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Motivic characteristic classes
SHOJI YOKURA

ABSTRACT. Motivic characteristic classes of possibly singular algebraic vari-
eties are homology class versions of motivic characteristics, not classes in the
so-called motivic (co)homology. This paper is a survey of them, with emphasis
on capturing infinitude finitely and on the motivic nature, inother words, the
scissor relation or additivity.

1. Introduction

Characteristic classes are usually cohomological objectsdefined on real or
complex vector bundles. For a smooth manifold, for instance, its characteristic
classes are defined through the tangent bundle. For real vector bundles, Stiefel–
Whitney classes and Pontraygin classes are fundamental; for complex vector
bundles, the Chern class is the fundamental one.

When it comes to a non-manifold space, such as a singular realor complex al-
gebraic or analytic variety, one cannot talk about its cohomological characteristic
class, unlike the smooth case, because one cannot define its tangent bundle —
although one can define some reasonable substitutes, such asthe tangent cone
and tangent star cone, which are not vector bundles, but stratified vector bundles.

In the 1960s people started to define characteristic classeson algebraic va-
rieties as homological objects — not through vector bundles, but as higher ana-
logues of geometrically important invariants such as the Euler–Poincaŕe char-
acteristic, the signature, and so on. I suppose that the theory of characteristic
classes of singular spaces starts with Thom’sL-class for oriented PL-manifolds
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[Thom], whereas Sullivan’s Stiefel–Whitney classes and the so-called Deligne–
Grothendieck conjecture about the existence of Chern homology classes started
the whole story ofcapturing characteristic classes of singular spaces as natu-
ral transformations, more precisely as a natural transformation from a certain
covariant functor to the homology functor.

The Deligne–Grothendieck conjecture seems to be based on Grothendieck’s
ideas or Deligne’s modification of Grothendieck’s conjecture on aRiemann–
Roch type formulaconcerning the constructibléetale sheaves and Chow rings
(see [Grot, Part II, note(871), p. 361 ff.]) and was made in its well-known current
form by P. Deligne later. R. MacPherson [M1] gave a positive answer to the
Deligne–Grothendieck conjecture and, motivated by this solution, P. Baum, W.
Fulton and R. MacPherson [BFM1] further established the singular Riemann–
Roch Theorem, which is a singular version of Grothendieck–Riemann–Roch,
which is a functorial extension of the celebrated Hirzebruch–Riemann–Roch
(abbreviated HRR) [Hi]. HRR is the very origin of the Atiyah–Singer Index
Theorem.

The main results of [BSY1] (announced in [BSY2]) are the following:

� “Motivic” characteristic classes of algebraic varieties, which is a class ver-
sion of the motivic characteristic. (Note that this “motivic class” isnota class
in the so-called motivic cohomology in algebraic/arithmetic geometry.)

� Motivic characteristic classes in a sense give rise toa unification of three
well-known important characteristic homology classes:

(1) MacPherson’s Chern class transformation [M1] (see also[M2; Schw;
BrS]);

(2) Baum, Fulton and MacPherson’s Riemann–Roch transformation [BFM1];

(3) Goresky and MacPherson’sL-homology class (see [GM]), or Cappell
and Shaneson’sL-homology class [CS1] (cf. [CS2]).

This unification result can be understood to be good enough toconsider our mo-
tivic characteristic classes as a positive solution to the following MacPherson’s
question or comment, written at the end of his survey paper of1973 [M2]:

“It remains to be seen whether there is a unified theory of characteristic
classes of singular varieties like the classical one outlined above.”

The current theory unifies “only three” characteristic classes, but so far it
seems to be a reasonble one.

The purpose of this paper is mainly to explain the results from [BSY1] men-
tioned above (also see [SY]) with emphasis on the “motivic nature” of motivic
characteristic classes. In particular, we show that our motivic characteristic class
is a very natural class version of the so-called motivic characteristic, just like
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the way A. Grothendieck extended HRR to Grothendieck –Riemann–Roch. For
that, we go back all the way to the natural numbers, which would be thought of
as the very origin of acharacteristicor characteristic class.

We näıvely start with the counting of finite sets. Then we want to count infi-
nite sets as if we are still doing the same way of counting finite sets, and want to
understand motivic characteristic classes as higher-class versions of this unusual
“counting infinite sets”, where infinite sets are complex algebraic varieties. (The
usual counting of infinite sets, forgetting the structure ofa variety at all, lead us
into the mathematics of infinity.) The key is Deligne’s mixedHodge structures
[De1; De2], or more generally Saito’s deep theory of mixed Hodge modules
[Sa2], etc.

As to mixed Hodge modules (MHM), in [Sch3] Jörg Scḧurmann gives a very
nice introduction and overview about recent developments on the interaction of
theories of characteristic classes and mixed Hodge theory for singular spaces
in the complex algebraic context with MHM as a crucial and fundamental key.
For example, a study of characteristic classes of the intersection homological
Hodge modules has been done in a series of papers by Sylvain Cappell, Anatoly
Libgober, Laurentiu Maxim, J̈org Scḧurmann and Julius Shaneson [CLMS1;
CLMS2; CMS1; CMS2; CMSS; MS1; MS2] (in connection with this last one,
see also [Y8]).

The very recent book by C. Peters and J. Steenbrink [PS] seemsto be a most
up-to-date survey on mixed Hodge structures and Saito’s mixed Hodge modules.
The Tata Lecture Notes by C. Peters [P] (which is a condensed version of [PS])
give a nice introduction to Hodge Theory with more emphasis on the motivic
nature.1

2. Preliminaries: from natural numbers to genera

We first consider counting the number of elements of finite sets, i.e., natural
numbers. LetFSET be the category of finite sets and maps among them. For
an objectX 2 FSET , let

c.X / 2 Z

be the number of the elements ofX , which is usually denoted byjX j (2 N) and
called the cardinal number, or cardinality ofX . It satisfies the following four
properties on the categoryFSET of finite sets:

(1) X Š X 0 (bijection or equipotent)÷ c.X / D c.X 0/.
(2) c.X / D c.X n Y / C c.Y / for Y � X .
(3) c.X � Y / D c.X / � c.Y /.

1J. Scḧurmann informed me of the book [PS] and the lecture [P] at the workshop.
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(4) c.pt/ D 1. (Herept denotes one point.)

REMARK 2-1. Clearly these four properties characterize the counting c.X /.
Also note that ifc.X / 2 Z satisfies (1)–(3) without (4), then we havec.pt/ D 0

or c.pt/ D 1. If c.pt/ D 0, then it follows from (2) (or (1) and (3)) thatc.X / D 0

for any finite setX . If c.pt/ D 1, it follows from (2) thatc.X / is the number
of elements of a finite setX .

REMARK 2-2. When it comes to infinite sets, cardinality still satisfies properties
(1)–(4), but the usual rules of computation no longer work. For natural numbers,
a2 D a impliesa D 0 or a D 1. But the infinite cardinal@ D c.R/ also has the
property that@2 D @; in fact, for any natural numbern,

c.Rn/ D c.R/ , i.e., @n D @:

This leads into themathematics of infinity.
One could still imagine counting on the bigger categorySET of sets, where a

set can be infinite, andc.X / lies in some integral domain. However, one can see
that if for such a counting (1), (2) and (3) are satisfied, it follows automatically
thatc.pt/ D 0, contradicting property (4).

In other words: if we consider counting with properties (1)–(3) on the cate-
gory SET of all sets, the only possibility is the trivial one:c.X / D 0 for any
setX !

However, if we consider sets having superstructures on the infrastructure
(set) and property.1/ is replaced by the invariance of the superstructures, we
do obtain more reasonable countings which are finite numbers; thus we can
avoid the mysterious “mathematics of infinity” and extend the usual counting
c.X / of finite sets very naturally and naı̈vely. This is exactly what the Euler
characteristic, the genus, and many other important and fundamental objects in
modern geometry and topology are all about.

Let us consider the following “topological counting”ctop on the categoryT OP

of topological spaces, which assigns to each topological spaceX a certain inte-
ger (or more generally, an element in an integral domain)

ctop.X / 2 Z

such that it satisfies the following four properties, which are exactly the same
as above except for (1):

(1) X Š X 0 (homeomorphism =T OP- isomorphism)÷ ctop.X / D ctop.X
0/,

(2) ctop.X / D ctop.X n Y / C ctop.Y / for Y � X (for the moment no condition),
(3) ctop.X � Y / D ctop.X / � ctop.Y /,
(4) ctop.pt/ D 1.
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REMARK 2-3. As in Remark 2-1, conditions (1) and (3) imply thatctop.pt/ D

0 or 1. If c.pt/ D 0, it follows from (1) and (3) thatctop.X / D 0 for any
topological spaceX . Thus the last condition,c.pt/ D 1, means thatctop is
a nontrivial counting. Hence, topological countingctop can be regarded asa
nontrivial, multiplicative, additive, topological invariant.

PROPOSITION2-4. If such actop exists, then

ctop.R
1/ D �1; hence ctop.R

n/ D .�1/n:

Hence ifX is a finiteC W -complex with�n.X / openn-cells, then

ctop.X / D
P

n.�1/n�n.X / D �.X /;

the Euler–Poincaŕe characteristic ofX .

The equalityctop.R
1/ D �1 can be seen by considering

R1 D .�1; 0/ t f0g t .0; 1/:

Condition (2) impliesctop.R
1/ D ctop..�1; 0// C ctop.f0g/ C ctop..0; 1//, so

�ctop.f0g/ D ctop..�1; 0// C ctop..0; 1// � ctop.R
1/:

SinceR1 Š .�1; 0/ Š .0; 1/, it follows from (1) and (4) that

ctop.R
1/ D �ctop.f0g/ D �1:

The existence of a countingctop can be shown using ordinary homology/coho-
mology theory: symbolically,

topological countingctop W ordinary .co/homology theory.

To be more precise, we use Borel–Moore homology theory [BM],the ho-
mology theory with closed supports. For a locally compact Hausdorff space
X , Borel–Moore homology theoryH BM

� .X I R/ with a ring coefficientR is
isomorphic to the relative homology theory of the pair.X c; �/, with X c the
one-point compactification ofX and� the one point added toX :

H BM
� .X I R/ Š H�.X c; �I R/:

Hence, ifX is compact, Borel–Moore homology theory is the usual homology
theory:H BM

� .X I R/ D H�.X I R/.
Let K be a field, such asR or C. If the Borel–Moore homologyH BM

� .X I K/

is finite-dimensional — say, ifX is a finite C W -complex — then the Euler–
Poincaŕe characteristic�BM using the Borel–Moore homology theory with co-
efficient fieldK, namely

�BM .X / WD
X

n

.�1/n dimK H BM
n .X I K/;
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gives rise to a topological counting�top, because it satisfiesH BM
n .Rn; K/ D K

andH BM
k

.Rn; K/ D 0 for k 6D n, and thus

�BM .Rn/ D .�1/n:

It turns out that for coefficients in a fieldK, Borel–Moore homology isdual
2 as a vector spaceto the cohomology with compact support, namely

H BM
p .X I K/ D Hom.H p

c .X I K/; K/:

SinceK is a field, we have

H BM
p .X I K/ Š H p

c .X I K/

Hence the Euler-Poincaré characteristic using Borel–Moore homology�BM .X /

is equal to the Euler-Poincaré characteristic using cohomology with compact
support, usually denoted by�c:

�c.X / D
X

i

.�1/i dimK H i
c .X I K/:

Since it is quite common to use�c , we have

COROLLARY 2-5. For the category of locally compact Hausdorff spaces,

ctop D �c ;

the Euler–Poincaŕe characteristic using cohomology with compact support.

REMARK 2-6. This story could be retold as follows: There might be many ways
of “topologically counting” on the categoryT OP of topological spaces, but
they areall identical to the Euler–Poincaré characteristic with compact support
when restricted to the subcategory of locally compact Hausdorff spaces with
finite dimensional Borel–Moore homologies. Symbolically speaking,

ctop D �c :

Next consider the following “algebraic counting”calg on the categoryVAR

of complexalgebraic varieties (of finite type overC), which assigns to each
complex algebraic varietyX a certain element

calg.X / 2 R

in a commutative ringR with unity, such that:

(1) X Š X 0 (VAR-isomorphism)÷ calg.X / D calg.X
0/.

(2) calg.X / D calg.X n Y / C calg.Y / for a closed subvarietyY � X .

2For ann-dimensional manifoldM the Poincaŕe duality mapPD W H k
c .M / Š Hn�k.M / is an

isomorphism and alsoPD W H k.M / Š H BM

n�k
.M / is an isomorphism. Thus they arePoincaŕe dual, but

not dual as vector spaces.
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(3) calg.X � Y / D calg.X / � calg.Y /.
(4) calg.pt/ D 1.

Just likec.X / andctop.X /, the last condition simply means thatcalg is a non-
trivial counting.

The real numbersR and in general the Euclidean spaceRn are the most fun-
damental objects in the categoryT OP of topological spaces, and the complex
numbersC and in general complex affine spacesCn are the most fundamental
objects in the categoryVAR of complex algebraic varieties. The decomposition
of n-dimensional complex projective space as

Pn D C0 t C1 t � � � t Cn�1 t Cn

implies the following:

PROPOSITION2-7. If calg exists, then

calg.P
n/ D 1 � y C y2 � y3 C � � � C .�y/n;

wherey WD �calg.C
1/ 2 R.

REMARK 2-8. Proposition 2-7 already indicates that there could exist infinitely
many ways — as many as the elementsy — to do algebraic countingcalg on the
categoryVAR of complex algebraic varieties. This is strikingly different from
the topological countingctop and the original countingc, which are uniquely
determined. This difference of course lies in the complex structure:

setC topological structureC complex structure.

Here there is no question of consideringR1, so the previous argument show-
ing thatctop.R

1/ D �1 does not work. In this sense, we should have used the
symbol calg=C to emphasize the complex structure, instead ofcalg. Since we
are dealing with only the category of complex algebraic varieties in this paper,
we write justcalg. See Remark 2-11 below for the category of real algebraic
varieties.

The existence of acalg — in fact, of many such ways of algebraically counting —
can be shown usingDeligne’s theory of mixed Hodge structures[De1; De2],
which comes from the algebraic structure:

setC topological structureC complex structureC algebraic structure:

Then the Hodge–Deligne polynomial

�u;v.X / WD
X

i;p;q�0

.�1/i.�1/pCq dimC.Grp
F

GrWpCq H i
c .X; C//upvq
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satisfies the four properties above withR D ZŒu; v� and�y WD calg.C
1/ D uv,

namely any Hodge–Deligne polynomial�u;v with uv D �y is acalg. Here we
point out that by Deligne’s work only graded terms withp; q � 0 are nontrivial;
otherwise one would have�u;v.X / 2 ZŒu; u�1; v; v�1�.

Similarly one can consider the invariant

calg.X / WD �y;�1 2 ZŒy�;

with calg.C
1/ D �y.

Here we should note that for.u; v/ D .�1; �1/ we have

��1;�1.X / D �c.X / D ctop.X /:

Further, for a smooth compact varietyX , �0;�1.X / is the arithmetic genus,
while �1;�1.X / is the signature. These three cases,.u; v/ D .�1; �1/, .0; �1/

and.1; �1/, are very important.

algebraic countingcalg: mixed Hodge theory

D ordinary (co)homology theoryC mixed Hodge structures:

REMARK 2-9. (See [DK], for example.) The following description is also fine,
but we use the one above in our later discussion on motivic characteristic classes:

calg.P
n/ D 1 C y C y2 C y3 C � � � C yn;

wherey D calg.C
1/ 2 ZŒy�. The Hodge–Deligne polynomial is usually denoted

by E.X I u; v/ and is defined to be

E.X I u; v/ WD
X

i;p;q�0

.�1/i dimC.Grp
F

GrWpCq H i
c .X; C//upvq:

Thus

�u;v.X / D E.X I �u; �v/:

The reason why we define�u;v.X / to beE.X I �u; �v/ rather thanE.X I u; v/

lies in the definition of Hirzebruch’s generalized Todd class and Hirzebruch’s
�y characteristic, which will come below.

The algebraic countingcalg specializes to the topological countingctop. Are there
other algebraic countings that specialize to the Hodge–Deligne polynomial�u;v

(which is sensitive to an algebraic structure)?

CONJECTURE2-10. The answer is negative; in other words, there are no extra
structures other than Deligne’s mixed Hodge structure thatcontribute more to
the algebraic countingcalg of complex algebraic varieties.
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REMARK 2-11. In the categoryVAR.R/ of real algebraic varieties, we can of
course considercalg=R.R1/ of the real lineR1; therefore we might be tempted
to the hasty conclusion that in the category of real algebraic varieties the topo-
logical countingctop, i.e., �c , is sufficient. Unfortunately, the argument for
ctop.R

1/ D �1 does not work in the categoryVAR.R/, becauseR1 and.�1; 0/

or .0; 1/ are not isomorphic as real algebraic varieties. Even among compact
varieties there do exist real algebraic varieties that are homeomorphic but not
isomorphic as real algebraic varieties. For instance (see [MP1, Example 2.7]):

Consider the usualnormal crossingfigure eight curve:

F8 D f.x; y/ j y2 D x2 � x4g:

The proper transform of F8 under the blowup of the plane at the origin is home-
omorphic to a circle, and the preimage of the singular point of F8 is two points.

Next take thetangentialfigure eight curve:

tF8 D
˚

.x; y/ j
�

.x C 1/2 C y2 � 1
��

.x � 1/2 C y2 � 1
�

D 0
	

;

which is the union of two circles tangent at the origin. Here the preimage of
the singular point is a single point. Therefore, in contrastto the category of
crude topological spaces, in the category ofreal algebraicvarieties an “algebraic
counting”calg=R.R1/ is meaningful, i.e., sensitive to the algebraic structure.In-
deed, as such a real algebraic countingcalg=R.R1/ there are

thei-th virtual Betti number ˇi.X / 2 Z

and

the virtual Poincaŕe polynomial ˇt .X / D
P

i ˇi.X /t i 2 ZŒt �:

They are both identical to the usual Betti number and Poincaré polynomial on
compact nonsingular varieties. For the above two figure eight curves F8 andtF8

we indeed have that
ˇt .F8/ 6D ˇt .tF8/:

For more details, see [MP1] and [To3], and see also Remark 4-12.

Finally, in passing, we also mention the following “cobordism” countingccob on
the category of closed oriented differential manifolds or the category of stably
almost complex manifolds:

(1) X Š X 0 (cobordant, or bordant)÷ ccob.X / D ccob.X
0/.

(2) ccob.X tY / D ccob.X /C ccob.Y /. (Note: in this caseccob.X nY / does not
make sense, becauseX n Y has to be a closed oriented manifold.)

(3) ccob.X � Y / D ccob.X / � ccob.Y /.
(4) ccob.pt/ D 1.
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As in the cases of the previous countings, (1) and (3) implyccob.pt/ D 0 or
ccob.pt/ D 1. It follows from (3) thatccob.pt/ D 0 implies thatccob.X / D 0 for
any closed oriented differential manifoldsX . Thus the last conditionccob.pt/ D

1 means that ourccob is nontrivial. Such a cobordism countingccob is nothing
but a genussuch as the signature, theOA-genus, or the elliptic genus. As in
Hirzebruch’s book, a genus is usually defined as a nontrivialcounting satisfying
properties (1), (2) and (3). Thus, it is the same as the one given above.

Here is a very simple problem on genera of closed oriented differentiable
manifolds or stably almost complex manifolds:

PROBLEM 2-12.Determine all genera.

Let Iso.G/n be the set of isomorphism classes of smooth closed (and oriented)
pure n-dimensional manifoldsM for G D O (or G D SO), or of puren-
dimensional weakly (“D stably”) almost complex manifoldsM for G D U ,
i.e.,TM ˚RN

M
is a complex vector bundle (for suitableN , with RM the trivial

real line bundle overM ). Then

Iso.G/ WD
M

n

Iso.G/n

becomes a commutative graded semiring with addition and multiplication given
by disjoint union and exterior product, with0 and1 given by the classes of the
empty set and one point space.

Let ˝G WD Iso.G/=� be the correspondingcobordism ringof closed (G D

O) and oriented (G D SO) or weakly (“D stably”) almost complex manifolds
(G D U ) as discussed for example in [Stong]. HereM � 0 for a closed pure
n-dimensionalG-manifold M if and only if there is a compact pure.nC1/-
dimensionalG-manifoldB with boundary@B ' M . This is indeed a ring with
�ŒM � D ŒM � for G D O or �ŒM � D Œ�M � for G D SO; U , where�M has the
opposite orientation ofM . Moreover, forB as above with@B ' M one has

TBj@B ' TM ˚ RM :

This also explains the use of the stable tangent bundle for the definition of a
stably or weakly almost complex manifold.

The following structure theorems are fundamental (see [Stong, Theorems on
p. 177 and p. 110]):

THEOREM 2-13. (1) (Thom)˝SO ˝ Q D Q ŒP2; P4; P6; : : : ; P2n; : : : � is a
polynomial algebra in the classes of the complex even dimensional projective
spaces.

(2) (Milnor) ˝U
� ˝ Q D Q ŒP1; P2; P3; : : : ; Pn; : : : � is a polynomial algebra in

the classes of the complex projective spaces.
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So, if we consider a commutative ringR without torsion for a genus
 W ˝SO !

R, the genus
 is completely determined by the value
 .P2n/ of the cobordism
class of each even-dimensional complex projective spaceP2n. Using this value
one could consider the related generating “function” or formal power series
such as

P

n 
 .P2n/xn, or
P

n 
 .P2n/x2n, and etc. In fact, a more interesting
problem is to determine allrigid genera such as the signature� and theA-genus:
namely, a genus satisfying the following multiplicativityproperty stronger than
the product property (3):

(3)rigid : 
 .M / D 
 .F /
 .B/ for a fiber bundleM ! B with fiber F and
compact connected structure group.

THEOREM2-14.Let log
 .x/ be the “logarithmic” formal power series inRŒŒx��

given by

log
 .x/ WD
X

n

1

2n C 1

 .P2n/x2nC1:

The genus
 is rigid if and only if it is an elliptic genus; i.e., its logarithmlog


is an elliptic integral; i.e.,

log
 .x/ D

Z x

0

1
p

1 � 2ıt2 C "t4
dt

for someı; " 2 R.

The “only if” part was proved by S. Ochanine [Oc] and the “if part” was first
“physically” proved by E. Witten [Wit] and later “mathematically” proved by
C. Taubes [Ta] and also by R. Bott and C. Taubes [BT]. See also B. Totaro’s
papers [To2; To4].

cobordism countingccob : Thom’s Theorem

rigid genus = elliptic genus : elliptic integral

The oriented cobordism group̋SO above was extended by M. Atiyah [At] to
a generalized cohomology theory, i.e., the oriented cobordism theoryMSO�.X /

of a topological spaceX . The theoryMSO�.X / is defined by the so-called
Thom spectra: the infinite sequence of Thom complexes given,for a topological
pair .X; Y / with Y � X , by

MSOk.X; Y / WD lim
n!1

Œ˙n�k.X=Y /; MSO.n/�:

Here the homotopy groupŒ˙n�k.X=Y /; MSO.n/� is stable.
As a covariant or homology-like version ofMSO�.X /, M. Atiyah [At] intro-

duced the bordism theoryMSO�.X / geometrically in quite a simple manner:
Let f1 W M1 ! X , f2 W M2 ! X be continuous maps from closed orientedn-
dimensional manifolds to a topological spaceX . f andg are said to be bordant
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if there exists an oriented manifoldW with boundary and a continuous map
g W W ! X such that

(1) gjM1
D f1 andgjM2

D f2, and
(2) @W D M1 [ �M2 , where�M2 is M2 with its reverse orientation.

It turns out thatMSO�.X / is a generalized homology theory and

MSO0.pt/ D MSO0.pt/ D ˝SO :

M. Atiyah [At] also showed Poincaré duality for an oriented closed manifold
M of dimensionn:

MSOk.M / Š MSOn�k.M /:

If we replaceSO.n/ by the other groupsO.n/, U.n/, Spin.n/, we get the
corresponding cobordism and bordism theories.

REMARK 2-15 (ELLIPTIC COHOMOLOGY). Given a ring homomorphism' W

MSO�.pt/ ! R, R is anMSO�.pt/-module and

MSO�.X / ˝MSO�.pt/ R

becomes “almost” a generalized cohomology theory (one not necessarily satis-
fying the Exactness Axiom). P. S. Landweber [L] gave an algebraic criterion
(called the Exact Functor Theorem) for it to become a generalized cohomology
theory. Applying this theorem, P. E. Landweber, D. C. Ravenel and R. E. Stong
[LRS] showed the following theorem:

THEOREM 2-16. For the elliptic genus
 W MSO�.pt/ D MSO�.pt/ D ˝ !

Z
�

1
2

�

Œı; "�, the following functors are generalized cohomology theories:

MSO�.X / ˝MSO�.pt/ Z
�

1
2

�

Œı; "�Œ"�1�;

MSO�.X / ˝MSO�.pt/ Z
�

1
2

�

Œı; "�Œ.ı2 � "/�1�;

MSO�.X / ˝MSO�.pt/ Z
�

1
2

�

Œı; "�Œ��1�;

where� D ".ı2 � "/2.

More generally J. Franke [Fr] showed this:

THEOREM2-17.For the elliptic genus
 WMSO�.pt/DMSO�.pt/D˝SO !

Z
�

1
2

�

Œı; "�, the functor

MSO�.X / ˝MSO�.pt/ Z
�

1
2

�

Œı; "�ŒP .ı; "/�1�

is a generalized cohomology theory. HereP .ı; "/ is a homogeneous polynomial
of positive degree withdegı D 4, deg" D 8.
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The generalized cohomology theory

MSO�.X / ˝MSO�.pt/ Z
�

1
2

�

Œı; "�ŒP .ı; "/�1�

is calledelliptic cohomology theory. It was recently surveyed by J. Lurie [Lu].
It is defined in an algebraic manner, but not in a topologically or geometrically
simpler manner thanK-theory or the bordism theoryMSO�.X /. So, people
have been searching for a reasonable geometric or topological construction for
elliptic cohomology (cf. [KrSt]).

REMARK 2-18 (MUMBO JUMBO). In the above we see that if you just count
points of a variety simply as a set, we get infinity unless it isa finite set or
the trivial counting0, but that if we count it “respecting” the topological and
algebraic structures we get a certain reasonable number which is not infinity.
Getting carried away, “zeta function-theoretic” formulaesuch as

1 C 1 C 1 C � � � C 1 C � � � D �1
2

D �.0/;

1 C 2 C 3 C � � � C n C � � � D� 1
12

D �.�1/;

12 C 22 C 32 C � � � C n2 C � � � D 0 D �.�2/;

13 C 23 C 33 C � � � C n3 C � � � D 1
120

D �.�3/

could be considered as based on a counting of infinite sets that respects some
kind of “zeta structure” on it, whatever that is. In nature, the equality13 C23 C

33 C� � �Cn3 C� � � D 1
120

is relevant to theCasimir effect, named after the Dutch
physicist Hendrik B. G. Casimir. (See [Wil, Lecture 7] for the connection.) So,
nature perhaps already knows what the zeta structure is. It would be fun, even
nonmathematically, to imagine what a zeta structure would be on the natural
numbersN, or the integersZ or the rational numbersQ, or more generally “zeta
structured” spaces or varieties. Note that, like the topological countingctop D �,
zeta-theoretical counting (denoted byczeta here) was discovered by Euler!

REMARK 2-19. Regarding “counting”, one is advised to read Baez [Ba1; Ba2],
Baez and Dolan [BD], and Leinster [Lein].

3. Motivic characteristic classes

Any algebraic countingcalg gives rise to the following naı̈ve ring homomor-
phism to a commutative ringR with unity:

calg W Iso.VAR/ ! R defined bycalg.ŒX �/ WD calg.X /:

Here Iso.VAR/ is the free abelian group generated by the isomorphism classes
ŒX � of complex varieties. The additivity relation

calg.ŒX �/ D calg.ŒX n Y �/ C calg.ŒY �/ for any closed subvarietyY � X
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— or, in other words,

calg.ŒX � � ŒY � � ŒX n Y �/ D 0 for any closed subvarietyY � X ;

induces the following finer ring homomorphism:

calg W K0.VAR/ ! R defined bycalg.ŒX �/ WD calg.X /:

HereK0.VAR/ is the Grothendieck ring of complex algebraic varieties, which
is Iso.VAR/ modulo the additivity relation

ŒX � D ŒX n Y � C ŒY � for any closed subvarietyY � X

(in other words, Iso.VAR/ modded out by the subgroup generated by elements
of the formŒX � � ŒY � � ŒX n Y � for any closed subvarietyY � X ).

The equivalence class ofŒX � in K0.VAR/ should be written as,ŒŒX ��, say, but
we just use the symbolŒX � for simplicity.

More generally, lety be an indeterminate and consider the following homo-
morphismcalg WD �y WD �y;�1, i.e.,

calg W K0.VAR/ ! ZŒy� with calg.C
1/ D �y:

This will be called amotivic characteristic, to emphasize the fact that its domain
is the Grothendieck ring of varieties.

REMARK 3-1. In fact, for the categoryVAR.k/ of algebraic varieties over any
field, the above Grothendieck ringK0.VAR.k// can be defined in the same
way.

What we want to do is an analogue to the way that Grothendieck extended
the celebrated Hirzebruch–Riemann–Roch Theorem (which was the very begin-
ning of the Atiyah–Singer Index Theorem) to the Grothendieck–Riemann–Roch
Theorem. In other words, we want to solve the following problem:

PROBLEM 3-2. Let R be a commutative ring with unity such thatZ � R, and
let y be an indeterminate. Do there exist some covariant functor} and some
natural transformation(here pushforwards are considered for proper maps)

\ W }. / ! H BM
� . / ˝ RŒy�

satisfying conditions(1)–(3) below?

(1) }.pt/ D K0.VAR/.
(2) \.pt/ D calg, i.e.,

\.pt/ D calg W }.pt/ D K0.VAR/ ! RŒy� D H BM
� .pt/ ˝ RŒy�:



MOTIVIC CHARACTERISTIC CLASSES 389

(3) For the mapping�X W X ! pt to a point, for a certain distinguished element
�X 2 }.X / we have

�X �.\.�X // D calg.X / 2 RŒy� and �X �.�X / D ŒX � 2 K0.VAR/:

}.X /
\.X /

����! H BM
� .X / ˝ RŒy�

�X �

?

?

y

?

?

y

�X �

}.pt/ D K0.VAR/ �������!
\.pt/Dcalg

RŒy�:

(If there exist such} and \, then\.�X / could be called themotivic charac-
teristic classcorresponding to the motivic characteristiccalg.X /, just like the
Poincaŕe dual of the total Chern cohomology classc.X / of a complex manifold
X corresponds to the Euler–Poincaré characteristic:�X �.c.X /\ŒX �/ D �.X /.)

A more concrete one for the Hodge–Deligne polynomial (a prototype of this
problem was considered in [Y5]; cf. [Y6]):

PROBLEM 3-3. LetR be a commutative ring with unity such thatZ � R, and let
u; v be two indeterminates. Do there exist a covariant functor} and a natural
transformation(here pushforwards are considered for proper maps)

\ W }. / ! H�BM . / ˝ RŒu; v�

satisfying conditions(1)–(3) below?

(1) }.pt/ D K0.VAR/.
(2) \.pt/ D �u;v, i.e.,

\.pt/ D �u;v W }.pt/ D K0.VAR/ ! RŒu; v� D H BM
� .pt/ ˝ RŒu; v�:

(3) For the mapping�X W X ! pt to a point, for a certain distinguished element
�X 2 }.X / we have

�X �.].�X // D �u;v.X / 2 RŒu; v� and �X �.�X / D ŒX � 2 K0.VAR/:

One reasonable candidate for the covariant functor} is the following:

DEFINITION 3-4. (See [Lo2], for example.)The relative Grothendieck group
of X , denoted by

K0.VAR=X /;

is defined to be the free abelian group Iso.VAR=X / generated by isomorphism
classesŒV h

�! X � of morphismsh W V ! X of complex algebraic varieties over
X , modulo the additivity relation

ŒV
h
�! X � D ŒV n Z

hjV nZ

����! X C ŒZ
hjZ
��! X � for any closed subvarietyZ � V I
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in other words, Iso.VAR=X / modulo the subgroup generated by the elements
of the form

ŒV
h
�! X � � ŒZ

hjZ

��! X � � ŒV n Z
hjV nZ

����! X �

for any closed subvarietyZ � V .

REMARK 3-5. For the categoryVAR.k/ of algebraic varieties over any field,
we can consider the same relative Grothendieck ringK0.VAR.k/=X /.

NOTE 1. K0.VAR=pt/ D K0.VAR/.

NOTE 2. K0.VAR=X /3 is a covariant functor with the obvious pushforward:
for a morphismf W X ! Y , the pushforward

f� W K0.VAR=X / ! K0.VAR=Y /

is defined by

f�.ŒV
h
�! X �/ WD ŒV

f ıh
��! Y �:

NOTE 3. Although we do not need the ring structure onK0.VAR=X / in later
discussion, the fiber product gives a ring structure on it:

ŒV1

h1

�! X � � ŒV2

h2

�! X � WD ŒV1 �X V2

h1�X h2

�����! X �:

NOTE 4. If }.X / D K0.VAR=X /, the distinguished element�X is the iso-
morphism class of the identity map:

�X D ŒX
idX

��! X �:

If we impose one more requirement in Problems 3-2 and 3-3, we can find the
answer. The newcomer is thenormalization condition(or “smooth condition”)
that for nonsingularX we have

\.�X / D c`.TX / \ ŒX �

for a certain normalized multiplicative characteristic classc` of complex vector
bundles. Note thatc` is a polynomial in the Chern classes such that it satisfies
the normalization condition. Here “normalized” means thatc`.E/ D 1 for any
trivial bundle E and “multiplicative” means thatc`.E ˚ F / D c`.E/c`.F /,
which is called theWhitney sum formula. In connection with the Whitney sum
formula, in the analytic or algebraic context, one asks for this multiplicativity
for a short exact sequence of vector bundles (which splits only in the topological
context):

c`.E/ D c`.E0/c`.E00/ for 1 ! E0 ! E ! E00 ! 1:

3According to a recent paper by M. Kontsevich (“Notes on motives in finite characteristic”, math.AG/
0702206), Vladimir Drinfeld calls an element ofK0.VAR=X / “poor man’s motivic function”.
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The normalization condition requirement is natural, in thesense that the other
well-known/studied characteristic homology classes of possibly singular vari-
eties are formulated as natural transformations satisfying such a normalization
condition, as recalled later. Also, as discussed later (seeConjecture 6-1), this
seemingly strong requirement of the normalization condition could be eventually
dropped.

OBSERVATION 3-6. Let�X W X ! pt be the mapping to a point. It follows
from the naturality of\ and the normalization condition that

calg.ŒX �/ D \
�

�X �.ŒX
idX

��! X �/
�

D �X �

�

\.ŒX
idX

��! X �/
�

D �X �

�

c`.TX /\ ŒX �
�

:

for any nonsingular varietyX . Therefore the normalization condition on non-
singular varieties implies that for a nonsingular varietyX the algebraic counting
calg.X / has to be the characteristic number or Chern number [Ful; MiSt]. This
is another requirement oncalg, but an inevitable one if we want to capture it
functorially (̀a la Grothendieck–Riemann–Roch) together with the normalization
condition above for smooth varieties.

The normalization condition turns out to be essential, and in fact it automatically
determines the characteristic classc` as follows, if we consider the bigger ring
Q Œy� instead ofZŒy�:

PROPOSITION3-7. If the normalization condition is imposed in Problems3-2
and3-3, the multiplicative characteristic classc` with coefficients inQ Œy� has
to be the generalized Todd class, or the Hirzebruch classTy , defined as follows:
for a complex vector bundleV ,

Ty.V / WD

rankV
Y

iD1

�

˛i.1 C y/

1 � e�˛i .1Cy/
� ˛iy

�

where thę i are the Chern roots of the vector bundle: c.V / D
rankV
Q

iD1

.1 C ˛i/.

PROOF. The multiplicativity ofc` guarantees that ifX andY are smooth com-
pact varieties, then

�X �Y �.c`.T .X � Y / \ ŒX � Y �/ D �X �.c`.TX / \ ŒX �/ ��Y �.c`.T Y / \ ŒY �/:

In other words, the Chern number is multiplicative, i.e., itis compatible with the
multiplicativity of calg. Now Hirzebruch’s theorem [Hi, Theorem 10.3.1] says
that if the multiplicative Chern number defined by a multiplicative characteristic
classc` with coefficients inQ Œy� satisfies that the corresponding characteristic
number of the complex projective spacePn is equal to1 � y C y2 � y3 C � � � C

.�y/n, then the multiplicative characteristic classc` has to be the generalized
Todd class, i.e., the Hirzebruch classTy above. ˜
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REMARK 3-8. In other words, in a sensecalg.C
1/ uniquely determines the class

version of the motivic characteristiccalg, i.e., the motivic characteristic class.
This is very similar to the fact foreseen thatctop.R

1/ D �1 uniquely determines
the “topological counting”ctop.

The Hirzebruch classTy specializes to the following important characteristic
classes:

y D �1 W T�1.V / D c.V / D
rankV

Q

iD1

.1 C ˛i/ (total Chern class)

y D 0 W T0.X / D td.V / D
rankV

Q

iD1

˛i

1 � e�˛i

(total Todd class)

y D 1 W T1.X / D L.V / D
rankV

Q

iD1

˛i

tanh˛i
(total Thom–Hirzebruch class)

Now we are ready to state our answer to Problem 3-2, which is one of the
main theorems of [BSY1]:

THEOREM 3-9 (MOTIVIC CHARACTERISTIC CLASSES). Let y be an indeter-
minate.

(1) There exists a unique natural transformation

Ty�
W K0.VAR=X / ! H BM

� .X / ˝ Q Œy�

satisfying the normalization condition that for a nonsingular variety X

Ty�
.ŒX

idX

��! X �/ D Ty.TX / \ ŒX �:

(2) For X D pt , the transformationTy�
W K0.VAR/ ! Q Œy� equals the Hodge–

Deligne polynomial

�y;�1 W K0.VAR/ ! ZŒy� � Q Œy�;

namely,

Ty�
.ŒX ! pt �/ D �y;�1.ŒX �/ D

X

i;p�0

.�1/i dimC.Grp
F

H i
c .X; C//.�y/p:

�y;�1.X / is simply denoted by�y.X /.

PROOF. (1) The main part is of course the existence of such aTy�
, the proof of

which is outlined in a later section. Here we point out only the uniqueness of
Ty�

, which follows from resolution of singularities. More precisely it follows
from two results:
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(i) Nagata’s compactification theorem, or, if we do not wish to use such a fancy
result, the projective closure of affine subvarieties. We get the surjective
homomorphism

A W Isoprop.VAR=X / “ K0.VAR=X /;

where Isoprop.VAR=X / is the free abelian group generated by the isomor-
phism class ofpropermorphisms toX .

(ii) Hironaka’s resolution of singularities: it implies, by induction on dimension
that any isomorphism classŒY h

�! X � can be expressed as

X

V

aV ŒV
hV

��! X �;

with V nonsingular andhV W V ! X proper. We get the surjective maps

Isoprop.SM=X / “ Isoprop.VAR=X /I

therefore

B W Isoprop.SM=X / “ K0.VAR=X /;

where Isoprop.SM=X / is the free abelian group generated by the isomor-
phism class ofpropermorphisms fromsmooth varietiesto X .

(iii) The normalization condition (“smooth condition”) ofpage 390.
(iv) The naturality ofTy�

.

The two surjective homomorphismsA andB also play key roles in the proof of
the existence ofTy�

.

(2) As pointed out in (ii),K0.VAR/ is generated by the isomorphism classes
of compact smooth varieties. On a nonsingular compact variety X we have

�y;�1.X / D
X

p;q�0

.�1/q dimC H q.X I ˝
p
X

/yp;

which is denoted by�y.X / and is called the Hirzebruch�y-genus. Next we
have thegeneralized Hirzebruch–Riemann–Roch Theorem(gHRR), which says
[Hi] that

�y.X / D

Z

X

Ty.TX / \ ŒX �:

Since
Z

X

Ty.TX / \ ŒX � D �X �.Ty.TX / \ ŒX �/ D Ty�
.ŒX ! pt �/, we have

Ty�
.ŒX ! pt �/ D �y;�1.ŒX �/

on generators ofK0.VAR/, and hence on all ofK0.VAR/; thusTy�
D �y;�1.

˜
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REMARK 3-10. Problem 3-3 is slightly more general than Problem 3-2 in the
sense that it involves two indeterminatesu; v. However, the important keys
are the normalization condition for smooth compact varieties and the fact that
�u;v.P1/ D 1 C uv C .uv/2 C � � � C .uv/n, which automatically implies that
c` D T�uv, as shown in the proof above. In fact, we can say more aboutu and
v: eitheru D �1 or v D �1, as shown below (see also [Jo] — the arXiv version).
Hence, we can conclude that for Problem 3-3 there isno such transformation
] WK0.VAR=�/ ! H BM

� .�/˝RŒu; v� with both intermediatesu andv varying.
To show the claim aboutu andv, suppose that forX smooth and for a certain

multiplicative characteristic classc` we have

�u;v.X / D �X �.c`.TX / \ ŒX �/:

In particular, consider a smooth elliptic curveE and anyd-fold covering

� W zE ! E

with zE a smooth elliptic curve. Note thatT zE D ��TE and

�u;v.E/ D �u;v. QE/ D 1 C u C v C uv D .1 C u/.1 C v/:

Hence we have

.1 C u/.1 C v/ D �u;v. zE/ D � zE�
.c`.T zE/ \ Œ zE�/ D � zE�

.c`.��TE/ \ Œ zE�/

D �E���.c`.��TE/ \ Œ zE�/ D �E�.c`.TE/ \ ��Œ zE�/

D �E�.c`.TE/ \ d ŒE�/ D d � �E�.c`.TE/ \ ŒE�/

D d � �u;v.E/ D d.1 C u/.1 C v/:

Thus we get.1Cu/.1Cv/ D d.1Cu/.1Cv/. Sinced 6D 0, we must have that
.1 C u/.1 C v/ D 0, showing thatu D �1 or v D �1.

REMARK 3-11. Note that�u;v.X / is symmetric inu andv; thus both special
casesu D �1 andv D �1 give rise to the samec` D Ty . It suffices to check this
for a compact nonsingular varietyX . In fact this follows from the Serre duality.

REMARK 3-12. The heart of the mixed Hodge structure is certainly theexis-
tence of the weight filtrationW � and the Hodge–Deligne polynomial, i.e., the
algebraic countingcalg, involves the mixed Hodge structure, i.e., both the weight
filtration W � and the Hodge filtrationF�. However, when one tries to capture
calg functorially, only the Hodge filtrationF� gets involved; the weight filtration
does not, as seen in the Hodge genus�y .

DEFINITION 3-13. For a possibly singular varietyX , we call

Ty�
.X / WD Ty�

.ŒX
idX

��! X �/

theHirzebruch class ofX .
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COROLLARY 3-14. The degree of the0-dimensional component of the Hirze-
bruch class of a compact complex algebraic varietyX is just the Hodge genus:

�y.X / D

Z

X

Ty�
.X /:

This is another singular analogue of the gHRR theorem (�y D Ty), which is a
generalization of the famous Hirzebruch–Riemann–Roch Theorem (which was
further generalized to the Grothendieck–Riemann–Roch Theorem):

Hirzebruch–Riemann–Roch:pa.X / D

Z

X

td.TX / \ ŒX �;

with pa.X / the arithmetic genus andtd.V / the original Todd class. Noticing
the above specializations of�y andTy.V /, this gHRR is a unification of the
following three well-known theorems:

y D �1 W �.X / D

Z

X

c.X / \ ŒX � (Gauss–Bonnet, or Poincaré–Hopf)

y D 0 W pa.X / D

Z

X

td.X / \ ŒX � (Hirzebruch–Riemann–Roch)

y D 1 W �.X / D

Z

X

L.X / \ ŒX � (Hirzebruch’s Signature Theorem)

4. Proofs of the existence of the motivic characteristic classTy�

Our motivic characteristic class transformation

Ty�
W K0.VAR=X / ! H BM

� .X / ˝ Q Œy�

is obtained as the composite

Ty�
D BtdBFM

�.y/
ı �mot

y

of the natural transformations

�mot
y W K0.VAR=X / ! G0.X / ˝ ZŒy�

and
BtdBFM

�.y/
W G0.X / ˝ ZŒy� ! H BM

� .X / ˝ Q Œy; .1 C y/�1�:

Here, to describeBtdBFM
�.y/

, we need to recall the following Baum–Fulton–
MacPherson’s Riemann–Roch or Todd class for singular varieties [BFM1]:
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THEOREM 4-1. There exists a unique natural transformation

tdBFM
� W G0.�/ ! H BM

� .�/ ˝ Q

such that for a smoothX

tdBFM
� .OX / D td.TX / \ ŒX �:

Here G0.X / is the Grothendieck group of coherent sheaves onX , which is a
covariant functor with the pushforwardf� W G0.X / ! G0.Y / for a proper
morhphismf W X ! Y defined by

f!.F/ D
X

j

.�1/j ŒRjf�F �:

Now set
tdBFM

� .X / WD tdBFM
� .OX /I

this is called the Baum–Fulton–MacPherson Todd class ofX . Then

pa.X / D �.X;OX / D

Z

X

tdBFM
� .X / (HRR-type theorem):

Let

tdBFM
�i W G0.X /

tdBFM
�

�����! H BM
� .X / ˝ Q

projection
������! H BM

2i .X / ˝ Q

be thei-th (i.e.,2i-dimensional) component oftdBFM
� . Then the abovetwisted

BFM-Todd class transformationor twisted BFM-RR transformation(cf. [Y4])

BtdBFM
�.y/

W G0.X / ˝ ZŒy� ! H BM
� .X / ˝ Q Œy; .1 C y/�1�

is defined by
BtdBFM

�.y/
WD

X

i�0

1

.1 C y/i
tdBFM

�i :

In this process,�mot
y W K0.VAR=X / ! G0.X /˝ZŒy� is the key. This object

was denoted bymC� in our paper [BSY1] and called themotivic Chern class.
In this paper, we use the notation�mot

y to emphasize the following property of it:

THEOREM 4-2 (“MOTIVIC ” �y -CLASS TRANSFORMATION). There exists a
unique natural transformation

�mot
y W K0.VAR=X / ! G0.X / ˝ ZŒy�

satisfying the normalization condition that for smoothX

�mot
y .ŒX

id
�! X �/ D

dimX
X

pD0

Œ˝
p
X

�yp D �y.T �X / ˝ ŒOX �:
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Here�y.T �X / D
PdimX

pD0 Œ�p.T �X /�yp and˝ŒOX � W K0.X / Š G0.X / is an
isomorphism for smoothX , i.e., taking the sheaf of local sections.

THEOREM 4-3. The natural transformation

Ty�
WD BtdBFM

�.y/
ı �mot

y W K0.VAR=X / ! H BM
� .X / ˝ Q Œy�

� H�.X / ˝ Q Œy; .1 C y/�1�

satisfies the normalization condition that for smoothX

Ty�
.ŒX

id
�! X �/ D Ty.TX / \ ŒX �:

Hence such a natural transformation is unique.

REMARK 4-4. Why is the image ofTy�
in H BM

� .X /˝Q Œy�? Even though the
target of

BtdBFM
�.y/

W G0.X / ˝ ZŒy� ! H�.X / ˝ Q Œy; .1 C y/�1�

is H BM
� .X /˝Q Œy; .1 C y/�1�, the image ofTy�

D BtdBFM
�.y/

ı�mot
y is contained

in H�.X /˝ Q Œy�. Indeed, as mentioned, by Hironaka’s resolution of singulari-
ties, induction on dimension, the normalization condition, and the naturality of
Ty�

, the domainK0.VAR=X / is generated byŒV h
�! X � with h proper andV

smooth. Hence

Ty�
.ŒV

h
�!X �/DTy�

.h�ŒV
idV

��!V �/Dh�.Ty�
.ŒV

idV

��!V �/2H BM
� .X /˝Q Œy�:

PROOF OFTHEOREM4-3. In [BSY1] we gave a slick way of proving this. Here
we give a nonslick, direct one. LetX be smooth.

BtdBFM
�.y/

ı �mot
y .ŒX

id
�! X �/

D BtdBFM
�.y/

.�y.˝X // D
P

i�0

1

.1Cy/i tdBFM
�i .�y.˝X //

D
P

i�0

1

.1Cy/i

�

tdBFM
� .�y.˝X //

�

i

D
P

i�0

1

.1Cy/i

�

tdBFM
� .�y.T �X / ˝ ŒOX �/

�

i

D
P

i�0

1

.1Cy/i

�

ch.�y.T �X // \ tdBFM
� .OX /

�

i

D
P

i�0

1

.1Cy/i

�

ch.�y.T �X // \ .td.TX / \ ŒX �/
�

i

D
P

i�0

1

.1Cy/i

�

dimX
Q

jD1

.1 C ye� j̨ /
dimX
Q

jD1

j̨

1�e� j̨

�

dimX �i

\ ŒX �:
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Furthermore we have

1

.1Cy/i

�

dimX
Q

jD1

.1 C ye� j̨ /
dimX
Q

jD1

j̨

1�e� j̨

�

dimX �i

D
.1Cy/dimX

.1Cy/i

�

dimX
Q

jD1

1Cye� j̨

1Cy

dimX
Q

jD1

j̨

1�e� j̨

�

dimX �i

D .1 C y/dimX �i

�

dimX
Q

jD1

1Cye� j̨

1Cy

dimX
Q

jD1

j̨

1�e� j̨

�

dimX �i

D

�

dimX
Q

jD1

1Cye� j̨

1Cy

dimX
Q

jD1

j̨ .1Cy/

1�e� j̨ .1Cy/

�

dimX �i

D

�

dimX
Q

jD1

1Cye� j̨

1Cy
� j̨ .1Cy/

1�e� j̨ .1Cy/

�

dimX �i

D

�

dimX
Q

jD1

j̨ .1Cy/

1�e� j̨ .1Cy/
� j̨ y

�

dimX �i

D
�

Ty.TX /
�

dimX �i
:

ThereforeBtdBFM
�.y/

ı �mot
y .ŒX

id
�! X �/ D Ty.TX / \ ŒX �. ˜

It remains to show Theorem 4-2. There are at least three proofs, each with its
own advantages.

FIRST PROOF(using Saito’s theory of mixed Hodge modules [Sa1; Sa2; Sa3;
Sa4; Sa5; Sa6]).

Even though Saito’s theory is very complicated, this approach turns out to
be useful and for example has been used in recent works of Cappell, Libgober,
Maxim, Scḧurmann and Shaneson [CLMS1; CLMS2; CMS1; CMS2; CMSS;
MS1; MS2], related to intersection (co)homology. Here we recall only the in-
gredients which we need to define�mot

y :

MHM1 : To X one can associate an abelian category ofmixed Hodge modules
MHM.X /, together with a functorial pullbackf � and pushforwardf! on the
level of bounded derived categoriesDb.MHM.X // for any (not necessar-
ily proper) map. These natural transformations are functors of triangulated
categories.

MHM2 : Let i W Y ! X be the inclusion of a closed subspace, with open
complementj W U WD X nY ! X . Then one has forM 2 DbMHM.X / a
distinguished triangle

j!j
�M ! M ! i!i

�M
Œ1�
! :
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MHM3 : For all p 2 Z one has a “filtered De Rham complex” functor of trian-
gulated categories

grFp DR W Db.MHM.X // ! Db
coh.X /

commuting with proper pushforward. HereDb
coh.X / is the bounded de-

rived category of sheaves ofOX -modules with coherent cohomology sheaves.
Moreover, grFp DR.M / D 0 for almost allp andM 2 DbMHM.X / fixed.

MHM4 : There is a distinguished elementQH
pt 2 MHM.pt/ such that

grF�pDR.QH
X / ' ˝

p
X

Œ�p� 2 Db
coh.X /

for X smooth and pure-dimensional. HereQH
X

WD ��
X

QH
pt for �X W X ! pt

a constant map, withQH
pt viewed as a complex concentrated in degree zero.

The transformations above are functors of triangulated categories; thus they
induce functors even on the level ofGrothendieck groups of triangulated cate-
gories, which we denote by the same name. Note that for theseGrothendieck
groupswe have isomorphisms

K0.DbMHM.X // ' K0.MHM.X // and K0.Db
coh.X // ' G0.X /

by associating to a complex its alternating sum of cohomology objects.
Now we are ready for the transformationsmH and grF��DR. Define

mH W K0.VAR=X / ! K0.MHM.X // by mH.ŒV
f
�! X �/ WD Œf!Q

H
V �:

In a senseK0.MHM.X // is like the abelian group of “mixed-Hodge-module
constructible functions”, with the class ofQH

X
as a “constant function” onX .

The well-definedness ofmH , i.e., the additivity relation follows from property
(MHM2). By (MHM3) we get the following homomorphism commuting with
proper pushforward:

grF��DR W K0.MHM.X // ! G0.X / ˝ ZŒy; y�1�

defined by

grF��DR.ŒM �/ WD
X

p

ŒgrF�pDR.M /� � .�y/p

Then we define our�mot
y as the composite of these two natural transformations:

�mot
y WD grF��DR ı mH W K0.VAR=X /

mH
���! K0.MHM.X //

grF��DR
�����! G0.X / ˝ ZŒy�:
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By (MHM4), for X smooth and pure-dimensional we have

grF��DR ı mH.ŒidX �/ D

dimX
X

pD0

Œ˝
p
X

� � yp 2 G0.X / ˝ ZŒy� :

Thus we get the unique existence of the “motivic”�y-class transformation
�mot

y . ˜

SECOND PROOF(using the filtered Du Bois complexes [DB]). Recall the sur-
jective homomorphism

A W Isoprop.VAR=X / “ K0.VAR=X /:

We can describe its kernel as follows:

THEOREM 4-5. K0.VAR=X / is isomorphic to the quotient ofIsopro.VAR=X /

modulo the “acyclicity” relation

Œ? ! X � D 0 and Œ zX 0 ! X � � Œ zZ0 ! X � D ŒX 0 ! X � � ŒZ0 ! X �; (ac)

for any cartesian diagram

zZ0 ����! zX 0

?

?

y

?

?

y

q

Z0
i

����! X 0 ����! X ;

with q proper, i a closed embedding, andq W QX 0n QZ0 ! X 0nZ0 an isomorphism.

For a proper mapX 0 ! X , consider the filtered Du Bois complex

.˝�
X 0 ; F /;

which has the following properties:

(1) ˝�
X 0 is a resolution of the constant sheafC.

(2) grp
F

.˝�
X 0/ 2 Db

coh.X
0/.

(3) LetDR.OX 0/ D ˝�
X 0 be the de Rham complex ofX 0 with � being the stupid

filtration. Then there is a filtered morphism

� W .˝�
X 0 ; �/ ! .˝�

X 0 ; F /:

If X 0 is smooth, this is a filtered quasi-isomorphism.

Note thatG0.X 0/ Š K0.Db
coh.X

0//. Let us define

Œgrp
F

.˝�
X 0/� WD

X

i

.�1/iH i.grp
F

.˝�
X 0// 2 K0.Db

coh.X
0// D G0.X 0/:



MOTIVIC CHARACTERISTIC CLASSES 401

THEOREM 4-6. The transformation

�mot
y W K0.VAR=X / ! G0.X / ˝ ZŒy�

defined by

�mot
y .ŒX 0 h

�! X �/ WD
X

p

h�Œgrp
F

.˝�
X 0/�.�y/p

is well-defined and is the unique natural transformation satisying the normal-
ization condition that for smoothX

�mot
y .ŒX

idX

��! X �/ D

dimX
X

pD0

Œ˝
p
X

�yp D �y.T �X / ˝OX :

PROOF. The well-definedness follows from the fact that�mot
y preserves the

acyclicity relation above [DB]. Then uniqueness follows from resolution of sin-
gularities and the normalization condition for smooth varieties. ˜

REMARK 4-7. WhenX is smooth, we have

Œgrp� .˝�
X /� D .�1/p Œ˝

p
X

� !

That is why we need.�y/p, instead ofyp, in the definition of�mot
y .ŒX 0

h
�! X �/.

REMARK 4-8. Wheny D 0, we have the natural transformation

�mot
0 W K0.VAR=X / ! G0.X / defined by�mot

0 .ŒX 0 h
�! X �/ D h�Œgr0F .˝�

X 0/�

satisying the normalization condition that for a smoothX

�mot
0 .ŒX

idX

��! X �/ D ŒOX �: ˜

THIRD PROOF(using Bittner’s theorem onK0.VAR=X / [Bi]). Recall the sur-
jective homomorphism

B W Isoprop.SM=X / “ K0.VAR=X /:

Its kernel is identified by F. Bittner and E. Looijenga as follows [Bi]:

THEOREM 4-9. The groupK0.VAR=X / is isomorphic to the quotient of
Isoprop.SM=X / (the free abelian group generated by the isomorphism classes
of proper morphisms from smooth varieties toX ) by the “blow-up” relation

Œ? ! X � D 0 and ŒBlY X 0 ! X �� ŒE ! X � D ŒX 0 ! X �� ŒY ! X �; (bl)
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for any cartesian diagram

E
i0

����! BlY X 0

?

?

y
q0

?

?

y

q

Y
i

����! X 0
f

����! X ;

with i a closed embedding of smooth(pure-dimensional) spaces andf WX 0 !X

proper. HereBlY X 0 ! X 0 is the blow-up ofX 0 alongY with exceptional divi-
sorE. Note that all these spaces overX are also smooth(and pure-dimensional
and/or quasiprojective, if this is the case forX 0 andY ).

The proof of this theorem requires the Weak Factorization Theorem, due to
D. Abramovich, K. Karu, K. Matsuki and J. Włodarczyk [AKMW] (see also
[Wlo]). ˜

COROLLARY 4-10. (1) LetB� WVAR=k !AB be a functor from the category
var=k of (reduced) separated schemes of finite type overspec.k/ to the cate-
gory of abelian groups, which is covariantly functorial for proper morphisms,
with B�.?/ WD f0g. Assume we can associate to any(quasiprojective) smooth
spaceX 2 ob.VAR=k/ of pure dimension a distinguished element

�X 2 B�.X /

such thath�.�X 0/ D �X for any isomorphismh W X 0 ! X . There exists a
unique natural transformation

˚ W Isoprop.SM=�/ ! B�.�/

satisfying the “normalization” condition that for any smooth X

˚.ŒX
idX

��! X �/ D �X :

(2) Let B� W VAR=k ! AB and�X be as above and furthermore we assume
that

q�.�BlY X / � i�q0
�.�E/ D �X � i�.�Y / 2 B�.X /

for any cartesian blow-up diagram as in the above Bittner’s theorem with
f D idX . Then there exists a unique natural transformation

˚ W K0.VAR=�/ ! B�.�/

satisfying the “normalization” condition that for any smooth X

˚.ŒX
idX

��! X �/ D �X :
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We will now use Corollary 4-10(2) to conclude our third proof. Consider the
coherent sheaf̋ p

X
2 G0.X / of a smoothX as the distinguished element�X of

a smoothX . It follows from M. Gros’s work [Gr] or the recent work of Guillén
and Navarro Aznar [GNA] that it satisfies the blow-up relation

q�.˝
p
BlY X

/ � i�q0
�.˝

p
E

/ D ˝
p
X

� i�.˝
p
Y

/ 2 G0.X /;

which in turn implies a blow-up relation for the�y-class:

q�.�y.˝BlY X // � i�q0
�.�y.˝E// D �y.˝X / � i�.�y.˝Y // 2 G0.X / ˝ ZŒy�:

Therefore Corollary 4-10(2) implies this:

THEOREM 4-11.The transformation

�mot
y W K0.VAR=X / ! G0.X / ˝ ZŒy�

defined by

�mot
y .ŒX 0 h

�! X �/ WD h�

�

X

p�0

Œ˝
p
X 0 �y

p

�

;

whereX 0 is smooth andh W X 0 ! X is proper, is well-defined and is a unique
natural transformation satisying the normalization condition that for smoothX

�mot
y .ŒX

idX

��! X �/ D

dimX
X

pD0

Œ˝
p
X

�yp D �y.T �X / ˝OX :

REMARK 4-12. The virtual Poincaré polynomialˇt (Remark 2-11) for the
categoryVAR.R/ of real algebraic varieties is the unique homomorphism

ˇt W K0.VAR.R// ! ZŒt � such thať t .R
1/ D t

andˇt .X / D Pt .X / is the classical or usual topological Poincaré polynomial
for compact nonsingular varieties. The proof of the existence of ˇi , thusˇt ,
also uses Corollary 4-10(2); see [MP1]. Speaking of the Poincaŕe polynomial
Pt .X /, we emphasize that this polynoimal cannot be a topological counting at
all in the category of topological spaces, simply because the argument in the
proof of Proposition 2-4 does not work! The Poincaré polynomialPt .X / is
certainly amultiplicativetopological invariant, but not anadditiveone.

REMARK 4-13. The virtual Poincaré polynomialˇt W K0.VAR.R// ! ZŒt � is
the uniqueextension of the Poincaré polynomialPt .X / to arbitrary varieties.
Note that if we consider complex algebraic varieties, the virtual Poincaŕe poly-
nomial

ˇt W K0.VAR/ ! ZŒt �
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is equal to the following motivic characteristic, using only the weight filtration:

w�.X / D
P

.�1/i dimC

�

GrWq H i
c .X; C/

�

tq;

because on any smooth compact complex algebraic varietyX they are all the
same:ˇt .X / D Pt .X / D w�.X /. These last equalities follow from the fact
that the Hodge structures onH k.X; Q/ are of pure weightk.

This “weight filtration” motivic characteristicw�.X / is equal to the spe-
cialization��t;�t of the Hodge–Deligne polynomial for.u; v/ D .�t; �t/. This
observation implies that there isno class versionof the complex virtual Poincaré
polynomialˇt W K0.VAR/ ! ZŒt �. In other words, there is no natural transfor-
mation

\ W K0.VAR=�/ ! H BM
� .�/ ˝ ZŒt �

satisfying the conditions that

� if X is smooth and compact, then\.ŒX
idX

��! X �/ D c`.TX / \ ŒX � for some
multiplicative characteristic class of complex vector bundles; and

� \.pt/ D ˇt W K0.VAR/ ! ZŒt �.

This is becausě t .X / D ��t;�t .X / for a smooth compact complex algebraic
varietyX (hence for allX ), and so, as in Remark 3-10, one can conclude that
.�t; �t/ D .�1; �1/. Thust has to be equal to1 and cannot be allowed to vary.
In other words, the only chance for such a class version is when t D 1, which
gives the Euler–Poincaré characteristic� W K0.VAR/ ! Z. In that case, we do
have the Chern class transformation

c� W K0.VAR=�/ ! H BM
� .�I Z/:

This follows again from Corollary 4-10(2) and the blow-up formula of Chern
class [Ful].

REMARK 4-14. The same discussion as in Remark 4-13 can be applied to the
context of real algebraic varieties, i.e., the same examplefor real elliptic curves
leads us to the conclusion thatt D 1 for ˇt satisfying the corresponding nor-
malization condition for a normalized multiplicative characteristic class. This
class has to be a polynomial in the Stiefel–Whitney classes,and we end up with
the Stiefel–Whitney homology classw�, which also satisfies the corresponding
blow-up formula.

REMARK 4-15 (POOR MAN’ S MOTIVIC CHARACTERISTIC CLASS). If we use
the much simpler covariant functor Isoprop.SM=X / above (the abelian group of
“poor man’s motivic functions”), we can get the following “poor man’s motivic
characteristic class” for any characteristic classc` of vector bundles: Letc` be
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anycharacteristic class of vector bundles with coefficient ring K. There exists
a unique natural transformation

c`� W Isoprop.SM=�/ ! H BM
� .�/ ˝ K

satisfying the normalization condition that for any smoothvarietyX ,

c`�.ŒX
idX

��! X �/ D c`.TX / \ ŒX �:

There is a bivariant theoretical version of Isoprop.SM=X / (see [Y7]); a good
reference for it is Fulton and MacPherson’s AMS memoir [FM].

5. Chern class, Todd class and L-class of singular varieties:
towards a unification

Our next task is to describe another main theorem of [BSY1], to the effect that
our motivic characteristic classTy�

is, in a sense, a unification of MacPherson’s
Chern class, the Todd class of Baum, Fulton, and MacPherson (discussed in the
previous section), and the L-class of singular varieties ofCappell and Shaneson.
Let’s briefly review these classes:

MacPherson’s Chern class[M1]

THEOREM 5-1. There exists a unique natural transformation

cMac
� W F.�/ ! H BM

� .�/

such that, for smoothX ,

cMac
� .1X / D c.TX / \ ŒX �:

HereF.X / is the abelian group of constructible functions, which is a covariant
functor with the pushforwardf� W F.X / ! F.Y / for a proper morphismf W

X ! Y defined by

f�.1W /.y/ D �c.f �1.y/ \ W /:

We callcMac
� .X / WDcMac

� .1X / the MacPherson’s Chern class ofX , or the Chern–
Schwartz–MacPherson class. We have

�.X / D

Z

X

cMac
� .X /:
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The Todd class of Baum, Fulton, and MacPherson[BFM1]

THEOREM 5-2. There exists a unique natural transformation

tdBFM
� W G0.�/ ! H BM

� .�/ ˝ Q

such that, for smoothX ,

tdBFM
� .OX / D td.TX / \ ŒX �:

Here G0.X / is the Grothendieck group of coherent sheaves onX , which is a
covariant functor with the pushforwardf� W G0.X / ! G0.Y / for a proper
morphismf W X ! Y defined by

f!.F/ D
X

j

.�1/j ŒRjf�F �:

We calltdBFM
� .X / WD tdBFM

� .OX / the Baum–Fulton–MacPherson Todd class
of X , and we have

pa.X / D �.X;OX / D

Z

X

tdBFM
� .X /:

TheL-class of Cappell and Shaneson[CS1; Sh] (cf. [Y4])

THEOREM 5-3. There exists a unique natural transformation

LCS
� W ˝.�/ ! H BM

� .�/ ˝ Q

such that, for smoothX ,

LCS
� .ICX / D L.TX / \ ŒX �:

Here ˝.X / is the abelian group of Youssin’s cobordism classes of self-dual
constructible complexes of sheaves onX .

We callLGM
� .X / WD LCS

� .ICX / the Goresky–MacPherson homologyL-class
of X . The Goresky–MacPherson theorem [GM] says that

�GM .X / D

Z

X

LGM
� .X /:

We now explain in what sense our motivic characteristic class transformation

Ty�
W K0.VAR=X / ! H BM

� .X / ˝ Q Œy�

unifies these three characteristic classes of singular varieties, providing a kind of
partial positive answer to MacPherson’s question4 of whether there is a unified
theory of characteristic classes of singular varieties.

4Posed in his survey talk [M2] at the Ninth Brazilian Mathematics Colloquium in 1973.
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THEOREM 5-4 (UNIFIED FRAMEWORK FORCHERN, TODD AND HOMOLOGY

L-CLASSES OF SINGULAR VARIETIES).

y D �1: There exists a unique natural transformation" W K0.VAR=�/ ! F.�/

such that, for X nonsingular, ".Œid W X ! X �/ D 1X , and the following
diagram commutes:

K0.VAR=X /

T�1� ((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

"
// F.X /

cMac
� ˝Qxxpp

p

p

p

p

p

p

p

p

p

H BM
� .X / ˝ Q

y D 0: There exists a unique natural transformation
 W K0.VAR=�/ ! G0.�/

such that, for X nonsingular, 
 .Œid W X ! X �/ D ŒOX �, and the following
diagram commutes:

K0.VAR=X /

T0� ((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q



// G0.X /

tdBFM
�wwpp

p

p

p

p

p

p

p

p

p

H BM
� .X / ˝ Q

y D 1: There exists a unique natural transformationsd W K0.VAR=�/ ! ˝.�/

such that, for X nonsingular, sd.Œid W X ! X �/ D ŒQX Œ2 dimX ��, and the
following diagram commutes:

K0.VAR=X /

T1� ((Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

Q

sd
// ˝.X /

LCS
�wwpp

p

p

p

p

p

p

p

p

p

H BM
� .X / ˝ Q :

The first two claims are straightforward; the third, the casey D 1, is anything
but. In particular, the existence ofsd W K0.VAR=�/ ! ˝.�/ is not obvious
at all. The only way we know to prove it is by going through somedetails
of Youssin’s work [You] and using Corollary 4-10(2) again. This is done in
[BSY1]; see also [BSY2; SY].

REMARK 5-5. y D �1: T�1�.X / D cMac
� .X / ˝ Q.

y D 0: In general, for a singular varietyX we have

�mot
0 .ŒX

idX

��! X �/ 6D ŒOX �:

Therefore, in general,T0�.X / 6D tdBFM
� .X /. So, ourT0�.X / shall be called

the Hodge–Todd class and denoted bytdH
� .X /. However, ifX is a Du Bois
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variety, i.e., every point ofX is a Du Bois singularity (note a nonsingular
point is also a Du Bois singularity), we DO have

�mot
0 .ŒX

idX

��! X �/ D ŒOX �:

This is because of the definition of Du Bois variety:X is called a Du Bois
variety if we have

OX D gr0� .DR.OX // Š gr0F .˝�
X /:

Hence, for a Du Bois varietyX we haveT0�.X /D tdBFM
� .X /. For example,

S. Kov́acs [Kov] proved Steenbrink’s conjecture that rational singularities are
Du Bois, thus for the quotientX of any smooth variety acted on by a finite
group we have thatT0�.X / D tdBFM

� .X /.

y D1: In general,sd.ŒX
idX

��!X �/ is distinct fromICX , soT1�.X / 6DLGM
� .X /.

We therefore callT1�.X / theHodgeL-classand denote it, alternatively, by
LH

� .X /. It is conjectured thatT1�.X / 6D LGM
� .X / for a rational homology

manifoldX .

6. A few more conjectures

CONJECTURE6-1. Any natural transformation

T W K0.VAR=X / ! H BM
� .X / ˝ Q Œy�

without the normalization condition is a linear combination of components of
the formtdy�i

W K0.VAR=X / ! H BM
2i

.X / ˝ Q Œy�:

T D
X

i�0

ri.y/ tdy�i
.ri.y/ 2 Q Œy�/:

This conjecture means that the normalization condition forsmooth varieties im-
posed to get our motivic characteristic class can be basically dropped. This
conjecture is motivated by the following theorems:

THEOREM 6-2 [Y1]. Any natural transformation

T W G0.�/ ! H BM
� .�/ ˝ Q

without the normalization condition is a linear combination of components

tdBFM
� i W G0.�/ ! H BM

2i .�/ ˝ Q;

that is,

T D
X

i�0

ri tdBFM
� i .ri 2 Q/:
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THEOREM 6-3 [KMY]. Any natural transformation

T W F.�/ ! H BM
� .�/ ˝ Q

without the normalization condition is a linear combination of components

cMac
� i ˝ Q W G0.�/ ! H BM

2i .�/ ˝ Q

of therationalizedMacPherson’s Chern classcMac
� ˝ Q (i.e., a linear combina-

tion of cMac
� i mod torsion):

T D
X

i�0

ri cMac
� i ˝ Q .ri 2 Q/:

REMARK 6-4. This theorem certainly implies the uniqueness of such atransfor-
mationcMac

� ˝ Q satisfying the normalization. The proof of Theorem 6-3does
not appeal to the resolution of singularities at all, thereforemodulo torsion the
uniqueness of the MacPherson’s Chern class transformationcMac

� is proved with-
out using resolution of singularities. However, in the caseof integer coefficients,
as shown in [M1], the uniqueness ofcMac

� uses the resolution of singualrities and
as far as the author knows, there is no proof available without using this result.
Does there exist any mysterious connection between resolution of singularities
and finite torsion? (In this connection we quote a comment by J. Scḧurmann:

There is indeed a relation between resolution of singularities and torsion
information: in [To1] B. Totaro shows by resolution of singularities that
the fundamental classŒX � of a complex algebraic varietyX lies in the im-
age from the complex cobordism̋U .X / ! H�.X; Z/. And this implies
some nontrivial topological restrictions: for example, all odd-dimensional
elements of the Steenrod algebra vanish onŒX � viewed inH�.X; Zp/.)

Furthermore, hinted by these two theorems, it would be natural to speculate the
following “linearity” on the Cappell–ShanesonL-class also:

CONJECTURE6-5. Any natural transformation without the normalization con-
dition

T W ˝.�/ ! H BM
� .�/ ˝ Q

is a linear combination of componentsLCS
� i W ˝.�/ ! H BM

2i
.�/ ˝ Q:

T D
X

i�0

ri LCS
� i .ri 2 Q/:
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7. Some more remarks

For complex algebraic varieties there is another importanthomology the-
ory. That is Goresky–MacPherson’sintersection homology theoryIH , intro-
duced in [GM] (see also [KW]). It satisfies all the propertieswhich the ordinary
(co)homology theory for nonsingular varieties have, in particular the Poincaŕe
duality holds, in contrast to the fact that in general it fails for the ordinary
(co)homology theory of singular varieties. In order that the Poincaŕe duality
theorem holds, one needs to control cycles according toperversity, which is
sensitive to, or “control”, complexity of singularities. M. Saito showed thatIH

satisfies pure Hodge structure just like the cohomology satisfies the pure Hodge
structure for compact smooth manifolds (see also [CaMi1; CaMi2]). In this
sense,IH is a convenient gadget for possibly singular varieties, andusing the
IH , we can also get various invariants which are sensitive to the structure of
given possibly singular varieties. For the history ofIH , see Kleiman’s survey
article [Kl], and forL2-cohomology— very closely related to the intersection
homology — see [CGM; Go; Lo1; SS; SZ], for example. Thus for the category
of compact complex algebraic varieties two competing machines are available:

ordinary (co)homologyC mixed Hodge structures

intersection homologyC pure Hodge structures

Of course, they are the same for the subcategory of compact smooth varieties.
So, for singular varieties one can introduce the similar invariants usingIH ;

in other words, one can naturally think of theIH -version of the Hirzebruch
�y genus, because of the pure Hodge structure, denote by�IH

y : Thus we have
invariants�y-genus and�IH

y -genus. As to the class version of these, one should
go through the derived category of mixed Hodge modules, because the intersec-
tion homology sheaf lives in it. Then obviously the difference between these two
genera or between the class versions of these two genera should come from the
singularities of the given variety. For this line of investigation, see the articles by
Cappell, Libgober, Maxim, and Shaneson [CMS1; CMS2; CLMS1;CLMS2].

The most important result is theDecomposition Theoremof Beilinson, Bern-
stein, Deligne, and Gabber [BBD], which was conjectured by I. M. Gelfand and
R. MacPherson. A more geometric proof of this is given in the above mentioned
paper [CaMi1] of M. de Cataldo and L. Migliorini.

Speaking of the intersection homology, the general category for IH is the
category of pseudomanifolds and the canonical and well-studied invariant for
pseudomanifolds is the signature, because of the Poincaré duality ofIH . Ba-
nagl’s monograph [Ba1] is recommended on this topic; see also [Ba2; Ba3;
Ba4; BCS; CSW; CW; Wei]. Very roughly,Ty�

is a kind of deformation or



MOTIVIC CHARACTERISTIC CLASSES 411

perturbation of Baum–Fulton–MacPherson’s Riemann–Roch.It would be inter-
esting to consider a similar kind of deformation ofL-class theory defined on
the (co)bordism theory of pseudomanifolds. Again we quote J. Scḧurmann:

A deformation of theL-class theory seems not reasonable. Only the signa-
ture =�1-genus factorizes over the oriented cobordism ring˝SO , so that
this invariant is of more topological nature related to stratified spaces. For
the other desired (“deformation”) invariants one needs a complex algebraic
or analytic structure. So what is missing up to now is a suitable theory of
almost complex stratified spaces.

Finally, since we started the present paper with counting, we end with posing
the following question: how about counting pseudomanifolds respecting the
structure of pseudomanifolds:

Does “stratified counting”cstra make sense?

For complex algebraic varieties, which are pseudomanifolds, algebraic count-
ing calg (using mixed Hodge theory = ordinary (co)homology theory + mixed
Hodge structure) in fact ignores the stratification. So, in this possible problem,
one should consider intersection homology + pure Hodge structure, although
intersection homologyis a topological invariant, and hence independent of the
stratification.

J. Scḧurmann provides one possible answer to the highlighted question above:

One possible answer would be to work in the complex algebraiccontext
with a fixed (Whitney) stratificationX�, so that the closure of a stratum
S is a union of strata again. Then one can work with the Grothendieck
groupK0.X�/ of X�-constructible sets, i.e., those which are a union of
such strata. The topological additive counting would be related again to
the Euler characteristic and the groupF.X�/ of X�-constructible functions.
A more sophisticated version is the Grothendieck groupK0.X�/ of X�-
constructible sheaves (or sheaf complexes). These are generated by classes
j!LS for j W S ! X , the inclusion of a stratumS , andLS a local system
on S , and also by the intermediate extensionsj!�LS , which are perverse
sheaves. In relation to signature and duality, one can work with the cor-
responding cobordism group̋.X�/ of Verdier self-dualX�-constructible
sheaf complexes. These are generated byj!�LS , with LS a self-dual lo-
cal system onS . Finally one can also work with the Grothendieck group
K0.MHM.X�// of mixed Hodge modules, whose underlying rational com-
plex is X�-constructible. This last group is of course not a topological
invariant.

We hope to come back to the problem of a possible “stratified counting” cstra.
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100 (1982),



MOTIVIC CHARACTERISTIC CLASSES 413

[Bi] F. Bittner, The universal Euler characteristic for varieties of characteristic zero,
Comp. Math. 140 (2004), 1011–1032.

[BM] A. Borel and J. C. Moore, Homology theory for locally compact spaces, Michi-
gan Math. J. 7 (1960), 137–159.

[BL1] L. Borisov and A. Libgober,Elliptic genera for singular varieties, Duke Math.
J. 116 (2003), 319–351.

[BL2] L. Borisov and A. Libgober,McKay correspondence for elliptic genera, Ann.
Math. 161 (2005), 1521–1569,

[BL3] L. Borisov and A. Libgober,Higher elliptic genera, Math. Res. Lett. 15 (2008),
511–520.

[BT] R. Bott and C. Taubes,On the rigidity theorems of Witten, J. Amer. Math. Soc. 2
(1989), 137–186.

[BrS] J.-P. Brasselet and M.-H. Schwartz,Sur les classes de Chern d’une ensemble
analytique complexe, pp. 93–148 in Caractéristique d’Euler–Poincaré, Śeminaire E.
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