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Inverse problems in spectral geometry

KIRIL DATCHEV AND HAMID HEZARI

In this survey we review positive inverse spectral and inverse resonant results
for the following kinds of problems: Laplacians on bounded domains, Laplace-
Beltrami operators on compact manifolds, Schrodinger operators, Laplacians
on exterior domains, and Laplacians on manifolds which are hyperbolic near
infinity.

1. Introduction

Marc Kac [1966], in a famous paper, raised the following question: Let  C R?
be a bounded domain and let

0<Apg<A; <Ay =--

be the eigenvalues of the nonnegative Euclidean Laplacian Ag with either Dirich-
let or Neumann boundary conditions. Is € determined up to isometries from the
sequence Ag,Aq,...?7 We can ask the same question about bounded domains
in R”, and below we will discuss other generalizations as well. Physically, one
motivation for this problem is identifying distant physical objects, such as stars
or atoms, from the light or sound they emit. These inverse spectral problems, as
some engineers have recently proposed in [Reuter 2007; Reuter et al. 2007; 2009;
Peinecke et al. 2007], may also have interesting applications in shape-matching,
copyright and medical shape analysis.

The only domains in R” known to be spectrally distinguishable from all other
domains are balls. It is not even known whether or not ellipses are spectrally
rigid, i.e., whether or not any continuous family of domains containing an ellipse
and having the same spectrum as that ellipse is necessarily trivial. We can go
further and ask the same question about a compact Riemannian manifold (M, g)
(with or without boundary): can we determine (M, g) up to isometries from the
spectrum of the Laplace-Beltrami operator Ag? Or in general, what can we
hear from the spectrum? For example, can we hear the area (volume in higher
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dimensions or in the case of Riemannian manifolds) or the perimeter of the
domain? For the sake of brevity we only mention the historical background for
the case of domains.

In 1910, Lorentz gave a series of physics lectures in Gottingen, and he conjec-
tured that the asymptotics of the counting function of the eigenvalues are given
by

NQ) =8 Aj <A} = Areza—n(mx + O(VM).

This asymptotic in particular implies that Area(€2) is a spectral invariant. Hilbert
thought this conjecture would not be proven in his lifetime, but less than two
years later Hermann Weyl proved it using the theory of integral equations taught
to him by Hilbert. Pleijel [1954] proved that one knows the perimeter of €2, and
Kac [1966] rephrased these results in terms of asymptotics of the heat trace

o0
Tre tAa 1 Zajlj/z, t—0T,
Jj=0

where the first coefficient g gives the area and the second coefficient gives the
perimeter. McKean and Singer [1967] proved Pleijel’s conjecture that the Euler
characteristic x(£2) is also a spectral invariant (this is in fact given by a,) and
hence the number of holes is known. Gordon, Webb and Wolpert [1992] found
examples of pairs of distinct plane domains with the same spectrum. However,
their examples were nonconvex and nonsmooth, and it remains an open question
to prove that convex domains are determined by the spectrum (although there
are higher-dimensional counterexamples for this in [Gordon and Webb 1994]) or
that smooth domains are determined by the spectrum.

In this survey we review positive inverse spectral and inverse resonant results
for the following kinds of problems: Laplacians on bounded domains, Laplace—
Beltrami operators on compact manifolds, Schrodinger operators, Laplacians
on exterior domains, and Laplacians on manifolds which are hyperbolic near
infinity. We also recommend the survey [Zelditch 2004b]. For negative results
(counterexamples) we refer the reader to the surveys [Gordon 2000; Gordon,
Perry, Schueth 2005].

In the next two sections of the paper we review uniqueness results for radial
problems (Section 2), and for real analytic and symmetric problems (Section 3).
In the first case the object to be identified satisfies very strong assumptions
(radialness includes full symmetry as well as analyticity) but it is identified in a
broad class of objects. In this case the first few heat invariants, together with an
isoperimetric or isoperimetric-type inequality, often suffice. In the second case the
assumptions on the object to be identified are somewhat weaker (only analyticity
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and finitely many reflection symmetries are assumed) but the identification is
only within a class of objects which also satisfies the same assumptions, and
generic nondegeneracy assumptions are also needed. These proofs are based on
wave trace invariants corresponding to a single nondegenerate simple periodic
orbit and its iterations.

In Section 4 we consider rigidity and local uniqueness results, where it is shown
in the first case that isospectral deformations of a given object are necessarily
trivial, and in the second case that a given object is determined by its spectrum
among objects which are nearby in a suitable sense. Here the objects to be
determined are more general than in the cases considered in Section 2, but
less general than those in Section 3: they are ellipses, spheres, flat manifolds
(which have completely integrable dynamics), and manifolds of constant negative
curvature (which have chaotic dynamics). The proofs use these special features
of the classical dynamics.

In Section 5 we consider compactness results, where it is shown that certain
isospectral families are compact in a suitable topology. These proofs are based
on heat trace invariants and on the determinant of the Laplacian, and much more
general assumptions are possible than in the previous cases.

Finally, in Section 6 we review the trace invariants used for the positive results
in the previous sections, and give examples of their limitations, that is to say
examples of objects which have the same trace invariants but which are not
isospectral. At this point we also discuss the history of these invariants, going
back to the seminal paper [Selberg 1956].

We end the introduction by presenting the four basic settings we consider in
this survey:

1.1. Dirichlet and Neumann Laplacians on bounded domains in R". Let 2 be
a bounded open set with piecewise smooth boundary. Let Ag be the nonnegative
Laplacian on 2 with Dirichlet or Neumann boundary conditions. Let

spec(A@) = (Aj)72y. Ao <A1 <Ay =<--

be the eigenvalues included according to multiplicity, and u; the corresponding
eigenfunctions, that is to say

AQ Uj = A jUj.
Recall that Ao > 0 in the Dirichlet case and Ao = 0 in the Neumann case.

1.2. Laplace—Beltrami operators on compact manifolds. Let (M, g) be a com-
pact Riemannian manifold without boundary. Let Ag = —divg grad, be the
nonnegative Laplace—Beltrami operator on M, which we also call the Laplacian
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for short. Let
spec(Ag) = (Aj)72p, 0=Ao <A1 Ay =---

be the eigenvalues included according to multiplicity, and u; the corresponding
eigenfunctions, that is to say

A gUj = A jUj.
1.3. Nonsemiclassical and semiclassical Schrodinger operators on R". Let

V e C®°[R"R), | llim V(x) = oo, (1-1)
X |[—>00

and let A be the nonnegative Laplacian on R”. Let

Pyp=h*A+V, h>0,
Py =Py,.

We call Py the nonsemiclassical Schrodinger operator associated to V', and Py
the semiclassical operator. For any /1 > 0, the spectrum of Py ; on R" is discrete,
and we write it as

spec(Py,p) = ()\j)}?io, Ao <Ap SAy<---.

The eigenvalues A; depend on /, but we do not include this in the notation. We
denote by u; the corresponding eigenfunctions (which also depend on /), so that

PV,huj zkjuj.

1.4. Resonance problems for obstacle and potential scattering. In this section
we discuss problems where the spectrum consists of a half line of essential
spectrum, together with possibly finitely many eigenvalues. In such settings
the spectrum contains limited information, but one can often define resonances,
which supplement the discrete spectral data and contain more information.

Obstacle scattering in R". Let O C R”" be a bounded open set with smooth
boundary, let = R” \ O, and suppose that  is connected. Let Ag be the
nonnegative Dirichlet or Neumann Laplacian on €2. Then the spectrum of Ag
is continuous and equal to [0, 00), and so it contains no (further) information
about 2. One way to reformulate the inverse spectral problem in this case is
in terms of resonances, which are defined as follows. Introduce a new spectral
parameter z = VA, with 4/ taken so as to map C\ [0, co) to the upper half-plane.
AsImz — 0T, z2 approaches [0, 0o) and the resolvent (Ag —z2)~! has no limit
as amap L?(Q) — L?(Q). However, if we restrict the domain of the resolvent
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and expand the range it is possible not only to take the limit but also to take a
meromorphic continuation to a larger set. More precisely the resolvent

2\—1. 72 2
(Ag—z7)": Lcomp - LIOC’

(where Lgomp denotes compactly supported L? functions and leoc denotes func-
tions which are locally L?) continues meromorphically as an operator-valued
function of z from {Im z > 0} to C when # is odd and to the Riemann surface of
log z when 7 is even. Resonances are defined to be the poles of this continuation
of the resolvent. Let res(Ag) denote the set of resonances, included according
to multiplicity. See for example [Melrose 1995; Sjostrand 2002; Zworski 2011]

for more information.

Potential scattering in R". Let Py be as before, but instead of (1-1) assume
V € Cg°(R™). Then the continuous spectrum of Py is equal to [0, c0), but if
V' is not everywhere nonnegative then Py ; may have finitely many negative
eigenvalues. In either case, the resolvent
2y—1. 72 2
(PV,h_Z ) L _>Lloc’

comp

has a meromorphic continuation from {Imz > 0} to C when 7 is odd and to the
Riemann surface of log z when 7 is even, and resonances are defined to be the
poles of this continuation. Let res(Py,;) denote the set of resonances, included
according to multiplicity. Again, see for example [Melrose 1995; Sjostrand 2002;
Zworski 2011] for more information.

Scattering on asymptotically hyperbolic manifolds. The problem of determining
a noncompact manifold from the scattering resonances of the associated Laplace—
Beltrami is in general a much more difficult one, but some progress has been
made in the asymptotically hyperbolic setting. Meromorphic continuation of
the resolvent was established in [Mazzeo and Melrose 1987], and a wave trace
formula in the case of surfaces with exact hyperbolic ends was found by Guillopé
and Zworski [1997], which has led to some compactness results: see Section 5.4.

2. The radial case

In this case one makes a strong assumption (radial symmetry) on the object to be
spectrally determined (whether it is an open set in R”, a compact manifold, or a
potential) but makes almost no assumption on the class of objects within which
it is determined. The methods involved use the first few heat invariants, and in
many cases the isoperimetric inequality or an isoperimetric-type inequality.

2.1. Bounded domains in R". The oldest inverse spectral results are for radial
problems. If Q@ C R” is a bounded open set with smooth boundary, then the
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spectrum of the Dirichlet (or Neumann) Laplacian on €2 agrees with the spectrum
on the unit ball if and only if €2 is a translation of this ball. This can be proved
in many ways; one way is to use heat trace invariants. These are defined to be
the coefficients of the asymptotic expansion of the heat trace as t — 07

o0 o0 .
Ze_”‘f =Tre '22 ~t_"/22ajtj/2, (2-1)
j=0 j=0

where in both the Dirichlet and the Neumann case ag is a universal constant
times vol(£2), and a; is a universal constant times vol(d€2). The left-hand side
is clearly determined by the spectrum, and so the conclusion follows from the
isoperimetric inequality.

2.2. Compact manifolds. Let (M, g) be a smooth Riemannian manifold of di-
mension n without boundary. If n < 6, then the spectrum of the Laplacian on M
agrees with the spectrum on S” (equipped with the round metric) if and only
if M is isometric to S”. This was proved in [Tanno 1973; 1980] using the first
four coefficients, ag, a1, a, az, of the heat trace expansion, which in this case

takes the form
o0 o0
Z e = Tre™!Ae ~ 71/2 Z ajt’.
j=0 j=0

In higher dimensions the analogous result is not known. Zelditch [1996] proved
that if the multiplicities my of the distinct eigenvalues 0 = Eqg < Ej < Ep <---
of the Laplacian on M obey the asymptotic my = ak” ! + O(k"~2), for some
a > 0 as k — oo (this is the asymptotic behavior for the multiplicities of the
eigenvalues of the sphere), then (M, g) is a Zoll manifold, that is to say a
manifold on which all geodesics are periodic with the same period.

2.3. Schriodinger operators. In general it is impossible to determine a potential
V from the spectrum of the nonsemiclassical Schrodinger operator A + V.
For example, McKean and Trubowitz [1981] found an infinite-dimensional
family of potentials in C'°°(R) which are isospectral with the harmonic oscillator
V(x) = x2.

However, analogous uniqueness results to those above were proved in [Datcheyv,
Hezari, and Ventura 2011], where it is shown that radial, monotonic potentials in
R (such as for example the harmonic oscillator) are determined by the spectrum
of the associated semiclassical Schrodinger operator among all potentials with
discrete spectrum. The approach is based in part on that of [Colin de Verdiere
2011] and [Guillemin and Wang 2009] (see also [Guillemin and Sternberg 2010,
§10.6]), where a one-dimensional version of the result is proved. Colin de
Verdiere and Guillemin—Wang show that an even function (or a suitable noneven
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function) is determined by its spectrum within the class of functions monotonic
away from 0.

The method of proof is similar to that used to prove spectral uniqueness of
balls in R” as discussed in Section 2.1 above. Namely, we use the first two trace
invariants, this time of the semiclassical trace formula of Helffer and Robert
[1983], together with the isoperimetric inequality. We show that if V, Vj are
as in (1-1), if Vy(x) = R(|x]) where R(0) =0 and R’(r) > 0 for r > 0, and if
spec(Py ) = spec(Py, p) up to order! o(h?) for h € {h;j };O:o with 2; — 07,
then V(x) = Vy(x — x¢) for some x¢ € R".

The semiclassical trace formula we use is

T(/(Pys)) = (22)
#(/ FUER+V)dxds+ 1o / |VV|2f<3><|s|2+V)dxds+@(h4>)
(27Th)n R27 12 R2n ’
where f € C°(R).

Because the spectrum of Py is known up to order o(h?) we obtain from
(2-2) the two trace invariants

/ dx d§, / IVV(x)|*dx dE, (2-3)
{IE2+V(x)<A} {E2+V(x) <A}

for each A. It follows in particular that V' is nonnegative. By integrating in the &
variable, we rewrite these invariants as follows:

[ (A= V)" ?dx, / IVV(x)|2(A— V)" ?dx. (2-4)
{V(x)<A} {V(x)<A}

Using the coarea formula we rewrite the invariants in (2-4) as

A _v\h/2
/ (/ O‘—V)dg) ds,
o \J=svrzo [VV]

A
/ (/ |VV|(A—V)”/2dS) ds.
0 {V=s}

Using the fact that V = s in the inner integrand, the factor of (A — V)*/2 =
(A —5)™2 can be taken out of the surface integral, leaving

A A
/ (A —s5)"21,(s)ds, / (A —5)"21,(s) ds, (2-5)
0 0

The implicit rate of convergence here must be uniform on [0, A¢] for each A¢ > 0.
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where

1
ne= [ opds be=[ s, @
w=s,vv#0} [VV| (V=s}

We denote the integrals (2-5) by 414,/2(11)(A) and A;,/2(11)(1). These
are Abel fractional integrals of I; and I (see for example [Zelditch 1998a,
§5.2] and [Guillemin and Sternberg 2010, (10.45)]), and they can be inverted by
applying A4,/2, using the formula

1 1 1
T T8 = Tt p) e+t

(2-7)
and differentiating 7 + 1 times. From this we conclude that the functions /; and
I, in (2-6) are spectral invariants for every s > 0.

Integrating /; and using the coarea formula again we find that the volumes of
the sets {V < s} are spectral invariants:

N N 1
/ I, (s"yds’ =/ / ——dS ds’ =/ ldx. (2-8)
0 o Jiy=svr#o IVV] V<s}

From Cauchy—Schwarz and the fact that 7y and I, are spectral invariants we

obtain
2 1
(/ ldS) S/ —dS/ [VV|dS
(V=s) w=s} |IVV] (V=s}

1
= —dS R/dS, (2'9)
/
{R=s5} R {R=s}

when s is not a critical value of V, and thus, by Sard’s theorem, for almost every
s € (0, Ag). On the other hand, using the invariants obtained in (2-8) and the fact
that the sets { R < s} are balls, by the isoperimetric inequality we find

/ 1dS < f 1dS. (2-10)
{R=s} {V=s}

2
1
(/ ldS) =/ —ds RdS,
{R=s) (R=s} R (R=s)

because 1/ R’ and R’ are constant on { R = s}. Consequently

/ 1dS :/ 1dS,
{R=s} {V=s}

However,
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and so {V = s} is a sphere for almost every s, because only spheres extremize
the isoperimetric inequality. Moreover,

2
1
(/ wé):/ ——45/ |VV|ds,
(V=s} w=s |VV] (V=s}

and so |VV|™! and |VV| are proportional on the surface {V = s} for almost
every s, again by Cauchy—Schwarz. Using (2-9) to determine the constant of
proportionality, we find that

VVP = R((R65)* = (R () £ F(s)
on {V = s}. In other words
IVV]> = F(V), (2-11)

for all x € V~1(s) for almost all s. However, because F(V') # 0 when V # 0,
it follows by continuity that this equation holds for all x € V~1((0, 00)).

We solve this equation by restricting it to flowlines of V', with initial condi-
tions taken on a fixed level set {V = s¢}, and conclude that, the level surfaces
are not only spheres (as follows from (2-10)) but are moreover spheres with a
common center. Hence, up to a translation, V' is radial. Since the volumes (2-8)
are spectral invariants, it follows that V(x) = R(|x]).

2.4. Resonance problems. We first mention briefly some results for inverse
problems for resonances for the nonsemiclassical Schrédinger problem when
n = 1. Zworski [2001] proved that a compactly supported even potential V €
L'(R) is determined from the resonances of Py, among other such potentials,
and Korotyaev [2005] showed that a potential which is not necessarily even is
determined by some additional scattering data.

Analogous results to those discussed in Section 2.1 hold in the case of ob-
stacle scattering. Hassell and Zworski [1999] showed that a ball is determined
by its Dirichlet resonances among all compact obstacles in R*. Christiansen
[2008] extended this result to multiple balls, to higher odd dimensions, and to
Neumann resonances. As in the other results discussed above, the proofs use two
trace invariants and isoperimetric-type inequalities, although the invariants and
inequalities are different here. There is also a large literature of inverse scattering
results where data other than the resonances are used. A typical datum here is
the scattering phase: see for example [Melrose 1995, §4.1].

In [Datchev and Hezari 2012] we prove the analogue for resonances of the
result in the previous section for semiclassical Schrédinger operators with discrete
spectrum. Let 7 > 1 be odd, and let Vo, V' € C3°(R"; [0, 00)). Suppose Vo(x) =
R(|x|), and R’(r) vanishes only at r = 0 and whenever R(r) = 0, and suppose
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that res(Py, ,) = res(Py,;), up to order? o(h?), for h € {hj};il for some
sequence /1; — 0. Then there exists xo € R” such that V(x) = Vo(x — xo).

Our proof is, as before, based on recovering and analyzing first two integral
invariants of the Helffer—Robert semiclassical trace formula [1983, Proposition
5.3] (see also [Guillemin and Sternberg 2010, §10.5]):

Te(f (Py,p) — f(Po,n))

- (inh)n (/Rznf(|§|2+V) —f(€]?) dx d&
+% |VV|2f(3)(|r§|2+V)dxdé+@(h4)). (2-12)
R2n

To express the left-hand side of (2-12) in terms of the resonances of Py j, we
use Melrose’s Poisson formula [Melrose 1982], an extension of the formula of
Bardos, Guillot, and Ralston [1982]:

2Tr(cos(tV/Py ) —cos(tvPop)) = > e M rt0. (213)

Aeres(Py p)

where equality is in the sense of distributions on R \ 0.
From (2-13), it follows that if

g € C§°(R\ 0) is even, (2-14)
then
1 .
Tr(g(V—h*A+V) —g(V—h*A)) = yom > ey de.  (2-15)
Aeres(Py ) R

Now setting the right-hand sides of (2-15) and (2-12) equal and taking & — 0,
we find that

[ R —psPraxds. [ VVEFOGER vy drde @ot6)

are resonant invariants (i.e., are determined by knowledge of the resonances up to
o(h?)) provided that f(t%) = g() for all  and for some g as in (2-14). Taylor
expanding, we write the first invariant as

L[ ey g ky
gHA/ M);@wwx

m+1 1
+/ V(xn)q' / (1— 1)y £FmHD (g2 4+ 1V (x)) dt dx dE.
R2n . 0

2The implicit rate of convergence here must be uniform on the disk of radius Ao for each
)\0 > 0.
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Replacing f by f3, where f3 () = f(t/A) (note that g3 (t) = f3(t?) satisfies
(2-14)) gives

3 )Ln/Z—ki k) 2 k )Ln/2—m—1
> o [ e ae [ veokas o )

Taking A — oo and m — oo we obtain the invariants

/‘f“km%ds/ Vo,
Rn R”

for every k > 1.

In [Datchev and Hezari 2012, Lemma 2.1] it is shown that there exists g
satisfying (2-14) such that if f(¢2) = g(z), then [g, £ ®(|£|?) d£ # 0, provided
k>n.

This shows that

/ V(x)kdx = / Vo (x)kdx (2-17)
n Rl’l

for every k > n, and a similar analysis of the second invariant of (2-16) proves
that

/ V() |IVV(x)|2dx = [ Vo(x)* |V Vo (x)|>dx (2-18)
Rl’l Rn
for every k > n.

We rewrite the invariant (2-17) using Vidx, the pushforward of Lebesgue
measure by V', as

[ V(x)kdx = / K (Vedx)s = % Vadx " (0), (2-19)
n R

Since V' and Vj are both bounded functions, the pushforward measures are
compactly supported and hence have entire Fourier transforms, and we conclude
that

n—1
Vedx = Vydx + Z Ckg(()k) = Vodx + codp.
k=0

For the first equality we used the invariants (2-19), and for the second the fact
that Vidx is a measure. In other words

vol({V > A}) = vol({Vy > A})

whenever A > 0. Moreover, this shows that Vidx is absolutely continuous
on (0, 00), and so by Sard’s lemma the critical set of V' is Lebesgue-null on
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V=1((0,00)). As a result we may use the coarea formula® to write
V*dx=/ IVV|~'dS ds on (0, c0)
{V=s}

and to conclude that

/ VV|~lds =[ IVVo|~ldsS
{V=s} {Vo=s}

for almost every s > 0. Similarly, rewriting the invariants (2-18) as

/ V(x)k|VV(x)|2dx:/sk/ IVV|dS ds,
R7 R {V=s}
we find that

[ IVV|dS =/ IVVo|dS s> 0.
v=s) Vo=s}

From this point on the proof proceeds as in the previous section.

To our knowledge it is not known whether such results hold in even dimensions.
The higher-dimensional results discussed above all rely on the Poisson formula
(2-13) which is only valid for odd dimensions. A similar formula is also true
in the obstacle case [Melrose 1983b], although slightly more care is needed in
the definition of cos(t+/Aq) — cos(t+/Agn) because the two operators act on
different spaces. poles of Ry. When n = 1 a stronger trace formula, valid for
all # € R, is known: see for example [Zworski 1997, page 3]. When 7 is even,
because the meromorphic continuation of the resolvent is not to C but to the
Riemann surface of the logarithm, Poisson formul® for resonances are more
complicated and contain error terms: see [Sjostrand 1997; Zworski 1998]. A
proof based on Sjostrand’s local trace formula [1997] would be of particular
interest, firstly because this formula applies in all dimensions and to a very
general class of operators, and also because it uses only resonances in a sector
(and in certain versions, as in [Bony 2002], resonances in a strip) around the
real axis. This would strengthen the known results in odd dimensions as well as
proving results in even dimensions, as one would only have to assume that these
resonances agreed and not that all resonances do.

3. The real analytic and symmetric case

In this case uniqueness results about nonradial objects are obtained, so the
assumptions on the object to be determined are weaker. However, the assumptions
on the class of objects within which it is determined are much stronger — in fact

3Ifn =1 we put f{V=S} VV|~lds = 2 oxer—1(s) [V/(x) 7L
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they are the same as the assumptions on the object to be determined. The two
main assumptions are analyticity and symmetry. In each case wave invariants
are used which are microlocalized near certain periodic orbits, as opposed to the
nonmicrolocal heat invariants of the previous section.

3.1. Bounded domains in R". Here the main tool is the following result from
[Guillemin and Melrose 1979b]. When Q2 C R” is a bounded, open set with
smooth boundary, they prove that Tr(cos(f+/Agq)) is a tempered distribution in
R with the property

sing supp Tr(cos(t v/ Ag)) C {0} U Lsp(2),

where Lsp denotes the length spectrum, that is to say the lengths of periodic
billiard orbits in Q. Moreover, they show that if 7 € Lsp(2) is of simple length*
and yr is nondegenerate,’ then for ¢ sufficiently near T we have

Trcos(tv/Ag)

TH
=Re|iT—ou (t—T +i0)""
[det(7 — Pr)]

Jj=1

x (1 +3 aj(t—T) log(t—T +i0))} +S(1), (3-1

where S is smooth near T'. Here T# is the primitive length of y7, which is the
length of y7 without retracing, and o7 is the Maslov index of y7 (which can be
defined geometrically but which appears here as the signature of the Hessian in
the stationary phase expansion of the wave trace). The coefficients a; are known
as wave invariants. Viewing the boundary locally as the graph of a function f,
they are polynomials in the Taylor coefficients of f at the reflection points of
yr. In general there is no explicit formula, but they were computed in [Zelditch
2009] in the special case discussed below.

We now assume that n = 2, with coordinates (x, y), and make these further
assumptions:

(1) € is simply connected, symmetric about the x-axis, and d€2 is analytic on
v #05.

(2) There is a nondegenerate vertical bouncing ball orbit y of length 7" such
that both 7" and 27 are simple lengths in Lsp(£2).

(3) The endpoints of y are not critical points of the curvature of 0€2.
4This means that only one periodic orbit (up to time reversal), y7, has length 7.

3 This means that y7 is transversal to the boundary and Pr the linearized Poincaré map of y7,
which is the derivative of the first return map, does not have eigenvalue 1.
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We recall that a bouncing ball orbit is a 2-link periodic trajectory of the billiard
flow, i.e., a reversible periodic billiard trajectory that bounces back and forth
along a line segment orthogonal to the boundary at both endpoints. Without loss
of generality we may assume that the bouncing ball orbit in assumption (2) is on
the y-axis.

Zelditch [2009] proved that if Q and Q’ both satisfy these assumptions, and if
spec(Agq) = spec(Agr) (for either Dirichlet or Neumann boundary conditions),
then Q = Q' up to a reflection about the y-axis. This improves a previous result
in [Zelditch 2000], where an additional symmetry assumption is needed, which
in turn improves upon [Colin de Verdicre 1984], where rigidity is proved in
the class of analytic domains with two reflection symmetries. Under the above
assumptions, for & > 0 sufficiently small, there exists a real analytic function
f:(—&,&) — R such that

QN{lx] <ef ={(x,p): x| <& |y[ < f(x)].

To prove the theorem it is enough to show that the Taylor coefficients of f at 0 are
determined by spec(€2) (up to possibly replacing f(x) by f(—x)). Zelditch does
this by writing a formula for the coefficients a; of (3-1), which are determined
by spec(£2), applied to y and to y? (the iteration of y):

aj(y") = A;(r) D) + B (r) £ 2D (0) £ P (0)
+[terms containing f ®)(0) only for k < j ] 32

Here A;(r) and Bj(r) are spectral invariants which are determined by the first
term of (3-1). One can show that (4 (1), Bj(1)) as a vector is linearly indepen-
dent from (A4, (2), B;j(2)). Hence, by an inductive argument, if 3)(0) # 0, all
the coefficients are determined (up to a sign ambiguity for () (0), which corre-
sponds to reflection about the y-axis). The condition f3)(0) # 0 is equivalent
to assumption (3) above, and Zelditch [2009, §6.9] outlined a possible proof in
the case where 1) (0) = 0.

In [Hezari and Zelditch 2010], it is proved that bounded analytic domains
Q C R” with + reflection symmetries across all coordinate axes, and with one
axis height fixed (and also satisfying some generic nondegeneracy conditions)
are spectrally determined among other such domains. This inverse result gives a
higher-dimensional analogue of the result discussed above from [Zelditch 2009],
but with n axes of symmetry rather than n — 1. To our knowledge, it is the first
positive higher-dimensional inverse spectral result for Euclidean domains which
is not restricted to balls. The proof is based as before on (3-1) and on formulas for
the a;(y"), but there are additional algebraic and combinatorial complications
coming from the fact that Taylor coefficients must be recovered corresponding
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to all possible combinations of partial derivatives. These complications are
very similar to those that arise for higher-dimensional semiclassical Schrodinger
operators discussed below in Section 3.3.

3.2. Compact manifolds. To our knowledge all uniqueness results in this cate-
gory are about surfaces of revolution. Bérard [1976] and Gurarie [1995] have
shown that the joint spectrum of A and d/06 (the generator of rotations) of a
smooth surface of revolution determines the metric among smooth surfaces of
revolution, by reducing the problem to a semiclassical Schrédinger operator in
one dimension.

Briining and Heintze [1984] showed that the spectrum of A, alone determines
the metric of a smooth surface of revolution with an up-down symmetry among
such surfaces. They proved that the spectrum of Ag determines the S Uinvariant
spectrum (but not necessarily the full joint spectrum), allowing them to apply
[Marchenko 1952, Theorem 2.3.2] for one-dimensional Schrédinger operators.

Zelditch [1998a] proved that a convex analytic surface of revolution satisfying
a nondegeneracy condition and a simplicity condition is determined uniquely by
the spectrum among all such surfaces. He used analyticity and convexity to show
that the spectrum determines the full joint spectrum of Ag and d/d6, reducing
the problem to a semiclassical Schrodinger operator in one dimension.

3.3. Schrodinger operators. When n = 1, Marchenko [1952] showed that an
even potential is determined by the spectrum of the associated nonsemiclassical
Schrodinger operator among all even potentials. More specifically, Marchenko’s
Theorem 2.3.2 states that a Schrédinger operator on [0, co) is determined by
knowledge of both the Dirichlet and the Neumann spectrum. The result for even
potentials on R follows from the result on [0, c0) as follows: Let V € C*°(R)
obey lim|y| o0 V(x) =00. If u; is the eigenfunction of —%22 +V corresponding
to the eigenvalue A;, then u; has exactly j zeros and they are all simple; see
[Berezin and Shubin 1991, Chapter 2, Theorem 3.5]. If V is even then every
eigenfunction is either odd or even and this result shows that the parity of u; is
the same as the parity of j. In particular (1}) 92 With A’ =M is the spectrum of
2

) + V on L?([0, c0)) with Neumann boundary condition,
X

and (k}’);’io with )»}’ = Ayj41 is the spectrum of
2
) + V on L2([0, o0)) with Dirichlet boundary condition.
X

This reduces the problem on R to the result of Marchenko.
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However, noneven potentials may have the same spectrum: indeed, McKean
and Trubowitz [1981] constructed an infinite-dimensional family of potentials
having the same spectrum as the one-dimensional harmonic oscillator V(x) = x2.

Guillemin and Uribe [2007] considered potentials V' in R” which are analytic
and even in all variables, which have a unique global minimum V(0) = 0, which
obey liminf| |, V(x) > 0, and such that the square roots of the eigenvalues
of Hess V(0) are linearly independent over Q. They showed that such potentials
are determined by their low lying semiclassical eigenvalues, that is to say by
spec( Py, ) N[0, €] for any & > 0. In [Hezari 2009], the second author removed
the symmetry assumption in the case n = 1 but assumed V"’(0) # 0, and for
n > 2 he replaced the symmetry assumption by the assumption that V(x) =
f(xlz, XD+ x,fg(xlz, ..., X2). Another proof of this result is given in [Colin
de Verdiere and Guillemin 2011; Colin de Verdiere 2011] for the case n = 1,
and in [Guillemin and Uribe 2011] in the higher-dimensional case.

The proofs in these last three works and in [Guillemin and Uribe 2007] are
based on quantum Birkhoff normal forms, a quantum version of the Birkhoff
normal forms of classical mechanics. In the classical case, one constructs a
symplectomorphism which puts a Hamiltonian function into a canonical form in
a neighborhood of a periodic orbit. In the quantum case, one constructs a Fourier
integral operator associated to this symplectomorphism which puts a pseudodif-
ferential operator which is a quantization of this Hamiltonian into a canonical
form, microlocally near the periodic orbit. Quantum Birkhoff normal forms were
developed by Sjostrand [1992] for semiclassical Schrodinger operators near a
global minimum of the potential. Guillemin [1996] and Zelditch [1997; 1998b]
put the Laplace—Beltrami operator on a compact Riemannian manifold into a
quantum Birkhoff normal form. General semiclassical Schrédinger operators
on a manifold at nondegenerate energy levels were studied in [Sjostrand and
Zworski 2002; Iantchenko, Sjostrand, and Zworski 2002].

The proof in [Hezari 2009] (that the Taylor coefficients of the potential at
the bottom of the well are determined by the low-lying eigenvalues) is based on
Schrodinger trace invariants. These are coefficients of the expansion

o0
Tr(e_”PVﬁ/hx(PV,h)) = Z aj(Oh?!, h—ot,
j=0

where y € C§°(R) is 1 near 0 and is supported in a sufficiently small neighborhood
of 0. The coefficients a; in dimension n = 1 have exactly the form (3-2) (and in
higher dimensions they have the same form as the higher-dimensional coefficients
of the wave trace on a bounded domain) and hence, once this fact is established,
the remainder of the uniqueness proof is the same for both problems.
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3.4. Resonance problems. The case of an analytic obstacle with two mutually
symmetric connected components is treated in [Zelditch 2004a] by using the
singularities of the wave trace generated by the bouncing ball between the
two components. Zworski [2007] gave a general method for reducing inverse
problems for resonances on a noncompact space to corresponding inverse prob-
lems for spectra on a compact space.

Tantchenko [2008] considered potentials V' in R” which are analytic and even
in all variables, which have a unique global maximum at V'(0) = E, which extend
holomorphically to a sector around the real axis and obey liminf| x| oo V(x) =0
in that sector, and such that the square roots of the eigenvalues of Hess V(0) are
linearly independent over Q. He used the quantum Birkhoff normal form method
of [Guillemin and Uribe 2007] to recover the Taylor coefficients of the potential
at the maximum and to show that potentials V' in this class are determined by
the resonances in a small neighborhood of E.

4. Rigidity and local uniqueness results

In this section we consider results which show nonexistence of nontrivial isospec-
tral deformations.

4.1. Bounded domains in R". Marvizi and Melrose [1982] introduced new
invariants for strictly convex bounded domains  C R? based on the length
spectrum, associated with the boundary. They show that, for m € N fixed,

sup{L(y): y is a periodic billiard orbit with m rotations and » reflections}

~mL(32) + % camn 2K, n—oo, (41)
k=1

where L denotes the length. Then they introduce the following noncoincidence
condition on 2, which holds for a dense open family (in the C* topology) of
strictly convex domains: suppose there exists € > 0 such that if y is a closed orbit
with L(0Q2) —e < L(y) < L(9L2), then y consists of one rotation. They show
that under this condition, the coefficients ¢ ,, are spectral invariants, and they
use the invariants ¢; ; and ¢ 1 to construct a two-parameter family of planar
domains which are locally spectrally unique (meaning that each domain has a
neighborhood in the C'*° topology within which it is determined by its spectrum).
The two-parameter family consists of domains defined by elliptic integrals, and
which resemble, but are not, ellipses.

Guillemin and Melrose [1979a] considered the Laplacian on an ellipse €2
given by x2/a + y%/b = 1, with a > b > 0, and with boundary condition

du/on = Ku on 0%, (4-2)
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where K € C®°(d€2) and is even in both x and y. They showed K is determined
by spec(Aq k), where Aq g is the Laplacian on £ with boundary condition
4-2).

To explain their method, let us introduce some terminology. For 7" > 0 the
length of a periodic orbit, the fixed point set of 7', denoted by Y7, is the set of
(¢,n) € B*0L2, the coball bundle of 92, such that the billiard orbit corresponding
to the initial condition (g, n) is periodic and has length 7. For a more general
domain there will often be only one periodic orbit of length 7 (up to time
reversal), but an ellipse, because of the complete integrability of its billiard flow,
always has one or several one-parameter families of such orbits. Guillemin and
Melrose proved that, in the case of the ellipse, for any 7" which is the length
of a periodic orbit such that L(02) — T > 0 is sufficiently small, Y7 has one
connected component I (up to time reversal). This connected component is
necessarily a curve which is invariant under the billiard map. Moreover, they
showed that the asymptotic expansion of

Tr(cos(t ,/AQ,K)) - Tr(cos(t vV AQ,O))

in fractional powers of t — T has leading coefficient

/ K d (4-3)
. M MUT-

Here pr is the Leray measure on I'. Under the symmetry assumptions, K is
determined from a sequence of such integrals for 7; with 7 tending to L(0<2)
from below.

In [Hezari and Zelditch 2010], it is proved that an ellipse is infinitesimally
spectrally rigid among C°° domains with the symmetries of the ellipse. This
means that if € is an ellipse, and if p¢ is a smooth one-parameter family of
smooth functions on 92y which are even in x and y, and if Q¢ is a domain
whose boundary is defined by

082¢ = {z + pe(2)nz:z € 9Q0},

and if spec(€2¢) = spec(2¢) for € € [0, €g), then the Taylor expansion of p¢
vanishes at € = (. In particular, if p depends on € analytically, the deformation
is constant. The proof uses Hadamard’s variational formula for the wave trace:

t

Teos(ty/Ba) = 5 [y dnsSay 1222 o)
0 2 EIoR dele=o
(4-4)
where d,, and 9,, denote normal derivatives in the first and second variables
respectively, Sq, is the kernel of sin(¢/Agq,)/+/Agq,- They then use (4-4) to

d

de

€=
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prove that for any 7" in the length spectrum of €2, the leading order singularity
of the wave trace variation is,

d
Jel—o Tr(cos(tv/Ag,)) ~

sReA( X e [ (] _pe )1 -Inkaurya - i)
rcyr
@5)

modulo lower order singularities, where the sum is over the connected compo-
nents I of the set Y7 of periodic points of the billiard map on B*9€2 (and its
powers) of length 7', and where dur is as in (4-3). As before, if L(0R2¢)—T >0
is sufficiently small, there is only one connected component and the sum has only
one term. For an isospectral deformation, the left-hand side of (4-5) vanishes,

and hence the integrals
d
£ 1—Inl2d
/F(de Ezope) v 1=Inl*dur
vanish when L(9€2¢) — 7 > 0 sufficiently small. From this point on proceeding
as in [Guillemin and Melrose 1979a] above one can show that

d

de
and reparametrizing the variation one can show that all Taylor coefficients of the
variation are 0. In [Hezari and Zelditch 2010] it is shown that expansions of the
form (4-4) and (4-5) hold more generally and in higher dimensions; indeed (4-4)
holds for any C! variation of any bounded domain, and a version of (4-5) holds
whenever the fixed point sets Y7 are clean. These formulas may be useful for

l06=07

e=0

example in a possible proof of spectral rigidity of ellipsoids.

4.2. Compact manifolds. Tanno [1980] used heat trace invariants to show local
spectral uniqueness of spheres in all dimensions. This means that there is a
C > neighborhood of the round metric on the sphere within which this metric is
spectrally determined. Kuwabara [1980] did this for compact flat manifolds and
Sharafutdinov [2009] for compact manifolds of constant negative curvature.
Guillemin and Kazhdan [1980a; 1980b] proved that a negatively curved
compact manifold (M, g) with simple length spectrum is spectrally rigid if its
sectional curvatures satisfy the pinching condition that for every x € M there is
A(x) > 0 such that |[K/A 4+ 1| < 1/n, where K is any sectional curvature at x
(note that the pinching condition is satisfied for all negatively curved surfaces
because in that case there is only one sectional curvature at each point x and
we may take A(x) = —K). Spectrally rigid here means if g, is a smooth family
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of metrics on M with go = g and with spec(Ag_ ) = spec(Ag), then (M, g¢) is
isometric to (M, g) for every €. They further used a similar method of proof
to establish a spectral uniqueness result for Schrodinger operators on these
manifolds. The pinching condition was relaxed in [Maung 1986] and removed in
[Croke and Sharafutdinov 1998], and the result was extended to Anosov surfaces
with no focal points in [Sharafutdinov and Uhlmann 2000].

4.3. Schriodinger operators. In work in progress, the second author considers
anisotropic harmonic oscillators: V(x) = a%xl2 + -+ +a2x2, where the a; are
linearly independent over Q. It is shown that if V¢(x) is a smooth deformation
of V(x) within the class of C* functions which are even in each x;, and if
spec(Py,1) = spec(Py, 1) for all € € [0, €), then the deformation is flat at € = 0,
just as in the infinitesimal rigidity result for the ellipse in Section 4.1.

5. Compactness results

5.1. Bounded domains in R". Melrose [1983a] used heat trace invariants and
Sobolev embedding to prove compactness of isospectral sets of domains Q C R?
in the sense of the C'*° topology on the curvature functions in C°°(d€2). This
result allows the possibility of a sequence of isospectral domains whose curvatures
converge but which “pinch off” in such a way that the limit object is not a domain,
but Melrose [1996] showed that this possibility can be ruled out using the fact
that the singularity of the wave trace at # = 0 is isolated.

Osgood, Phillips, and Sarnak [1989] gave another approach to this problem
based on the determinant of the Laplacian. This is defined via the analytic
continuation of the zeta function

o
Z(s) = Z 275, detAg=e 2O
j=1

They consider the domain €2 as the image of the unit disk D under a conformal
map F, with 2% g the induced metric on D, where ¢ = log | F’| is a harmonic
function. Thus ¢ is determined by its boundary values, and the topology of
[Osgood, Phillips, and Sarnak 1989] is the C*° topology on ¢|sp, and in this
case pinching degenerations are ruled out automatically. Hassell and Zelditch
[1999] gave a nice review of these results and an application of these methods to
the compactness problem for isophasal obstacles in R2.
To our knowledge there is no compactness result in higher dimensions.

5.2. Compact manifolds. Osgood, Phillips, and Sarnak [1988a; 1988b] ex-
tended their determinant methods to the case of surfaces and prove that the
set of isospectral metrics on a given Riemannian surface is sequentially compact
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in the C*® topology, up to isometry. Further compactness results for isospectral
metrics in a given conformal class on a three-dimensional manifold appeared
in [Chang and Yang 1989; Brooks, Perry, and Yang 1989]. Brooks, Perry, and
Petersen [1992] proved compactness for isospectral families of Riemannian
manifolds provided that either the sectional curvatures are all negative or there
is a uniform lower bound on the Ricci curvatures. Zhou [1997] showed that on a
given manifold, the family of isospectral Riemmanian metrics with uniformly
bounded curvature is compact, with no restriction on the dimension.

5.3. Schrodinger operators. Briining [1984] considered Schrodinger operators
Ag + V on a compact Riemannian manifold (M, g), where V € C*° (M), and
proves that if the dimension n < 3, then any set of isospectral potentials is
compact. In higher dimensions he proved the same result under the additional
condition that the H* norm of V for some s > 3(n/2)—2 is known to be bounded
by some constant C. Donnelly [2005] improved this condition to s > (n/2) — 2,
and derived alternative compactness criteria: he shows that isospectral families
of nonnegative potentials are compact in dimensions n < 9. If one considers
instead Ag + y'V, he shows that a family of potentials which is isospectral for
more than (n/2) — 1 different values of y is compact. In particular, this implies
compactness of families which are isospectral for the semiclassical problem
WAy + V.

5.4. Resonance problems. Let (X, go) be a conformally compact surface that
is hyperbolic (has constant curvature) outside a given compact set Ky C Xp.
This means that, if K is taken sufficiently large, then Xy \ Ky is a finite disjoint
union of funnel ends, which is to say ends of the form

(0, 00), x Sel, dr? + 0% cosh?(r) d6?, 5-1)

where £ # 0 may vary between the funnels. Then the continuous spectrum of
Ag, is given by [1/4, 00), and the point spectrum is either empty or finite and
contained in (0, 1/4) (and there is no other spectrum). If we introduce the spectral
parameter z = /A —1/4, where _/ is taken to map C\ [0, 00) to the upper half-
plane, then the resolvent (Ag —1/4 — z2)~! continues meromorphically from
{Imz > 0} to C as an operator L3, — L, . This meromorphic continuation
can be proved by writing a parametrix in terms of the resolvent of the Laplacian
on the ends (5-1), which in this case can be written explicitly in terms of special
functions: see [Mazzeo and Melrose 1987] for the general construction, and
[Guillopé and Zworski 1995, §5] for a simpler version in this case.

Borthwick and Perry [2011] used a Poisson formula for resonances due to
Guillopé and Zworski [1997] and a heat trace expansion to show that the set of

surfaces which are isoresonant with (Xy, g¢) and for which there is a compact
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set K C X such that (Xg \ Ko, go) is isometric to (X \ K, g) is compact in
the C*° topology, improving a previous result of Borthwick, Judge, and Perry
[2003]. They also proved related but weaker results in higher dimensions.

6. Trace invariants and their limitations

6.1. Bounded domains in R". For Ag with Q@ C R"” a bounded smooth domain
we have seen two kinds of trace invariants. The first are heat trace invariants,
which are the coefficients a; of the expansion

o0
Tre A2 ~ 1/2 Zajlj/z, t— 0+,
j=0

are given by integrals along the boundary of polynomials in the curvature and its
derivatives. These are equivalent to the invariants obtained from coefficients of
the expansion of the wave trace Trcos(t+/Aq) at t = 0.

The other kind are wave trace invariants obtained from coefficients of the
expansion of the wave trace at the length of a periodic billiard orbit, always
assumed to be nondegenerate and usually assumed to be simple. In this case the
formula, as already mentioned in (3-1), is

Trcos(tv/Ag)

TH
= Re|:i”T—(t— T—i—iO)_1

Jdet(I — Pr)
X (1 + Z bj(t— T) log(t — T + iO))} +S(), (6-1)

j=1

where 7 is the simple periodic orbit of length 7', and where the coefficients b; are
polynomials in the Taylor coefficients at the reflection points of y7 of the function
of which the boundary is a graph. Because of this requirement on the periodic
orbit, positive inverse results of the kind described above, which are based on the
wave trace, always require generic assumptions such as nondegeneracy and simple
length spectrum. Although there has been some work on the degenerate case,
such as [Popov 1998], it does not seem to have led yet to uniqueness, rigidity, or
compactness results. However, Marvizi and Melrose [1982] obtained information
from invariants at lengths approaching the length of d€2 (see Section 4.1 above
for more information).

Another limitation comes from the fact that domains can have the same trace
invariants without being isospectral. That is to say, we can construct €2 and
Q' such that Tr(cos(t+/Ag)) — Tr(cos(t+/Ag’)) € C®(R) (recall that the wave
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trace invariants are the coefficients in the expansion of the wave trace near a
singularity, as in (6-1)), but spec(Agq) # spec(Agq/). This was done by Fulling
and Kuchment [2005], following a conjecture of Zelditch [2004b], where the
following types of domains are considered (these were first introduced by Penrose
to study the illumination problem, and then shown by Lifshits to be examples of
nonisometric domains with the same length spectrum):

-

Figure 1. Two domains Q, Q" with Tr(cos(t /Agq))—Tr(cos(t v/ Ag’))
in C*°(R) but spec(Ag) # spec(Ag).

These two domains are obtained by taking a semiellipse and adding two
asymmetric bumps A4, B and A", B/, with A = A’ and B = B’, such that the foci
are left unperturbed (as in the figure). Then one adds bumps C and C’, the small
bumps in the middle which are in between the foci, such that C # C’ but C and
C’ are reflections of one another. These two domains are not isometric but have
the same heat invariants, because heat invariants are given by integrals along the
boundary of polynomials in the curvature and its derivatives — indeed we have
freedom to ‘slide’ C back and forth along the boundary without changing any
heat invariants, although this is not the case for the wave trace invariants.

We now show that Tr(cos(t+/Agq)) — Tr(cos(t+/Ag’)) € C®(R). This is
because of the following separation of the phase spaces® B*3d$2 and B*3Q’ into

6Recall that B*3Q is the ball bundle, the fibers of which are intervals [—1, 1].
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two disconnected rooms each, which are invariant under the billiard maps of
the domains, and which we denote Ry, R, R}, and R/, and which have the
property that Ry U R, = B*9Q2 and R} U R, = B*9Q'. These are defined as
follows: R is the set of points in B*9d2 whose billiard flowout intersects the
part of the boundary strictly in between the two foci, R; is the set of points in
B*9Q whose billiard flowout intersects the part of the boundary which is strictly
outside the two foci but on the axis of the ellipse or below (and similarly for
R/ and R’). These two sets are disjoint because billiards in an ellipse which
intersect the major axis in between the two foci once do so always. Now we
make the generic assumption that no trajectory which passes through the two
foci in the initial semiellipse is periodic. Because R; is isometric to R’l, and
R, is isometric to R, we have Tr(cos(rv/Agq)) — Tr(cos(t+/Ag’)) € C®(R).
This is because the singularities of Tr(cos(f+/Ag)) occur at t = T, where T is
the length of a periodic orbit, and only depend on the structure of B*d<2 in an
arbitrarily small neighborhood of the orbits of length 7.

To show that spec(Agq) # spec(Ag), Fulling and Kuchment use a perturbation
argument based on Hadamard’s variational formula for the ground state to show
that, for suitably chosen small C, the ground states are not the same.

6.2. Compact manifolds. As we have already mentioned, heat trace invariants
can be defined for compact manifolds (M, g) as well. In the boundaryless case
the expansion takes the form

oo
Tre '8s ~ /2 Zajtj, t—0t,
j=0

where the a; are given by integrals on M of polynomials in the curvature and
its derivatives. Half powers of ¢ appear only when there is a boundary, as in the
case of domains considered above. Once again, these invariants are equivalent
to the invariants obtained from coefficients of the expansion of the wave trace
Trcos(¢ \/A_g) at t = 0. In analogy with the example given in the previous
section, we can construct manifolds which are not isometric but which have
the same heat invariants by taking a sphere, adding two disjoint bumps, and
moving them around. For suitable choices of bumps it should be possible to
make the length spectra nonequal, as a result of which the manifolds will be
nonisospectral. It seems to be an open problem, however, to find an example
of two manifolds (M, g) and (M, g’) which are nonisospectral but which have
Tr(cos(z \/A_g)) —Tr(cos(z \/A_g/)) € C*°(R), that is to say which have identical
wave trace invariants.

In this setting the wave trace expansion was established by Duistermaat and
Guillemin [1975], building off of previous work by Colin de Verdiere [1973]
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and Chazarain [1974]. It is a generalization of Selberg’s Poisson formula [1956]
to an arbitrary compact boundaryless Riemannian manifold. For T the length of
a simple nondegenerate periodic geodesic yr, it takes the form

Tre'' vV Ae
T

_or 1 1 bt TV ~ _
s TR (1+j§ j (1=T) log(t T+zO))+S(t),

where S(¢) is smooth near 7. Using quantum Birkhoff normal forms, Zelditch
[1998b] showed these coefficients b; to be integrals of polynomials in the metric
and its derivatives along y7. See also [Zelditch 1999] for a more detailed survey
on wave invariants. Because of this very local nature of these invariants, to prove
uniqueness results one must either assume analyticity (as is done in the results
discussed above) or find a way to combine information from many different
orbits (no one seems to have been able to do this so far).

6.3. Schriodinger operators. In the setting of semiclassical Schrodinger oper-
ators the analogue of the Duistermaat—Guillemin wave trace is the Gutzwiller
trace formula near the length 7" of a periodic trajectory of the Hamiltonian vector
field H, in p~1(E), where p(x,&) = |£]> + V(x):

. eiSv/h
Tre_”(PV’h_E)/hx(PV,h) ~ Z o

Z ajyh’,
— /ldet(I—P,)]

ag,y =38t —T),

for 7 near T', where x € C§°(R) has x = 1 near E. Here the sum in y is over
periodic trajectories in p~!(0) of length 7" and the a 7,y are distributions whose
singular support is contained in {7}. This formula goes back to [Gutzwiller
1971], and was proved in various degrees of generality and with various methods
from [Guillemin and Uribe 1989] and [Combescure, Ralston, and Robert 1999]
(see also this last paper for further history and references). This formula is
also valid for more general pseudodifferential operators of real principal type,
so long as FE is a regular value of the principal symbol p and so long as the
periodic trajectories in p~1(E) are nondegenerate (so that the determinants in the
denominator are nonzero). In particular it also applies on manifolds. Iantchenko,
Sjostrand, and Zworski used it in [lantchenko, Sjostrand, and Zworski 2002] to
recover quantum and classical Birkhoff normal forms of semiclassical classical
Schrodinger operators, at nondegenerate periodic orbits. When the energy level
is degenerate, the Gutzwiller trace formula becomes more complicated: see
Section 3.3 for a discussion of the case where p has a unique global minimum at
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E, and see for example [Brummelhuis, Paul, and Uribe 1995] and [Khuat-Duy
1997] for other cases.

Colin de Verdiere [2011] gave an example of a pair of potentials V # V' €
C°°(R) such that spec(Py,;) = spec(Py- ) up to O(h*°), so that in particular
all semiclassical trace invariants for these two potentials agree. He conjectured,
however, that the spectra are not equal. In [Guillemin and Hezari 2012], two
potentials are constructed that have different ground states and hence different
spectra, although the spectra still agree up to 0(h°°). These potentials are
perturbations of the harmonic oscillator analogous to the perturbations of the
semiellipse discussed in Section 6.1.
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