: one can replace I by I N SL, for instance, or by the other coset
of the determinant (with some adaptation since this is not a group).

We can now define the sifted sets ¥ C I' constructed by inclusion-exclusion
using local information: given a set % of primes (usually finite), and subsets

Qp, CTp,
for p € P, we let

F=F@P;Q) ={geTl |npy(g) €Qpforall peP}= ) (F—np_l(Qp)).
DEP

We want to know something about the size, or maybe more ambitiously the
structure, of such sifted sets. In fact, quite often, we wish to study sets which
are not exactly of this shape, but are closely related.

Frequently, we have an integer parameter Q = 1, and we take ? = {p < 0},
the set of primes up to Q. In that case, we will often denote ¥(Q; Q) = F(P; Q),
and we may even sometimes simplify this to ¥(Q) if it is clear that 2 is fixed.

Examples 2.5. (1) Let I' = Z, and let 2, = {0, =2} C [}, for all primes p < Q,
where Q = 2 is some parameter. Taking % = {p < O}, we have by definition

F(Q) = S (P; Q) = {n € Z | neither n nor n + 2 has a prime factor < Q}.

In particular, for N = 1, the initial segment ¥(Q) N {1, ..., N} contains all
twin primes n between Q and N, that is, all primes p with Q < p < N such that
p + 2 is also prime. Hence an upper bound on the size of this initial segment
will be an upper bound for the number of twin primes in this range. This is valid
independently of the value of Q. Furthermore, if Q = +/N + 2, we have in fact
equality: an integer n € ¥(+/N +2) N {l,..., N} must be prime, as well as
n + 2, since both integers only have prime factors larger than their square-root.
More generally, if Q = N# for some 8 > 0, we see that $(Q) N {1,..., N}
contains only integers # such that both n and n 4 2 have less than 1/ prime
factors.
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(2) The first example is the prototypical example showing how sieve methods
are used to study prime patterns of various type. Bourgain, Gamburd and Sarnak
[2010] extended this type of questions to discrete subgroups of GL,(Z). We
present here a special case of what is called the affine linear sieve or the sieve in
orbits. There will be a few other examples below, and we refer to the original
paper or to [Kowalski 2010] for a more general approach.

We assume for simplicity, as before, that I" is Zariski-dense in SL,. Let

f:SL(2) > Z

be a nonconstant polynomial function, for instance the product of the coordinates.
We want to study the multiplicative properties of the integers f(g) when g runs
over I'. Consider

Qp={gelp| f(g)=0(modp)} C T, CSL,(Fp). 2-1

for p < Q. Then ¥(Q; ) (recall that this is the sifted set for # = {p < 0}) is
the set of g € I" such that f(g) has no prime factor < Q. In particular, for any
A > 0, the intersection

F(0;QNigel || f(g)l< 0"}

consists of elements where f(g) has < A prime factors. For instance, when f is
the product of coordinates, this set contains elements g € I' where all coordinates
have less than A prime factors.

(3) For our last example, consider the mapping class group I" of X¢. Let 3¢ be
a handlebody with boundary ¥¢. For a mapping class ¢ € I', we denote by .l
the compact 3-manifold obtained by Heegaard splitting using ¥, and ¢, that is,
it is the union of two copies of g where the boundaries are identified using
(a representative of) ¢ (see [Dunfield and Thurston 2006] for more about this
construction).

The image J of Hy(¥g,Z) ~78 in H\(Zg,Z) >~ Z*¢ is alagrangian subspace
(i.e., a subgroup of rank g such that the intersection pairing is identically zero on
J). We denote by J, C [F;g its reduction modulo p. It follows from algebraic
topology that

Hy(My.Z) ~ H\(Xg.2)/(J. ¢ J),
Hi(Mg,Fp) >~ Hi(My,Z) @Fp >~ H\(Zg,Fp)/(Jp, b Jp).
Thus if we let
Qp ={y €Spygbp) |y -JpNJp =2}
={y €Sp2g(Fp) | (Jp. v - Jp) = F¥}, (2-2)
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we see that any sifted set #(%; 2) contains all mapping classes such that .l
has first rational Betti number positive.

We will discuss this example further in Section 5. The reader who is not
familiar with sieve is however encouraged to try to find the answer to the following
question: What is the great difference that exists between this example and the
previous ones?

3. Conditions for sieving

Having defined sifted sets and seen that they contain information of great potential
interest, we want to say something about them. The basic question is “How
large is a sifted set ¥?” In order to make this precise, some truncation of &
is needed, since in general this is (or is expected to be) an infinite set. In fact,
we saw in the simplest examples (e.g., twin primes) that this truncation (in that
case, the consideration of an initial segment of a sifted set) is crucially linked
to deriving interesting information from &, as one needs usually to handle a
truncation which is correlated with the size of the primes in the set % defining
the sieve conditions.

When sieving in the generality we consider, it is a striking fact that there
are different ways to truncate the sifted sets, or indeed to measure subsets of
I" in general (although those we describe below seem, ultimately, to be closely
related.) We will speak of counting methods below to refer to these various
truncation techniques.

Method 1 (Archimedean balls). Fix a norm || - || (or some other metric) on the
ambient Lie group GL, (R) (for instance the operator norm as linear maps on
euclidean space, but other choices are possible) and consider

Fnigelllgl =T

for some parameter 7" = 1. This is a finite set, and one can try to estimate (from
above or below, or both) its cardinality.

Example 3.1. Let I" be a Zariski-dense subgroup of SL, (Z) and f a nonconstant
polynomial function on SL, (Z). For some d > 1, we have

£ (9] < gl

for all g € I'. Hence if we consider the sifted set (2-1) for Q = T#, the elements
in

FO)N{gel|lgl<T}

are such that f'(g) has at most d/f prime factors.
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Counting in archimedean balls in subgroups of arithmetic groups, even without
involving sieve, is a delicate matter, especially in the sparse case, which involves
deep ideas from spectral theory, harmonic analysis and ergodic theory. We refer
to [Gorodnik and Nevo 2009] for the case of arithmetic groups, and to [Oh 2011;
2014] for the sparse case, as well as to [Mohammadi and Oh 2013], concerning
geometrically finite subgroups of isometries of hyperbolic spaces.

Method 2 (combinatorial balls). Since the groups I" of interest are most often
finitely generated, and indeed sometimes given with a set of generators, one can
replace the archimedean metric of the first method with a combinatorial one.
Thus if S = S™! is a generating set of I', we denote by /g(g) the word-length
metric on I' defined using S. The sets

SNi{gel|ls(g)<T} or FN{gel|ls(e)=T}
are again finite, and one can attempt to estimate their size.

This method is particularly interesting when S is a set of free generators of I"
(and their inverses), because one knows precisely the size of the balls for the
combinatorial metric in that case. And even if this is not the case, one can often
find a subgroup of I" which is free of rank > 2, and use this subgroup instead of
the original I". (This technique is used in [BGS 2010]; in that case, the necessary
free subgroup is found using the Tits alternative, a very specific case of which
says that if I" is Zariski-dense in SL;, then it contains a free subgroup of rank 2.)

Method 3 (random walks). Instead of trying to reduce to free groups using a
subgroup, one can replace I" by the free group F(S) generated by S and use the
obvious homomorphisms

¢:F(S)>T —>GL,(Z) and F(S)—>T —>T,

to define sieve problems and sifted sets. An alternative to this description is to
use the generating set S' and count elements in balls for the word-length metric
s with multiplicity, the multiplicity being the number of representations of g € T’
by a word of given (or bounded) length. This means one measures the size of
aset X C I truncated to the sphere of radius N = 1 around the origin by its
density

’

1
[LN(X)=W|{(S1,...,SN)GSN|Sl-~-SN€X}

and therefore one tries to measure the density of the sifted set un (%), as a way
of measuring its size within a given ball. If one wishes to measure balls instead
of spheres, a simple expedient is to replace S by S; = S U {1} (since the sphere
of radius N for /g, is the ball of radius N for /g).
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It is often convenient to think of this in terms of a random walk: one assumes
given, on a probability space €2, a sequence of independent S-valued random
variables &;,, and one defines a random walk (y;) on I by

Yo=1,
Yn+1 = Vuént1 forn=0.

If all steps &, are uniformly distributed on S, it follows that

un(X) =P(yn € X),

or in other words, the density up is the probability distribution of the N -th step
of this random walk.

Example 3.2. The analogue (for methods 2 and 3) of the argument in Example 3.1
is the following: given a function f as in that example, there exists C = 1 such
that, for all g € I', we have

|f(g)| < Cls®

(simply because the operator norm of g is submultiplicative and hence grows
at most exponentially with the word-length metric). Thus elements which have
word-length at most N and belong to a sifted set (Q; Q) with Q of size AV,
for some A > 1, have at most (log 4)/(log C) prime factors.

Example 3.3 (Dunfield-Thurston random manifolds). This third counting method
is the least familiar to classical analytic number theory. This random walk
approach was however already considered by Dunfield and Thurston [2006] as a
way of studying random 3-manifolds, using the Heegaard-splitting construction
based on mapping class groups as in Example 2.5(3): given an integer g = 1,
they consider a finite generating set S of the mapping class group I" of X¢
and the associated random walk (¢,). The 3-manifolds .4, are then “random
3-manifolds” and some of their properties can be studied using sieve methods.

It is of course useful to have a way of considering these three methods in
parallel. This can be done by assuming that one has a sequence (i) of finite
measures on I, and by considering the problem of estimating p (%), the measure
of the sifted set. In Method 1, these measures would be the uniform counting
measure on the intersection of I with the balls of radius N in GL,(R), in
Method 2, the uniform counting measure on the combinatorial ball of radius N,
and in Method 3, the probability law of the N -th step of the random walk.

4. Implementing sieve with expanders

We will now explain how all this relates to expanders. The one-line summary is
that the expander condition will allow us to apply classical results of sieve theory
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to settings of discrete groups with exponential growth (one might prefer to say
“in nonamenable settings”). We can motivate this convincingly as follows.

The simplest possible sieve problem occurs when the set % of conditions is
restricted to a single prime, and one is asking for

un({g el | mp(g) = go}).

for a fixed prime p and a fixed gg € I'y. One sees that, assuming p is fixed,
this elementary-looking question concerns the distribution of the image of the
sequence 7, x4y Of measures on the finite group I',. This may well be expected
to have a good answer.

Example 4.1. Consider (one last time) the classical case I' = Z. If we truncate
by considering initial segments {1, ..., N}, we are asking here about the number
of positive integers < N congruent to a given a modulo p. The proportion of
these converges of course to 1/ p, and this is usually so self-evident that one
never mentions it specifically. (But, still in classical cases, note that if one starts
the sieve from the set of primes instead of Z, then this basic question is resolved
by Dirichlet’s theorem on primes in arithmetic progressions, and the uniformity
in this question is basically the issue of the generalized Riemann hypothesis.)

On intuitive grounds as well as theoretically, one can expect that the probability
that g reduces modulo p to g¢ should be about 1/|I',|. This amounts to expecting
that the probability measures 7 «(1)/n (I') converge weakly to the uniform
(Haar) probability measure on this finite group. It is when considering uniformity
of such convergence that expander graphs enter the picture.

We can already deduce from this intuition the following heuristic concerning
the size of a sifted set #(P; Q): each condition 7, (g) & €2, should hold with

probability approximately
|€2p|

ITpl”
and these sieving conditions, for distinct primes, should be independent. Hence
one may expect that

uN (S @) ~ un (D) [ ] (1 - @) 4-1)

JAUT]

(The symbol =/ here only means that the right side is a first guess for the left...)
The simplest counting method to explain this is Method 3, where the argument
is very transparent. We therefore assume in the remainder of this section that
U is the probability law of the N -th step of a random walk on IT" as above.
It is then an immediate corollary of the theory of finite Markov chains (applied
to the random walk on the Cayley graph of I', induced by that on T') that, if
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1 € S (or more generally if this Cayley graph is not bipartite, that is, if there
exists no surjective homomorphism I', — {£1} such that each generator s € S
maps to —1), we have exponentially fast convergence to the probability Haar
measure. Precisely, let M), be the Markov operator acting on functions on I', by

(Mpp)(¥) = 17 o o).
seS

This operator also acts on functions of mean 0, that is, on the space L(z)(Fp)
of functions such that
> elg)=0.

g€l

and has real eigenvalues. Let p, < 1 be its spectral radius (it is /ess than 1
because the eigenvalue 1 is removed by restricting to L2, while —1 is not an
eigenvalue because the graph is not bipartite). We then have

1
‘uwp(g) = g0) — —‘ <pp.
|Tp]

forall N = 1.
More generally, under the independence assumption (Assumption 2.3), if [ is
a finite set of primes not in 77 (I"), the same argument applied to the quotient

F—>Iy=[]T
pel

shows that for any (g,) € I'y, we have

(4-2)

‘MN(”p(g) =gpforpel)—[]

el IFp

where p; < 1 is the corresponding spectral radius for I'y. It follows by summing
over x = (gp) € I'y that we have a quantitative equidistribution

[ o(Gintenperdin o) = |F|Z¢<x)+0<|rz|||¢||oop,) (43)

xel'y

(with an absolute implied constant) for any function ¢ on I'y.
In particular, we see that if % is a fixed set of primes (not in 77 (I")), then as
N — 400, the basic heuristic (4-1) is valid asymptotically:

. o o) — IR
NglgoouN(Sf(@,sz))—Ngnij(yNe&f(@,sz))—lg( lm). (4-4)

We will call this a bounded sieve statement.
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The difficulty (and fun!) of sieve methods is that the sifted sets of most interest
are such that the primes involved in & are not fixed as N — +oo: they are
in ranges increasing with the size of the elements being considered (as shown
already by the example of the twin primes). It is clear that in order to handle
such sifted sets, we need a uniform control of the equidistribution properties
modulo primes, and modulo finite sets of primes simultaneously. The best we
can hope for is that (4-2) hold with the spectral radius bounded away from one
independently of I. This is, of course, exactly the conditions under which the
family of Cayley graphs of I'; with respect to the generators S is a family of
(absolute) expander graphs.

Remark 4.2. We have discussed the example of the random walk counting
method. It is a fact that analogues of (4-2) hold in all cases where sieve methods
have been successfully applied. Moreover, these analogues hold uniformly with
respect to I, and ultimately, the source is always equivalent to the expansion
property of the Cayley graphs, although the proofs and the equivalence might
be much more involved than the transparent argument that exists in the case of
random walks.

Example 4.3. The first case beyond the classical examples (or the case of arith-
metic groups, where property (7) or (t) can be used,? although this also had
not been done before) where sieve in discrete groups was implemented is due
to Bourgain, Gamburd and Sarnak [BGS 2010], who (based on [Helfgott 2008;
Bourgain and Gamburd 2008]) proved that if I" is a finitely generated Zariski-
dense subgroup of SL,(Z) (or even of SL,(0), where O is the ring of integers
in a number field), the Cayley graphs of I'y, where I runs over finite subsets
of T7(I"), form a family of (absolute) expanders. The problem of generalizing
this to SL,, or to Zariski-dense subgroups of other algebraic groups, was one
of the motivations for the recent developments of this result, and of the basic
growth theorem of Helfgott, to more general groups. We now know an essentially
best possible result; see [Salehi Golsefidy and Varju 2012; Varji 2012] and the
surveys [Salehi Golsefidy 2014; Breuillard 2014; Pyber and Szab6 2014] in this
volume for introductions to this area).

Theorem 4.4 (Salehi Golsefidy and Varji). Let I' C GL, (Z) be finitely generated
by S = S~ with Zariski-closure G . For p prime, let I'p be the image of T’
under reduction modulo p, and for a finite set of primes 1, let 'y be the image of
[ in[[,es U'p, under the simultaneous reduction homomorphism.

If the connected component of the identity in G is a perfect group, then there
exists a finite set of primes T1(I") such that the family of Cayley graphs of T'y,
for I NT(I') = @, is an expander family.

2See [Gorodnik and Nevo 2012] for the best known in this direction.
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We can now describe the implication of some classical sieve results in the
context of discrete groups. We assume formally the following:

Assumption 4.5 (expansion). There exists a finite set of primes 75(I") such
that I satisfies the independence assumption 2.3 for primes not in 7>(I"), and
furthermore the family of Cayley graphs of I'y, for I N T>(I') = &, is an
expander family; that is, there exists p < 1, such that for any finite set I of
primes p & T»(I"), the spectral radius for the Markov operator on ['; satisfies

PI < p.
By (4-2), this assumption implies that the asymptotic formula

1

— 4-5
T, (+3)

P(er(yn) =gpforpe I) ~
pel
holds uniformly for n > 1 and sets 7 such that |[I';| < p~", for any p > p. If we

assume that
Tyl < p%. (4-6)

for some fixed B = 1, this means that we can control simultaneously and uni-
formly all reductions of the N -th step as long as g7 < [)_”/ B Note that (4-6) is
not very restrictive: it holds (with B = r2) if 7, is just the reduction modulo p
on GL,(Z), which is the case in all our applications.

The most classical types of sieve are those when the sieving conditions deter-
mined by €2, hold with probability approximately «/ p, at least on average, were
k is a fixed real number traditionally called the dimension of the sieve. Precisely,
we say that (£2)) is of dimension « if we have3

Z lF log p =«klog X + O(1), 4-7
2Ty

for X = 2. This is certainly true, by the prime number theorem, if

Q 1
ITpl p p

for some § > 0 and all p prime.
We then have the following basic result:

Theorem 4.6 (small sieve in discrete groups). Let I' be a discrete group finitely
generated by S = ST, given with ¢ : I' — GL,(Z) and surjective homo-
morphisms 1, to finite groups Iy, as above, in particular with (4-6) for some

3There are other weaker conditions that are enough to allow an efficient sieve, but we just refer
to [Friedlander and Iwaniec 2010, Section 5.5] for a discussion of these aspects.
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fixed B = 1. Assume that T satisfies the independence assumption 2.3 and the
expansion assumption 4.5. Let (yy) be a random walk on T using steps from S,
and let L, denote the probability law of the n-th step. Let Q, C I',, be finite sets
such that (4-7) holds for some k > 0.

There exists A > 0 such that, for alln = 1, if we let Q = A" and take P to be
the set of primes p < Q with p &€ T»(I"), then we have

Py € 9 Q) = —

nk’
for all N large enough.

This is essentially a direct consequence of the standard Brun-type sieve,
building on the independence and expansion assumptions. The mechanism is
explained in [Kowalski 2010], and to avoid repetition, we will not give further
details here. We simply add a few remarks. First, this result confirms the heuristic
(4-1) as far as the order of magnitude is concerned, i.e., up to multiplicative
constants. Indeed, the right side of (4-1) is, in this case, given by

Q
I (1_M)~ I (1_5) ¥,
< A" |Fp| <An p
P< P<
pET>(T)

as n — +00, by (4-7) and the Mertens formula (or the prime number theorem.)
Secondly, the result is best possible in the sense that one cannot replace the
inequalities up to multiplicative constants by an asymptotic formula in this
generality (this is also seen from the Mertens formula and the prime number
theorem). Finally, the result is by no means an easy consequence of (4-2) and

the uniformity afforded by expansion.

Example 4.7 (sieve in orbits). We illustrate the above result by deriving, as a
corollary, a special case of the sieve in orbits (or affine linear sieve) of [BGS
2010].

Let I be Zariski-dense in SL, (Z) with r = 2, and generated by the finite set
S = S~!. We take for 7p the reduction maps. Let

f:SL(Z) > 7

be a nonconstant polynomial map and let £, C SL, (F,) be the set of zeros of
S Since f is nonconstant, the algebraic subvariety Zy of SL; defined by the
equation f = 0 is a hypersurface in SL,. Relatively elementary considerations
of algebraic geometry, together with the Lang—Weil estimates for the number of
points on algebraic varieties over finite fields, show that we have

Q K -
Bl _ % o(por2), (4-8)
Tyl p
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for some k, = 0 which depends on the splitting of p in the field of definition
of the geometrically irreducible components of Zy (if all geometrically irre-
ducible components of Z; are defined over Q, then k) is the number of these
irreducible components, as is well-known; the general case is carefully explained
in Proposition 15 and Corollary 17 of [Salehi Golsefidy and Sarnak 2013]).
A further application of the Chebotarev density theorem (see Lemma 21 of the
same reference) shows that

> kp =km(X) + O(X/(log X)?),

p<X
where « is the number of Q-irreducible components of Z¢ (if all geometrically
irreducible components are defined over Q, we have «, = « for all but finitely
many p).
Examples 4.8. (1) Consider the function

(@b =a* a2

on SL;. For p = 3 (mod4), we have k, = 0 (since a® + d? = 0 € [, implies
a = d =0 in this case), while for p = 1 (mod 4), we have «, = 2, reflecting the
fact that Z¢ has then, over [, the two geometrically irreducible components
defined by a + ed = 0 and a — ed = 0, where ¢> = —1. The average of k), over
p is then equal to « = 1.

(2) Consider the function
fgij)=]]sis
i,j
on SL,. Then the irreducible components are defined by g; ; = 0 for a fixed
(i, j), and are all defined over Q. Thus we have k = k), = r2 for all primes p.

Thus all assumptions of Theorem 4.6 hold (the expansion assumption coming
from Theorem 4.4), and we deduce that there exists a finite set of primes 7" and
A > 1 such that if P is the set of primes not in 7" and < A", we have

P(y, € P(P.:Q2)) <xn~“.
Using Example 3.2, we therefore deduce this result of Bourgain, Gamburd
and Sarnak:

Theorem 4.9 (sieve in orbits [BGS 2010]). Let I' and f be as above. There
exists w = 1 such that the set O (w) of all g € I such that f(g) has at most
prime factors satisfies

P(yn € Op(w)) xn™", (4-9)

for n large enough.
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One of the insights of [BGS 2010] was that such a statement has a more
qualitative corollary which is already very interesting and doesn’t require any
consideration of a special counting method:

Corollary 4.10. Let I" and f be as above. There exists w = 1 such that the set
Of(w) is Zariski-dense in SL;.

Proof. 1t is enough to check that if a subset X C I' is not Zariski-dense, then a
lower bound
P(yne X)>»n™™

does not hold for any x > 0, since Or(w) C Z would then contradict the sieve
lower bound (4-9) (note that here () is just an auxiliary tool).

Given X, there exists a nontrivial polynomial f such that X' C Z (recall that
this is the zero set of f). Then, for any prime p (large enough so that reduction
of f modulo p makes sense) the image of X modulo p is contained in the zeros
of f modulo p. But using (4-8) and summing (4-5) over the zeros of f modulo

p, we have

P (7 (vn) € Zy (mod p)) ~ kpp ™"

uniformly for p < A" for some A > 1. Taking p of size A", we deduce
P(yn € X) <P (mp(yn) € Zy (mod p)) K A7",

for n large enough. Thus the probability to be a zero of a given function f is in
fact exponentially small for a long walk, and this contradicts the lower bounds
for Of(w). O

In fact, as noted in [Kowalski 2010] and as we will see in the next section,
this has a natural refinement where ‘“Zariski-dense” is replaced by “not thin” in
the sense of Serre.

Salehi Golsefidy and Sarnak [2013] have extended the basic small sieve
statement to much more general groups, not necessarily reductive, using the full
power of Theorem 4.4 together with special considerations to handle unipotent
groups.

Example 4.11. Theorem 4.6 also applies in the context of Dunfield—Thurston
manifolds, as in Example 3.3. Indeed, the expansion assumption 4.5 is here a
consequence of property (7') for Sp,y,(Z) for g = 2. As observed in [Kowalski
2010], a consequence of Theorem 4.6 which is similar in spirit to the affine linear
sieve is that there exists w = 1 such that

P(H 1 (Mg, , Z) is finite and has order divisible by < w primes) =n"1,

for n large enough. (We recall that the genus g defining the Heegaard splitting
is fixed).
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One can certainly use the sieve setting for many other purposes. As one
further example, we show how the method of [Granville and Soundararajan
2007, Proposition 3] gives a version of the Erdés—Kac theorem for discrete
groups. For simplicity, we only state the result for the affine sieve, and give one
further example afterwards. (A version of this for curvatures of Apollonian circle
packings was proved in [Djankovi¢ 2011].)

Theorem 4.12 (Erd6s—Kac central limit theorem for affine sieve). Assume that
I' C SL,(Z) is Zariski-dense in SL, and f is a nonconstant polynomial function
satisfying the assumptions of Theorem 4.9. For a random walk (y,) on T, let
wr(yn) = o(f(yn)) if f(yn) # 0, and s (yn) = 0 otherwise. Then the random
variables

wr(yn) —Kklogn

VK logn

converge in law to the standard normal random variable as n — +o0.

Proof. We proceed exactly as in [Granville and Soundararajan 2007], leaving
some details to the reader. This uses the method of moments to prove convergence
in law to the normal distribution: classical probability results imply that it is
enough to prove that for all integers & = 0, we have

E ((wf(yn)—xlogn)") e
VK logn
as n — +oo, where ¢ = E(N(0, 1)%) is the k-th moment of a standard normal

random variable.
We first deal with the possibility that f(y,) # 0. By bounding

P(f(yn) = 0) <P(/(mp(y)) = 0b),

for any prime p large enough, and arguing as in the proof of Corollary 4.10, we
get

P(f(yn) =0) <™,
for some ¢ > 1. Thus the expectation above, restricted to the set f(y,) =0, is
< (klog n)k/2e7m 0,

as n — 400.
Below we use the notation E to denote expectation restricted to f(y,) # 0.
We fix some integer £ = 0, and fix some auxiliary 4 > 1. We will compare

My, = E((wp(yn) — k log n)*)
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with the moment of “truncated” count of primes dividing f(yy) defined by

wes(( £z

p<A” p<A"

p (Yn)€EQp
where q
5, = 1%l
Tyl

and then estimate asymptotically N; when 4 > 1 is small enough with respect
to k.
For the first step, we note that when f(y,) # 0, we have
a)f(y,,) —Klogn = Al + A2 + A3,
where

Ar= Y 1=3"8, Ar=o(fm)- Y L

p<A" p<A" p<A"
7p (Yn) €Q2p 7p (Yn) €EQLp

Az = Z dp —k logn.
psA4”"

If C > 11is such that | f(g)| < C's®), then we get
2 S _logC’
log A
while, by (4-7), we have
Q
Az = Z dp —klogn = Z lr—p|—/<10gn = 0(1),
psA” psA” T

so that A, + A3 is uniformly bounded for a fixed choice of 4. Using the
multinomial theorem, it follows that

My, = Nj 4+ O( max AG)
J<k—1

where
)
We have Nj = N; if j is even and if j is odd, we get

Nj € \Nj=iNj41 = \[Nj=1Nj

N,:F:(

2 1= 2%
p<A" p<An
7p (Yn) €QLp
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by the Cauchy—Schwarz inequality, showing that a good understanding of N;
for j < k will suffice to estimate M.
For the second step, we write

Xp = 1np(-)er —51;,

for p < A", sum over p, and open the k-th power defining Nj. Note that
| Xp| < 1. Exchanging the multiple sum over primes and the expectation, we get

Ny = Z---ZE(}E[IXM).

pl ”"pl(gAn

For any fixed (p1,..., pr), we note that

k k k
E (HXP/‘) =E (l_[XPj) —E (l_[Xlef(Vn)=0)’
j=1 j=1 j=1

and the second term is bounded by P ( f(yn) = 0) < ¢™" since 0 < X, < 1. Thus
the total change in replacing E by E in the formula above for Ny is < Ak en,
which is negligible if A is chosen small enough.

Having written

k k
M= o S E([1 ) = T T B (5 ) + 0w
D1, P SA" Jj=1 DR SAN j=1
we can apply the equidistribution (4-3) to each expectation term, obtaining a
main term which we will discuss in a moment and a total error term E which is
bounded by
E « Ank(l—i—B)pn + AnkC—n’

where B is as in (4-6). Therefore E tends to 0 as n — 400 if A is chosen small
enough (in terms of k), which we assume to be done.

There remains the main term. However, the latter is, by the independence
assumption 2.3 and by retracing our steps, almost tautologically the same as

(g -u))

where the (Y)) are independent Bernoulli random variables with expectation

Q
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It is a basic probabilistic fact that the sum

2 Y

psA”

satisfies the central limit theorem, with mean « log # and variance « log n (because
of (4-7) again). Therefore this sum has the right k-th moment for all £ > 0, and
this easily concludes the proof (or see [Granville and Soundararajan 2007] for a
direct analysis of this type of main terms to see the combinatorics from which
the normal moments explicitly appear). O

Example 4.13 (Erd6s—Kac theorem for random 3-manifolds). It is clear that
the argument can be applied in greater generality (including for other counting
methods, provided the analogue of quantitative and suitably uniform equidistri-
bution is known). For instance, one sees that, for Dunfield—Thurston random
3-manifolds, the number w(.lg,) of primes p such that H; (Mg, ,Fp) # 0 is

such that
w(Mgy,) —logn

V9ogn

converges to a standard normal random variable, with the convention w (g, ) = 0
if Hy(Mg,, Q) # 0.

5. The large sieve
We begin with a motivating example.

Example 5.1. Consider Corollary 4.10. Although the Zariski topology contains
a fair amount of information (see [BGS 2010] for examples of distinction it
makes concerning the sieve in orbits), it is not very arithmetic. By itself, the
fact that O¢(w) is Zariski-dense in SL, does not exclude the possibility that this
set is contained, for instance, in the subset X of SL, (Z) of matrices where the
top-left coefficient is a perfect square (since X is Zariski-dense in SL,.) It is
natural to try to study this and similar possibilities. The following definition is
relevant (see [Serre 2008, Chapter 3]):

Definition 5.2 (thin set). A subset X' C SL, (Q) is thin if there exists an algebraic
variety W /Q with dim(W) < r2? —1 and a morphism 7 : W — SL, such that
X C n(W(Q)) and 7 has no rational section.

Examples 5.3. (1) The set X = {g € SL,(Q) | g1,1 is a square} is thin. Indeed,
we have a ()-morphism

7 A A
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mapping (g;,;) to the matrix (4;,j) with 2} | = gf , and all other coordinates
unchanged. The pullback of this morphism to SL, C A" : gives a morphism

7w : W — SL,,

where
W ={g A" |detn(g) = 1},

for which we have X' C 7(W(Q)) by construction (and dim W < dim SL, is
clear since 7 has finite fibers.)

(2) A subset X which is not Zariski-dense is thin.
We wish to prove:

Proposition 5.4. Let " and f be as in Corollary 4.10. Then there exists w = 1
such that Oy (w) is not thin in SL;.

The natural idea to prove this is to prove that if X is a thin set, then for a
random walk on I', the probability

P(yn € X)

is too small to be compatible with (4-9). For this, we observe, as in the proof of
the Zariski-density, that if X’ C 7 (W (Q)) for some

x: W —SL,,
as in the definition, we have
mp(X) Cw(W(EFp)),

for all primes p large enough (such that W and = make sense modulo p). Hence
if g € X, we have

7p(g) & 2p = SLy(Fp) — n(W(EFp)),
for all p large enough. This implies a sieve upper bound
X CH(P;Q),

where % contains all but finitely many primes.

However, the size of €2, is typically much larger than the number of points of
an algebraic variety, as one can guess by just looking at the example of squares
in @, where the image modulo p contains roughly half of all residue classes.
Indeed, in general we have:
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Lemma 5.5. Let w : W — SL, be a Q-rational morphism with dim W <r? —1
and with no Q-rational section. There exists 6 < 1 such that, for p large enough,

we have
T WEN] _ ¢
| SL, (Fp)|

For the proof, see [Serre 2008, Theorem 3.6.2], for example.

Example 5.6 (homology of Dunfield—Thurston random manifolds). We consider
the situation of Example 2.5(3). Here we found sifting conditions €2, defined
in (2-2) such that, if 4, denotes the manifold obtained from the n-th step of a
random walk on the mapping class group I' (as in Example 3.3), we have

P(H; (Mg, . Q) # 0) < P(pn € F(Q.2p)).

for any Q = 1, where Q refers to using all primes p < Q as sieve conditions. It
is an interesting computation to show that

Q g 1
9 _fj 1
199 j:11+17_]

(see [Dunfield and Thurston 2006, Theorem 8.4]) so that, for fixed g, there exists
dg > 0 for which

for all p.

We now revert to the general setting of a discrete group I" with local informa-
tion 7, : I' — I',. We have found above two natural instances of large sieves,
a terminology which refers to sieving problems where the sets €2, are “large”,
something which most commonly means that they contain a positive proportion
of I'p: for some 6 > 0, we have

2l 2550, (5-1)

Tyl
for all p € %. This is to be compared with the “small” sieve assumption (4-7),
and this leads to an interesting remark (answering the question to the reader at
the end of Example 2.5(3)): the primes occur explicitly on both sides of (4-7),
but as far as the left side is concerned, they are just indices that could be replaced
with any other countable set. However, on the right side, the actual size of primes
(and hence their distribution) is involved. This feature disappears in (5-1). This
suggests that the large sieve could be of interest in much wider contexts outside of
number theory. This is indeed the case, as was shown already partly in [Kowalski
2008], and even more convincingly in the recent works of Lubotzky, Meiri
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and Rosenzweig that we will discuss, some of which prove general algebraic
statements about linear groups using some forms of sieve methods.

To present the large sieve in the context of discrete groups, we will use here
the very simple version from [Lubotzky and Meiri 2012a], adapted to our setting.

Theorem 5.7 (large sieve). Let I' be a group generated by a finite symmetric set
Swith1 €S. Let I' — I', be surjective homomorphisms onto finite groups for
P = po. Assume that:

(1) For any p # q primes = pg, the induced homomorphisms
I =>TyxTy=Tpy (5-2)

are onto.
(2) The family of Cayley graphs of I'p 4 and T'p, with respect to S is an expander
Sfamily, for p,q = py.

(3) For some B =1 we have
Tyl < p2.

Let 2, C I'y be such that

|€2p]
—— =4, (5-3)
ITpl
for some § > 0 independent of p.
Then there exists A > 1 and ¢ > 1 such that for Q = A", we have

P(yn € #(Q:Q) <",
for n large enough, where the sieving is done using primes py < p < Q.

Note how the assumptions concerning the group and the I';, are slightly weaker
versions of those used for the small sieve in Theorem 4.6, since expansion and
independence is only required for pairs of primes instead of all squarefree integers.
Thus this version of the large sieve applies whenever Theorem 4.6 is applicable.

In particular, in view of the example at the beginning of this section, we see
that this theorem proves Proposition 5.4. Similarly, for the Dunfield—Thurston
random manifolds of Example 5.6, this implies the following:

Proposition 5.8. Let g = 1 be an integer, and let (¢,) be a random walk on the
mapping class group I' of X g associated to a finite generating set S. Then there
exists ¢ > 1 such that

P(H;(Mgy, Q) #0)Lc™" forn=1.
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That the probability tends to zero is Corollary 8.5 of [Dunfield and Thurston
2006], and the exponential decay is Proposition 7.19 of [Kowalski 2008].

Remark 5.9. It would be unreasonable to expect lower bounds for the size of
sifted sets in the large sieve situation, unless the set % determining the sieving
conditions is extremely small (so the situation essentially reverts to a bounded
sieve (4-4)). Indeed, if we consider integers and sieve by removing the nonsquare
residue classes modulo p for all p € P, which is certainly a large sieve, the right
side of the heuristic size of the remaining set is (%)I@I' If P is the set of primes
< Q, then this is much smaller than the number of squares in {1, ..., N}, which
certainly remain after the sieve, if Q = N?¢ for any fixed ¢ > 0. (See [Green
2008] for a discussion of the fascinating question of the possibility of an inverse
large sieve statement for integers.)

We adapt the simple proof of Theorem 5.7 given in [Lubotzky and Meiri
2012a] (due to R. Peled; it is reminiscent of some classical arguments going
back to Rényi and Turén; see [Kowalski 2008, Proposition 2.15].)

Proof. For a fixed n, let X}, denote the Bernoulli random variable equal to 1
when 7, (y,) € ) and 0 otherwise, and let

We see that v, € F(Q; Q) is tautologically equivalent to the condition X = 0.
We can compute easily the expectation of X, namely

E(X) =) P(mp(yn) € Qp).
p
which, by the expansion assumption 4.5 for (I'), satisfies

€2p|
E(X)=) =5+ 00",
||
where p < 1 is an upper bound for the spectral radius of the expansion of the
Cayley graphs. If Q18 « ", this gives
0

E(X) > #n(Q)> @,

using the large sieve assumption on the size of £2.
We will now use the Chebyshev inequality
V(X)

PO e9(0: ) =P(X =0)< £,
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where V (X) is the variance of X. We compute

V(X)) =E((X —E(X))>) =) _ W(p.q)
pP.q

by expanding the square, where
W(p,q)=E(XpXq) —E(Xp) E(Xy)
=P(7p(yn) €2p and 74 (yn) € Q29) =P (7rp (vn) €2p) P (4 (vn) € Q)

(a measure of the correlation between two primes). We isolate the diagonal terms
where p = ¢, for which we use the trivial bound |W(p, p)| < 1, and obtain

V(X) < Q0+ 0*max|W(p,q)|.
PF#q

Finally, to estimate W(p, g) when p # ¢, we can apply the assumption (5-2)
and the expansion of the Cayley graphs of I', ; and I',: we have

P(7p(yn) € Qp and 74(yn) € Qq) = % +0(0%B 1,
while, by the same argument used for computing the expectation, we have

1$2p[1€24]

B n
I, 0@,

P(rtp(vn) € Qp) P(g(vn) € Qg) =

The main terms cancel, and therefore

0% max |W(p,q)| < Q*T2B ",
p#q

Take Q as large as possible so that Q>T2Bp" < 1, so that Q > A” for some
A > 1. Then the Chebyshev inequality gives

(Q + 0*2B M) (log 0)?  (log 0)?
0? o

which is of exponential decay in terms of 7. O

P(yn € $(0: Q) K

Remarks 5.10. (1) Clearly, one can restrict the large sieve assumption (5-3) to a
subset of primes with positive natural density (e.g., some arithmetic progression)
without changing the conclusion, and this is often useful.

(2) This very simple proof is well-suited to situations where precise information
on the expansion constant of the relevant Cayley graphs is missing (as is most
often the case). When such information is available, one gets from this argument
an explicit constant ¢ > 1, and one may wish to get it as large as possible. For this,
one can use rather more precise inequalities, as discussed in [Kowalski 2008].
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The point of the large sieve is really the exponential decay it provides. If one
is interested in a statement of qualitative decay

lim P(y,eX)=0, (5-4)

n—-+o0o

for a subset X C I' such that X’ C $(Q; Q2), for all Q large enough, where the
2, satisfy (5-3), then one can more easily apply the bounded sieve (4-4) to a
finite set I, getting

limsupP(y, € X) < lim P(mp(yn) €Q2p for pel)
n——+o00

n——+00
Q
= ]‘[(1—|F—”|) <a-§Ml.
pel Tpl

Then, letting |/| — 400, we obtain (5-4). As an example, note that this
qualitative decay is not sufficient to prove Proposition 5.4.
Lubotzky and Meiri introduce the following convenient definition:

Definition 5.11 (exponentially small sets). Let I' be a finitely generated group.
A subset X C I' is exponentially small if, for any finite symmetric generating
set S containing 1, and with (y;,) the corresponding random walk on I', there
exists a constant ¢g > 1 such that

P(yneX) < cg" forn=1.

Remark 5.12. We can summarize part of our previous discussion by stating
that if X is a thin subset of SL, (Q), and I" is a finitely generated Zariski-dense
subgroup of SL, (Z), then X N T is exponentially small in I, and by saying that
the set of mapping classes (in a fixed mapping class group I" of genus g = 1) for
which the corresponding manifold obtained by Heegaard splitting has positive
first rational Betti number is exponentially small.

The first inkling of the large sieve in nonabelian discrete groups is found in
applications of the qualitative argument above in [Dunfield and Thurston 2006;
Rivin 2008; 2009] in geometric contexts.* We illustrate further the large sieve
with an example, and then discuss briefly two other applications.

Example 5.13 (pseudo-Anosov elements of the mapping class group [Rivin
2008]). Let g = 1 be given and let I' be the mapping class group of Xg.
Thurston’s celebrated theory classifies the elements y € I' as reducible, finite-
order, or pseudo-Anosov. To quantify the feeling that most elements are of the
third type, Rivin used a criterion based on the action of y on H;(XZg, Z), which
says that if (but not only if) the characteristic polynomial P, of this action is

4Exponential decay was first obtained in [Rivin 2009], though the paper’s publication was
delayed by a long backlog. We thank I. Rivin for clarifying the priority in publication here.
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P, is irreducible, and satisfies further easy conditions, then y is pseudo-Anosov.
One then notes that if P, is reducible, then so is its reduction modulo any
prime, so 7p(y) is not in the subset €2, of elements of Sp,,(Fp) for which
the characteristic polynomial is irreducible. A computation that goes back to
[Chavdarov 1997, Section 3] shows that, for some § > 0, we have

& > 5> ()’

| Sp2 g ([Fp) |
for all p, and hence the large sieve applies. A simple further argument deals with
the other necessary conditions in the pseudo-Anosov criterion, and one concludes
that the set of non-pseudo-Anosov elements is exponentially small in T".

It should be said, however, that this proof is to some extent unsatisfactory,
because it doesn’t use the deeper structural and dynamical properties of pseudo-
Anosov elements. For instance, using the action on homology means that one
cannot argue similarly for subgroups I C T" for which the action on homology
is small, especially subgroups of the Torelli group, which is defined precisely
as the kernel of the homomorphism

giving this action.

However, Maher [2011; 2012] has shown, using more geometric methods,
that non-pseudo-Anosov elements are exponentially small in any subgroup of I,
except those for which this property is false for obvious reasons, and his work
applies in particular to the Torelli subgroup.

On the other hand, Lubotzky and Meiri [2012b] and Malestein and Souto
[2013] (independently) have recently found proofs that non-pseudo-Anosov
elements are exponentially small in the Torelli group using ideas similar to those
above.

Example 5.14 (powers in linear groups). Lubotzky and Meiri prove the following
statement using the large sieve. The reader should note that this is, on the face
of it, a purely algebraic property of finitely generated linear groups.

Theorem 5.15 [Lubotzky and Meiri 2012a]. Let I" be a finitely generated sub-
group of GL, (C) for some r = 2. If T" is not virtually solvable,® then the set X
of proper powers, that is, the set of those g € I' such that there exists k = 2 and
h € T with g = h*, is exponentially small in T.

This strengthens considerably some earlier work of a Hrushovski, Kropholler,
Lubotzky and Shalev [1996]. The proof is also very instructive, in particular
by showing how sieve should be considered as a fool among others: here, one

3That is, there is no finite-index solvable subgroup of T
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can use the large sieve to control elements which are k-th powers for a fixed
k = 2, but taking the union over all £ = 2 cannot be done with sieve alone.
So Lubotzky and Meiri use other tools to deal with large values of k, in that
case based on ideas related to the work of Lubotzky, Mozes and Raghunathan
comparing archimedean and word-length metrics [Lubotzky et al. 2000].

Example 5.16 (typical Galois groups of characteristic polynomials). Our last
example has been studied by Rivin [2008], Jouve, Kowalski and Zywina [JKZ
2013], Gorodnik and Nevo [2011] and most recently Lubotzky and Rosenzweig
[2012], who were the first to explicitly consider the case of sparse subgroups.
However, the underlying idea of probabilistic Galois theory goes back to versions
of Hilbert’s irreducibility theorem, and especially to Gallagher’s introduction
of the large sieve in this context [Gallagher 1973]. (There are also relations
with works of Prasad and Rapinchuk [Prasad and Rapinchuk 2009; Prasad and
Rapinchuk 2003].)

In the (most general) version of [Lubotzky and Rosenzweig 2012], one consid-
ers a finitely generated field K C C and a finitely generated subgroup I' C GL,, (K)
for some r = 2. The basic question is: what is the “typical” behavior of the
splitting field of the characteristic polynomial det(T — g) € K[T'] for some
element g € I'?

This can be studied using the large sieve, as we explain in the simplest case
when [ C SL,(Z). Let G be the Zariski-closure of I', and assume that G is
connected and split over Q, for instance G = SL,. Let W be the Weyl group of
G : this will turn out to be the typical Galois group in this case.

To see this, the first ingredient is the existence, for any prime p large enough
(such that G' can be reduced modulo p), of a certain map

9: Gt - wh,

going back to Carter and Steinberg, where G* denotes the set of conjugacy classes
of a finite group and the subscript r restricts to regular semisimple elements in
the finite group G (Fp).

This map is used to detect elements in the Galois groups of elements in I" in
the following way. First, for g € SL, (Z), let Pg be the characteristic polynomial
and let K be its splitting field, Galg its Galois group over Q. The point is that,
if g is a regular semisimple element of I, it is shown in [JKZ 2013] that there
exists an injective homomorphism

Jjg 1 Galg — W,

canonical up to conjugation, such that if p is any prime unramified in K, the
Frobenius conjugacy class at p maps under jg to the conjugacy class ¢(7,(g)) €
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W¥. Thus one can detect whether the image of Galg in W intersects various
conjugacy classes by seeing where the reduction modulo p of g lies with respect
to ¢. As it turns out, the image of ¢ becomes equidistributed among the conjugacy
classes in W as p becomes large. Using this, it is not too hard to show that if
o € WHis a given conjugacy class and if Q p denotes the set of g € G (Fp) such
that ¢(g) € o, then these sets satisfy a large sieve density assumption

Rl _

GEpl -

for some 8, > 0 and all p large enough. It follows by the large sieve that the

probability that the element y;, at the n-th step of a random walk on I" has Galois

group such that jg(Galg) N = @ is exponentially small. This holds for all the

finitely many classes in W, and a well-known lemma of Jordan® allows us to
conclude that the set of g € I" where j, is not onto is exponentially small.

The general case treated by Lubotzky—Rosenzweig is quite a bit more involved.

In particular, new phenomena appear when G' is not connected, and the different

cosets of the connected component of the identity then usually have different

typical Galois groups. We refer to their paper for details.

6. Problems and questions

We discuss here a few questions and problems, selected to a large extent according
to the author’s own interests and bias.

(1) Effective results. A striking aspect of the results we have described is how little
they use the many refinements and developments of sieve theory, as described
in [Friedlander and Iwaniec 2010] for small sieves, and in [Kowalski 2008] for
the large sieve. This is due to the almost complete absence of explicit forms of
the expansion assumption for sparse groups, from which it follows that one can
not, for instance, give a numerical value of the integer w guaranteed to exist in
Corollary 4.10 (recall that in classical sieves, the current state of the art is very
refined indeed: one knows, for instance, that the number of primes p < x such
that p + 2 has at most two prime factors is of the right order of magnitude). In
fact, when implementing the combinatorial counting methods (either word-length
or random walks), there is no known explicit sieve statement, as far as the author
knows’ (whereas a few explicit bounds do exist for archimedean balls, based on
spectral or ergodic methods; see, for example, [Kontorovich 2009; Kontorovich

%In a finite group G, there is no proper subgroup H such that H N # & for all conjugacy
classes o in G.

7The remarkable results of Bourgain and Kontorovich [2010] are explicit, but not directly
related to the sieve as we have considered here; see [Kontorovich 2014] for a survey in these
proceedings.
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and Oh 2011; 2012; Nevo and Sarnak 2010; Liu and Sarnak 2010; Gorodnik and
Nevo 2012], or for random walks in a few arithmetic groups [Kowalski 2008]).
It seems clear that the current proofs of expansion for sparse groups, although
they are effective, would lead to dreadful bounds on a suitable w (see [Kowalski
2012] for a numerical upper bound on the spectral radius for Cayley graphs of
Zariski-dense subgroups of SL;(Z) modulo primes, which suggests, for example,
that one could not get better than w of size at least 22* or so for the product of
coordinates function on the Lubotzky group...).

(2) Average expansion? One possibility suggested by the classical Bombieri—
Vinogradov theorem is to attempt a proof of expansion “on average” for the
relevant Cayley graphs: for many applications, it would be sufficient to prove
estimates for quantities like

max
(gp)eTy

un (wp(g) = gp for pel)— ik
qr<Q 1

and such estimates could conceivably be provable without resorting to individual
estimates for each ¢gy. They could also, optimistically, be of better quality than
what is true for individual /. (Such a property is known for classical sieve, by
work of Fouvry, Bombieri, Friedlander and Iwaniec).

(3) Combinatorial balls. 1t would be very interesting to have equidistribution
and sieve results using truncations based on word-length balls, without resorting
to random walks. Here, the hope is that one might not need to compute the
asymptotics of the size of the combinatorial balls, since one is only interested in
relative proportions of elements in a ball mapping to a given g € I'.

(4) Reverse power. This question is related to (1): at least in some cases, one
has very convincing conjectures for the counting function of primes arising
from small sieve in orbits (see, for example, [Fuchs 2011; Fuchs and Sanden
2011]). Suppose one assumes such conjectures. What does this imply for prime
numbers? In other words, can one exploit information on primes represented
using the sieve in orbits to derive other properties of prime numbers? Here the
reference to keep in mind is the result of Gallagher (see [Gallagher 1976] and
the generalization in [Kowalski 2011]) that shows that uniform versions of the
Hardy-Littlewood k-tuples conjecture imply that the number of primes p < x in
intervals of length A log x, for fixed A > 0, is asymptotically Poisson-distributed.
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