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Functional determinants in higher dimensions
using contour integrals

KLAUS KIRSTEN

ABSTRACT. In this contribution we first summarize how contour integration
methods can be used to derive closed formulae for functional determinants
of ordinary differential operators. We then generalize our considerations to
partial differential operators. Examples are used to show that also in higher
dimensions closed answers can be obtained as long as the eigenvalues of the
differential operators are determined by transcendental equations. Examples
considered comprise of the finite temperature Casimir effect on a ball and the
functional determinant of the Laplacian on a two-dimensional torus.

1. Introduction

Functional determinants of second-order differential operators are of great
importance in many different fields. In physics, functional determinants pro-
vide the one-loop approximation to quantum field theories in the path integral
formulation [21; 48]. In mathematics they describe the analytical torsion of a
manifold [47].

Although there are various ways to evaluate functional determinants, the zeta
function scheme seems to be the most elegant technique to use [9; 16; 17; 31].
This is the method introduced by Ray and Singer to define analytical torsion
[47]. In physics its origin goes back to ambiguities in dimensional regularization
when applied to quantum field theory in curved spacetime [11; 29].

For many second-order ordinary differential operators surprisingly simple an-
swers can be given. The determinants for these situations have been related to
boundary values of solutions of the operators, see, e.g., [8; 10; 12; 22; 23;
26; 36; 39; 40]. Recently, these results have been rederived with a simple and
accessible method which uses contour integration techniques [33; 34; 35]. The
main advantage of this approach is that it can be easily applied to general kinds

307



308 KLAUS KIRSTEN

of boundary conditions [35] and also to cases where the operator has zero modes
[34; 35]; see also [37; 38; 42]. Equally important, for some higher dimensional
situations the task of finding functional determinants remains feasible. Once
again closed answers can be found but compared to one dimension technicalities
are significantly more involved [13; 14]. It is the aim of this article to choose spe-
cific higher dimensional examples where technical problems remain somewhat
confined. The intention is to illustrate that also for higher dimensional situations
closed answers can be obtained which are easily evaluated numerically.

The outline of this paper is as follows. In Section 2 the essential ideas are
presented for ordinary differential operators. In Section 3 and 4 examples of
functional determinants for partial differential operators are considered. The
determinant in Section 3 describes the finite temperature Casimir effect of a
massive scalar field in the presence of a spherical shell [24; 25]. The calcu-
lation in Section 4 describes determinants for strings on world-sheets that are
tori [46; 50] and it gives an alternative derivation of known answers. Section 5
summarizes the main results.

2. Contour integral formulation of zeta functions

In this section we review the basic ideas that lead to a suitable contour integral
representation of zeta functions associated with ordinary differential operators.
This will form the basis of the considerations for partial differential operators
to follow later.

We consider the simple class of differential operators

P WD �
d2

dx2
CV .x/

on the interval I D Œ0; 1�, where V .x/ is a smooth potential. For simplicity we
consider Dirichlet boundary conditions. From spectral theory [41] it is known
that there is a spectral resolution f�n; �ng

1
nD1

satisfying

P�n.x/D �n�n.x/; �n.0/D �n.1/D 0:

The spectral zeta function associated with this problem is then defined by

�P .s/D

1X
nD1

��s
n ; (2-1)

where by Weyl’s theorem about the asymptotic behavior of eigenvalues [49] this
series is known to converge for Re s > 1

2
.

If the potential is not a very simple one, eigenfunctions and eigenvalues will
not be known explicitly. So how can the zeta function in equation (2-1), and in
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particular the determinant of P defined via

det P D e��
0
P
.0/;

be analyzed? From complex analysis it is known that series can often be eval-
uated with the help of the argument principle or Cauchy’s residue theorem by
rewriting them as contour integrals. In the given context this can be achieved as
follows. Let �2C be an arbitrary complex number. From the theory of ordinary
differential equations it is known that the initial value problem

.P ��/u�.x/D 0; u�.0/D 0; u0�.0/D 1; (2-2)

has a unique solution. The connection with the boundary value problem is made
by observing that the eigenvalues �n follow as solutions to the equation

u�.1/D 0I (2-3)

note that u�.1/ is an analytic function of �.
With the help of the argument principle, equation (2-3) can be used to write

the zeta function, equation (2-1), as

�P .s/D
1

2� i

Z


d� ��s d

d�
ln u�.1/: (2-4)

Here,  is a counterclockwise contour and encloses all eigenvalues which we
assume to be positive; see Figure 1. The pertinent remarks when finitely many
eigenvalues are nonpositive are given in [35].

The asymptotic behavior of u�.1/ as j�j !1, namely

u�.1/�
sin
p
�

p
�
;

implies that this representation is valid for Re s > 1
2

. To find the determinant
of P we need to construct the analytical continuation of equation (2-4) to a
neighborhood about sD0. This is best done by deforming the contour to enclose

-
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Figure 1. Contour  used in equation (2-4).



310 KLAUS KIRSTEN

-

6

�	- q q q q q q q q q q
�-plane

Figure 2. Contour  used in equation (2-4) after deformation.

the branch cut along the negative real axis and then shrinking it to the negative
real axis; see Figure 2.

The outcome is

�P .s/D
sin�s

�

Z 1
0

d� ��s d

d�
ln u��.1/: (2-5)

To see where this representation is well defined notice that for � ! 1 the
behavior follows from [41]

u��.1/�
sin.i
p
�/

i
p
�
D

e
p
�

2
p
�

�
1� e�2�

�
:

The integrand, to leading order in �, therefore behaves like ��s�1=2 and con-
vergence at infinity is established for Re s > 1

2
. As � ! 0 the behavior ��s

follows. Therefore, in summary, (2-5) is well defined for 1
2
<Re s < 1. To shift

the range of convergence to the left we add and subtract the leading � ! 1
asymptotic behavior of u��.1/. The whole point of this procedure will be to
obtain one piece that at sD 0 is finite, and another piece for which the analytical
continuation can be easily constructed.

Given we want to improve the �!1 behavior without worsening the �! 0

behavior, we split the integration range. In detail we write

�P .s/D �P;f .s/C �P;as.s/; (2-6)

where

�P;f .s/D
sin�s

�

Z 1

0

d� ��s d

d�
ln u��.1/

C
sin�s

�

Z 1
1

d� ��s d

d�
ln
�
u��.1/2

p
�e�
p
�
�
; (2-7)

�P;as.s/D
sin�s

�

Z 1
1

d� ��s d

d�
ln

e
p
�

2
p
�
: (2-8)
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By construction, �P;f .s/ is analytic about s D 0 and its derivative at s D 0 is
trivially obtained,

�0P;f .0/D ln u�1.1/� ln u0.1/� ln
�
u�1.1/2e�1

�
D� ln

2u0.1/

e
: (2-9)

Although the representation (2-8) is only defined for Re s > 1
2

, the analytic
continuation to a meromorphic function on the complex plane is found usingZ 1

1

d� ��˛ D
1

˛� 1
for Re˛ > 1:

This shows that

�P;as.s/D
sin�s

2�

�
1

s� 1=2
�

1

s

�
;

and furthermore
�0P;as.0/D�1:

Adding up, the final answer reads

�0P .0/D� ln.2u0.1//: (2-10)

For the numerical evaluation of the determinant, not even one eigenvalue is
needed. The only relevant information is the boundary value of the unique
solution to the initial value problem�

�
d2

dx2
CV .x/

�
u0.x/D 0; u0.0/D 0; u00.0/D 1:

General boundary conditions can be dealt with as easily. The best formula-
tion results by rewriting the second-order differential equation as a first-order
system in the usual way. Namely, we define v�.x/D du�.x/=dx such that the
differential equation (2-2) turns into

d

dx

�
u�.x/

v�.x/

�
D

�
0 1

V .x/�� 0

��
u�.x/

v�.x/

�
: (2-11)

Linear boundary conditions are given in the form

M

�
u�.0/

v�.0/

�
CN

�
u�.1/

v�.1/

�
D

�
0

0

�
; (2-12)

where M and N are 2�2 matrices whose entries characterize the nature of the
boundary conditions. For example, the previously described Dirichlet boundary
conditions are obtained by choosing

M D

�
1 0

0 0

�
; N D

�
0 0

1 0

�
:
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In order to find an implicit equation for the eigenvalues like equation (2-3) we
use the fundamental matrix of (2-11). Let u

.1/

�
.x/ and u

.2/

�
.x/ be linearly inde-

pendent solutions of (2-11). Suitably normalized, these define the fundamental
matrix

H�.x/D

 
u
.1/

�
.x/ u

.2/

�
.x/

v
.1/

�
.x/ v

.2/

�
.x/

!
; H�.0/D Id2�2:

The solution of (2-11) with initial value .u�.0/; v�.0// is then obtained as�
u�.x/

v�.x/

�
DH�.x/

�
u�.0/

v�.0/

�
:

The boundary conditions (2-12) can therefore be rewritten as

.M CNH�.1//

�
u�.0/

v�.0/

�
D

�
0

0

�
: (2-13)

This shows that the condition for eigenvalues to exist is

det.M CNH�.1//D 0;

which replaces (2-3) in case of general boundary conditions. The zeta function
associated with the boundary condition (2-12) therefore takes the form

�P .s/D
1

2� i

Z


d� ��s d

d�
ln det.M CNH�.1//

and the analysis proceeds from here depending on M and N . If P represents
a system of operators one can proceed along the same lines. Note that we have
replaced the task of evaluating the determinant of a differential operator by one
of computing the determinant of a finite matrix.

The procedure just outlined is by no means confined to be applied to ordi-
nary differential operators only. In fact, the zeta function associated with many
boundary value problems allowing for a separation of variables can be analyzed
using this contour integral technique. In more detail, starting off with some
coordinate system (see [43], for example), eigenvalues are often determined by

Fj .�j ;n/D 0;

where j is a suitable quantum number depending on the coordinate system con-
sidered and Fj is a given special function depending on the coordinate system;
e.g. for ellipsoidal coordinate systems the relevant special function is the Math-
ieu function. Continuing along the lines described above, denoting by dj an
appropriate degeneracy that might be present, we write somewhat symbolically

�P .s/D
X

j

dj
1

2� i

Z


d���s d

d�
ln Fj .�/; (2-14)
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the task being to construct the analytical continuation of this object to sD0. The
details of the procedure will depend very much on the properties of the special
function Fj that enters. For example, on balls Bessel functions are relevant [4; 6;
7], the spherical suspension [3], or sphere-disc configurations [27; 32], involve
Legendre functions, ellipsoidal boundaries involve Mathieu functions etc. For
many examples relevant properties of Fj .�/ are not available in the literature
and need to be derived using techniques of asymptotic analysis [41; 44; 45]. For
quite common coordinate systems like the polar coordinates this is not necessary.
When the asymptotics is known, the relevant integrals resulting in (2-14) need
to be evaluated and closed expressions representing the determinant of partial
differential operators are found. Although the remaining sums in general cannot
be explicitly performed, the results obtained are very suitable for numerical
evaluation.

3. Finite temperature Casimir energy on the ball

Let us now apply the above remarks about higher dimensions using the gen-
eral formalism described in [14]. As a concrete example we consider the finite
temperature theory of a massive scalar field on the three dimensional ball. Using
the zeta function scheme we have to consider the eigenvalue problem

P��.�; Ex/ WD

�
�

d2

d�2
��Cm2

�
��.�; Ex/D �

2��.�; Ex/; (3-1)

where � is the imaginary time and Ex 2B3 WD fEx 2R3
j j Exj� 1g. We have written

�2 for the eigenvalues to avoid the occurrence of square roots in arguments of
Bessel functions later on.

For finite temperature theory we impose periodic boundary conditions in the
imaginary time,

��.�; Ex/D ��.� Cˇ; Ex/;

where ˇ is the inverse temperature, and for simplicity we choose Dirichlet
boundary conditions on the boundary of the ball,

��.�; Ex/
ˇ̌
j ExjD1

D 0:

The zeta function associated with this boundary value problem is then

�P .s/D
X
�

��2s; (3-2)

and the energy of the system is defined by

E WD �
1

2

@

@ˇ
�0
P=�2.0/; (3-3)
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where � is an arbitrary parameter with dimension of a mass introduced in order
to get the correct dimension for the energy. For a full discussion of its relevance
in the renormalization process in this model at zero temperature see [5]. That
discussion remains completely unchanged at finite temperature and we will put
�D 1 henceforth.

Given the radial symmetry of the problem we separate variables in polar co-
ordinates according to

��.�; r; �; '/D
1
p

r
ei.2�n�=ˇ/J`C1=2.! j̀ r/Y`m.�; '/;

with the spherical surface harmonics Y`m.�; '/ [20] solving

�
1

sin2 �

@2

@'2
�

1

sin �
@

@�
sin �

@

@�
Y`m.�; '/D `.`C 1/Y`m.�; '/;

and with the Bessel function J�.z/, which is the regular solution of the differ-
ential equation [28]

d2J�.z/

dz2
C

1

z

dJ�.z/

dz
C

�
1�

�2

z2

�
J�.z/D 0:

Imposing the boundary condition on the unit sphere,

J`C1=2.! j̀ /D 0; (3-4)

determines the eigenvalues. Namely,

�2
n j̀ D

�
2�n

ˇ

�2

C!2
j̀ Cm2; n 2 Z; ` 2 N0; j 2 N: (3-5)

This leads to the analysis of the zeta function

�P .s/D

1X
nD�1

1X
`D0

1X
jD1

.2`C 1/
�
p2

nC!
2
j̀ Cm2

��s
; (3-6)

where we have used the standard abbreviation pn D 2�n=ˇ. The factor 2`C 1

represents the multiplicity of eigenvalues for angular momentum `.
The zeroes ! j̀ of the Bessel functions J`C1=2.! j̀ / are not known in closed

form and thus we represent the j -summation using contour integrals. Starting
with equation (3-4) and following the argumentation of the previous section,
this gives the identity

�P .s/D

1X
nD�1

1X
`D0

.2`C1/

Z


d�

2� i

�
p2

nC�
2
Cm2

��s d

d�
ln J`C1=2.�/; (3-7)
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valid for Re s>2. The contour  runs counterclockwise and must enclose all the
solutions of (3-4) on the positive real axis. The next step is to shift the contour
and place it along the imaginary axis. As � ! 0 we observe that to leading
order J�.�/ � �

�=.2�� .� C 1// such that the integrand diverges in this limit.
Therefore, we include an additional factor ��`�1=2 in the logarithm in order to
avoid contributions coming from the origin. Because there is no additional pole
enclosed, this does not change the result. Furthermore we should note that the
integrand has branch cuts starting at � D ˙i.p2

n Cm2/. Leaving out the n; `

summations for the moment and considering the �-integration alone, we then
obtain, with � D `C 1

2
,

�P;n`.s/ WD

Z


d�

2� i
.p2

nC�
2
Cm2/�s d

d�
ln
�
���J�.�/

�
D

sin�s

�

Z 1
p

p2
nCm2

dk .k2
�p2

n�m2/�s d

dk
ln
�
k��I�.k/

�
; (3-8)

where J�.ik/D ei��J�.�ik/ and I�.k/D e�i��=2J�.ik/ has been used [28].
The next step is to add and subtract the asymptotic behavior of the integrand

in (3-8). The relevant uniform asymptotics, after substituting k D �z in the
integral, is the Debye expansion of the Bessel functions [1]. We have

I�.�z/�
1

p
2��

e��

.1C z2/1=4

�
1C

1X
kD1

uk.t/

�k

�
; (3-9)

with t D 1=
p

1C z2 and � D
p

1C z2C ln
�
z=.1C

p
1C z2/

�
. The first few

coefficients are listed in [1], higher coefficients are immediately obtained by
using the recursion [1]

ukC1.t/D
1

2
t2.1� t2/u0k.t/C

1

8

Z t

0

d� .1� 5�2/uk.�/; (3-10)

starting with u0.t/D 1. As is clear, all the uk.t/ are polynomials in t . The same
holds for the coefficients Dn.t/ defined by

ln
�

1C

1X
kD1

uk.t/

�k

�
�

1X
nD1

Dn.t/

�n
: (3-11)

The polynomials uk.t/ as well as Dn.t/ are easily found with the help of a
simple computer program. As we will see below, we need the first three terms
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in the expansion (3-11). Explicitly,

D1.t/D
1
8
t � 5

24
t3;

D2.t/D
1

16
t2
�

3
8
t4
C

5
16

t6;

D3.t/D
25

384
t3
�

531
640

t5
C

221
128

t7
�

1105
1152

t9:

(3-12)

Adding and subtracting these terms in (3-8) allows us to rewrite the zeta function
as

�P .s/D �P;f .s/C �P;as.s/;

where

�P;f .s/D
sin�s

�

1X
nD�1

1X
`D0

.2`C1/

Z 1
p

p2
nCm2=�

dz
�
z2�2
�p2

n�m2
��s

�
d

dz

�
ln
�
z��I�.�z/

�
� ln

z��e��
p

2��.1Cz2/1=4
�

D1.t/

�
�

D2.t/

�2
�

D3.t/

�3

�
; (3-13)

�P;as.s/D
sin�s

�

1X
nD�1

1X
`D0

.2`C1/

Z 1
p

p2
nCm2=�

dz
�
z2�2
�p2

n�m2
��s

�
d

dz

�
ln

z��e��
p

2��.1Cz2/1=4
C

D1.t/

�
C

D2.t/

�2
C

D3.t/

�3

�
: (3-14)

The number of terms subtracted in (3-13) is chosen so that �P;f .s/ is analytic
about s D 0. The contributions from the asymptotics collected in (3-14) are
simple enough for an analytical continuation to be found. Although it would be
possible to proceed just with the contribution from inside the ball, in order to
make the calculation as transparent and unambiguous as possible (as far as the
interpretation of results goes) let us add the contribution from outside the ball.

The exterior of the ball, once the free Minkowski space contribution is sub-
tracted, yields the starting point (3-8) with the replacement k��I�! k�K� [5].
In this case the relevant uniform asymptotics is [1]

K�.�z/�

r
�

2�

e���

.1C z2/1=4

�
1C

1X
kD1

.�1/k
uk.t/

�k

�
; (3-15)

where the notation is as in (3-9). This produces the analogous splitting of the
zeta function for the exterior space. Due to the characteristic sign changes in
the asymptotics of I� and K� , adding up the interior and exterior contributions
several cancellations take place. As a result, the zeta function for the total space
has the form

�tot.s/D �tot;f .s/C �tot;as.s/
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with

�tot;f .s/D
sin�s

�

1X
nD�1

1X
`D0

.2`C1/

Z 1
p

p2
nCm2=�

dz
�
z2�2
�p2

n�m2
��s

�
d

dz

�
ln
�
I�.�z/K�.�z/

�
C ln.2�/C 1

2
ln.1C z2/� 2��2D2.t/

�
; (3-16)

�tot;as.s/D
sin�s

�

1X
nD�1

1X
`D0

.2`C1/

Z 1
p

p2
nCm2=�

dz
�
z2�2
�p2

n�m2
��s

�
d

dz

�
� ln.2�/� 1

2
ln.1C z2/C 2��2D2.t/

�
: (3-17)

By construction, �tot;f .s/ is analytic about s D 0 and one immediately finds

�0tot;f .0/D�

1X
nD�1

1X
`D0

.2`C 1/
�

ln
�
I�.�z/K�.�z/

�
C ln.2�/

C
1
2

ln.1Cz2/� 2��2D2.t/
�ˇ̌̌̌

zD
p

p2
nCm2=�

;

(3-18)

with t D 1=
p

1C z2 as defined earlier. Although one could use (3-18) for
numerical evaluation, further simplifications are possible. Following [14] we
rewrite this expression according to

1C z2
D 1C

p2
nCm2

�2
D

�
1C

p2
n

�2

��
1C

m2

�2Cp2
n

�
: (3-19)

The advantage of the right-hand side is that it can be expanded further for
�2!1 or p2

n!1 or both. This will allow us to subtract exactly the behavior
that makes the double series convergent; the oversubtraction immanent in (3-18)
can then be avoided. It is expected that expanding the rightmost factor further for
�2Cp2

n� 1 leads to considerable cancellations when combined with �0tot;as.0/

[14].
We split the asymptotic terms in (3-18) into those strictly needed to make the

sums convergent and those that ultimately will not contribute. For example, we
expand according to

ln.1Cz2/
ˇ̌̌
p

p2
nCm2=�

D ln
�

1C
p2

nCm2

�2

�
D ln

�
1C

p2
n

�2

�
C ln

�
1C

m2

�2Cp2
n

�
D ln

�
1C

p2
n

�2

�
C

m2

�2Cp2
n

C

�
ln
�

1C
m2

�2Cp2
n

�
�

m2

�2Cp2
n

�
:
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The first two terms have to be subtracted in (3-18) in order to make the sum-
mations convergent. The terms in brackets are of the order O.1=.�2 C p2

n/
2/

and even after performing the summations in (3-18) a finite result follows. Thus
the first two terms represent a minimal set of terms to be subtracted in (3-18)
in order to make the sums finite. This minimal set of necessary terms will be
called ln f asym;.1/

`
.i
p

p2
nCm2/. The last two terms can be summed separately

yielding a finite answer; they are summarized under lnf asym;.2/
`

.i
p

p2
nCm2/.

One can proceed along the same lines for all other terms. With the definition

lnf asym
`

.i
p

p2
nCm2/

D� ln.2�/� 1
2

ln.1C z2/C 2��2D2.t/
ˇ̌̌
zD
p

p2
nCm2=�

D lnf asym;.1/
`

.i
p

p2
nCm2/C lnf asym;.2/

`
.i
p

p2
nCm2/ (3-20)

the splitting is

lnf asym;.1/
`

.i
p

p2
nCm2/D� ln.2�/�

1

2
ln
�
1C

p2
n

�2

�
�

1

2

m2

�2Cp2
n

C
2

�2

�
1

16

�
1C

p2
n

�2

��1
�

3

8

�
1C

p2
n

�2

��2
C

5

16

�
1C

p2
n

�2

��3
�
; (3-21)

lnf asym;.2/
`

.i
p

p2
nCm2/D�

1

2
ln
�
1C

m2

�2Cp2
n

�
C

1

2

m2

�2Cp2
n

C
2

�2

�
1

16

�
1C

p2
n

�2

��1
��

1C
m2

�2Cp2
n

��1
� 1

�
�

3

8

�
1C

p2
n

�2

��2
��

1C
m2

�2Cp2
n

��2
� 1

�
C

5

16

�
1C

p2
n

�2
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n

��3
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��
: (3-22)

We have used the given notation for the asymptotics to make a comparison with
[14] as easy as possible. With these asymptotic quantities we rewrite �0tot;f .0/

as

�0tot;f .0/D�

1X
nD�1

1X
`D0

.2`C 1/
�

ln.I�.
p

p2
nCm2/K�.

p
p2

nCm2//

� lnf asym;.1/
`

.i
p

p2
nCm2/

�
C

1X
nD�1

1X
`D0

.2`C 1/ lnf asym;.2/
`

.i
p

p2
nCm2/: (3-23)
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Let us next analyze �0tot;as.0/. To further analyze �tot;as.s/, equation (3-17), we
use the integralsZ 1
p

p2
nCm2

du .u2
�p2

n �m2/�s d

du
ln
�
1C

u2

�2

�
D

�

sin�s
.m2
C �2

Cp2
n/
�s;

Z 1
p

p2
nCm2

du .u2
�p2

n �m2/�s d

du

�
1C

u2

�2

��N=2

D �
��

�
sC N
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�
sin.�s/�

�
N
2

�
� .s/

��2s
�
1C

p2
nCm2

�2

��s�N
2
;

which are the relevant ones after substituting z� D u. This shows that

�tot;as.s/D �
1P

nD�1

1P̀
D0

�1�2s
�
1C

p2
nCm2

�2

��s

�
1
4
s
1P

nD�1

1P̀
D0

��2s�1
�
1C

p2
nCm2

�2

��s�1

C
3
2
s.sC1/
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�
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�2

��s�2

�
5
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�
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p2
nCm2

�2

��s�3
: (3-24)

To each of these terms we apply the rewriting (3-19). Intermediate expressions
are relatively lengthy and we explain details only for the first term. We proceed
as for the splitting in (3-21) and (3-22) and write

�
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nD�1

1X
`D0

�1�2s
�
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p2
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n

��s
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s
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n
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s
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n

��s
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�
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s
C
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2
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1X
`D0

2�

.�2Cp2
n/

sC1
: (3-25)
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The first line is seen to be analytic about sD 0. We have subtracted the minimal
number of terms to make the sums convergent. The remaining terms represent
zeta functions of Epstein type,

E.k/.s; a/D

1X
nD�1

1X
`D0

2�
�k

.�2C a2n2/s
; (3-26)

the analytical continuation of which is well understood. Performing a Poisson
resummation on the n-summation [2; 15; 30] yields

E.k/.s; a/D
2
p
�

a

�
�
s� 1

2

�
� .s/

�H
�
2s� k � 2; 1

2

�
C

8�s

� .s/asC1=2

1X
`D0

�kC.3=2/�s
1X

nD1

ns�1=2K1=2�s

�
2��

n

a

�
: (3-27)

The first line has poles at s D 1
2
� j , j 2N0, and for s D 1

2
.kC 3/, the second

line is analytic for s 2 C.
In terms of these Epstein functions, in equation (3-25) we have shown that

�
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�2Cp2
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: (3-28)

Noting from equation (3-27) that E.0/.s; a/ and E.0/.sC1; a/ are analytic about
s D 0, we get

�
d
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�1�2s
�
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��s
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�ln

�
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m2

�2Cp2
n

�
C
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�2Cp2
n

�
: (3-29)

The last term on the right cancels the first line from lnf asym;.2/
`

.i
p

p2
nCm2/ in

equation (3-22), the remaining terms are easily found from (3-27).
One can proceed in exactly this way for the other terms in �tot;as.s/; there are

always terms that cancel with terms from lnf asym;.2/
`

.i
p

p2
nCm2/ in (3-22) and

terms expressible using the Epstein type zeta functions given in (3-26). Adding
up all contributions, the second line in (3-23) completely cancels and we obtain
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the following closed form for the finite-T zeta function:

�0tot.0/D�
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�
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�
: (3-30)

From (3-27) it is clear that the Epstein type zeta functions contain zero temper-
ature contributions to the Casimir energy (first line in (3-27)) and exponentially
damped contributions for small temperature described by the Bessel functions
(second line in (3-27)). As it turns out, the zero temperature contributions from
the Epstein type zeta functions in (3-30) all vanish. The remaining zero temper-
ature contributions in (3-30) are found replacing the Riemann sum over n by an
integral,

1X
nD�1

f .n/ �
ˇ

2�

Z 1
�1

dpf .p/:

As ˇ! 0 this shows that

1

ˇ
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.�2Cp2/2
C

5�4

.�2Cp2/3

��
; (3-31)

from which the Casimir energy (3-3) is trivially obtained. The result is much
simpler than previous results given [24; 5] and a numerical evaluation could
easily be performed.

4. Functional determinant on a two dimensional torus

As our next example let us consider a two dimensional torus S1 � S1. For
convenience we choose the perimeter of the circles to be 1. The relevant eigen-
value problem to be considered then is

P��.x;y/ WD

�
�
@2

@x2
�
@2

@y2

�
��.x;y/D �

2��.x;y/;
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and we choose periodic boundary conditions

��.x;y/D ��.xC 1;y/;
@��.x;y/

@x
D
@��.xC 1;y/

@x
;

��.x;y/D ��.x;yC 1/;
@��.x;y/

@y
D
@��.x;yC 1/

@y
:

The eigenfunctions and eigenvalues clearly are

�m;n.x;y/D e�2�imxe�2�iny ; �2
D .2�/2.m2

C n2/; n;m 2 Z:

The related zeta function then reads

�P .s/D .2�/
�2s

X
.m;n/2Z2nf.0;0/g

.m2
C n2/�s

I (4-1)

note that the zero mode m D n D 0 has to be omitted in the summation to
make �P .s/ well defined. The zeta function in equation (4-1) is an Epstein zeta
function and �0

P
.0/ can be evaluated using the Kronecker limit formula [18; 19].

Here, we apply the contour approach previously outlined which simplifies the
calculation.

Instead of using the fact that the eigenvalues can be given in closed form, we
proceed differently. We say that

�2
D .2�/2.n2

C k2/; n 2 Z;

where k is determined as a solution to the equation

e�ik
� e��ik

D 0: (4-2)

Of course, solutions are given by k 2Z and the correct eigenvalues follow. Using
equation (4-2) determining the eigenvalues in the way we have used equations
(2-3) and (3-4), the zeta function can be represented as the contour integral

�P .s/D 4

1X
nD1

Z


dk

2� i
.2�/�2s.n2

C k2/�s d

dk
ln
�

e� ik � e�� ik

2� ik

�
C 4.2�/�2s�R.2s/: (4-3)

The last term represents the part where one of the two indices m or n is zero in
equation (4-1). The first line represents the remaining contributions. The factor
of 4 is a result of summing over positive n only and because the contour  is
supposed to enclose positive integers only. The reason that we have used

e� ik � e�� ik

2� ik
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instead of equation (4-2) is that

lim
k!0

e�ik � e��ik

2� ik
D 1;

which will allow us to shift the contour in a way as to include the origin; see
the discussion below equation (3-7). Let us evaluate the contour integral

�n.s/D

Z


dk

2� i
.2�/�2s.n2

C k2/�s d
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ln

e� ik � e�� ik

2� ik
:

Substituting k D
p

z and deforming the contour to the negative real axis along
the lines described previously, an intermediate result is
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From the behavior of the integrand as z!1 and z! n2 this representation is
seen to be valid for 1

2
<Re s<1. In order to construct the analytical continuation

to a neighborhood of s D 0 we note that
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We therefore write
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The first line is evaluated usingZ 1
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With the identity [28] sin�s

�
� .1� s/D

1

� .s/
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This is the form that allows the sum over n to be (partly) performed and it shows
that

�P .s/D 4.2�/�2s sin�s
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This form allows for the evaluation of �0
P
.0/. From known elementary properties

of the � -function and the zeta function of Riemann [28] we obtain
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The first line in (4-5) is also easily evaluated because
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This can be reexpressed using the Dedekind eta function

�.�/ WD ei��=12
1Y

nD1

�
1� e2�in�

�
for � 2 C, Re � > 0. The relation relevant for us follows by setting � D i :

ln j�.i/j4 D�
�
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nD1
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1� e�2�n

�
:

Adding up all contributions for �0
P
.0/, the final answer reads

�0P .0/D
�

3
� 4

1X
nD1

ln
�
1� e�2�n

�
D� ln j�.i/j4; (4-6)

in agreement with known answers; see [46; 50], for example.
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5. Conclusions

We have shown that contour integrals are very useful and effective tools for
the evaluation of determinants of differential operators. Although the results
look very simple only in one dimension — see equation (2-10) — , for particular
configurations also in higher dimensions closed answers can be found suitable
for numerical evaluation, as in equations (3-31) and (4-6). Here we have pro-
vided answers only for the torus and a spherically symmetric situation. But the
same ideas should apply when separability of the partial differential equations in
other coordinate systems is possible. Results in this direction will be presented
elsewhere.
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