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This is a report on joint work with T. Hausel and L. Migliorini, where we prove,
for each of the groups GLC(2),PGLC(2) and SLC(2), that the nonabelian
Hodge theorem identifies the weight filtration on the cohomology of the
character variety with the perverse Leray filtration on the cohomology of the
domain of the Hitchin map. We review the decomposition theorem, Ngô’s
support theorem, the geometric description of the perverse filtration and the
subadditivity of the Leray filtration with respect to the cup product.
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1. Introduction

This is an expanded version of notes from my talk at the conference “Classical
Algebraic Geometry Today”, at MSRI in Berkeley, January 25–29, 2009. The
talk reported on joint work with T. Hausel at Oxford and L. Migliorini at Bologna,
written up in [de Cataldo et al. 2011]. Following the recommendation of the
editors, this article is designed to be accessible to nonspecialists and to give
a small glimpse into an active area of research. The reader is referred to the
introduction of the paper just cited for more details on what follows.

Let C be a nonsingular complex projective curve. We consider the following
two moduli spaces associated with C : M :=MDolbeault := the moduli space of
stable holomorphic rank two Higgs bundles on C of degree one (see Section 3) and
the character variety M′ :=MBetti, i.e., the moduli space of irreducible complex
dimension two representations of π1(C − p) subject to the condition that a loop
around the chosen point p ∈ C is sent to −Id. There is an analogous picture
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associated with any complex reductive Lie group G and the above corresponds
to the case G = GLC(2). In [de Cataldo et al. 2011] only the cases G =
GLC(2),PGLC(2),SLC(2) are dealt with. Both M and M′ are quasiprojective
irreducible and nonsingular of some even dimension 2d . While M depends on the
complex structure of C , M′ does not. There is a proper flat and surjective map,
the Hitchin map, h :M→ Cd with general fibers abelian varieties of dimension
d; in particular, M is not affine: it contains complete subvarieties of positive
dimension. On the other hand, M′ is easily seen to be affine (it is a GIT quotient
of an affine variety).

The nonabelian Hodge theorem states that the two moduli spaces MDolbeault

and MBetti are naturally diffeomorphic, i.e., that there is a natural diffeomorphism
ϕ :M'M′. Since M′ is affine (resp. Stein) and M is not affine (resp. not Stein),
the map ϕ is not algebraic (resp. not holomorphic). Of course, we can still deduce
that ϕ∗ is a natural isomorphism on the singular cohomology groups.

Let us point out that the mixed Hodge structure on the cohomology groups
H j (M,Q) is in fact pure, i.e., every class has type (p, q) with p+ q = j , or
equivalently, every class has weight j . This follows easily from the fact that, due
to the nonsingularity of M, the weights of H j (M,Q) must be ≥ j . It remains to
show that the weights are also ≤ j : the variety M admits the fiber h−1(0) of the
Hitchin map over the origin 0 ∈ Cd as a deformation retract; it follows that the
restriction map in cohomology, H j (M,Q)→ H j (h−1(0),Q) is an isomorphism
of mixed Hodge structures; since the central fiber is compact, the weights of
H j (h−1(0),Q) are ≤ j , and we are done.

On the other hand, the mixed Hodge structure on the cohomology groups
H j (M′,Q) is known to be nonpure [Hausel and Rodriguez-Villegas 2008], i.e.,
there are classes of degree j but weight > j .

It follows that the isomorphism ϕ∗ is not compatible with the two weight
filtrations W on H∗(M,Q) and W′ on H∗(M′,Q). This fact raises the following
question: if we transplant the weight filtration W′ onto H∗(M,Q) via ϕ∗, can
we interpret the resulting filtration on H∗(M,Q), still called W′, in terms of the
geometry of M?

The main result in [de Cataldo et al. 2011] is Theorem 5.1 below and it gives a
positive answer to the question raised above. In order to state this answer, we need
to introduce one more ingredient and to make some trivial renumerations. (In
this paper, we only deal with increasing filtrations.) The Hitchin map h :M→Cd

gives rise to the perverse Leray filtration pL= pLh on H∗(M,Q); this is a suitable
variant of the ordinary Leray filtration for h; for a geometric description of the
perverse Leray filtration see Theorem 4.5. We re-index the filtration pL so that
1 ∈ H 0(M,Q) is in place zero (see (10)); the resulting re-indexed filtration on
H∗(M,Q) is denoted by P .



THE HODGE THEORY OF CHARACTER VARIETIES 87

All the actual weights appearing in W′ on H∗(M′,Q) turn out to be multiples
of four. We renumerate W′ by setting W ′k :=W′2k .

Our answer to the question above is: The nonabelian Hodge theorem iso-
morphism ϕ∗ identifies the weight filtration W ′ on H∗(M′,Q) with the perverse
Leray filtration P on H∗(M,Q):

P =W ′.

The nature of these two filtrations being very different, we find this coincidence
intriguing, but at present we cannot explain it.

The proof of Theorem 5.1 uses a few ideas from the topology of algebraic
maps. Notably, Ngô’s support theorem [2008], the geometric description of the
perverse filtration [de Cataldo and Migliorini 2010] and the explicit knowledge
of the cohomology ring H∗(MBetti,Q) [Hausel and Thaddeus 2003] and of its
mixed Hodge structure [Hausel and Rodriguez-Villegas 2008].

One of the crucial ingredients we need is Theorem 5.3, which may be of
independent interest: it observes that Ngô’s support theorem for the Hitchin
fibration, i.e., (4) below, can be refined rather sharply, in the rank two cases
we consider, as follows: the intersection complexes appearing in (4) are in fact
sheaves (up to a dimensional shift).

What follows is a summary of the contents of this paper. Section 2 is devoted
to stating the decomposition theorem for proper maps of algebraic varieties and
to defining the associated “supports”. Section 3 states Ngô’s support theorem
[Ngô 2008, §7] and sketches a proof of it in a special case and under a very strong
splitting assumption that does not occur in practice; the purpose here is only to
explain the main idea behind this beautiful result. Section 4 is a discussion of the
main result of [de Cataldo and Migliorini 2010], i.e., a description of the perverse
filtration in cohomology with coefficients in a complex via the restriction maps
in cohomology obtained by taking hyperplane sections. Section 5 states the main
result in [de Cataldo et al. 2011] and discusses some of the other key ingredients
in the proof, notably the use of the subadditivity of the ordinary Leray filtration
with respect to cup products. Since I could not find a reference in the literature
for this well-known fact, I have included a proof of it in the more technical
Section 6.

1.1. Notation. We work with sheaves of either abelian groups, or of rational
vector spaces over complex algebraic varieties. The survey [de Cataldo and
Migliorini 2009] is devoted to the decomposition theorem and contains a more
detailed discussion of what follows.

A sheaf F on a variety Y is constructible if there is a finite partition Y =
∐

Ti

into nonsingular locally closed irreducible subvarieties that is adapted to F ,



88 MARK ANDREA A. DE CATALDO

i.e., such that each F|Ti is a local system (a locally constant sheaf) on Ti . A
constructible complex K on a variety Y is a bounded complex of sheaves whose
cohomology sheaves Hi (K ) are constructible. We denote by DY the corre-
sponding full subcategory of the derived category of sheaves on Y . If K ∈ DY ,
then H i (Y, K ) denotes the i-th cohomology group of Y with coefficients in K .
Similarly, for H i

c (Y, K ). The complex K [n] has i-th entry K n+i and differential
d i

K [n] = (−1)ndn+i
K .

The standard truncation functors are denoted by τ≤i , the perverse (middle
perversity) ones by pτ≤i . The perverse cohomology sheaves are denoted pHi (K ),
i ∈Z. We make some use of these notions in Section 6. Recall that if K ∈DY , then
pHi (K ) 6=0 for finitely many values of i ∈Z. In general, the collection of perverse
cohomology sheaves {pHi (K )}i∈Z does not determine the isomorphism class of K
in DY ; e.g., if j :U→ X is the open immersion of the complement of a point p in a
nonsingular surface X , then the sheaves j!QU and QX⊕Qp, viewed as complexes
in DX , yield the same collection pH0(−)=Qp, pH2(−)=QX [2]. On the other
hand, the celebrated decomposition theorem (Theorem 2.4 below) implies that
if f : X → Y is a proper map of algebraic varieties, with X nonsingular for
example, then the direct image complex satisfies

R f∗QX '
⊕

i

pHi (R f∗QX )[−i].

This implies that the perverse cohomology sheaves reconstitute, up to an isomor-
phism, the direct image complex; more is true: each perverse cohomology sheaf
splits further into a direct sum of simple intersection complexes (cf. (2)).

We have the following subcategories of DY :

D≤0
Y := {K |H

i (K )= 0 for all i > 0},
pD≤0

Y := {K | dim supp Hi (K )≤−i for all i ∈ Z}.

More generally, a perversity p gives rise to truncation functors pτ≤i , subcategories
pD≤i

Y and cohomology complexes pHi (K ).
Filtrations on abelian groups H are assumed to be finite: if the filtration F•

on H is increasing, then Fi H = 0 for i � 0 and Fi H = H for i � 0; if F•

is decreasing, then it is the other way around. One can switch type by setting
Fi = F−i . For i ∈ Z, the i-th graded objects are defined by setting

GrF
i H := Fi H/Fi−1 H.

The increasing standard filtration S on H j (Y, K ) is defined by setting

Si H j (K ) := Im {H j (Y, τ≤i K )→ H j (Y, K )}.
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Similarly, for pS and more generally for pS. These filtrations are the abutment
of corresponding spectral sequences.

Let f : X→ Y be a map of varieties. The symbol f∗ ( f!, respectively) denotes
the derived direct image R f∗ (with proper supports R f!, respectively). Let C ∈DX .
The direct image sheaves are denoted R j f∗C . We have H j (X,C)= H j (Y, f∗C)
and H j

c (X,C)= H j
c (Y, f!K ).

The Leray filtration is defined by setting Li H j (X,C) := Si H j (Y, f∗C) and
it is the abutment of the Leray spectral sequence. Similarly, for H j

c (X,C). Given
a perversity p, we have the p-Leray spectral sequence abutting to the p-Leray
filtration pL. We reserve the terms perverse Leray spectral sequence and perverse
Leray filtration to the case of middle perversity p = p.

If X is smooth and f is proper, we let Yreg ⊆ Y be the Zariski open set of
regular values of f and we denote by Ri the local system (Ri f∗QX )|Yreg on Yreg.

2. The decomposition theorem

The purpose of this section is to state the decomposition Theorem 2.4 and to
introduce the related notion of supports.

Let f : X→ Y be a map of varieties. The Leray spectral sequence

E pq
2 = H p(Y, Rq f∗QX )H⇒ H p+q(X,Q)

relates the operation of taking cohomology on Y to the same operation on X . If
we have E2-degeneration, i.e., E2 = E∞, then we have an isomorphism

H j (X,Q) '
⊕

p+q= j

H p(Y, Rq f∗Q). (1)

Example 2.1. Let f : X→ Y be a resolution of the singularities of the projective
variety Y . Let us assume, as it is often the case, that the mixed Hodge structure
on H j (Y,Q) is not pure for some j . Then f ∗ : H j (Y,Q)→ H∗(X,Q) is not
injective and E2-degeneration fails; this is because injectivity would imply the
purity of the mixed Hodge structure on H j (Y,Q).

Example 2.2. Let f : (C2
−{(0, 0)})/Z→ CP1 be a Hopf surface (see [Barth

et al. 1984]) together with its natural holomorphic proper submersion onto the
projective line. Since the first Betti number of the Hopf surface is one and the
one of a fiber is two, E2-degeneration fails.

These examples show that we cannot expect E2-degeneration, neither for holo-
morphic proper submersions of compact complex manifolds, nor for projective
maps of complex projective varieties. On the other hand, the following result of P.
Deligne [1968] shows that E2-degeneration is the norm for proper submersions
of complex algebraic varieties.
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Theorem 2.3. Let f : X → Y be a smooth proper map of complex algebraic
varieties. Then the Leray spectral sequence for f is E2-degenerate. More
precisely, there is an isomorphism in DY

f∗QX '
⊕

i

Ri f∗QX [−i].

The decomposition theorem is a far-reaching generalization of Theorem 2.3
that involves intersection cohomology, a notion that we review briefly next. A
complex algebraic variety Y of dimension dimC Y = n carries intersection coho-
mology groups IH∗(Y,Q) and IH∗c (Y,Q) satisfying the following conditions.

1. Poincaré duality holds: there is a geometrically defined perfect pairing

IH n+ j (Y )× IH n− j
c (Y )→Q.

2. There is the intersection complex I CY ; it is a constructible complex of sheaves
of rational vector spaces on Y such that

IH j (Y,Q)= H j−n(Y, I CY ),

IH j
c (Y,Q)= H j−n

c (Y, I CY ).

3. If Y is nonsingular, then IH∗(Y,Q)= H∗(Y,Q) and I CY =QY [n] (complex
with the one entry QY in cohomological degree −n).

4. If Y o is a nonempty open subvariety of the nonsingular locus of Y and L is a
local system on Y o, then we have the twisted intersection complex I CY (L) on
Y and the intersection cohomology groups IH j (Y, L) = H j−n(Y, I CY (L)) of
Y with coefficients in L .

Theorem 2.4 (Decomposition theorem [Beı̆linson et al. 1982, théorème 6.2.5]).
Let f : X→ Y be a proper map of algebraic varieties. Then

f∗ I CX '
⊕
b∈B

I CZb(Lb)[db] (2)

for an uniquely determined finite collection B of triples (Zb, Lb, db) such that
Zb ⊆ Y is a closed irreducible subvariety, Lb 6= 0 is a simple local system on
some nonempty and nonsingular Zariski open Zo

b ⊆ Zb and db ∈ Z.

If, in Theorem 2.4, we replace “simple” with “semisimple”, we obtain a
uniquely determined collection B ′ by grouping together the terms with the same
cohomological shift [db] and the same irreducible subvariety Zb.

Definition 2.5. The varieties Zb⊆Y are called the supports of the map f : X→Y .
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The supports Zb are among the closed irreducible subvarieties Z ⊆ Y with
the property that

(1) there exists a nonempty Z0
⊆ Z over which all the direct image sheaves

Ri f∗Q are local systems, and

(2) Z is maximal with this property.

The following example shows that a support may appear more than once with
distinct cohomological shifts. Of course, that happens already in the situation of
Theorem 2.3; the point of the example is that this “repeated support” may be
smaller than the image f (X).

Example 2.6. Let f : X→ Y = C3 be the blowing-up of a point o ∈ C3; there
is an isomorphism

f∗QX [3] ' QY [3]⊕Qo[1]⊕Qo[−1].

The next example shows that a variety Z , in this case Z = v, that satisfies
conditions (1) and (2) above, may fail to be a support.

Example 2.7. Let f : X→ Y be the small resolution of the three-dimensional
affine cone Y ⊆ C4 over a nonsingular quadric surface P1

×P1
' Q⊆ P3, given

by the contraction to the vertex v ∈ Y of the zero section in the total space X of
the vector bundle OP1(−1)2. In this case, we have

R f∗QX [3] = I CY .

The determination of the supports of a proper map is an important and difficult
problem.

3. Ngô’s support theorem

B. C. Ngô [2008] proved the “fundamental lemma” in the Langlands program.
This is a major advance in geometric representation theory, automorphic rep-
resentation theory and the arithmetic Langlands program. See [Nadler 2010].
One of the crucial ingredients of the proof is the support Theorem 3.1, whose
proof applies the decomposition theorem to the Hitchin map associated with a
reductive group and a nonsingular projective curve. The support theorem is a
rather general result concerning a certain class of fibrations with general fibers
abelian varieties and the Hitchin map is an important example of such a fibration.

In our paper [de Cataldo et al. 2011] (to which I refer the reader for more
context and references), we deal with the Hitchin map in the rank-two case, i.e.,
with the reductive groups GLC 2, PGLC(2) and SLC(2). The simpler geometry
allows us to refine the conclusion (4) of the support theorem for the Hitchin map
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in the form of Theorem 5.3, which in turn we use in [de Cataldo et al. 2011] to
prove Theorem 5.1.

In this section, we discuss the support theorem in the case of GLC(2). This
situation is too-simple in the context of the fundamental lemma, but it allows
us to concentrate on the main idea underlying the proof of the support theorem,
which is to pursue the action of abelian varieties on the fibers of the Hitchin map.
In the context of Ngô’s work, it is critical to work over finite fields. We ignore this
important aspect and, for the sake of exposition, we make the oversimplifying
Assumption 3.2 and stick with the situation over C.

Let C be a compact Riemann surface of genus g ≥ 2. Let M be the moduli
space of stable rank 2 Higgs bundles on C with determinant of degree one. In this
context, a point m ∈M parametrizes a stable pair (E, ϕ), where E is a rank two
bundle on C with deg (det E)= 1 and ϕ : E→ E⊗ωC (where ωC := T ∗C denotes
the canonical bundle of C) is a map of bundles, i.e., a section of End(E)⊗ωC .
Stability is a technical condition on the degrees of the subbundles of E preserved
by ϕ. Only the parity of deg (det E) counts here: there are only two isomorphism
classes of such moduli spaces; the case of even degree yields a singular moduli
space and we do not say anything new in that case.

Let d :=4g−3. The variety M is nonsingular, quasiprojective and of dimension
2d . There is a proper and flat map, called the Hitchin map, onto affine space

h :M2d
→ Ad

' H 0(C, ωC ⊕ω
⊗2
C ), (3)

which is a completely integrable system.
Set-theoretically, the map h :m = (E, ϕ) 7→ (trace(ϕ), detϕ), where the trace

and determinant of the twisted endomorphism ϕ are viewed as sections of the
corresponding powers of ωC .

A priori, it is far from clear that this map is proper. This fact was first noted
and proved by Hitchin. It is a beautiful fact (also due to Hitchin) that each
nonsingular fiber Ma := h−1(a), a ∈ Ad , is isomorphic to the Jacobian J (C ′a) of
what is called the spectral curve C ′a . This curve lives on the surface given by the
total space of the line bundle ωC and it is given set-theoretically as the double
cover of C given by (and this explains the term “spectral”)

C 3 {c} ←→ {the set of eigenvalues of ϕc} ∈ ωC,c.

The genus g(C ′a)= d by Riemann–Roch and by the Hurwitz formula.
The singular fibers of the Hitchin map h : M→ Ad are, and this is an eu-

phemism, difficult to handle.
Let V ⊆Ad be the open locus over which the fibers of h are reduced. The sheaf

R2d
V := (R

2d f∗Q)|V is the Q-linearization of the sheaf of finite sets given by the
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sets of irreducible components of the fibers over V . Let hV :MV := h−1(V )→ V
be the restriction of the Hitchin map over V .

We can now state Ngô’s support theorem in the very special case at hand.
Roughly speaking, it states that over V , the highest direct image R2d

V is responsi-
ble for all the supports.

Theorem 3.1 (Ngô’s support theorem). A closed and irreducible subvariety
Z ⊆ V appears as a support Zb in the decomposition theorem (2) for hV , if and
only if there is a dense open subvariety Zo

⊆ Z such that the restriction (R2d
V )|Zo

is locally constant and Z is maximal with this property.

If we further restrict to the open set U ⊆ V where the fibers are reduced and
irreducible, then the support theorem has the following striking consequence:
the only support on U is U itself. The decomposition theorem (2) for hU takes
then the following form (notation as in Section 1.1)

hU ∗QMU [2d] '
d⊕

i=−d

I CU (Ri+d)[−i]. (4)

The open U is fairly large: its complement has codimension ≥ 2g− 3.

The remaining part of this section is devoted to discussing the main idea in
the proof of the support theorem.

There is a group-variety PV → V over V acting on the variety MV → V over
V , i.e., a commutative diagram

PV ×MV

$$

a // MV

~~
V

satisfying the axioms of an action.
Let us describe this situation over a point v∈V . The fiber Mv is noncanonically

isomorphic to a suitable compactification of the identity component Pv of the
Picard group Pic(C ′v) of the possibly singular spectral curve C ′v . The variety Mv

parametrizes certain torsion free sheaves of rank and degree one on C ′v. The
group variety Pv acts on Mv via tensor product. There is an exact sequence
(Chevalley devissage) of algebraic groups of the indicated dimensions

1→ Rδvv → Pd
v → Ad−δv

v → 1 (5)

where Av is the abelian variety given by the Picard variety of the normalization
of the spectral curve C ′v and Rv is an affine algebraic group. The sequence (5)
does not split over the complex numbers, but it splits over a finite field. It turns
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out that this is enough in order to prove the freeness result on which the proof
of the support theorem rests. In order to explain the main idea, let us make the
following (over)simplifying assumption.

Assumption 3.2. There is a splitting of the Chevalley devissage (5).

A splitting induces an action of Av on Mv with finite stabilizers. There is the
rational homology algebra H∗(Av) with product given by the Pontryagin product
Hi (Av)⊗ H j (Av)→ Hi+ j (Av) induced by the cross product, followed by push-
forward via the multiplication map in Av . We have the following standard ([Ngô
2008], p.134, Proposition 7.4.5)

Fact 3.3. Let A× T → T be an action of an abelian variety A on a variety T
such that all stabilizers are finite. Then H∗c (T ) is a free graded H∗(A)-module
for the action of the rational homology algebra H∗(A) on H∗c (T ).

Our assumptions imply that

∀ v ∈ V, H∗(Mv) is a free graded H∗(Av)-module.

Let Z be a support appearing in the decomposition theorem (2) for hV . Define
a finite set of integers as follows

Occ(Z) := {n ∈ Z | ∃b s.t. Zb = Z , db =−n} ⊆ [−d, d].

The integers in Occ(Z) are in one-to-one correspondence with the summands
(2) with support Z . By grouping them, we obtain the graded object

IZ :=
⊕

n∈Occ(Z)

I CZ (Ln)[−n].

Verdier duality is the generalization of Poincaré duality in the context of
complexes. If we apply this duality to (2), we deduce that Occ(Z) is symmetric
about 0.

Every intersection complex I CY (L) on an irreducible variety Y restricts to
L[dim Y ] on a suitable nonempty open subvariety Y o

⊆ Y . It follows that there
is a nonempty open subvariety V o

⊆ V such that every I CZ (Ln) restricts to
Ln
[dim Z ] on Zo

:= Z ∩ V o. Let us consider the restriction of IZ to Zo:

L :=
⊕

n∈Occ(Z)
Ln
[dim Z ][−n].

If we set n+ :=max Occ(Z), then, by the aforementioned symmetry about the
origin, the length l(L)= 2n+.

The decomposition theorem (2) over V o implies that

∀ n ∈ Occ(Z), Ln is a direct summand of (R2d+n−dim Z h∗Q)|Zo .
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Since the fibers of h have dimension d, the higher direct images R j h∗Q
vanish for every j > 2d . It follows that the support theorem is equivalent to the
following claim:

Claim. Ln+ is a direct summand of (R2dh∗Q)|Zo .

This is equivalent to having n+− dim Z = 0, and, again by the vanishing for
the direct images R j h∗Q, this is equivalent to having n+− dim Z ≥ 0.

Let z ∈ Zo be any point. By adding and subtracting dim Az = d − δz , we can
reformulate the support theorem as follows:[

codim Z − δz
]
+
[
n+− (d − δz)

]
≥ 0.

It is thus enough to show that each of the two quantities in square brackets is
≥ 0.

The first inequality
[
codim Z − δz

]
≥ 0 follows from the deformation theory

of Higgs bundles and Riemann–Roch on the curve C . This point is standard over
the complex numbers. At present, in positive characteristic it requires the extra
freedom of allowing poles of fixed but arbitrary high order. We do not address
this point here.

Since l(L)= 2n+, in order to prove the second inequality, we need to show
that

l(L)= l(Lz)= 2n+ ≥ 2(d − δz).

Since l(H∗(Az))= 2 dim Az = 2(d−δz), the inequality would follow if we could
prove that:

Lz is a free graded H∗(Az)-module.

By virtue of the decomposition theorem, the graded vector space Lz is a graded
vector subspace of H∗(Mz). This is not enough. We need to make sure that it
is a free H∗(Az)-submodule. Once it is known that Lz is a submodule, then its
freeness is an immediate consequence of standard results from algebra, notably
that a projective module over the local graded commutative algebra H∗(Az)

is free. Showing that Lz is H∗(Az)-stable is a delicate point, for a priori the
contributions from other supports could enter the picture and spoil it. This
problem is solved by means of a delicate specialization argument which we do
not discuss here.

4. The perverse filtration and the Lefschetz hyperplane theorem

Let us review the classical construction that relates the Leray filtration on the
cohomology of the total space a fiber bundle to the filtration by skeleta on the
base.
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Let f : X → Y be a topological fiber bundle where Y is a cell complex of
real dimension n. Let Y∗ := {Y0 ⊆ . . .⊆ Yk ⊆ . . .⊆ Yn = Y } be the filtration by
k-skeleta. Let X∗ := π−1(Y∗) be the corresponding filtration of the total space
X .

If L is the increasing Leray filtration associated with π , then we have (see
[Spanier 1966, §9.4])

Li H j (X,Z)= Ker {H j (X,Z)→ H j (X j−i−1,Z)}. (6)

The key fact that one needs (see [de Cataldo and Migliorini 2010; de Cataldo
2009]) is the π -cellularity of Y∗, i.e., the fact that

H j (Yp, Yp−1, Rq f∗ZX )= 0 for all j 6= p and all q. (7)

This condition is verified since, for each fixed p, we are really dealing with
bouquets of p-spheres.

This classical result can be viewed as a geometric description of the Leray
filtration in the sense that the subspaces of the Leray filtration are exhibited as
kernels of restrictions maps to the preimages of skeleta. The following result
of D. Arapura [2005] gives a geometric description of the Leray filtration for a
projective map of quasiprojective varieties: the important point is that the “skeleta”
can be taken to be algebraic subvarieties! For generalizations of Arapura’s result,
see [de Cataldo 2009]. In what follows, for ease of exposition, we concentrate
on the case when the target is affine.

Theorem 4.1 (Geometric description of the Leray filtration). Let f : X→ Y be
a proper map of algebraic varieties with Y affine of dimension n. Then there is a
filtration Y∗ of Y by closed algebraic subvarieties Yi of dimension i such that (6)
holds.

Remark 4.2. The flag Y∗ is constructed inductively as follows. Choose a closed
embedding Y ⊆AN . Each Yi is a complete intersection of Y with n−i sufficiently
high degree hypersurfaces in special position. Here “special” refers to the fact
that in order to achieve the cellularity condition (7), we need to trace, as p
decreases, the Yp−1 through the positive-codimension strata of a partition of Yp

adapted to the restricted sheaves (Rq f∗ZX )|Yp .

Theorem 4.1 affords a simple proof of the following result of M. Saito [1990].
Recall that the integral singular cohomology of complex algebraic varieties
carries a canonical and functorial mixed Hodge structure (mHs).

Corollary 4.3 (The Leray filtration is compatible with mHs). Let f : X→ Y be
a proper map of algebraic varieties with Y quasiprojective. Then the subspaces
of the Leray filtration L on Hq(X,Z) are mixed Hodge substructures.
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Let K be a constructible complex of sheaves on an algebraic variety Y . We
have the perverse filtration pSi H j (Y, K ) := Im

{
H j

(
Y, pτ≤i K

)
→ H j (Y, K )

}
.

Let f : X → Y be a map of algebraic varieties and let C ∈ DX . We have
the perverse Leray filtration pLi on H j (X,C), i.e the perverse filtration pS on
H j (Y, f∗C)= H j (X,C). Similarly, for H j

c (X,C).

Remark 4.4. In the situation of the decomposition Theorem 2.4, if we take X
to be nonsingular (if X is singular, then replace cohomology with intersection
cohomology in what follows), then the subspace pLi H j (X,C) ⊆ H j (X,C)
is given by the images, via the chosen splitting, of the direct sum of the j-th
cohomology groups of the terms with −db ≤ i . The general theory implies that
this image is independent of the chosen splitting. However, different splittings
yield different embeddings of each of the direct summands into H j (X,C).

Let f : X→ Y be a map of varieties where Y is a quasiprojective variety. Let
C ∈ DX and K ∈ DY (integral coefficients). The main result of [de Cataldo and
Migliorini 2010] is a geometric description of the perverse and perverse Leray
filtrations. We state a significant special case only.

Theorem 4.5 (Geometric perverse Leray). Let f : X→ Y be a map of algebraic
varieties with Y affine of dimension n. Then there is a filtration Y∗ by closed
subvarieties Yi of dimension i such that if we take X∗ := f −1Y∗, then

pLi H j (X,Z) := pSi H j (Y, f∗ZX )= Ker
{

H j (X,Z)→ H j (Xn+ j−i−1,Z)
}
.

The main difference with respect to Theorem 4.1 is that Y∗ is obtained by
choosing general vs. special hypersurfaces (see Remark 4.2). This choice is
needed in order to deduce the perverse analogue of the cellularity condition (7),
i.e.,

H j (Yp, Yp−1,
pHq( f∗C

)
= 0for all j 6= 0 and all q.

These vanishing conditions are verified by a systematic use of the Lefschetz
hyperplane theorem for perverse sheaves. Unlike [Arapura 2005] and [de Cataldo
2009], the proof for compactly supported cohomology is completely analogous
to the one for cohomology.

A second difference, is that we do not need the map f : X→ Y to be proper.
The choice of general hypersurfaces avoids the usual pitfalls of the failure of the
base change theorem (see [de Cataldo 2009]).

The discrepancy “+n” between (6) for Theorem 4.1 and Theorem 4.5 boils
down to the fact that for the affine variety Y of dimension n, the cohomology
groups H j (Y, F) with coefficients in a sheaf (perverse sheaf, respectively) F
are nonzero only in the interval [0, n]) ([−n, 0], respectively).
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This geometric description of the perverse filtration in terms of the kernels of
restriction maps to subvarieties is amenable to applications to the mixed Hodge
theory of algebraic varieties. For example, the analogue of Corollary 4.3 holds,
with the same proof. For more applications, see [de Cataldo 2010].

5. Character varieties and the Hitchin fibration: P = W ′

In this section, I report on [de Cataldo et al. 2011], where we prove Theorem 5.1.
The main ingredients are the geometric description of the perverse filtration in
Theorem 4.5 and the refinement Theorem 5.3 of the support theorem (4) in the
case at hand.

We have the Hitchin map (3) for the group G =GLC(2). There are analogous
maps ȟ : M̌6g−6

→A3g−3 for G = SLC(2) and ĥ : M̂6g−6
→A3g−3 for PGLC(2).

Though these three geometries are closely related, this is not the place to
detail the toing and froing from one group to another. The main point for this
discussion is that we have an explicit description of the cohomology algebra
H∗(M,Q) in view of the canonical isomorphism

H∗(M,Q) ' H∗(M̂,Q)⊗ H∗(Jac(C),Q) (8)

and of (9) below. In view of (8), the key cohomological considerations towards
Theorem 5.1 below can be made in the PGLC(2) case, for they will imply easily
the ones for GLC(2) and, with some extra considerations which we do not address
here, the ones for SLC(2). For simplicity, ignoring some of the subtle differences
between the three groups, let us work with ĥ : M̂6g−6

→ A3g−3. Though M̂ is
the quotient of a manifold by the action of a finite group, for our purposes we
can safely pretend it is a manifold. We set d := 3g− 3.

In the context of the nonabelian Hodge theorem ([Simpson 1992]), the
quasiprojective variety M̂ is usually denoted M̂D , where D stands for Dolbeault.
This is to contrast it with the moduli space M̂B (Betti) of irreducible PGL2(C)

representations of the fundamental group of C ; this is an affine variety.
The nonabelian Hodge theorem states that there is a natural diffeomorphism

ϕ : M̂B ' M̂D. The two varieties are not isomorphic as complex spaces and, a
fortiori, neither as algebraic varieties: the latter contains the fibers of the Hitchin
map, i.e., d-dimensional abelian varieties, while the former is affine.

The diffeomorphism ϕ induces an isomorphism of cohomology rings ϕ∗ :
H∗(M̂D,Q)' H∗(M̂B,Q). This isomorphism is not compatible with the mixed
Hodge structures. In fact, the mixed Hodge structure on every H j (M̂D,Q) is
known to be pure (see Section 1), while the one on H j (M̂B,Q) is known to be
not pure ([Hausel and Rodriguez-Villegas 2008]).
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In particular, the weight filtrations do not correspond to each other via ϕ∗.
Our main result in [de Cataldo et al. 2011] can be stated as follows.

Theorem 5.1 (P = W ′). In the cases G = GLC(2), PGLC(2), SLC(2), the
nonabelian Hodge theorem induces an isomorphism in cohomology that identifies
the weight filtration for the mixed Hodge structure on the Betti side with the
perverse Leray filtration on the Dolbeault side; more precisely, (11) below holds.

At present, we do not know what happens if the reductive group G has
higher rank. Moreover, we do not have a conceptual explanation for the so-far
mysterious exchange of structure of Theorem 5.1.

The paper [de Cataldo et al. 2010] deals with a related moduli space, i.e., the
Hilbert scheme of n points on the cotangent bundle of an elliptic curve, where a
similar exchange takes place.

Let us try and describe some of the ideas that play a role in the proof of
Theorem 5.1. We refer to [de Cataldo et al. 2011] for details and attributions.

By the work of several people, the cohomology ring and the mixed Hodge
structure of H∗(M̂B,Q) are known. There are tautological classes:

α ∈ H 2, {ψi }
2g(C)
i=1 ∈ H 3, β ∈ H 4

which generate the cohomology ring. With respect to the mixed Hodge structure,
these classes are of weight 4 and pure type (2, 2). Every monomial made of l
letters among these tautological classes has weight 4l and Hodge type (2l, 2l),
i.e., weights are strictly additive for the cup product. In general, weights are only
subadditive. There is a graded Q-algebra isomorphism

H∗(M̂B,Q) '
Q [α, {ψi }, β]

I
, (9)

where I is a certain bihomogeneous ideal with respect to weight and cohomo-
logical degree. In particular, we have a canonical splitting for the increasing
weight filtration W′ on H j (M̂B,Q) (the trivial weight filtration W on the pure
H j (M̂D,Q) plays no role here):

H j (M̂B,Q)=
⊕
w≥0

H j
w, W′wH j

=

⊕
w′≤w

H j
w′ .

The weights occur in the interval [0, 4d] and they are multiples of four: W′4k−i =

W′4k for every 0≤ i ≤ 3.
By virtue of the decomposition theorem (2) and of the fact that the Hitchin

map ĥ is flat of relative dimension d , the increasing perverse Leray filtration pL

has type [−d, d].
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In order to compare W′ with pL, we half the wights, i.e., we set W ′i :=W′2i ,
and we translate pL, i.e., we set

P := pL(−d). (10)

We still denote these half-weights by w. We have that both W ′ and P have
nonzero graded groups Gri only in the interval i ∈ [0, 2d]. The two modified
filtrations could still be completely unrelated. After all, they live on the coho-
mology of different algebraic varieties! The precise formulation of Theorem 5.1
is

P =W ′. (11)

Let us describe our approach to the proof.

We introduce the notion of perversity and, ultimately, we show that the
perversity equals the weight. We say that 0 6= u ∈ H j (M̂D,Q) has perversity
p = p(u) if u ∈ Pp \ Pp−1. By definition, u = 0 can be given any perversity.
Perversities are in the interval [0, 2d]. We write monomials in the tautological
classes as αrβsψ t , where ψ t is a shorthand for a product of t classes of type ψ .
Then (11) can be reformulated as follows:

p(αrβsψ t)= w(αrβsψ t)= 2(r + s+ t). (12)

As it turns out, the harder part is to establish the inequality

p(αrβsψ t)≤ 2(r + s+ t), (13)

for once this is done, the reverse inequality is proved by a kind of simple
pigeonhole trick. We thus focus on (13).

Recall that U ⊆ Ad (see (4)) is the dense open set where the fibers of ĥ are
irreducible. We have the following sharp estimate

codim (Ad
\U )≥ 2g− 3. (14)

For every 0≤ b≤ d , let 3b
⊆Ad denote a general linear section of dimension

b. We have defined the translated perverse Leray filtration P on the cohomology
groups of M̂ for the map ĥ that fibers M̂ over Ad . We can do so, in a compatible
way, over U and over the 3b so that the restriction maps respect the resulting P
filtrations. All these increasing filtrations start at zero and perversities are in the
interval [0, 2d].

The test for perversity Theorem 4.5, now reads

Fact 5.2. Let 3b
⊆ Ad be a general linear subspace of dimension b. Denote by

M̂3b := ĥ−1(3b). Then

u ∈ Pj−b−1 H j (M̂) ⇐⇒ u
|M̂

3b
= 0.
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We need the following strengthening (in the special case we are considering) of
the support theorem (4) over U . It is obtained by a study of the local monodromy
of the family of spectral curves around the points of U . Let j : Ad

reg→U be the
open embedding of the set or regular values of ĥ.

Theorem 5.3. The intersection complexes I CU (Ri ) are shifted sheaves and we
have

ĥU∗Q'
⊕

j∗Ri
[−i].

In particular, the translated perverse Leray filtrations P coincides with the Leray
filtration L on H∗(M̂U ,Q), and on H∗(M̂3b ,Q) for every b < 2g− 3.

The last statement is a consequence of (14): we can trace 3b inside U .

We can now discuss the scheme of proof for (13). We start by establishing
the perversities of the multiplicative generators, i.e., by proving that

p(α)= p(β)= p(ψi )= 2.

By Fact 5.2, we need to show that α vanishes over the empty set, ψi over a point,
and β over a line. The first requirement is of course automatic. The second one
is a result of M. Thaddeus [Thaddeus 1990]. He also proved that β vanishes over
a point, but we need more.

Fact 5.4. The class β is zero over a general line l :=31
⊆ A3g−3.

Idea of proof. By (14), we can choose a general line l=31
⊆U . Let f : M̂l :=

ĥ−1(l)→ l. In particular, by abuse of notation, we write M̂reg := ĥ−1(Ad
reg),

where Ad
reg⊆Ad is the Zariski open and dense set of regular values of the Hitchin

map.
By Theorem 5.3 (as it turns out, since we are working over a curve, here (4)

is enough to reach the same conclusion) we have

R f∗Q'
⊕(

j∗Ri)
|l
[−i].

In particular, there are no skyscraper summands on l. A simple spectral sequence
argument over the affine curve l, implies that the restriction map H 4(M̂l)→

H 4(M̂lreg) is injective. (Note that this last conclusion would be clearly false if
we had a skyscraper contribution.) It is enough to show that β

|M̂reg
is zero. The

class β is a multiple of c2(M̂). On the other hand, since the Hitchin system is a
completely integrable system over the affine space, the tangent bundle can be
trivialized, in the C∞-sense, over the open set of regular point M̂reg using the
Hamiltonian vector fields. �
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Having determined the perversity for the multiplicative generators, we turn to
(13) which we can reformulate by saying that perversities are subadditive under
cup product.

In general, I do not know if this is the case: see the discussion following the
statement of Theorem 6.1 and also Remark 6.8. On the other hand, the analogous
subadditivity statement for the Leray filtration L is well-known to hold; see
Theorem 6.1.

Let us outline our procedure to prove the subadditivity of perversity in our
case. We want to use the test for perversity Fact 5.2, for the monomials in (13).
First we get rid of αr : in fact, it is a simple general fact that cupping with a class
of degree i , raises the perversity by at most i . It follows that we can concentrate
on the case r = 0.

Here is the outline of the final analysis.

(1) In order to use Theorem 5.3, we need to make sure that we can test the
monomials over linear sections 3b which can be traced inside U .

(2) Theorem 5.3, combined with the subadditivity of the Leray filtration implies
that we have subadditivity over 3b.

(3) We deduce that the subadditivity upper bound on the perversity over 3b,
when compared with the cohomological degree of the monomial, forces the
restricted monomial to be zero, so the monomial passes the test and we are
done.

The obstacle in Step 1 is the following: the dimension b of the testing 3b

increases as s+t increases. On the other hand, by (14) we need b< 2g−3. There
are plenty of monomials for which b exceeds this bound. We use the explicit
nature of the relations I (9) to find an upper bound for s+ t . The corresponding
upper bound for b is b ≤ 2g− 3 (sic!) and the only class that needs to be tested
on a 32g−3 is βg−1. This class turns out to require a separate ad-hoc analysis.
Step 2 requires no further comment. Step 3 is standard as it is based on the
cohomological dimension of affine varieties with respect to perverse sheaves.

6. Appendix: cup product and Leray filtration

We would like to give a (more or less) self-contained proof of Theorem 6.1, i.e.,
of the fact that the cup product is compatible with the Leray spectral sequence.
We have been unable to locate a suitable reference in the literature. As it is clear
from our discussion in Section 5, this fact is used in an essential way in our proof
of Theorem 5.1

As it turns out, the same proof shows that the cup product is also compatible
with the p-Leray spectral sequence for every nonpositive perversity p ≤ 0,
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including p. However, this statement turns out to be rather weak, unless we are
in the standard case when p ≡ 0. For example, in the case of middle perversity,
it is off the mark by +d with respect to the subadditivity we need in the proof
of Theorem 5.1, as it only implies that p(β2) ≤ 4 + d, whereas p(β2) = 4.
Nevertheless, it seems worthwhile to give a unified proof valid for every p ≤ 0.

The statement involves the cup product operation on the cohomology groups
with coefficients in the direct image complex. It is thus natural to state and
prove the compatibility result for the p-standard filtration for arbitrary complexes
on varieties. The compatibility for the p-Leray filtration is then an immediate
consequence. We employ freely the language of derived categories. We work
in the context of constructible complexes on algebraic varieties and, just to fix
ideas, with integer coefficients. Let us set up the notation necessary to state
Theorem 6.1.

Let p : Z→ Z be any function; we call it a perversity. Given a partition
X =

∐
Si of a variety X into locally closed nonsingular subvarieties S (strata),

we set p(S) := p(dim S). By considering all possible partitions of X , this
data gives rise to a t-structure on DX (see [Beı̆linson et al. 1982], p. 56). The
standard t-structure corresponds to p(S)≡ 0 and the middle perversity t-structure
corresponds to the perversity p defined by setting p(S) := − dim S.

For a given perversity p, the subcategories pD≤i
X for the corresponding t-

structure are defined as follows:
pD≤0

X =
{

K ∈ DX |H
i (K )|S = 0 for all i > p(S)

}
,

pD≤i
X :=

p D≤0
[−i].

If p = 0, then pD≤0
X = D≤0

X is given by the complexes with zero cohomology
sheaves in positive degrees. If p = p is the middle perversity, then one shows
easily that pD≤0

X is given by those complexes K such that dim supp Hi (K )≤−i .
By using the truncation functors pτ≤i , we can define (see Section 1.1) the p-
standard pS and the p-Leray pL filtrations.

Let K , L ∈ DX . The tensor product complex (K ⊗ L , d) is defined to be

(K ⊗ L)i :=
⊕

a+b=i

K a
⊗ Lb, d( fa ⊗ gb)= d f ⊗ g+ (−1)a f ⊗ dg. (15)

The left derived tensor product is a bifunctor
L
⊗: DX × DX → DX defined by

first taking a flat resolution L ′→ L and then by setting K
L
⊗ L := K ⊗ L ′. If

we use field coefficients, then the left-derived tensor product coincides with the

ordinary tensor product:
L
⊗=⊗.

Let

Ha(X, K )⊗ H b(X, L)→ Ha+b(X, K
L
⊗ L) (16)
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be the cup product ([Kashiwara and Schapira 1990], p. 134).

The following establishes that the filtration in cohomology associated with a
nonpositive perversity is compatible with the cup product operation (16).

Theorem 6.1. Let p ≤ 0 be a nonpositive perversity. The p-standard filtration
and, for a map f : X → Y , the p-Leray filtration are compatible with the cup
product:

pSi Ha(X, K )⊗ pS j H b(X, L)→ pSi+ j Ha+b(X, K
L
⊗ L

)
,

pLi Ha(X, L)⊗ pL j H b(X, L)→ pLi+ j Ha+b(X, K
L
⊗ L

)
.

Theorem 6.1 is proved in Section 6.2. Section 6.3 shows how the cup product
and its variants for cohomology with compact supports are related to each other;
these variants are listed in (26). Moreover, if we specialize (26) to the case of
constant coefficients, and also to the case of the dualizing complex, then we get
the usual cup products in cohomology (see the left-hand side of (27)) and the
usual cap products involving homology and Borel–Moore homology (see the
right-hand side of (27)).

Remark 6.2. The obvious variants of the statement of Theorem 6.1 hold also
for each of the variants of the cup product mentioned above. The same is true
for Theorem 6.7, which is merely a souped-up version of Theorem 6.1. The
reader will have no difficulty repeating, for each of these variants, the proof of
Theorems 6.1 and 6.7 given in Section 6.2.

Example 6.3. We consider only the two cases p ≡ 0 and p = p; in the former
case we drop the index p = 0. Let X be a nonsingular variety of dimension d.

(1) Let K = L = ZX . Then 1 ∈ S0 H 0 and 1∪ 1= 1 ∈ S0 H 0.

(2) Let K = L = ZX [d]. Then K
L
⊗ L = ZX [2d]. While

1= 1∪ 1 ∈ pS−d H−2d(X,ZX [2d]),

Theorem 6.1 only predicts

1∪ 1 ∈ pS0 H−2d(X,ZX [2d]).

(3) Let K = L = Zp, where p ∈ X . We have 1p = 1p ∪ 1p ∈
pS0 H 0(X,Zp)

and this agrees with the prediction of Theorem 6.1.

(4) Let f : X = Y × F→ Y be the projection, and let K = L =QX . We have
that

Li Ha(X,Q)=
⊕
i ′≤i

(
Ha−i ′(Y,Q)⊗Q H i ′(F,Q)

)
.
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In this case, Theorem 6.1 is a simple consequence of the compatibility of
the Künneth formula with the cup product.

(5) Now let us consider pL for the same projection map f : Y × F → Y as
above. We have R f∗Q '

⊕
i≥0 Ri

[−i], where Ri is the constant local
system Ri f∗Q. Let us assume that Y is nonsingular of pure dimension d.
Then pLi =Li−d , where we use the fact that each Ri

[d] is a perverse sheaf
due to the nonsingularity of Y (which stems from the one of X ). We have
that 1 ∈ pLd H 0(X,Q). On the other hand, Theorem 6.1 predicts only that
1= 1∪ 1 ∈ pL2d H 0(X,Q).

These examples, which as the reader can verify are not an illusion due to index-
ing schemes, show that Theorem 6.1 is indeed sharp. However, its conclusions
for pS and pL are often off the mark. See also Remark 6.8.

Remark 6.4. I do not know an example of a map f : X → Y , with X and Y
nonsingular, f proper and flat of relative dimension d , for which the cup product
on H∗(X,Q) does not satisfy

pLi ⊗
pL j →

pLi+ j−d (17)

(Theorem 6.1 predicts that the cup product above lands in the bigger pLi+ j .) In
the paper [de Cataldo et al. 2011] we need to establish (17) for the Hitchin map.
If (17) were true a priori, the proof of the main result of our paper [de Cataldo et
al. 2011] could be somewhat shortened.

Note also that if the shifted perverse Leray filtration P := pL(−d) (see (10))
for the Hitchin map h coincided a priori with the ordinary Leray filtration L

of the map h, then (17) would follow immediately from the case p = 0 of
Theorem 6.1. At present, we do not know if P = L for the Hitchin map. In
general, i.e., for a map f as above, we have L ⊆ P , but the inclusion can be
strict: e.g., the projection to P1 of the blowing-up of P2 at a point, where the
class of the exceptional divisor is in P1, but it is not in L1.

6.1. A simple lemma relating tensor product and truncation. The key simple
fact behind Theorem 6.1 in the standard case when p≡ 0 is that if two complexes
K , L lie in D≤0

X , i.e., if they have nonzero cohomology sheaves in nonnegative
degrees only, then the same is true for their derived tensor product.

Lemma 6.5 shows that the Künneth spectral sequence implies that the analo-
gous fact is true for any nonpositive perversity p.

Let us recall the Künneth spectral sequence for the derived tensor product of
complexes of sheaves. Define the Tor-sheaves, a collection of bifunctor with
variables sheaves A and B, by setting

Tori (A, B) :=H−i (A
L
⊗ B).



106 MARK ANDREA A. DE CATALDO

We have Tor0(A, B)= A⊗B and Tori (A, B)=0 for every i<0. Let K , L ∈DX .
We have the Künneth spectral sequence (see [Grothendieck 1963, III.2., 6.5.4.2]
or [Verdier 1996, p. 7])

E st
2 =

⊕
a+b=t

Tor−s(H
a(K ),Hb(L))H⇒Hs+t(K

L
⊗ L). (18)

This sequence lives in the II-III quadrants, i.e., where s ≤ 0. The edge sequence
gives a natural map

⊕
a+b=t

Ha(K )⊗Hb(L)→Ht(K
L
⊗ L). (19)

Lemma 6.5 (Tensor product and truncation). Let p ≤ 0 be any nonpositive
perversity. Then

L
⊗ :

pD≤i
X ×

pD≤ j
X →

pD≤i+ j
X .

Proof. We simplify the notation by dropping the decorations X and p. Since

D≤i L
⊗ D≤ j

= D≤0
[−i]

L
⊗ D≤0

[− j] = D≤0 L
⊗ D≤0

[−i − j],

it is enough to show that
L
⊗ : D≤0

× D≤0
→ D≤0. We need to verify that the

equality

Hq(K
L
⊗ L)|S = 0 for all q > p(S) (20)

holds as soon as the same equality is assumed to hold for K and L .

It is enough to prove the analogous equality for the Tor-sheaves on the left-hand
side of (18).

Note that p ≤ 0 implies that if L ∈ D≤0, then Hb(L)= 0 for every b > 0.
Let σ ≥ 0 and consider⊕

a+b=q+σ

Torσ
(
Ha(K )|S,Hb(L)|S

)
for all q > p(S).

If a > p(S), then Ha(K )|S = 0.
If a ≤ p(S), then b = q − a+ σ > σ ≥ 0, so that Hb(L)= 0. �

6.2. Spectral sequences and multiplicativity. In this section we prove Theorem
6.1 and we also observe that it is the reflection at the level of the abutted filtrations
of the more general statement Theorem 6.7 involving spectral sequences.
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The most efficient formulation is perhaps the one involving the filtered derived
category DX F . We shall quote freely from [Illusie 1971], pp. 285–288. To fix
ideas, we deal with the cup product in cohomology. The formulations for the
other products in Section 6.3 are analogous.

Let (K , F1) and (L , F2) be two filtered complexes. The filtered derived tensor
product

(K
L
⊗ L , F12)

is defined as follows. Let (L ′, F ′2)→ (L , F2) be a left flat filtered resolution.
Define

K
L
⊗ L := K ⊗ L ′

and define F12 to be the product filtration of F1 and F ′2. We have natural
isomorphisms ⊕

s+s′=σ

(
Grs

F1
K

L
⊗ Grs′

F2
L
) '
→ GrFσ12

(
K

L
⊗ L

)
. (21)

We have the filtered version of [Kashiwara and Schapira 1990, p. 134], i.e., a
map in Dpt F

(R0(X, K ), F1)
L
⊗ (R0(X, L), F2)→

(
R0(X, K

L
⊗ L), F12

)
(22)

inducing (see Ex. I.24a of the same reference) the filtered cup product map(
Ha(X, K ), F1

)
⊗
(
H b(X, L), F2

)
→
(
Ha+b(X, K

L
⊗ L

)
, F12

)
. (23)

In view of Theorem 6.7, by first recalling the notion of bilinear pairing of
spectral sequences [Spanier 1966, p. 491], we have a bilinear pairing of spectral
sequences

E st
1 (K , F1)⊗ E s′t ′

1 (L , F2)→ E s+s′,t+t ′
1

(
K

L
⊗ L , F12

)
(24)

that on the E1-term coincides with the cup product map (16) induced by (21),
and on the E∞-term is the graded cup product associated with the filtered cup
product (23).

Given (M, F) ∈ DX F , we have the spectral sequence

E st
1 =E st

1 (M,F)=H s+t(X,Grs
F M)H⇒H s+t(X,M), E st

∞
=Grs

F H s+t(X,M),

with abutment the filtration induced by (M, F) on the cohomology groups
H∗(X,M). Clearly, we can always compose with the map of spectral sequences

induced by any filtered map (K
L
⊗ L , F12)→ (M, F).

We apply the machinery above to the case when the filtrations Fi are the
p-standard decreasing filtrations pS induced by the t-structure associated with a



108 MARK ANDREA A. DE CATALDO

nonpositive perversity p ≤ 0. The construction of pS is performed via the use
of injective resolutions [de Cataldo and Migliorini 2010, §3.1]. The product
filtration F12 on the derived tensor product is not the p-standard filtration, not
even up to isomorphism in the filtered derived category DX F ; see Remark 6.8.

The upshot of this discussion is that Lemma 6.5 implies this:

Lemma 6.6. There is a canonical lift

u :
(
K

L
⊗ L , F12

)
→
(
K

L
⊗ L , pS

)
of the identity on K

L
⊗ L to DX F.

Proof. Let N denote the derived tensor product of K with L . It is enough to show
that Fσ12 N ∈ pD≤−σX , for every σ ∈ Z. We prove this by decreasing induction
on σ . The statement is clearly true for σ � 0. We have the short exact sequence

0→ Fσ+1
12 N → Fσ12 N → GrσF12

N → 0.

Lemma 6.5 implies that GrσF12
N ∈ pD≤−σX and the inductive hypothesis gives

Fσ+1
12 N ∈ pD≤−σ−1

X ⊆
pD≤−σX . We have the following simple fact: if

A→ B→ C→ A[1]

is a distinguished triangle and A,C ∈ pD≤i
X , then B ∈ pD≤i

X . We conclude the
proof by applying this fact to the distinguished triangle associated with the short
exact sequence above. �

Proof of Theorem 6.1. Apply the construction (23) to the case Fi =
pS. Compose

the resulting filtered cup product map with the canonical lift u of Lemma 6.6
and obtain the filtered cup product map of Theorem 6.1. �

As mentioned earlier, Theorem 6.1 is the abutted reflection of the following
statement concerning spectral sequences:

Theorem 6.7. There is a natural bilinear pairing of spectral sequences

E st
1 (K ,

pS)⊗ E s′t ′
1 (L , pS)→ E s+s′,t+t ′

1

(
K

L
⊗ L , pS

)
such that:

(1) on the E1-term it coincides with the cup product map induced by (21), which
in this case reads

pH−s(K )[s]
L
⊗

pH−s′(K )[s ′] → pH−s−s′(K L
⊗ L

)
[s+ s ′], (25)

(2) on the E∞-term it is the graded cup product associated with the filtered cup
product (23).
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Proof. Compose (24) with the map of spectral sequences induced by the canonical
map u of Lemma 6.6. �

Remark 6.8. Unless we are in the case p ≡ 0, the product filtration F12 of the
p-standard filtrations is often strictly smaller than the p-standard filtration. As
a result, the graded pairing is often trivial. One can see this on the E1-page
in terms of the map (25). Here is an example. Let X be nonsingular of pure
dimension d, take middle perversity and perverse complexes K = L =QX [d].
The pairing in question is

QX [d]⊗QX [d] → pH0(QX )[2d] = 0.

6.3. Cup and cap. The methods employed in the previous sections are of course
susceptible of being applied to the other usual constructions, such as the cup
product in cohomology with compact supports and cap products in homology
and in Borel–Moore homology.

By taking various flavors of (22) with compact supports, we obtain the com-
mutative diagram of cup product maps

H i
c (X, K )⊗ H j

c (X, L) //

��

""

H i+ j
c (X, K

L
⊗ L)

=

��

H i (X, K )⊗ H j
c (X, L) //

�� ))

H i+ j
c (X, K

L
⊗ L)

��

H i (X, K )⊗ H j (X, L) //
H i+ j (X, K

L
⊗ L).

(26)

Theorem 6.7 applies to each row, each vertical arrow is a filtered map for the
product filtrations and, as a result, the conclusion of Theorem 6.7 apply to the
diagonal products as well.

We have the following important special cases. Take K and L to be either ZX

and/or ωX (the Verdier dualizing complex of X ). We have

ZX
L
⊗ ωX = ωX

as well as the following equalities (decorations omitted):

H i (X,Z)= H i (X,ZX )= H i ZX = H i ,

H i
c = H i

c ZX , Hi = H−i
c ωX , H B M

i = H−iωX .
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Then we have the following commutative diagrams expressing the well-known
compatibilities of the cup and cap products:

H i
c ⊗ H j

c
//

��

��

H i+ j
c

=

��

H i
c ⊗ H j //

��

��

H j−i

=

��
H i
⊗ H j

c
//

�� $$

H i+ j
c

��

H i
⊗ H j //

�� %%

H j−i

��

H i
⊗ H j // H i+ j H i

⊗ H B M
j

// H B M
j−i .

(27)

One also has the variants in relative cohomology and in relative cohomology
with compact supports, the variants with supports on locally closed subvarieties,
as well as the variants involving a map f : X → Y (e.g., H∗(X) as a H∗(Y )-
module etc). The reader can sort these variants out.
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