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Motivic characteristic classes

SHOJI YOKURA

ABSTRACT. Motivic characteristic classes of possibly singular blgéc vari-
eties are homology class versions of motivic charactesstiot classes in the
so-called motivic (co)homology. This paper is a survey efthwith emphasis
on capturing infinitude finitely and on the motivic nature pither words, the
scissor relation or additivity.

1. Introduction

Characteristic classes are usually cohomological obgetimed on real or
complex vector bundles. For a smooth manifold, for instaiitsecharacteristic
classes are defined through the tangent bundle. For reanmatdles, Stiefel—-
Whitney classes and Pontraygin classes are fundamentatofoplex vector
bundles, the Chern class is the fundamental one.

When it comes to a non-manifold space, such as a singulasreamplex al-
gebraic or analytic variety, one cannot talk about its coblogical characteristic
class, unlike the smooth case, because one cannot defiaadgsnt bundle —
although one can define some reasonable substitutes, stich @gent cone
and tangent star cone, which are not vector bundles, btifistlavector bundles.

In the 1960s people started to define characteristic classedgebraic va-
rieties as homological objects — not through vector bundies as higher ana-
logues of geometrically important invariants such as thiele®oincagé char-
acteristic, the signature, and so on. | suppose that thettedaharacteristic
classes of singular spaces starts with Thoh'slass for oriented PL-manifolds
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[Thom], whereas Sullivan’s Stiefel-Whitney classes ardsib-called Deligne—
Grothendieck conjecture about the existence of Chern haggatlasses started
the whole story ofapturing characteristic classes of singular spaces asihat
ral transformations more precisely as a natural transformation from a certain
covariant functor to the homology functor.

The Deligne—Grothendieck conjecture seems to be basedah&adieck’s
ideas or Deligne’s modification of Grothendieck’s conjeeton aRiemann—
Roch type formulaoncerning the constructibletale sheaves and Chow rings
(see [Grot, Part II, note(87, p. 361 ff.]) and was made in its well-known current
form by P. Deligne later. R. MacPherson [M1] gave a positiueveer to the
Deligne—Grothendieck conjecture and, motivated by thistem, P. Baum, W.
Fulton and R. MacPherson [BFM1] further established thgudar Riemann—
Roch Theorem, which is a singular version of Grothendied&grfann—Roch,
which is a functorial extension of the celebrated HirzebrtRiemann—Roch
(abbreviated HRR) [Hi]. HRR is the very origin of the AtiyaBinger Index
Theorem.

The main results of [BSY1] (announced in [BSY2]) are thedwiing:

e “Motivic” characteristic classes of algebraic varietigsvhich is a class ver-
sion of the motivic characteristic. (Note that this “motivlass” isnota class
in the so-called motivic cohomology in algebraic/arithimeteometry.)

e Motivic characteristic classes in a sense give risa tanification of three
well-known important characteristic homology classes

(1) MacPherson’s Chern class transformation [M1] (see f&®;, Schw;
BrS));

(2) Baum, Fulton and MacPherson’s Riemann—Roch transtism@BFM1];

(3) Goresky and MacPhersonls-homology class (see [GM]), or Cappell
and Shaneson’s-homology class [CS1] (cf. [CS2]).

This unification result can be understood to be good enougabrtsider our mo-
tivic characteristic classes as a positive solution to tllewing MacPherson’s
guestion or comment, written at the end of his survey pap&®a8 [M2]:

“It remains to be seen whether there is a unified theory of abtaristic
classes of singular varieties like the classical one oatlimbove.

The current theory unifies “only three” characteristic sk but so far it
seems to be a reasonble one.

The purpose of this paper is mainly to explain the resulsffBSY1] men-
tioned above (also see [SY]) with emphasis on the “motivitired of motivic
characteristic classes. In particular, we show that ouivicatharacteristic class
is a very natural class version of the so-called motivic abtaristic, just like
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the way A. Grothendieck extended HRR to Grothendieck —RiemRoch. For
that, we go back all the way to the natural numbers, which dibelthought of
as the very origin of &@haracteristicor characteristic class

We navely start with the counting of finite sets. Then we want taraainfi-
nite sets as if we are still doing the same way of countingdiséts, and want to
understand motivic characteristic classes as highes-glasions of this unusual
“counting infinite sets”, where infinite sets are complexesiguic varieties. (The
usual counting of infinite sets, forgetting the structura efriety at all, lead us
into the mathematics of infinity.) The key is Deligne’s mixdddge structures
[Del; De?], or more generally Saito’'s deep theory of mixedg® modules
[Sa2], etc.

As to mixed Hodge modules (MHM), in [Sch3piy Scliurmann gives a very
nice introduction and overview about recent developmentthe interaction of
theories of characteristic classes and mixed Hodge thewrgifgular spaces
in the complex algebraic context with MHM as a crucial anddamental key.
For example, a study of characteristic classes of the it&m homological
Hodge modules has been done in a series of papers by Sylvapell;a&Anatoly
Libgober, Laurentiu Maxim, drg Scliirmann and Julius Shaneson [CLMS1Z;
CLMS2; CMS1; CMS2; CMSS; MS1; MS2] (in connection with thast one,
see also [Y8]).

The very recent book by C. Peters and J. Steenbrink [PS] siebesa most
up-to-date survey on mixed Hodge structures and Saito’'sdriodge modules.
The Tata Lecture Notes by C. Peters [P] (which is a condensesion of [PS])
give a nice introduction to Hodge Theory with more emphasighe motivic
nature!

2. Preliminaries: from natural numbers to genera

We first consider counting the number of elements of finite,3et., natural
numbers. LetFSET be the category of finite sets and maps among them. For
an objectY € FSET, let

c(X)eZ
be the number of the elements Xt which is usually denoted byX'| (¢ N) and
called the cardinal number, or cardinality &f. It satisfies the following four
properties on the categorySE7T of finite sets:

(1) X = X’ (bijection or equipotenty=> ¢(X) = c¢(X”).
@) c(X)=c(X\Y)+c(Y)forY C X.
B) c(X xY)=c(X)-c(Y).

13, Scliirmann informed me of the book [PS] and the lecture [P] at thekshop.
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(4) c¢(pt) =1. (Herepr denotes one point.)

REMARK 2-1. Clearly these four properties characterize the cognt(X).
Also note that ife(X') € Z satisfies (1)—(3) without (4), then we hasepr) =0
orc(pt)=1.If ¢c(pt) =0, thenitfollows from (2) (or (1) and (3)) tha{ X') =0
for any finite setX'. If ¢(pt) = 1, it follows from (2) thatc(X) is the number
of elements of a finite seY.

REMARK 2-2. When it comes to infinite sets, cardinality still saéisfproperties
(1)—(4), but the usual rules of computation no longer woux. fiatural numbers,
a? = a impliesa = 0 or @ = 1. But the infinite cardinak = ¢(R) also has the
property tha®t? = R; in fact, for any natural number,

c(R") =c¢(R), i.e., " =N,

This leads into thenathematics of infinity

One could still imagine counting on the bigger categ8&/7 of sets, where a
set can be infinite, and X)) lies in some integral domain. However, one can see
that if for such a counting (1), (2) and (3) are satisfied, liofes automatically
thatc(pt) = 0, contradicting property (4).

In other words: if we consider counting with properties (B)-on the cate-
gory SET of all sets, the only possibility is the trivial one(X) = 0 for any
setX!

However if we consider sets having superstructures on the infrastne
(sed and property(1) is replaced by the invariance of the superstructumes
do obtain more reasonable countings which are finite numbinss we can
avoid the mysterious “mathematics of infinity” and extend tisual counting
¢(X) of finite sets very naturally and heely. This is exactly what the Euler
characteristi¢c the genusand many other important and fundamental objects in
modern geometry and topology are all about

Let us consider the following “topological countingip on the categorgy OP
of topological spaces, which assigns to each topologiadefy a certain inte-
ger (or more generally, an element in an integral domain)

Ctop(X) (S Z

such that it satisfies the following four properties, which axactly the same
as above except for (1):

(1) X = X’ (homeomorphism § OP- isomorphism)=> cop(X) = ctop(X”),
(2) ctop(X) = ctop(X \ Y) +cop(Y) for Y C X (for the moment no condition),
(3) Ctop(X xY)= Ctop(X) : Ctop(Y),

(4) cop(pt) = 1.



MOTIVIC CHARACTERISTIC CLASSES 379

REMARK 2-3. As in Remark 2-1, conditions (1) and (3) imply tkah(pt) =
0 orl. If e(pt) =0, it follows from (1) and (3) thatip(X) = 0 for any
topological spaceX. Thus the last conditiong(pf) = 1, means thatyg is
a nontrivial counting. Hence, topological counting, can be regarded as
nontrivial, multiplicative, additive, topological invant.

PROPOSITION2-4. If such aciop exists then
cop(R') = —1, hence cp(R") = (—1)".
Hence ifX is a finiteC W-complex withs,, (X)) openn-cells then
cop(X) =2, (=1)"on(X) = x(X),
the Euler—Poincaé characteristic ofX .
The equalityctop(Rl) = —1 can be seen by considering
R! = (=00, 0) LI {0} LI (0, c0).
Condition (2) impIieSctop(Rl) = Ciop((—00, 0)) + ctop({0}) + ctop((0, 00)), SO
—ciop({0}) = ctop((—00,0)) =+ ¢top((0, 00)) — ctop(R").
SinceR! 2 (—o0, 0) = (0, 00), it follows from (1) and (4) that
Ctop(RI) = _Ctop({o}) =-L

The existence of a counting,, can be shown using ordinary homology/coho-
mology theory: symbolically,

topological countingcop : ordinary (cojhomology theory.

To be more precise, we use Borel-Moore homology theory [BkH, ho-
mology theory with closed supports. For a locally compacustrff space
X, Borel-Moore homology theoryd 2M (X'; R) with a ring coefficientR is
isomorphic to the relative homology theory of the pak¢, x), with X the
one-point compactification of and* the one point added t&:

HBM (X:R) =~ Hy (X, % R).

Hence, if X is compact, Borel-Moore homology theory is the usual hogylo
theory: HBM (X: R) = H.(X: R).

Let & be a field, such aR or C. If the Borel-Moore homology72M (X ; 8)
is finite-dimensional —say, ifX" is a finite C W-complex —then the Euler—
Poincaé characteristigy gas using the Borel-Moore homology theory with co-
efficient field ], namely

xBm(X) =Y _(=1)"dimg HM (X: ).

n
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gives rise to a topological countingop, because it satisfied BM (R”, &) = &
and H2M (R", 8) = 0 for k # n, and thus
xem (R") = (=D)".
It turns out that for coefficients in a field, Borel-Moore homology islual
2 as a vector spact the cohomology with compact support, namely

HPM (X &) = Hom(HZ (X: R), R).
Sincef is a field, we have
HPM(X: 8) = HP (X: R)

Hence the Euler-Poincacharacteristic using Borel-Moore homology,s (X)
is equal to the Euler-Poindarcharacteristic using cohomology with compact
support, usually denoted by :

Xe(X) =Y (=1) dimg H}(X; R).

Since it is quite common to use., we have

COROLLARY 2-5. For the category of locally compact Hausdorff spaces

Ctop = Xe»
the Euler—Poincak characteristic using cohomology with compact support
REMARK 2-6. This story could be retold as follows: There might be ynaays
of “topologically counting” on the categor§ OP of topological spaces, but
they areall identical to the Euler—Poincdr characteristic with compact support

when restricted to the subcategory of locally compact Haxfsdpaces with
finite dimensional Borel-Moore homologies. Symbolicalbeaking,

Ctop = Xec-

Next consider the following “algebraic countingg on the categorf/AR
of complexalgebraic varieties (of finite type ovéE), which assigns to each
complex algebraic variety” a certain element

Ca|g(X) €R
in a commutative ringR with unity, such that:
(1) X = X’ (VAR-isomorphism}=> caig(X) = cag(X").
(2) cag(X) = cag(X \'Y) + caig(Y) for a closed subvariety C X.

2For ann-dimensional manifoldM the Poincagé duality mapPD : HX (M) = H,_; (M) is an
isomorphism and als®D : H* (M) = HBM (M) is an isomorphism. Thus they aPeinca dual but
not dual as vector spaces
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(3) Calg(X xY)= Calg(X) : Calg(Y)-
(4) caig(pt) = 1.

Just likec(X) andcop(X), the last condition simply means thajg is a non-
trivial counting.

The real number® and in general the Euclidean spaéare the most fun-
damental objects in the categdfyYOP of topological spaces, and the complex
numbersC and in general complex affine spadés are the most fundamental
objects in the category AR of complex algebraic varieties. The decomposition
of n-dimensional complex projective space as

P"=CucC!u...uc"tuc”
implies the following:

PROPOSITION2-7. If cqg eXists then
cagP) =1—y+y>—y> -+ (=),
wherey := —cag(C!) € R,

REMARK 2-8. Proposition 2-7 already indicates that there couldtéxfinitely

many ways —as many as the elements-to do algebraic countinggg on the
categoryV AR of complex algebraic varieties. This is strikingly diffetdrom

the topological countingp and the original counting, which are uniquely
determined. This difference of course lies in the complexcstire:

set+ topological structuret complex structure

Here there is no question of consideriRg, so the previous argument show-
ing thatciop(R!) = —1 does not work. In this sense, we should have used the
symbol caq/c to emphasize the complex structure, insteadgf Since we
are dealing with only the category of complex algebraiceit&es in this paper,
we write justcag. See Remark 2-11 below for the category of real algebraic
varieties.

The existence of ayg—in fact, of many such ways of algebraically counting —
can be shown usin®eligne’s theory of mixed Hodge structurg3el; De2],
which comes from the algebraic structure:

set+ topological structurer complex structure+ algebraic structure
Then the Hodge—Deligne polynomial

Xuw(X) =Y (=D (=1)PT dimc(Grh. G\, HE(X,C)u?v?

i,p,q=0
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satisfies the four properties above wikh= Z[u, v] and—y := cag(C!) = uv,
namely any Hodge-Deligne polynomigj,,, with uv = —y is acag. Here we
point out that by Deligne’s work only graded terms wjithg > 0 are nontrivial;
otherwise one would havg, ,(X) € Zu,u™1, v, v71].

Similarly one can consider the invariant

caig(X) := xy,—1 € Z[y],

Here we should note that fér, v) = (-1, —1) we have

X—1,—1(X) = xc(X) = crop(X).

Further, for a smooth compact variely, xo—;(X) is the arithmetic genus,
while x; —1(X) is the signature. These three cagasp) = (—1,—1), (0, —1)
and(1,—1), are very important.

algebraic countingcag: mixed Hodge theory
= ordinary (co)homology theory- mixed Hodge structures

REMARK 2-9. (See [DK], for example.) The following description is@fine,
but we use the one above in our later discussion on motiviachkeristic classes:

cagP) =1+ y+y*+ 3>+ 4+ )",

wherey = ca|g((C1) € Z[y]. The Hodge—Deligne polynomial is usually denoted
by E(X;u,v) and is defined to be

E(X:uv):= Y (=1)'dime(Grf Gl Hi(X,C))uPv?.
i,p,q=0
Thus
Xuw(X) = E(X;—u,—v).

The reason why we defing, , (X) to be E(X; —u, —v) rather thanE (X ; u, v)
lies in the definition of Hirzebruch’s generalized Todd slasd Hirzebruch’s
Xy characteristic, which will come below.

The algebraic countingyg specializes to the topological counting,. Are there
other algebraic countings that specialize to the HodgagbBelpolynomialy,, ,
(which is sensitive to an algebraic structure)?

CONJECTUREZ2-10. The answer is negatiy@n other wordsthere are no extra
structures other than Deligne’s mixed Hodge structure ttwitribute more to
the algebraic countingag of complex algebraic varieties
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REMARK 2-11. In the categorY AR (R) of real algebraic varietieswe can of
course considema|g/R(R1) of the real lineR'; therefore we might be tempted
to the hasty conclusion that in the category of real algebraiieties the topo-
logical countingciop, 1.€., ¢, is sufficient. Unfortunately, the argument for
cop(R') = —1 does not work in the categoAR (R), becaus®'! and(—oo, 0)
or (0, o) are not isomorphic as real algebraic varieties. Even amongpact
varieties there do exist real algebraic varieties that ammdomorphic but not
isomorphic as real algebraic varieties. For instance (8&&L[ Example 2.7]):
Consider the usualormal crossingigure eight curve:

F8={(x.y) | y* =x*—x"}.

The proper transform of§under the blowup of the plane at the origin is home-
omorphic to a circle, and the preimage of the singular pdift8as two points.
Next take thaangentialfigure eight curve:

(P8 = {(x,») | ((x + D2+ y2 = 1) ((x =D +y2 = 1) =0},

which is the union of two circles tangent at the origin. Hdre preimage of
the singular point is a single point. Therefore, in conttasthe category of
crude topological spaces, in the categoryeai algebraicvarieties an “algebraic
counting"ca,g/R(Rl) is meaningful, i.e., sensitive to the algebraic structlme.
deed, as such a real algebraic countigglR(Rl) there are

thei-th virtual Betti number g;(X) € Z
and
the virtual Poincaé polynomial B;(X) =), Bi(X)t' € Z]t).

They are both identical to the usual Betti number and Poipatynomial on
compact nonsingular varieties. For the above two figuret@igives B andzF8
we indeed have that

Bi(F8) # B (tF8).

For more details, see [MP1] and [To3], and see also Rematk 4-1

Finally, in passing, we also mention the following “cob@mi’ countingcggn 0N
the category of closed oriented differential manifoldstar tategory of stably
almost complex manifolds:

(1) X = X’ (cobordant, or bordan®=> ccon(X) = ccob(X”).

(2) ccon(X UY) = ceon(X) 4+ ccon(Y). (Note: in this casecop(X \ Y) does not
make sense, becaude\ Y has to be a closed oriented manifold.)

(3) ccon(X X Y) = ceon(X) - ceon(Y).

(4) ccon(pt) =1.
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As in the cases of the previous countings, (1) and (3) impdy(pt) = 0 or
ccob(pt) = 1. It follows from (3) thatcqon(p?) = 0 implies thateeop(X) = 0 for
any closed oriented differential manifolds Thus the last conditiotvon(pt) =
1 means that outcep is nontrivial. Such a cobordism countiregyy, is nothing
but agenussuch as the signature, th@}genus, or the elliptic genus. As in
Hirzebruch’s book, a genus is usually defined as a hontreaahting satisfying
properties (1), (2) and (3). Thus, it is the same as the orengibove.

Here is a very simple problem on genera of closed orientdérdiitiable
manifolds or stably almost complex manifolds:

PROBLEM 2-12. Determine all genera

Let Iso(G),, be the set of isomorphism classes of smooth closed (andtedjen
pure n-dimensional manifoldsM/ for G = O (or G = SO), or of puren-
dimensional weakly & stably”) almost complex manifoldd/ for G = U,
e, TM & R% is a complex vector bundle (for suitabdé, with R, the trivial
real line bundle oveds). Then

150(G) := P 1s0(G),

becomes a commutative graded semiring with addition andiplichtion given
by disjoint union and exterior product, withand1 given by the classes of the
empty set and one point space.

Let 2¢ := Iso(G)/~ be the correspondingobordism ringof closed G =
0) and oriented @ = SO) or weakly (“= stably”) almost complex manifolds
(G = U) as discussed for example in [Stong]. Héi ~ 0 for a closed pure
n-dimensionalG-manifold M if and only if there is a compact pur@+1)-
dimensionalG-manifold B with boundaryoB ~ M. This is indeed a ring with
—[M]=[M]forG =0 or—[M]=[-M]for G =S0O,U, where—M has the
opposite orientation oM. Moreover, forB as above witlB ~ M one has

TB|0B ~TM & Ryy.

This also explains the use of the stable tangent bundle ®d#iinition of a
stably or weakly almost complex manifold.

The following structure theorems are fundamental (seenGtdheorems on
p. 177 and p. 110]):

THEOREM 2-13. (1) (Thom)2259 ® Q = Q[P2,P*,PS,...,P?", .. .]is a
polynomial algebra in the classes of the complex even diimealgorojective
spaces

(2) (Milnor) 2V ® Q = Q[P!, P2, P?,...,P",...]is a polynomial algebra in
the classes of the complex projective spaces
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So, if we consider a commutative riywithout torsion for a genug : 259 —

R, the genuy is completely determined by the valygP?") of the cobordism
class of each even-dimensional complex projective spateUsing this value
one could consider the related generating “function” omfak power series
such asy_, y(P?")x", or Y, y (P?")x2", and etc. In fact, a more interesting
problem is to determine aligid genera such as the signatarand the4-genus:
namely, a genus satisfying the following multiplicativipyoperty stronger than
the product property (3):

(Brigid : y(M) = y(F)y(B) for a fiber bundleM — B with fiber F and
compact connected structure group.

THEOREMZ2-14.Letlog, (x) be the “logarithmic” formal power series iR[x]
given by

1
| — IP)Zn 2n+1'
0g, (x) Z TR RALEEL
The genuy is rigid if and only if it is an elliptic genusi.e,, its logarithmlog,,
is an elliptic integral i.e.,

X
1
log (x):/ dt
v 0 1 —28¢2 + st*

for somes, ¢ € R.

The “only if” part was proved by S. Ochanine [Oc] and the “ifrjavas first
“physically” proved by E. Witten [Wit] and later “mathemedilly” proved by
C. Taubes [Ta] and also by R. Bott and C. Taubes [BT]. See alstofro’s
papers [To2; To4].

cobordism countingccop : Thom’s Theorem
rigid genus = elliptic genus : elliptic integral

The oriented cobordism groups? above was extended by M. Atiyah [At] to
ageneralized cohomology theory, i.e., the oriented cabortheoryM SO* (X))
of a topological spac&’. The theoryMSO*(X) is defined by the so-called
Thom spectra: the infinite sequence of Thom complexes gieea,topological
pair (X,Y)with Y C X, by

MSO*(X,Y):= nleoo[E"—k (X/Y), MSO(®n)].

Here the homotopy grouiE” % (X/Y), MSO(n)] is stable.

As a covariant or homology-like version 81.SO*(X), M. Atiyah [At] intro-
duced the bordism theory/ SO, (X') geometrically in quite a simple manner:
Let f1: My — X, f> : M, — X be continuous maps from closed orienied
dimensional manifolds to a topological spake f andg are said to be bordant
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if there exists an oriented manifold with boundary and a continuous map
g: W — X such that

(1) glam, = f1 andg|a, = f2, and
(2) oW = M; U—-M, , where—M, is M, with its reverse orientation.
It turns out thatM SO, (X) is a generalized homology theory and
MSO°(pt) = MSOy(pt) = 259.

M. Atiyah [At] also showed Poincérduality for an oriented closed manifold
M of dimension:

MSO* (M) =~ MSO,_;.(M).

If we replaceSO(n) by the other group®)(n), U(n), Spin(n), we get the
corresponding cobordism and bordism theories.

REMARK 2-15 (ELLIPTIC COHOMOLOGY). Given a ring homomaorphism :
MSO*(pt) — R, RisanMSO*(pt)-module and

MSO*(X) ®MSO*(pt) R

becomes “almost” a generalized cohomology theory (one ectéssarily satis-
fying the Exactness Axiom). P. S. Landweber [L] gave an algjiebcriterion
(called the Exact Functor Theorem) for it to become a geizecicohomology
theory. Applying this theorem, P. E. Landweber, D. C. Ralland R. E. Stong
[LRS] showed the following theorem:

THEOREM 2-16. For the elliptic genuy : MSO*(pt) = MSO«(pt) = 2 —
Z[%][S, ¢, the following functors are generalized cohomology theorie

MSO*(X) ®pso+(pr) Z[3]18. elle 1.
MSO™(X) ®msox(pr) Z[ 3]18. ll(6% — &)1,
MSO*(X) ®pmso+(pry Z[3]18. ellA7"].
whereA = (8% —¢)2.
More generally J. Franke [Fr] showed this:

THEOREM2-17. For the elliptic genus : MSO* (pt) = MSOx«(pt) = 259 —
Z[1]18. €], the functor

MSO*(X) ®ms0+(pr) Z[ 5 I8, €[ P8, €)7']

is a generalized cohomology theoRere P (8, €) is a homogeneous polynomial
of positive degree witbegs = 4, dege = 8.
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The generalized cohomology theory
MSO*(X) ® msox(pr) Z[ 518, €[ P8, 6)7']

is calledelliptic cohomology theorylt was recently surveyed by J. Lurie [Lul].
It is defined in an algebraic manner, but not in a topologycailgeometrically
simpler manner thaik -theory or the bordism theory/SO.(X). So, people
have been searching for a reasonable geometric or topalagpostruction for
elliptic cohomology (cf. [KrSt]).

REMARK 2-18 (MumBO JUMBO). In the above we see that if you just count
points of a variety simply as a set, we get infinity unless iaiinite set or
the trivial counting0, but that if we count it “respecting” the topological and
algebraic structures we get a certain reasonable numbehvidinot infinity.
Getting carried away, “zeta function-theoretic” formukaeh as

I+ 1414 +1+--=—1=¢(0),

142434 +n4--=—5 ={(-1),
1242243240’ 4o= 0 =¢(-2),
P42+ + 4+ = 25 =8(=3)

could be considered as based on a counting of infinite setsdbpects some
kind of “zeta structure” on it, whatever that is. In natutes equalityl > 4+ 23 +
334+ +n3+--- =I5 is relevant to the€asimir effectnamed after the Dutch
physicist Hendrik B. G. Casimir. (See [Wil, Lecture 7] foetbonnection.) So,
nature perhaps already knows what the zeta structure isodtdwbe fun, even
nonmathematically, to imagine what a zeta structure woelaib the natural
numbersN, or the integerg. or the rational number®, or more generally “zeta
structured” spaces or varieties. Note that, like the togickl countingetop = x,
zeta-theoretical counting (denoted &y, here) was discovered by Euler!

REMARK 2-19. Regarding “counting”, one is advised to read Baez {BaP],
Baez and Dolan [BD], and Leinster [Lein].

3. Motivic characteristic classes

Any algebraic countingayg gives rise to the following rige ring homomor-
phism to a commutative rin@ with unity:

Here IsqVAR) is the free abelian group generated by the isomorphismedass
[X] of complex varieties. The additivity relation

caig([X]) = cag([X \ Y]) + cag([Y]) for any closed subvariety C X
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—or, in other words,
cag([X]—=[Y]—=[X \ Y]) = 0 for any closed subvariety C X,
induces the following finer ring homomorphism:
calg: Ko(WVAR) — R defined bycag([X]) := cag(X).

Here Ko (VAR) is the Grothendieck ring of complex algebraic varietiesicivh
is IsSo(VAR) modulo the additivity relation

[X]=[X\Y]+[Y]for any closed subvariety C X

(in other words, I1s@/AR) modded out by the subgroup generated by elements
of the form[X]—[Y]—[X \ Y] for any closed subvariety C X).

The equivalence class pY'] in Ko(VAR) should be written ag,X], say, but
we just use the symb@X'] for simplicity.

More generally, lety be an indeterminate and consider the following homo-
morphismcayg := Xy := Xy,—1, i.€.,

cag: Ko(VAR) = Z[y] with cag(C!) = —y.

This will be called anotivic characteristicto emphasize the fact that its domain
is the Grothendieck ring of varieties.

REMARK 3-1. In fact, for the categorY AR (k) of algebraic varieties over any
field, the above Grothendieck ringo(VAR(k)) can be defined in the same
way.

What we want to do is an analogue to the way that Grothendigtdnded
the celebrated Hirzebruch—Riemann—Roch Theorem (whishteavery begin-
ning of the Atiyah—Singer Index Theorem) to the Grotherki&iemann—Roch
Theorem. In other words, we want to solve the following peoiv

PROBLEM 3-2. Let R be a commutative ring with unity such tHatc R, and
let y be an indeterminateDo there exist some covariant functorand some
natural transformation(here pushforwards are considered for proper maps

h:0( )= HM ()@ RY]
satisfying condition$1)—3) below?

(1) O(pt) = Ko(VAR).
(2) 4(pt) = cayg, i€,

§(pt) = caig: O(pt) = Ko(VAR) — R[y] = HEZM (pr) ® R[y].
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(3) Forthe mappingry : X — pt to a point for a certain distinguished element
Ay € <&(X) we have

mx «(1(Ax)) = caig(X) € R[y] and 7y .(Ax) =[X]€ Ko(VAR).
1(Xx)

O(X) — HIM(X)® R[]
S(pt) = Kg(WAR) — R[y].

i(pt)=caq
(If there exist such® andf], thenfj(Ay) could be called thenotivic charac-
teristic classcorresponding to the motivic characteristigg(X ), just like the
Poincaé dual of the total Chern cohomology clags() of a complex manifold
X corresponds to the Euler—Poinearharacteristicry . (c(X)N[X]) = x(X).)

A more concrete one for the Hodge—Deligne polynomial (aqiypie of this
problem was considered in [Y5]; cf. [Y6]):

PROBLEM 3-3. Let R be a commutative ring with unity such thatc R, and let
u, v be two indeterminatedo there exist a covariant functap and a natural
transformation(here pushforwards are considered for proper maps

1:0( ) —> H«BM( ) ® Ru,v]
satisfying condition$1)—3) below?
(1) ¢(p1) = Ko(VAR).
(2) 4(p1) = Xuv. i€,
1p1) = fuw : O(p1) = Ko(VAR) — Rlu,v] = HPM (pt) ® Rlu, v].

(3) Forthe mappingry : X — pt to a point for a certain distinguished element

Ay € O(X) we have

mx «({(Ax)) = Xuw(X) € Rlu,v] and mx,(Ax) =[X] € Ko(VAR).
One reasonable candidate for the covariant fun¢tis the following:

DEFINITION 3-4. (See [Lo2], for example.Yhe relative Grothendieck group
of X, denoted by

Ko(VAR/X),
is defined to be the free abelian group(l8d R/ X') generated by isomorphism
classesV LN X] of morphismsi : V — X of complex algebraic varieties over
X, modulo the additivity relation

hlV\Z

h
[V LY X|=[V\Z — X+[Z N X] for any closed subvarietf C V;
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in other words, IsOVAR/X) modulo the subgroup generated by the elements
of the form N P 0

V= X]-[Z -5 X]-[V\ Z —5 X]
for any closed subvarieti C V.

REMARK 3-5. For the categorY AR (k) of algebraic varieties over any field,
we can consider the same relative Grothendieck K¢V AR (k)/ X).

NOTELl. Kog(VAR/pt) = Ko(VAR).

NOTE 2. Ko(VAR/X)? is a covariant functor with the obvious pushforward:
for a morphismf : X — Y, the pushforward

fi  Ko(VAR/X) — Ko(VAR/Y)

is defined by
h foh
f+([V = X]):=[V —Y].
NoTE 3. Although we do not need the ring structure Bp(VAR/X) in later
discussion, the fiber product gives a ring structure on it:

h h hyxxh
(Vi =5 X]-[Va => X]:=[Vi xx Vs —=3 X].
NoTE 4. If &(X) = Kg(VAR/X), the distinguished elementy is the iso-
morphism class of the identity map:
id
Ay = [X =5 X].
If we impose one more requirement in Problems 3-2 and 3-3,amefiad the
answer. The newcomer is tm@rmalization conditior{or “smooth condition”)
that for nonsingulatk” we have

1(Ax) = ct(TX) N[X]

for a certain normalized multiplicative characteristiassc¢ of complex vector
bundles. Note thatf is a polynomial in the Chern classes such that it satisfies
the normalization condition. Here “normalized” means #dtE) = 1 for any
trivial bundle E and “multiplicative” means that{(E & F) = c{(E)c{(F),
which is called théaVhitney sum formulaln connection with the Whitney sum
formula, in the analytic or algebraic context, one asks figg multiplicativity

for a short exact sequence of vector bundles (which spliisinthe topological
context):

cl(E)=cl(E")c(E") for 1—->E —E—E"—1.

3 According to a recent paper by M. Kontsevich (“Notes on nestivn finite characteristic”, math.AG/
0702206), Vladimir Drinfeld calls an element &fy (VAR /X) “poor man’s motivic function”.
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The normalization condition requirement is natural, ingbase that the other
well-known/studied characteristic homology classes afsgay singular vari-
eties are formulated as natural transformations satigfguth a normalization
condition, as recalled later. Also, as discussed later (s@gecture 6-1), this
seemingly strong requirement of the normalization coaditiould be eventually
dropped.

OBSERVATION 3-6. Letny : X — pt be the mapping to a point. It follows
from the naturality of and the normalization condition that

caig(X]) = 1 (x s (X 25 X]) = x4 (40X 255 X)) = mx4 (c€(TX) N[X]).

for any nonsingular varietyx'. Therefore the normalization condition on non-
singular varieties implies that for a nonsingular varigtyhe algebraic counting
caig(X) has to be the characteristic number or Chern number [Fulf]Mi®iis

is another requirement agyg, but an inevitable one if we want to capture it
functorially @ la Grothendieck—Riemann—Roch) together with the nomatidin
condition above for smooth varieties.

The normalization condition turns out to be essential, arfddt it automatically
determines the characteristic clagsas follows, if we consider the bigger ring
Q[y] instead ofZ[ y]:

PrROPOSITION3-7. If the normalization condition is imposed in Proble®
and 3-3, the multiplicative characteristic clasg with coefficients iQ[y] has
to be the generalized Todd class the Hirzebruch clasg),, defined as follows
for a complex vector bundlg,

rankV’

. ai(1+y) '
nw) =[] (m“w
i=1

rankl’

where they; are the Chern roots of the vector bundigV) = [] (1 + o).
i=1

ProOF The multiplicativity ofcf guarantees that i andY are smooth com-

pact varieties, then

Ty xy (T (X XY) N[X xY]) = 7y, (cl(TX) N[X]) - 7wy 4 (c&(TY)N[Y]).

In other words, the Chern number is multiplicative, i.eis itompatible with the
multiplicativity of cag. Now Hirzebruch'’s theorem [Hi, Theorem 10.3.1] says
that if the multiplicative Chern number defined by a multiplive characteristic
classct with coefficients inQ[y] satisfies that the corresponding characteristic
number of the complex projective spaé@is equal tol —y 4 y% — y3 +... +
(—y)", then the multiplicative characteristic clasghas to be the generalized
Todd class, i.e., the Hirzebruch claEg above. O
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REMARK 3-8. In other words, in a sensgg(C') uniquely determines the class
version of the motivic characteristigg, i.€., the motivic characteristic class.
This is very similar to the fact foreseen tha;p(Rl) = —1 uniquely determines
the “topological countingp.

The Hirzebruch clasd’, specializes to the following important characteristic
classes:

rankV’
y=—1: T_1;(V)=c¢(V)= ]] (14+«;) (total Chern class)
i=1
rankV’
y=0: To(X)=t1d(V)= T[]
i=1
rankV’

y =100 =TI g

i

(total Todd class)

—a;

d (total Thom—Hirzebruch class)

Now we are ready to state our answer to Problem 3-2, which @ésobrihe
main theorems of [BSY1]:

THEOREM 3-9 (MOTIVIC CHARACTERISTIC CLASSEY. Let y be an indeter-
minate

(1) There exists a unique natural transformation
Ty, : Ko(VAR/X) — HM (X) © QIy]

satisfying the normalization condition that for a nonsifegwariety X

Ty, (X 25 X)) = T,(TX) N [X].

(2) For X = pt, the transformatior¥),, : Ko(VAR) — Q[y] equals the Hodge—
Deligne polynomial

Xy,—1: Ko(VAR) — Z[y] C Q[y],
namely
Ty (X = pt) = xy—1 (XD = Y (=) dime(Grh. HL(X. C))(—p)”.
i,p=0
Xy,—1(X) is simply denoted by, (X).

PROOF. (1) The main part is of course the existence of su@h g the proof of
which is outlined in a later section. Here we point out onlg tiniqueness of
T), ., which follows from resolution of singularities. More pigely it follows
from two results:
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(i) Nagata’'s compactification theorem, or, if we do not wisluse such a fancy
result, the projective closure of affine subvarieties. Wethe surjective
homomorphism

A IsPPVAR/X) — Ko(VAR/X),

where I1s8™P(VAR/X) is the free abelian group generated by the isomor-
phism class oproper morphisms taX .

(ii) Hironaka’s resolution of singularities: it impliesylinduction on dimension
that any isomorphism clag¥ kb x ] can be expressed as

h
> ap[v =5 X1,
Vv

with V' nonsingular andiy : V — X proper. We get the surjective maps
ISP P(SM/X) — ISPP(VAR/ X);

therefore
B:I1sd”P(EM/X) - Kog(VAR/X),

where Is8P(SM/X) is the free abelian group generated by the isomor-
phism class oproper morphisms fronsmooth varietieso X'.

(i) The normalization condition (“smooth condition”) gage 390.

(iv) The naturality of7, .

The two surjective homomorphismsand B also play key roles in the proof of
the existence of), .

(2) As pointed out in (ii),Ko(VAR) is generated by the isomorphism classes
of compact smooth varieties. On a nonsingular compacttyafiewe have

Xy (X) = Y (=D dime HI(X: %) y?.
p,9=0

which is denoted by, (X) and is called the Hirzebruch,-genus. Next we
have thegeneralized Hirzebruch—Riemann—Roch TheofghRR), which says
[Hi] that

00 = [ TN
X
Since/ Ty(TX)N[X]=mx«(T(TX)N[X])) =T),(X — pt]), we have
X

Ty, (X — pt]) = xy-1((X]

on generators oK, (VAR), and hence on all oKy (VAR); thusT,, = x, 1.
Il
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REMARK 3-10. Problem 3-3 is slightly more general than Problem B-the
sense that it involves two indeterminatesv. However, the important keys
are the normalization condition for smooth compact vaegetind the fact that
Xuw(P) =1+ uv + (uv)? + -+ + (uv)", which automatically implies that
¢t =T_,,, as shown in the proof above. In fact, we can say more abaunid
v: eitheru = —1 orv =—1, as shown below (see also [Jo] —the arXiv version).
Hence, we can conclude that for Problem 3-3 themeoisuch transformation
1: Ko(VAR/—) — HEM (—)® R[u, v] with both intermediates andv varying.

To show the claim about andv, suppose that fok' smooth and for a certain
multiplicative characteristic clagd we have

Xuw(X) = 7y (cl(TX) N[X]).
In particular, consider a smooth elliptic cur#eand anyd-fold covering
n:E—E
with £ a smooth elliptic curve. Note that £ = 7*TE and
Xuw(E) = u(E) =1+u+v4uv=(1+u)(1+v).
Hence we have
(1+u)(1+v) = yuw(E) =1z (cU(TE)N[E]) = w5 (cl(x*TE) N[E])

= g5 (l(n*TE)N[E]) = ng«(cl(TE) N 14[E))
=g« (cl(TEYNd[E]) =d -wg«(ct(TE)N[E])
=d-yup(E)=d(l+u)(1+v).

Thus we ge(l +u)(1 +v) =d(1 +u)(1 +v). Sinced # 0, we must have that
(I +u)(1+4v) =0, showing that = —1 orv = —1.

REMARK 3-11. Note thaty, ,(X) is symmetric inu andv; thus both special
cases: = —1 andv = —1 give rise to the samel = T,. It suffices to check this
for a compact nonsingular variefy. In fact this follows from the Serre duality.

REMARK 3-12. The heart of the mixed Hodge structure is certainlyetkis-
tence of the weight filtratio®¥®* and the Hodge—Deligne polynomial, i.e., the
algebraic countingag, involves the mixed Hodge structure, i.e., both the weight
filtration W* and the Hodge filtratiors. However, when one tries to capture
caig functorially, only the Hodge filtrationF, gets involved; the weight filtration
does notas seen in the Hodge genys.
DEFINITION 3-13. For a possibly singular variefy, we call
id
Ty, (X) =Ty, (X = X))

the Hirzebruch class of\".
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COROLLARY 3-14. The degree of theé-dimensional component of the Hirze-
bruch class of a compact complex algebraic vari&tys just the Hodge genus

00 = [ 1,00,
X
This is another singular analogue of the gHRR theorgm=€ 7;), which is a

generalization of the famous Hirzebruch—Riemann—Rocloiiére (which was
further generalized to the Grothendieck—Riemann—Roclorgme):

Hirzebruch—Riemann—Roch:p,(X) =/ td(TX)N[X],
X
with p,(X) the arithmetic genus and/ (V") the original Todd class. Noticing
the above specializations ¢f, and 7),(V'), this gHRR is a unification of the
following three well-known theorems:
y=—1: x(X) :/ c(X)N[X] (Gauss—Bonnet, or Poin@&Hopf)
X

y=0: pa(X)z/ td(X)N[X] (Hirzebruch—-Riemann—Roch)
X

y=1: o(X) =/ L(X)N[X] (Hirzebruch’s Signature Theorem)
X

4. Proofs of the existence of the motivic characteristic cks 7},
Our motivic characteristic class transformation
Ty, : Ko(VAR/X) — HIM (X) ® Q[y]

is obtained as the composite

Ty, = (dBEM o AT

of the natural transformations
AT Ko (VAR/X) — Go(X) ® Z[y]
and

tdEEM - Go(X) @ Z[y) —» HEM (X) @ Qly. (1 + 1) 7]

Here, to describedf’(’;{"[, we need to recall the following Baum—Fulton—
MacPherson’s Riemann—Roch or Todd class for singular tesi@BFM1]:
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THEOREMA4-1. There exists a unique natural transformation
tdf™ : Go(=) = HPM () Q
such that for a smootl’
tdB"M (Ox) = td(TX) N[X].

Here Gy (X) is the Grothendieck group of coherent sheaveskgrwhich is a
covariant functor with the pushforwardy : Go(X) — Go(Y) for a proper
morhphismf : X — Y defined by

Si(F) =) (D[R fiF].
J

Now set
td JPM(X) = 1d FPM (O ):
this is called the Baum—Fulton—MacPherson Todd clasg.of hen

Pa(X) = x(X, OX):/ tdB*M (X) (HRR-type theorem)
X

Let

tdBFM

X projection
tdBFM . Go(X) —— HEM (X)) Q —— HEM (X)®Q
be thei-th (i.e.,2i-dimensional) component off 3™ . Then the abovewisted
BFM-Todd class transformatioor twisted BFM-RR transformatioftf. [Y4])

tdFEM Go(X) @ Z[y] - HIM (X) @ Qly, (1+ »)7']

is defined by

——— 1
BFM ._ BFM
td*(y) = léo s y)itd*i .

In this processA}*": Ko(VAR/X) — Go(X) ® Z[y] is the key. This object
was denoted by:Cy in our paper [BSY1] and called thaotivic Chern class
In this paper, we use the notatiorﬂOt to emphasize the following property of it:

THEOREM 4-2 (“MOTIVIC” A,-CLASS TRANSFORMATION. There exists a
unique natural transformation
AT Ko (VAR/X) = Go(X) ® Z[y]

satisfying the normalization condition that for smodth
. dim X
AMOt( y id _ P1yP — ) *
FUX = XD = 12517 = Ay(TX) ® [Ox].
p=0
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Hered, (T*X) = Y 5" [AP(T* X)]y? and ®[Ox] : K°(X) = Go(X) is an
isomorphism for smooth i.e., taking the sheaf of local sectians

THEOREM4-3. The natural transformation
Ty, = tdEEM o AT Ko(VAR/X) - HM (X) ® Q[y]
C H(X)®Q[y,(1+»™Y
satisfies the normalization condition that for smoath
id
Ty, ([X — X)) =T)(TX)N[X]
Hence such a natural transformation is unique

REMARK 4-4. Why is the image o, in HEM (X)® Q[y]? Even though the
target of

(dBEM  Go(X) ® Z[y] - Hu(X) @ Qly. (1 + )]

is HAM (X)®Qly, (1 + y)~!], the image off},, = zdf(lygf"f o AMis contained

in H.(X)®Q[y]. Indeed, as mentioned, by Hironaka’s resolutlon of singula

ties, induction on dimension, the normalization condltland the naturality of
Ty, the domaink((VAR/X) is generated byl LR X with /4 proper andV/

smooth. Hence
Ty, (V5 X)) =Ty, (halV 25 V]) = ha (T, (V5 V]) € HEM (X) Q).

PROOF OFTHEOREM4-3. In [BSY1] we gave a slick way of proving this. Here
we give a nonslick, direct one. Léf be smooth.

tdBEM o Aoy 5 x))

*(»)
fdﬁ’;?d (200 = Tt ™ Gy (200
— BFM
=Xq - Sy (1M 0 (20)),
— 1 BFM *
=L gyt T 0 @[0xD);
-z (1+1y)l (ch(uy (T* X)) N 1d BFM (Oy)),
= § O (T X N @d(TX) LKD),
_ 1 dimX1 o dimX aj -
—§(1+y),(n(+y€ )H - ’)dimXi Wl
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Furthermore we have

1 (dlln_][X( o )dllnl[X aj
14 ye ™™ — )
(14y) =1 1= Jgimx—i

(1+y)d|mX (dilnl[X 1+y€_aj diln'_1[X a; )
T (+y) j=1 14y 1—e™% )i v

dim X —a; dimX
imX—i 1+ye™® aj
:(1+y)dlle(l_[ 1—[ |
j=1 1+y o 1-e 4 ) dim x—i

_ dilm_[X l_l_ye—otj dilm_[X cx,(l—l—y)
j=1 1+y =1 1—e a](l—i-y) mX—i

j=1

J

dim X 1+ye % oi(1+y)
I+y -~ (1) dim X —i

(d aj(1+y)

_ C a_y)
—11 T—e= T v

= (Ty(TX))dim X—i

Thereforerd BEM o ATOH(X 5 X)) = T,,(TX) N [X]. 0

It remains to show Theorem 4-2. There are at least three greath with its
own advantages.

FIRST PROOF(using Saito’s theory of mixed Hodge modules [Sal; Sa2; Sa3;
Sa4; Sab; Saf]).

Even though Saito’s theory is very complicated, this apgno@rns out to
be useful and for example has been used in recent works ofe@abibgober,
Maxim, Schirmann and Shaneson [CLMS1; CLMS2; CMS1; CMS2; CMSS;
MS1; MS2], related to intersection (co)homology. Here wealieonly the in-
gredients which we need to defiméy“(’t:

MHM1 : To X one can associate an abelian categomnibied Hodge modules
MHM (X)), together with a functorial pullback™* and pushforward, on the
level of bounded derived categorig¥” (MHM(X)) for any (not necessar-
ily proper) map. These natural transformations are fusctdrtriangulated
categories.

MHM2 : Leti : Y — X be the inclusion of a closed subspace, with open
complementj : U := X\Y — X. Then one has foM € D’MHM(X) a
distinguished triangle

1
jgj*M—>M—>iyl'*M[—l .
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MHMS : For all p € Z one has a “filtered De Rham complex” functor of trian-
gulated categories

gr DR : D®(MHM(X)) — Db, (X)

commuting with proper pushforward. Hen@é’oh(X) is the bounded de-

rived category of sheaves 6¥y-modules with coherent conomology sheaves.
Moreover, ngR(M) = 0 for almost allp and M € D?’MHM(X) fixed.

MHM4 : There is a distinguished eleme@ﬂ € MHM(pt) such that
orf, DRQY) ~ 25[-pl € Diy(X)

for X smooth and pure-dimensional. He@d! := 7} QF for ny : X — pr
a constant map, Wiﬂ@g viewed as a complex concentrated in degree zero.

The transformations above are functors of triangulateégrates; thus they
induce functors even on the level Gfothendieck groups of triangulated cate-
gories which we denote by the same name. Note that for tii&sthendieck
groupswe have isomorphisms

Ko(DPMHM(X)) ~ Ko(MHM(X)) and Ko (D2 (X)) ~ Go(X)

by associating to a complex its alternating sum of cohompofgjects.
Now we are ready for the transformatiomsd and gf, DR. Define

mH : Koy(VAR/X) — Ko(MHM(X)) by mH(V L X)) := Q)

In a senseK o (MHM (X)) is like the abelian group of “mixed-Hodge-module
constructible functions”, with the class @‘f as a “constant function” orX'.
The well-definedness ok H, i.e., the additivity relation follows from property
(MHM2). By (MHM3) we get the following homomorphism commug with
proper pushforward:

orf, DR : Ko(MHM(X)) — Go(X) ® Z[y, y 1]
defined by

grf, DR((M)) := > " [grF , DR(M)]- (—y)?
D

Then we define ouﬂ;‘“c’t as the composite of these two natural transformations:
AT =gt DRomH : Ko(VAR/X)

mH oarf . DR

—> Ko(MHM(X)) —— Go(X) ® Z[y].
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By (MHM4), for X smooth and pure-dimensional we have

dim X
gl DRomH(lidx]) = ) [27]-y” € Go(X) ®Z[y].
p=0

Thus we get the unique existence of the “motivic;-class transformation
Amot_ O
y

SECOND PROOFusing the filtered Du Bois complexes [DB]). Recall the sur-
jective homomorphism

A ISOPPVAR/X) — Kog(VAR/X).
We can describe its kernel as follows:

THEOREM4-5. Ko(VAR/X) is isomorphic to the quotient t60®°(VAR/ X)
modulo the “acyclicity” relation

[— X]=0 and [X' > X]-[Z = X]=[X— X]-[Z' — X]. (ac)
for any cartesian diagram
7 — X
Lk

7z Ly X,

with ¢ proper, i a closed embeddingndg : X'\ Z’ — X'\ Z’ an isomorphism
For a proper magX’ — X, consider the filtered Du Bois complex

(L2, F),
which has the following properties:

(1) 2%, is a resolution of the constant sheaf

(2) 9ri(2%/) € DE(X).

(3) Let DR(Ox-) = £2%, be the de Rham complex a&f’ with o being the stupid
filtration. Then there is a filtered morphism

(2%, 0) = (2% F).
If X’ is smooth, this is a filtered quasi-isomorphism.
Note thatGo(X") = Ko(D?,(X")). Let us define

[ (%)) := 3 (=) HE(Gr(25)) € Ko(Dly(X')) = Go(X).
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THEOREM4-6. The transformation
AT Ko(VAR/X) — Go(X) @ Z[y]
defined by

AT L X)) = S hfgrd (23))(—0)?
P

is well-defined and is the unique natural transformationissaig the normal-
ization condition that for smootl

dim X
y )
AT 5 X)) = Y (2817 = 4y (T*X) ® Oy
p=0

ProoF The well-definedness follows from the fact thaf™' preserves the
acyclicity relation above [DB]. Then uniqueness followsrfr resolution of sin-
gularities and the normalization condition for smooth &teis. O

REMARK 4-7. WhenX is smooth, we have

[or2(23)] = (-1)7[24]!
Thatis why we need-y)?, instead ofy?, in the definition ofA}"'([X” L X)).
REMARK 4-8. Wheny = 0, we have the natural transformation
AT Ko (VAR X) — Go(X)  defined by AT(X 25 X]) = h,[gr%(2%)]
satisying the normalization condition that for a smodth

ATy 2 x)) = (0], 0

THIRD PROOF(using Bittner’s theorem oKy (VAR /X) [Bi]). Recall the sur-
jective homomorphism

B :1s”P(SM/X) = Ko(VAR/X).

Its kernel is identified by F. Bittner and E. Looijenga asdulf [Bi]:

THEOREM 4-9. The groupKo(VAR/X) is isomorphic to the quotient of
IsoP™°P(SM/ X) (the free abelian group generated by the isomorphism classes
of proper morphisms from smooth varietiesX¢ by the “blow-up” relation

[&— X]=0 and [Bly X’ = X]—[E — X]=[X'— X]—[Y — X], (bl)
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for any cartesian diagram

/7

E — 5 Bly X/

Wk

Yy —— X/ — X,

with / a closed embedding of smodpure-dimensionalspaces and’: X' — X
proper. HereBly X’ — X" is the blow-up off” along Y with exceptional divi-
sor E. Note that all these spaces ovErare also smootkand pure-dimensional
and/or quasiprojectivgif this is the case foX” andY).

The proof of this theorem requires the Weak Factorizatioeofém, due to
D. Abramovich, K. Karu, K. Matsuki and J. Wiodarczyk [AKMWk¢e also
[WIo]). O

COROLLARY 4-10. (1) Let B« : VAR / k — AB be a functor from the category
var/ k of (reduced separated schemes of finite type ospeck) to the cate-
gory of abelian groupswhich is covariantly functorial for proper morphisins
with B, (@) :={0}. Assume we can associate to ggyasiprojectivi smooth
spaceX € ob(VAR/ k) of pure dimension a distinguished element

bx € Bx(X)

such thath«(¢x+) = ¢x for any isomorphisnk : X’ — X. There exists a
unique natural transformation

@ 1 1SP"P(SM /=) — By(—)

satisfying the “normalization” condition that for any smihoX

o(x 2 X)) = .
(2) Let B« : VAR /k — AB and¢x be as above and furthermore we assume
that
4 (PBly x) — ixqx(PE) = bx — ix(dy) € Bx(X)
for any cartesian blow-up diagram as in the above Bitthehisdrem with
f =idy. Then there exists a unigque natural transformation
@ : Kg(VAR/—) — Bx(—)

satisfying the “normalization” condition that for any smibhoX

idy

o(X 25 X)) = .
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We will now use Corollary 4-10(2) to conclude our third pro&@onsider the
coherent shea@)’} € Go(X) of a smoothX as the distinguished elemepy of
a smoothX'. It follows from M. Gros’s work [Gr] or the recent work of Gi&n
and Navarro Aznar [GNA] that it satisfies the blow-up relatio

G+ (Rg), x) —ixq3(2F) = 25 —ix(2y) € Go(X),
which in turn implies a blow-up relation for the,-class:

G+ (y (Z81y X)) = ixda 0y (2)) = Ay (2x) — i (Ay (2y)) € Go(X) ® Zy].
Therefore Corollary 4-10(2) implies this:
THEOREM4-11. The transformation
AT Ko (VAR/X) — Go(X) ® Z[y]
defined by
AT 2 x) = e (2417 ).

p=0
where X’ is smooth and: : X’ — X is proper, is well-defined and is a unique
natural transformation satisying the normalization carah that for smoothY

dim X
id
ATNX 5 X)) = Y [R2y? =4 (T*X) ® O.
p=0

REMARK 4-12. The virtual Poincé& polynomial 3; (Remark 2-11) for the
categoryVAR(R) of real algebraic varieties is the unique homomorphism

B:: Ko(WAR(R)) — Z[t] such thai8,(R!) =¢

and g;(X) = P;(X) is the classical or usual topological Poinegolynomial
for compact nonsingular varieties. The proof of the existeaof 8;, thus §;,
also uses Corollary 4-10(2); see [MP1]. Speaking of the &agnpolynomial
P;(X), we emphasize that this polynoimal cannot be a topologigahting at
all in the category of topological spaces, simply becauseatigument in the
proof of Proposition 2-4 does not work! The Poinegrolynomial P;(X) is
certainly amultiplicativetopological invariant, but not aadditiveone.

REMARK 4-13. The virtual Poinc&rpolynomialB; : Ko(VAR(R)) — Z|[t] is

the uniqueextension of the Poincarpolynomial P;(X) to arbitrary varieties.
Note that if we consider complex algebraic varieties, thiual Poincag poly-

nomial

Bt : Ko(VAR) — Z][t]
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is equal to the following motivic characteristic, using yitie weight filtration:
wx(X) =Y (=)' dimg(Gry” H.(X,C))t4,

because on any smooth compact complex algebraic vakietiyey are all the
same: B,(X) = P;(X) = wx(X). These last equalities follow from the fact
that the Hodge structures di* (X, Q) are of pure weight.

This “weight filtration” motivic characteristiav x(X) is equal to the spe-
cialization y_; —,; of the Hodge—Deligne polynomial f¢r, v) = (—¢, —¢). This
observation implies that therens class versiorf the complex virtual Poincér
polynomial§; : Ko(VAR) — Z][t]. In other words, there is no natural transfor-
mation

1: Ko(VAR/=) — HM (—) ® Zl1]
satisfying the conditions that

e if X is smooth and compact, thé X EX—» X)) = cl(TX)N[X] for some
multiplicative characteristic class of complex vector tas; and
* §(pt) = B : Ko(VAR) — Z1].

This is becausg,;(X) = x—;,—:(X) for a smooth compact complex algebraic
variety X' (hence for allX’), and so, as in Remark 3-10, one can conclude that
(—t,—t) = (—1,—1). Thust has to be equal tb and cannot be allowed to vary.

In other words, the only chance for such a class version iswwhe 1, which
gives the Euler—Poincarcharacteristig : Ko(VAR) — Z. In that case, we do
have the Chern class transformation

cx: Ko(VAR/—) — HEM (—. 7).

This follows again from Corollary 4-10(2) and the blow-uprfaula of Chern
class [Full.

REMARK 4-14. The same discussion as in Remark 4-13 can be applibeé to t
context of real algebraic varieties, i.e., the same exarfoplesal elliptic curves
leads us to the conclusion that= 1 for §; satisfying the corresponding nor-
malization condition for a normalized multiplicative chateristic class. This
class has to be a polynomial in the Stiefel-Whitney classaswe end up with
the Stiefel-Whitney homology class,, which also satisfies the corresponding
blow-up formula.

REMARK 4-15 (POOR MAN S MOTIVIC CHARACTERISTIC CLASYS. If we use
the much simpler covariant functor B&’(SM/ X) above (the abelian group of
“poor man’s motivic functions”), we can get the followingdpr man’s motivic
characteristic class” for any characteristic claé®f vector bundles: Let{ be
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any characteristic class of vector bundles with coefficieng rkh. There exists
a unique natural transformation

cly :15PP(SM/—) > HEM ()@ K
satisfying the normalization condition that for any smowadhiety X',
b (X 25 X)) = ct(TX) N [X].

There is a bivariant theoretical version of ¥88(SM/X) (see [Y7]); a good
reference for it is Fulton and MacPherson’s AMS memoir [FM].

5. Chern class, Todd class and L-class of singular varieties
towards a unification

Our next task is to describe another main theorem of [BSY1hé effect that
our motivic characteristic class, , is, in a sense, a unification of MacPherson’s
Chern class, the Todd class of Baum, Fulton, and MacPhedéscuésed in the
previous section), and the L-class of singular varietieSafpell and Shaneson.
Let’s briefly review these classes:

MacPherson’s Chern clasfM1]

THEOREM5-1. There exists a unique natural transformation
e F(=) — HPM ()
such thatfor smooth’,
c*(Lx) = «(TX) N[X].
Here F(X) is the abelian group of constructible functigreghich is a covariant

functor with the pushforwardy : F(X) — F(Y) for a proper morphism/ :
X — Y defined by

@) ) = xe (ST )W),

We callcMa¢(x) := ¢Ma¢(1y) the MacPherson’s Chern class¥f or the Chern—
Schwartz—MacPherson class. We have

ﬂD=LﬂWD-
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The Todd class of Baum, Fulton, and MacPhersgBFM1]
THEOREM5-2. There exists a unique natural transformation
tdfM : Go(-) »> HEM (-) 2 Q
such thatfor smooth’,
tdB"M (Ox) = 1d(TX) N[X].

Here Gy (X) is the Grothendieck group of coherent sheaveskgrwhich is a
covariant functor with the pushforwardy : Go(X) — Go(Y) for a proper
morphismf : X — Y defined by

JF) =Y (D[R foF.

J

We calltd BFM (X') := td BFM (Oy ) the Baum—Fulton—-MacPherson Todd class
of X', and we have

palX) = 1.0 = [ 1d2PM ().
The L-class of Cappell and Shanesd@S1; Sh] (cf. [Y4])
THEOREM5-3. There exists a unique natural transformation
LS 2(-) - HPM () eQ
such thatfor smooth’,
LES(ZCy) = L(TX)N[X].

Here £2(X) is the abelian group of Youssin's cobordism classes ofdagdf-
constructible complexes of sheavesion

We call LéM (X)) := LS (ZCx) the Goresky—MacPherson homologyclass
of X. The Goresky—MacPherson theorem [GM] says that

oM (x) = / LM ().
X

We now explain in what sense our motivic characteristicscteansformation
Ty, : Ko(VAR/X) — HM (X) ® Q[

unifies these three characteristic classes of singulagtiesj providing a kind of
partial positive answer to MacPherson’s questiohwhether there is a unified
theory of characteristic classes of singular varieties

4Posed in his survey talk [M2] at the Ninth Brazilian MatheigColloquium in 1973.
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THEOREM5-4 (UNIFIED FRAMEWORK FORCHERN, TODD AND HOMOLOGY
L-CLASSES OF SINGULAR VARIETIES.

y =—1: There exists a unique natural transformationK o (VAR /—) — F(—)
such that for X nonsingular ¢([id : X — X]) = 1y, and the following
diagram commutes

Ko(VAR/X) £ F(X)

km

HEM(X)®Q

y =0: There exists a unique natural transformatipn Ko (VAR /—) — Go(—)
such that for X nonsingular y([id : X — X]) = [Ox], and the following
diagram commutes

Ko(VAR/X)

Go(X)
To- %
HEM(X)®Q

y = 1: There exists a unique natural transformatioh: Ko (VAR /—) — 2(—)
such that for X nonsingular sd([id : X — X]) = [Qx[2dim X7]], and the
following diagram commutes

sd

T1 %

HEM(X)®Q.

Ko(VAR/X)

2(X)

The first two claims are straightforward; the third, the case 1, is anything
but. In particular, the existence off : Ko(VAR/—) — $2(—) is not obvious
at all. The only way we know to prove it is by going through sodetails
of Youssin's work [You] and using Corollary 4-10(2) againhig is done in
[BSY1]; see also [BSY2; SY].

REMARK 5-5.y = —1: T_,(X) = M¢(X) ® Q.
y = 0: In general, for a singular variety we have
mot idx
Ay ([X — X]) # [Ox].

Therefore, in generally, (X) #td BFM (X). So, ourTy,(X) shall be called
the Hodge—Todd class and denotedt i (X'). However, if X is a Du Bois
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variety, i.e., every point off” is a Du Bois singularity (note a nonsingular
point is also a Du Bois singularity), we DO have
id
ATX =5 X)) =[Ox].
This is because of the definition of Du Bois variety: is called a Du Bois
variety if we have
Ox = grg(DR(Ox)) == gry-(2%).

Hence, for a Du Bois variety we haveTy . (X) =1dBFM (X). For example,
S. Kovacs [Kov] proved Steenbrink’s conjecture that rationadsiarities are
Du Bais, thus for the quotient” of any smooth variety acted on by a finite
group we have thafy, (X) = tdBFM (Xx).

y=1: Ingeneralsd([X Hx, X)) is distinct fromZCy, soT; . (X) # L¢M (X).
We therefore calll; . (X) the Hodge L-classand denote it, alternatively, by
LH(X). Itis conjectured thaf’ . (X) # LM (X) for a rational homology
manifold X'.

6. A few more conjectures

CONJECTUREG-1. Any natural transformation
T : Ko(VAR/X) — HM (X) ® Qly]
without the normalization condition is a linear combinatiof components of
the formed,, ; : Ko(VAR/X) — HEM (X) @ Q[y]:
T =Y riyidy,; () Q).
i>0
This conjecture means that the normalization conditiorsfoooth varieties im-

posed to get our motivic characteristic class can be bésidabpped This
conjecture is motivated by the following theorems:

THEOREM6-2 [Y1]. Any natural transformation
T:Go(-)— HM () ®Q
without the normalization condition is a linear combinatiof components
td M Go(-) - HM(-) ® Q.
that is,
T = Zrl- deI;M (ri € Q).

i=0
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THEOREM6-3 [KMY]. Any natural transformation
T:F(-)—> HM () eQ
without the normalization condition is a linear combinatiof components
¥ ®Q: Go(-) — HM () ®Q

of therationalizedMacPherson’s Chern clas$'®°® Q (i.e., a linear combina-
tion of ¢M3¢ mod torsion:

T=Yrd™eQ (recQ.

i=0

REMARK 6-4. This theorem certainly implies the uniqueness of sucaresfor-
mationcMa¢ @ Q satisfying the normalization. The proof of Theorem @&s
not appeal to the resolution of singularities at all, therefam@dulo torsion the
uniqueness of the MacPherson’s Chern class transformaffsiis proved with-
out using resolution of singularities. However, in the caflSateger coefficients,
as shown in [M1], the uniquenessaf?¢ uses the resolution of singualrities and
as far as the author knows, there is no proof available witheing this result.
Does there exist any mysterious connection between résolot singularities
and finite torsion? (In this connection we quote a comment [8ciirmann:

There is indeed a relation between resolution of singigariand torsion
information: in [Tol] B. Totaro shows by resolution of singtities that
the fundamental clagd’] of a complex algebraic variet¥ lies in the im-
age from the complex cobordisf¥ (X) — H,(X,Z). And this implies
some nontrivial topological restrictions: for examplé,ald-dimensional
elements of the Steenrod algebra vanisii.ohviewed in H (X, Zj).)

Furthermore, hinted by these two theorems, it would be abtarspeculate the
following “linearity” on the Cappell-Shanesai-class also:

CONJECTUREG-5. Any natural transformation without the normalization con-
dition

T:2(-)—HM-eQ
is a linear combination of component$’™; : 2(—) - HEM () @

T = Zr,« LSS (ri e Q).

i=0
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7. Some more remarks

For complex algebraic varieties there is another importamology the-
ory. That is Goresky—MacPhersonigtersection homology theoryH, intro-
duced in [GM] (see also [KW]). It satisfies all the propertidsich the ordinary
(co)homology theory for nonsingular varieties have, intipatar the Poincar
duality holds, in contrast to the fact that in general itddibr the ordinary
(co)homology theory of singular varieties. In order that tPoincag duality
theorem holds, one needs to control cycles accordingetwersity which is
sensitive to, or “control”, complexity of singularities. .\3aito showed thatH
satisfies pure Hodge structure just like the cohomologgfiesi the pure Hodge
structure for compact smooth manifolds (see also [CaMilMi2h. In this
sense,/H is a convenient gadget for possibly singular varieties, @sidg the
IH, we can also get various invariants which are sensitive @ostructure of
given possibly singular varieties. For the historyldf, see Kleiman’s survey
article [KI], and for L,-cohomology—very closely related to the intersection
homology — see [CGM; Go; Lol; SS; SZ], for example. Thus far tategory
of compact complex algebraic varieties two competing maehare available:

ordinary (cojhomology+ mixed Hodge structures
intersection homology+ pure Hodge structures

Of course, they are the same for the subcategory of compamithruarieties.

So, for singular varieties one can introduce the similaaiants using/ H;
in other words, one can naturally think of thé7-version of the Hirzebruch
Xy genus, because of the pure Hodge structure, deno}@”éy Thus we have
invariantsy ,-genus and(§H—genus. As to the class version of these, one should
go through the derived category of mixed Hodge modules,usecthe intersec-
tion homology sheaf lives in it. Then obviously the diffecerbetween these two
genera or between the class versions of these two generkl sfoone from the
singularities of the given variety. For this line of invegttion, see the articles by
Cappell, Libgober, Maxim, and Shaneson [CMS1; CMS2; CLMSIMS2].

The most important result is ti@ecomposition Theorewf Beilinson, Bern-
stein, Deligne, and Gabber [BBD], which was conjectured.by.IGelfand and
R. MacPherson. A more geometric proof of this is given in theve mentioned
paper [CaMil] of M. de Cataldo and L. Migliorini.

Speaking of the intersection homology, the general cajefyor/H is the
category of pseudomanifolds and the canonical and wellistiuinvariant for
pseudomanifolds is the signature, because of the P@rthsality of /H. Ba-
nagl’s monograph [Bal] is recommended on this topic; see [@82; Ba3,;
Ba4; BCS; CSW; CW; Wei]. Very roughlyl),, is a kind of deformation or
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perturbation of Baum—Fulton—MacPherson’s Riemann—Rietould be inter-
esting to consider a similar kind of deformation bfclass theory defined on
the (co)bordism theory of pseudomanifolds. Again we quotchiirmann:

A deformation of thel.-class theory seems not reasonable. Only the signa-
ture = x;-genus factorizes over the oriented cobordism @, so that

this invariant is of more topological nature related totifiesd spaces. For
the other desired (“deformation”) invariants one needsmapiex algebraic

or analytic structure. So what is missing up to now is a stetéeory of
almost complex stratified spaces.

Finally, since we started the present paper with countirggend with posing
the following question: how about counting pseudomangaldspecting the
structure of pseudomanifolds:

Does “stratified counting”csyra make sense?

For complex algebraic varieties, which are pseudomarsfadiyebraic count-
ing calg (Using mixed Hodge theory = ordinary (co)homology theory ixed
Hodge structure) in fact ignores the stratification. Sohis possible problem,
one should consider intersection homology + pure Hodgectsire, although
intersection homologys a topological invariant, and hence independent of the
stratification

J. Sclirmann provides one possible answer to the highlightectiquesbove:

One possible answer would be to work in the complex algelmaitext
with a fixed (Whitney) stratificationY,, so that the closure of a stratum
S is a union of strata again. Then one can work with the Grotieekd
group Ko (X,.) of Xe-constructible sets, i.e., those which are a union of
such strata. The topological additive counting would batesl again to
the Euler characteristic and the grokipX,) of X.-constructible functions.

A more sophisticated version is the Grothendieck gréiygXe) of X,-
constructible sheaves (or sheaf complexes). These areageti®y classes
J1Lg for j : S — X, the inclusion of a stratun§, andL g a local system
on S, and also by the intermediate extensighsl s, which are perverse
sheaves. In relation to signature and duality, one can waitk thve cor-
responding cobordism group (X, ) of Verdier self-dualX,-constructible
sheaf complexes. These are generatedibi. s, with Lg a self-dual lo-
cal system orS'. Finally one can also work with the Grothendieck group
Ko(MHM(X,)) of mixed Hodge modules, whose underlying rational com-
plex is Xe-constructible. This last group is of course not a topolabic
invariant.

We hope to come back to the problem of a possible “stratifiethting” csira.
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