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Introduction

We present nine lectures that are introductory and foundational in nature. The

basic inspiration comes from the Riemann zeta function, which is the starting

point. Along the way there are sprinkled some connections of the material to

physics. The asymptotics of Fourier coefficients of zero weight modular forms,

for example, are considered in regards to black hole entropy. Thus we have

some interests also connected with Einstein’s general relativity. References are

listed that cover much more material, of course, than what is attempted here.

Although his papers were few in number during his brief life, which was cut

short by tuberculosis, Georg Friedrich Bernhard Riemann (1826–1866) ranks

prominently among the most outstanding mathematicians of the nineteenth cen-

tury. In particular, Riemann published only one paper on number theory [32]:

“Über die Anzahl der Primzahlen unter einer gegebenen Grösse”, that is, “On

the number of primes less than a given magnitude”. In this short paper prepared

for Riemann’s election to the Berlin Academy of Sciences, he presented a study

of the distribution of primes based on complex variables methods. There the

now famous Riemann zeta function

�.s/
defD

1
X

nD1

1

ns
; (0.1)

defined for Re s > 1, appears along with its analytic continuation to the full

complex plane C, and a proof of a functional equation (FE) that relates the

values �.s/ and �.1 � s/. The FE in fact was conjectured by Leonhard Euler,

who also obtained in 1737 (over 120 years before Riemann) an Euler product

7
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representation

�.s/D
Y

p>0

1

1 � p�s
.Re s > 1/ (0.2)

of �.s/ where the product is taken over the primes p. Moreover, Riemann intro-

duced in that seminal paper a query, now called the Riemann Hypothesis (RH),

which to date has defied resolution by the best mathematical minds. Namely, as

we shall see, �.s/ vanishes at the values s D �2n, where n D 1; 2; 3; : : : ; these

are called the trivial zeros of �.s/. The RH is the (yet unproved) statement that

if s is a zero of � that is not trivial, the real part of s must have the value 1
2

!

Regarding Riemann’s analytic approach to the study of the distribution of

primes, we mention that his main goal was to set up a framework to facilitate

a proof of the prime number theorem (which was also conjectured by Gauss)

which states that if �.x/ is the number of primes � x, for x 2 R a real number,

then �.x/ behaves asymptotically (as x ! 1) as x= log x. That is, one has

(precisely) that

lim
x!1

�.x/

x= log x
D 1; (0.3)

which was independently proved by Jacques Hadamard and Charles de la Vallée-

Poussin in 1896. A key role in the proof of the monumental result (0.3) is the

fact that at least all nontrivial zeros of �.s/ reside in the interior of the critical

strip 0 � Re s � 1.

Riemann’s deep contributions extend to the realm of physics as well - Rie-

mannian geometry, for example, being the perfect vehicle for the formulation

of Einstein’s gravitational field equations of general relativity. Inspired by the

definition (0.1), or by the Euler product in (0.2), one can construct various other

zeta functions (as is done in this volume) with a range of applications to physics.

A particular zeta function that we shall consider later will bear a particular re-

lation to a particular solution of the Einstein field equations — namely a black

hole solution; see my Speaker’s Lecture.

There are quite many ways nowadays to find the analytic continuation and FE

of �.s/. We shall basically follow Riemann’s method. For the reader’s benefit,

we collect some standard background material in various appendices. Thus,

to a large extent, we shall attempt to provide details and completeness of the

material, although at some points (later for example, in the lecture on modular

forms) the goal will be to present a general picture of results, with some (but

not all) proofs.

Special thanks are extended to Jennie D’Ambroise for her competent and

thoughtful preparation of all my lectures presented in this volume.
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Lecture 1. Analytic continuation and functional equation of the

Riemann zeta function

Since j1=ns j D 1=nRe s , the series in (0.1) converges absolutely for Re s > 1.

Moreover, by the Weierstrass M-test, for any ı > 0 one has uniform convergence

of that series on the strip

Sı
defD fs 2 C j Re s > 1C ıg;

since j1=ns j D 1=nRe s < 1=n1Cı on Sı, with

1
X

nD1

1

n1Cı <1:

Since any compact subset of the domain S0
defD fs 2 C j Re s > 1g is contained

in some Sı , the series, in particular, converges absolutely and uniformly on

compact subsets of S0. By Weierstrass’s general theorem we can conclude that

the Riemann zeta function �.s/ in (0.1) is holomorphic on S0 (since the terms

1=ns are holomorphic in s) and that termwise differentiation is permitted: for

Re s > 1

�0.s/D �
1

X

nD1

log n

ns
: (1.1)

We wish to analytically continue �.s/ to the full complex plane. For that pur-

pose, we begin by considering the world’s simplest theta function �.t/, defined
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for t > 0:

�.t/
defD

X

n2Z

e��n2t D 1C 2

1
X

nD1

e��n2t (1.2)

where Z denotes the ring of integers. It enjoys the remarkable property that its

values at t and t inverse (i.e. 1=t ) are related:

�.t/D �.1=t/p
t
: (1.3)

The very simple formula (1.3), which however requires some work to prove,

is called the Jacobi inversion formula. We set up a proof of it in Appendix C,

based on the Poisson Summation Formula proved in Appendix C. One can of

course define more complicated theta functions, even in the context of higher-

dimensional spaces, and prove analogous Jacobi inversion formulas.

For s 2 C define

J.s/
defD

Z 1

1

�.t/� 1

2
t s dt: (1.4)

By Appendix A, J.s/ is an entire function of s, whose derivative can be ob-

tained, in fact, by differentiation under the integral sign. One can obtain both

the analytic continuation and the functional equation of �.s/ by introducing the

sum

I.s/
defD

1
X

nD1

Z 1

0

.�n2/�se�t t s�1 dt; (1.5)

which we will see is well-defined for Re s > 1
2

, and by computing it in different

ways, based on the inversion formula (1.3). Recalling that the gamma function

� .s/ is given for Re s > 0 by

� .s/
defD

Z 1

0

e�t t s�1 dt (1.6)

we clearly have

I.s/
defD ��s

� 1
X

nD1

1

n2s

�

� .s/D ��s�.2s/� .s/; (1.7)

so that I.s/ is well-defined for Re 2s > 1: Re s > 1
2

. On the other hand, by the

change of variables u D t=�n2 we transform the integral in (1.5) to obtain

I.s/D
1

X

nD1

Z 1

0

e��n2t t s�1 dt:
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We can interchange the summation and integration here by noting that

1
X

nD1

Z 1

0

ˇ

ˇe��n2t t s�1
ˇ

ˇ dt D
1

X

nD1

Z 1

0

e��n2t tRe s�1 dt D I.Re s/ <1

for Re s > 1
2

; thus

I.s/D
Z 1

0

1
X

nD1

e��n2t t s�1 dt D
Z 1

0

�.t/� 1

2
t s�1 dt

D
Z 1

0

�.t/� 1

2
t s�1 dt C

Z 1

1

�.t/� 1

2
t s�1 dt; (1.8)

by (1.2). Here
Z 1

0

t s�1 dt D lim
"!0C

Z 1

"

t s�1 dt D 1

s
(1.9)

for Re s > 0. In particular (1.9) holds for Re s > 1
2

, and we have

Z 1

0

�.t/� 1

2
t s�1 dt D 1

2

Z 1

0

�.t/t s�1 dt � 1

2s
: (1.10)

By the change of variables u D 1=t , coupled with the Jacobi inversion formula

(1.3), we get

Z 1

0

�.t/t s�1 dt D
Z 1

1

�

�

1

t

�

t�1�s dt D
Z 1

1

�.t/t
1

2 t�1�s dt

D
Z 1

1

.�.t/� 1/ t� 1

2
�s dt C

Z 1

1

t� 1

2
�s dt

D
Z 1

1

.�.t/� 1/ t� 1

2
�s dt C

Z 1

0

u� 3

2
CsD.s� 1

2
/�1 du

D
Z 1

1

.�.t/� 1/ t� 1

2
�s dt C 1

s � 1
2

;

where we have used (1.9) again for Re s > 1
2

. Together with equations (1.8) and

(1.10), this gives

I.s/D 1

2

Z 1

1

.�.t/� 1/ t� 1

2
�s dt C 1

2.s � 1
2
/

� 1

2s
C

Z 1

1

�.t/� 1

2
t s�1 dt

D
Z 1

1

�.t/� 1

2

�

t s�1 C t� 1

2
�s

�

dt C 1

2s � 1
� 1

2s
;
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which with equation (1.7) gives

��s�.2s/� .s/D
Z 1

1

�.t/� 1

2

�

t s�1 C t� 1

2
�s

�

dt C 1

2s � 1
� 1

2s
; (1.11)

for Re s > 1
2

. Finally, in (1.11) replace s by s=2, to obtain

��s=2�.s/�
� s

2

�

D
Z 1

1

�.t/� 1

2

�

t
s

2
�1 C t� s

2
� 1

2

�

dt C 1

s � 1
� 1

s
(1.12)

for Re s > 1. Since z� .z/D � .z C 1/, we have �
�

s
2

�

s D 2�
�

s
2

C 1
�

, which

proves:

THEOREM 1.13. For Re s > 1 we can write

�.s/D �
s

2

�
�

s
2

�

Z 1

1

�.t/� 1

2

�

t
s

2
�1 C t� s

2
�1

�

dt C �
s

2

�
�

s
2

�

.s�1/
� �

s

2

2�
�

s
2
C1

� :

The integral
R 1

1 in this equality is an entire function of s, since, by (1.4), it

equals J
�

s
2

� 1
�

C J
�

� s
2

� 1
�

. Also, since 1=� .s/ is an entire function of s,

it follows that the right-hand side of the equality in Theorem 1.13 provides for

the analytic continuation of �.s/ to the full complex plane, where it is observed

that �.s/ has only one singularity: s D 1 is a simple pole.

The fact that �
�

1
2

�

D�1=2 allows one to compute the corresponding residue:

lim
s!1

.s � 1/�.s/D lim
s!1

�
s

2

�
�

s
2

� D �
1

2

�
�

1
2

�
D 1:

An equation that relates the values �.s/ and �.1 � s/, called a functional

equation, easily follows from the preceding discussion. In fact define

XR.s/
defD ��s=2 �.s/�

� s

2

�

(1.14)

for Re s> 1 and note that the right-hand side of equation (1.12) (which provides

for the analytic continuation of XR.s/ as a meromorphic function whose simple

poles are at s D 0 and s D 1) is unchanged if s there is replaced by 1 � s:

THEOREM 1.15 (THE FUNCTIONAL EQUATION FOR �.s/). Let XR.s/ be given

by (1.14) and analytically continued by the right-hand side of the (1.12). Then

XR.s/D XR.1 � s/ for s ¤ 0; 1.

One can write the functional equation as

�.1 � s/D
�� s

2�
�

s
2

�

�.s/

��
�

1�s

2

�

�
�

1�s
2

�

D
��sC 1

2�
�

s
2

�

�.s/

�
�

1�s
2

�
(1.16)
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for s ¤ 0; 1, multiply the right-hand side here by 1 D �
�

s�1
2

�

=
�

1�s
2

�

, use the

identity
�

1�s
2

�

�
�

1�s
2

�

D �
�

3�s
2

�

, and thus also write

�.1 � s/D ��
�sC 1

2�
�

s
2

�

.s � 1/�.s/

2�
�

3�s
2

� ; (1.17)

an equation that will be useful later when we compute �0.0/.
For the computation of �0.0/ we make use of the following result, which is of

independent interest. Œx� denotes the largest integer that does not exceed x 2 R.

THEOREM 1.18. For Re s > 1,

�.s/D 1

s � 1
C 1

2
C s

Z 1

1

�

Œx�� x C 1
2

�

dx

xsC1

D 1

s � 1
C 1C s

Z 1

1

Œx�� x

xsC1
dx:

(1.19)

That these two expressions for �.s/ are equal follows from the equality
R 1

1
dx

xsC1

D 1
s

for Re s > 0; this with the inequalities 0 � x � Œx� < 1 allows one to deduce

that the improper integrals there converge absolutely for Re s > 0. We base the

proof of Theorem 1.18 on a general observation:

LEMMA 1.20. Let �.x/ be continuously differentiable on a closed interval

Œa; b�. Then, for c 2 R,

Z b

a

�

x � c � 1
2

�

�0.x/ dx D
�

b � c � 1
2

�

�.b/�
�

a � c � 1
2

�

�.a/�
Z b

a

�.x/ dx:

In particular for Œa; b�D Œn; n C 1�, with n 2 Z one gets

Z nC1

n

�

x � Œx�� 1
2

�

�0.x/ dx D �.n C 1/C�.n/

2
�

Z nC1

n

�.x/ dx:

PROOF. The first assertion is a direct consequence of integration by parts. Using

it, one obtains for the choice c D n the second assertion:
R nC1

n Œx��0.x/ dx D
R nC1

n n�0.x/ dx (since Œx�D n for n � x < n C 1); hence

Z nC1

n

�

x � Œx�� 1
2

�

�0.x/ dx

D
Z nC1

n

�

x � n � 1
2

�

�0.x/ dx

)D
�

n C 1 � n � 1
2

�

�.n C 1/�
�

n � n � 1
2

�

�.n/�
Z nC1

n

�.x/ dx

D 1
2
�.n C 1/C 1

2
�.n/�

Z nC1

n

�.x/ dx; ˜
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As a first application of the lemma, note that for integers m2;m1 with m2>m1,

m2
X

nDm1

Œ�.nC1/C�.n/�

D
m2
X

nDm1

�.nC1/C
m2
X

nDm1

�.n/

D �.m1C1/C�.m1C2/C� � �C�.m2C1/C�.m1/C�.m1C1/C� � �C�.m2/

D �.m2C1/C�.m1/C2

m2
X

nDm1C1

�.n/:

Also
Pm2

nDm1

R nC1
n D

R m2C1
m1

. Therefore

�.m2 C 1/C�.m1/

2
C

m2
X

nDm1C1

�.n/D 1

2

m2
X

nDm1

Œ�.n C 1/C�.n/�

D
m2
X

nDm1

Z nC1

n

.x � Œx�� 1
2
/�0.x/ dx C

m2
X

nDm1

Z nC1

n

�.x/ dx

(by Lemma 1.20), which equals
R m2C1

m1
.x�Œx�� 1

2
/�0.x/ dxC

R m2C1
m1

�.x/ dx.

Thus

m2
X

nDm1C1

�.n/D ��.m2 C 1/��.m1/

2

C
Z m2C1

m1

�.x/ dx C
Z m2C1

m1

.x � Œx�� 1

2
/�0.x/ dx (1.21)

for �.x/ continuously differentiable on Œm1;m2 C 1�. Now choose m1 D 1 and

�.x/
defD x�s

for x > 0, Re s > 1. Then
R 1

1
dx
xs D 1

s�1
. Also �.m2 C 1/D .m2 C 1/�s ! 0

as m2 ! 1, since Re s > 0. Thus in (1.21) let m2 ! 1:

1
X

nD2

1

ns
D �1

2
C 1

s � 1
C

Z 1

1

.x � Œx�� 1
2
/.�sx�s�1/ dx:

That is, for Re s > 1 we have

�.s/D 1C
1

X

nD2

1

ns
D 1

2
C 1

s � 1
C s

Z 1

1

.Œx�� x C 1
2
/

xsC1
dx;
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which proves Theorem 1.18.

We turn to the second integral in equation (1.19), which we denote by

f .s/
defD

Z 1

1

.Œx�� x/

xsC1
dx

for Re s > 0. We can write f .s/D limn!1
R n

1
.Œx��x/

xsC1
dx, where

Z n

1

.Œx�� x/

xsC1
dx D

n�1
X

jD1

Z jC1

j

.Œx�� x/

xsC1
dx D

n�1
X

jD1

Z jC1

j

j � x

xsC1
dx; (1.22)

since Œx�D j for j � x < j C 1. That is, f .s/D P1
jD1 aj .s/ where

aj .s/
defD

Z jC1

j

j � x

xsC1
dx D j

s

�

1

j s
� 1

.j C1/s

�

� 1

s � 1

�

1

j s�1
� 1

.j C1/s�1

�

for s ¤ 0; 1, and where for the second term here s D 1 is a removable singularity:

lim
s!1

.s � 1/
1

s � 1

�

1

j s�1
� 1

.j C 1/s�1

�

D 0:

Similarly, for the first term s D 0 is a removable singularity. That is, the aj .s/

are entire functions. In particular each aj .s/ is holomorphic on the domain

DC defD fs 2 C j Re s > 0g. At the same time, for � WD Re s > 0 we have

jaj .s/j �
Z jC1

j

dx

x�C1
D 1

�

�

1

j �
� 1

.j C1/�

�

(where the inequality comes from jj �xjDx�j �1 for j �x �j C1); moreover

n
X

jD1

�

1

j �
� 1

.j C 1/�

�

D 1 � 1

.n C 1/�
)

1
X

jD1

�

1

j �
� 1

.j C 1/�

�

D 1

(i.e. 1=.nC1/� ! 0 as n ! 1 for � > 0). Hence, by the M-test,
P1

jD1 aj .s/

converges absolutely and uniformly on DC (and in particular on compact sub-

sets of DC). f .s/ is therefore holomorphic on DC, by the Weierstrass theorem.

Of course, in equation (1.19),

s

Z 1

1

�

Œx�� x C 1
2

�

xsC1
dx D sf .s/C 1

2

is also a holomorphic function of s on DC.

We have deduced:



16 FLOYD L. WILLIAMS

COROLLARY 1.23. Let

f .s/
defD

Z 1

1

.Œx�� 1
2
/

xsC1
dx:

Then f .s/ is well-defined for Re s > 0 and is a holomorphic function on the

domain DC defD fs 2 C j Re s > 0g. For Re s > 1 one has (by Theorem 1.18)

�.s/D 1

s � 1
C 1C sf .s/: (1.24)

From this we see that �.s/ admits an analytic continuation to DC. Its only

singularity there is a simple pole at s D 1 with residue lims!1.s � 1/�.s/D 1,

as before.

This result is obviously weaker than Theorem 1.13. However, as a further ap-

plication we show that

lim
s!1

�

�.s/� 1

s � 1

�

D  (1.25)

where


defD lim

n!1

�

1C 1

2
C 1

3
C � � � C 1

n
� log n

�

(1.26)

is the Euler–Mascheroni constant;  ' 0:577215665. By the continuity (in

particular) of f .s/ at s D 1, f .1/D lims!1 f .s/. That is, by (1.24), we have

lim
s!1

�

�.s/� 1

s � 1

�

D lim
s!1

�

1C sf .s/
�

D 1C f .1/
.1:22/D 1C lim

n!1

n�1
X

jD1

Z jC1

j

j � x

x2
dx

D 1C lim
n!1

n�1
X

jD1

�

1

j C 1
�

�

log .j C 1/� log j
�

�

D 1C lim
n!1

� n�1
X

jD1

1

j C 1
�

n�1
X

jD1

�

log.j C 1/� log j
�

�

D 1C lim
n!1

�n�1
X

jD1

1

j C 1
� log n

�

D 1C lim
n!1

�

�1C
�

1C 1

2
C 1

3
C � � � C 1

n

�

� log n

�

D ;

as desired.
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Since s D 1 is a simple pole with residue 1, �.s/ has a Laurent expansion

�.s/D 1

s � 1
C 0 C

1
X

kD1

k.s � 1/k (1.27)

on a deleted neighborhood of 1. By equation (1.25), 0 D  . One can show

that, in fact, for k D 0; 1; 2; 3; : : :

k D .�1/k

k!
lim

n!1

� n
X

lD1

.log l/k

l
� .log n/kC1

k C 1

�

; (1.28)

a result we will not need (except for the case k D 0 already proved) and thus

which we will not bother to prove.

The inversion formula (1.3), which was instrumental in the approach above

to the analytic continuation and FE of �.s/, provides for a function F.t/, t > 0,

that is invariant under the transformation t ! 1=t . Namely, let F.t/
defD t1=4�.t/.

Then (1.3) is equivalent to statement that F.1=t/D F.t/, for t > 0.

Lecture 2. Special values of zeta

In 1736, L. Euler discovered the celebrated special values result

�.2n/D .�1/nC1.2�/2nB2n

2.2n/!
(2.1)

for n D 1; 2; 3; : : : , where Bj is the j-th Bernoulli number, defined by

z

ez � 1
D

1
X

jD0

Bj

j !
zj ;

for jzj < 2� , which is the Taylor expansion about z D 0 of the holomorphic

function h.z/
defD z=.ez � 1/, which is defined to be 1 at z D 0. Since ez � 1

vanishes if and only if z D 2� i n, for n 2 Z, the restriction jzj< 2� means that

the denominator ez � 1 vanishes only for z D 0. The Bj were computed by

Euler up to j D 30. Here are the first few values:

B0

1

B1

�1
2

B2

1
6

B3

0

B4

� 1
30

B5

0

B6

1
42

B7

0

B8

� 1
30

B9

0

B10

5
66

B11

0

B12

� 691
2730

B13

0
(2.2)

In general, Bodd>1 D 0: To see this let H.z/
defD h.z/C z=2 for jzj< 2� , which

we claim is an even function. Namely, for z ¤ 0 the sum z=.ez �1/Cz=.e�z �1/

equals D �z by simplification:

H.�z/D �z

e�z � 1
� z

2
D z

ez � 1
C z � z

2
D H.z/:
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Then

z

2
C B0 C B1z C

1
X

jD1

B2j

.2j /!
z2j C

1
X

jD1

B2jC1

.2j C 1/!
z2jC1

D z

2
C

1
X

jD0

Bj

j !
zj D H.z/D H.�z/

D �z

2
C B0 C B1.�z/C

1
X

jD1

B2j

.2j /!
.�z/2j C

1
X

jD1

B2jC1

.2j C 1/!
.�z/2jC1;

which implies

0 D .1C 2B1/z C 2

1
X

jD1

B2jC1

.2j C 1/!
z2jC1;

and consequently B1 D �1
2

and B2jC1 D 0 for j � 1, as claimed. By formula

(2.1) (in particular)

�.2/D
1

X

nD1

1

n2
D �2

6
; �.4/D

1
X

nD1

1

n4
D �4

90
; �.6/D

1
X

nD1

1

n6
D �6

945
; (2.3)

the first formula,
P1

nD1 1=n2 D�2=6, being well-known apart from knowledge

of the zeta function �.s/. We provide a proof of (2.1) based on the summation

formula
1

X

nD1

1

n2 C a2
D �

2a
coth�a � 1

2a2
(2.4)

for a> 0; see Appendix E on page 92. Before doing so, however, we note some

other special values of zeta.

As we have noted, 1=� .s/ is an entire function of s. It has zeros at the points

s D 0;�1;�2;�3;�4; : : : . By Theorem 1.13 and the remarks that follow its

statement we therefore see that for n D 1; 2; 3; 4; : : : ,

�.�2n/D ���n

2� .�n C 1/
D 0; �.0/D �1

2� .1/
D �1

2
: (2.5)

Thus, as mentioned in the Introduction, �.s/ vanishes at the real points s D
�2;�4;�6;�8; : : :, called the trivial zeros of �.s/. The value �.0/ is nonzero —

it equals �1
2

by (2.5). Later we shall check that

�0.0/D �.0/ log 2� D �1
2

log 2�: (2.6)
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Turning to the proof of (2.1), we take 0< t < 2� and choose a D t

2�
in (2.4),

obtaining successively

�2

t
coth

t

2
� 2�2

t2
D 4�2

1
X

nD1

1

t2 C 4�2n2
;

1

2
coth

t

2
� 1

t
D 2t

1
X

nD1

1

t2 C 4�2n2
;

1

et � 1
C 1

2
D 2 C et � 1

2.et � 1/

�

e�t=2

e�t=2

�

D e�t=2 C et=2

2.et=2 � e�t=2/

D 1

2

cosh.t=2/

sinh.t=2/
D 1

2
coth

t

2
D 1

t
C 2t

1
X

nD1

1

t2 C 4�2n2
;

t

et � 1
C t

2
D 1C 2t2

1
X

nD1

1

t2 C 4�2n2
: (2.7)

Since B0 D 1 and B1 D �1
2

(see (2.2)), and since B2kC1 D 0 for k � 1, we can

write

t

et � 1

defD
1

X

kD0

Bk

k!
tk D 1 � t

2
C

1
X

kD1

B2k

.2k/!
t2k ;

and (2.7) becomes

1
X

kD1

B2k

.2k/!
t2k D 2t2

1
X

nD1

1

t2 C 4�2n2
: (2.8)

For 0< t < 2� , we can use the convergent geometric series

1
X

kD0

� �t2

4�2n2

�k

D 1

1C t2

4�2n2

D 4�2n2

t2 C 4�2n2
; (2.9)

to rewrite (2.8) as

1
X

kD1

B2k

.2k/!
t2k D 2t2

1
X

nD1

1
X

kD0

1

4�2n2

� �t2

4�2n2

�k

D 2t2
1

X

nD1

1
X

kD1

1

4�2n2

� �t2

4�2n2

�k�1

:

(2.10)

The point is to commute the summations on n and k in this equation. Now

1
X

kD1

1
X

nD1

ˇ

ˇ

ˇ

ˇ

1

4�2n2

�

� t2

4�2n2

�k�1ˇ

ˇ

ˇ

ˇ

D
1

X

kD1

t2.k�1/

.4�2/k

1
X

nD1

1

n2k
�

1
X

nD1

t2.k�1/

.4�2/k

1
X

nD1

1

n2
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which is finite since
P1

nD1 1=n2 D �.2/ <1 and
P1

nD1 t2.k�1/=.4�2/k <1,

by the ratio test (again for 0 < t < 2�). Commutation of the summation is

therefore justified:

1
X

kD1

B2k t2k

.2k/!
D 2t2

1
X

kD1

.�t2/k�1

4�2.4�2/k�1

1
X

nD1

1

n2k
D

1
X

kD1

2.�1/k�1

.4�2/k
�.2k/t2k

on .0; 2�/. By equating coefficients, we obtain

B2k

.2k/!
D 2.�1/k�1�.2k/

.4�2/k
for k � 1;

which proves Euler’s formula (2.1).

Next we turn to a proof of equation (2.6). We start with an easy consequence

of the quotient and product rules for differentiation.

LEMMA 2.11 (LOGARITHMIC DIFFERENTIATION WITHOUT LOGS). If

F.s/D �1.s/�2.s/�3.s/

�4.s/
;

on some neighborhood of s0 2C, where the �j .s/ are nonvanishing holomorphic

functions there, then

F 0.s0/

F.s0/
D �0

1
.s0/

�1.s0/
C �0

2
.s0/

�2.s0/
C �0

3
.s0/

�3.s0/
� �0

4
.s0/

�4.s0/
:

Now choose �1.s/
defD �

1

2
�s , �2.s/

defD �
�

s
2

�

, �4.s/D 2�
�

3�s
2

�

, say on a small

neighborhood of s D 1. For the choice of �3.s/, we write �.s/ D g.s/=.s�1/

on a neighborhood N of s D 1, for s ¤ 1, where g.s/ is holomorphic on N and

g.1/ D 1. This can be done since s D 1 is a simple pole of �.s/ with residue

D 1; for example, see equation (1.27). Assume 0 … N and take �3.s/
defD g.s/ on

N . By equation (1.17), ��.1�s/D �1.s/�2.s/�3.s/=�4.s/ near s D 1, so that

by Lemma 2.11 and introducing the function  .s/
defD � 0.s/=� .s/, we obtain

�0.1 � s/

��.1 � s/

ˇ

ˇ

ˇ

ˇ

sD1

D �
1

2
�s.�log�/

�
1

2
�s

ˇ

ˇ

ˇ

ˇ

sD1

C 
�

s

2

�

1

2

ˇ

ˇ

ˇ

ˇ

sD1

Cg0.s/
g.s/

ˇ

ˇ

ˇ

ˇ

sD1

� 
�

3�s

2

��

�1

2

�

ˇ

ˇ

ˇ

ˇ

sD1

: (2.12)

If  is the Euler–Mascheroni constant of (1.26), the facts � .1/ D  and

 
�

1
2

�

D � � 2 log 2 are known to prevail, which reduces equation (2.12) to

�0.0/D �.0/
�

log� C 

2
C log 2 � g0.1/C 

2

�

D �1
2

�

log� C  C log 2 � g0.1/
�

;
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since g.1/ D 1 and �.0/ D �1
2

; see (2.5). But g0.1/ D  , as we will see in a

minute; hence we have reached the conclusion that �0.0/D �1
2

log 2� , which is

(2.6). There remains to check that g0.1/D  . We have

g0.1/ defD lim
s!1

g.s/� 1

s � 1
;

again since g.1/D 1; this in turn equals lims!1

�

�.s/� 1

s�1

�

D , by equation

(1.25).

To obtain further special values of zeta we appeal to the special values formula

�
�

1
2

� n
�

D .�1/n
p
� 22nn!

.2n/!
(2.13)

for the gamma function, where n D 1; 2; 3; 4; : : : . This we couple with (2.1)

and the functional equation (1.16) to show that

�.�1/D � 1

12
and �.1 � 2n/D �B2n

2n
for n D 1; 2; 3; 4; : : : : (2.14)

Namely, �.1�2n/D��2nC 1

2� .n/�.2n/=�
�

1
2
�n

�

, by (1.16); this in turn equals

��2nC 1

2 .n � 1/!�.2n/.2n/!

.�1/n
p
�22nn!

;

by (2.13); whence (2.1) gives

�.1 � 2n/D .�1/n.2�/�2n�.2n/.2n/!

n
D �B2n

2n
:

Taking n D 1 gives �.�1/D �B2

2
� 1

12
, by (2.2), which confirms (2.14).

Lecture 3. An Euler product expansion

For a function f .n/ defined on the set Z
C D f1; 2; 3; : : :g of positive integers

one has a corresponding zeta function or Dirichlet series

�f .s/
defD

1
X

nD1

f .n/

ns
;

defined generically for Re s sufficiently large. If f .n/ D 1 for all n 2 Z
C, for

example, then for Re s > 1, �f .s/ is of course just the Riemann zeta function

�.s/, which according to equation (0.2) of the Introduction has an Euler product

expansion �.s/D Q

p2P
1

1�p�s over the primes P in Z
C. It is natural to inquire

whether, more generally, there are conditions that permit an analogous Euler

product expansion of a given Dirichlet series �f .s/. Very pleasantly, there is
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an affirmative result when, for example, the f .n/ are Fourier coefficients (see

Theorem 4.32, where the n-th Fourier coefficient there is denoted by an) of

certain types of modular forms, due to a beautiful theory of E. Hecke. Also see

equations (3.20), (3.21) below. Rather than delving directly into that theory at

this point we shall instead set up an abstract condition for a product expansion.

The goal is to show that under suitable conditions on f .n/ of course the desired

expansion assumes the form

�f .s/
defD

1
X

nD1

f .n/

ns
D f .1/

Q

p2P

�

1C˛.p/p�2s �f .p/p�s
� (3.1)

for some function ˛.p/ on P ; see Theorem 3.17 below. Here we would want to

have, in particular, that f .1/¤ 0. Before proceeding toward a precise statement

and proof of equation (3.1), we note that (again) if f .n/D 1 for all n 2 Z
C, for

example, then for the choice ˛.p/D 0 for all p 2 P , equation (3.1) reduces to

the classical Euler product expansion of equation (0.2).

Given f W Z
C ! R or C, and ˛ W P ! R or C, we assume the following

abstract multiplicative condition:

f .n/f .p/D
�

f .np/ if p - n,

f .np/C˛.p/f
�

n
p

�

if p j n,
(3.2)

for .n;p/ 2 Z
C � P ; here p j n means that p divides n and p - n means the

opposite. Given condition (3.2) we observe first that if f .1/D 0 then f vanishes

identically, the proof being as follows. For a prime p 2 P , (3.2) requires that

f .1/f .p/D f .p/, since p - 1; that is, f .p/D 0. If n 2 Z
C with n � 2, there

exists p 2 P such that p j n, say ap D n, a 2 Z
C. Proceed inductively. If p - a,

f .a/f .p/Df .ap/Df .n/, by (3.2), so f .n/D0, as f .p/D0. If p j a, we have

0 D f .a/f .p/ (again as f .p/ D 0), and this equals f .ap/C ˛.p/f .a=p/ D
f .n/C ˛.p/f .a=p/, where 1 < p � a (so 1 � a=p < a D n=p < n/. Thus

f .a=p/D 0, by induction, so f .n/D 0, which completes the induction. Thus

we see that if f 6� 0 then f .1/¤ 0.

As in Appendix D (page 88) we set, m; n 2 Z
C,

d.m; n/
defD

�

1 if m j n,

0 if m - n.

Fix a finite set of distinct primes S D fp1;p2; : : : ;plg � P and define g.n/D
gS .n/ on Z

C by

g.n/D f .n/

l
Y

jD1

�

1 � d.pj ; n/
�

: (3.3)
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Fix p 2 P � fp1;p2; : : : ;plg. Then the next observation is that, for n 2 Z
C,

g.n/f .p/D
(

g.np/ if p - n,

g.np/C˛.p/g
�

n
p

�

if p j n
; (3.4)

which compares with equation (3.2).

PROOF. If pj j n then of course pj j pn. If pj - n then pj - pn; for if pj jpn then

p j n since pj ;p are relatively prime, given that p ¤ each pj . Thus

d.pj ; n/D d.pj ;pn/ for n 2 Z
C, 1 � j � l . (3.5)

Similarly suppose p j n, say bp D n, with b 2 Z
C. If pj - n=p then pj - n; for

otherwise pj j n D bp again with pj ;p relatively prime, implying that pj jb D
n=p. Thus we similarly have

d.pj ; n=p/D d.pj ; n/ for n 2 Z
C, 1 � j � l , such that p j n. (3.6)

Now if n 2 Z
C is such that p - n, then

g.n/f .p/
.3:3/D f .n/f .p/

l
Q

jD1

�

1 � d.pj ; n/
� .3:2/D
.3:5/

f .np/
l

Q

jD1

�

1 � d.pj ;pn/
�

.3:3/D g.np/:

On the other hand, if p j n, then

g.n/f .p/
.3:3/D f .n/f .p/

l
Q

jD1

�

1 � d.pj ; n/
�

.3:2/D
�

f .np/C˛.p/f . n
p
/
�

l
Q

jD1

�

1 � d.pj ; n/
�

.3:5/D

.3:6/
f .np/

l
Q

jD1

�

1 � d.pj ;pn/
�

C˛.p/f . n
p
/

l
Q

jD1

�

1 � d.pj ;
n
p
/
�

.3:3/D g.np/C˛.p/g
�

n
p

�

;

which proves (3.4). ˜

Let �h.s/D P1
nD1 h.n/=ns be a Dirichlet series that converges absolutely, say

at some fixed point s0 2 C. Fix p 2 P and some complex number �.p/ corre-

sponding to p such that

h.n/�.p/D
�

h.np/ if p - n,

h.np/C˛.p/h
�

n
p

�

if p j n,
(3.7)
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for n 2 Z
C. Then

�h.s0/
�

1C˛.p/p�2s0 ��.p/p�s0
�

D
1

X

nD1

�

1 � d.p; n/
�

h.n/

ns0

: (3.8)

PROOF. Define

an
defD

8

<

:

˛.p/h
�

n
p

�

.pn/s0

if p j n,

0 if p - n,

for n 2 Z
C. Since p j pn, we have

apn D
˛.p/h

�pn

p

�

.ppn/s0

D ˛.p/p�2s0
h.n/

ns0

;

which shows that
P1

nD1 apn converges. The Scholium of Appendix D (page

91) then implies that the series
P1

nD1 d.p; n/an converges, and one has

1
X

nD1

apn D
1

X

nD1

d.p; n/an; (3.9)

where the left-hand side here is ˛.p/p�2s0�h.s0/. Since both d.p; n/; an D 0

if p - n, d.p; n/an D an, which is also clear if p j n. On the other hand, if p j n,

an
defD ˛.p/h

�

n
p

�

.pn/�s0 D
�

h.n/�.p/� h.np/
�

.pn/�s0 (3.10)

by equation (3.7). Equation (3.10) also holds by (3.7) in case p - n, for then both

sides are zero. That is, (3.10) holds for all n � 1 and equation (3.9) reduces to

the statement

˛.p/p�2s0�h.s0/D
1

X

nD1

Œh.n/�.p/� h.np/�.pn/�s0 : (3.11)

We apply the Scholium a second time, where this time we define an
defD h.n/=ns0 ;

since jd.p; n/anj � janj, the sum
P1

nD1 d.p; n/an converges. By the Scholium,
P1

nD1 apn converges and
P1

nD1 apn D P1
nD1 d.p; n/an; that is,

1
P

nD1

h.pn/.pn/�s0 D
1
P

nD1

d.p; n/h.n/n�s0 ;

which one plugs into (3.11), to obtain ˛.p/p�2s0�h.s0/ D �.p/p�s0�h.s0/�
P1

nD1 d.p; n/h.n/n�s0 . This proves equation (3.8).

The proof of the main result does involve various moving parts, and it is a bit

lengthy as we have chosen to supply full details. We see, however, that the proof

is elementary. One further basic ingredient is needed. Again let fp1; : : : ;plg by

a fixed, finite set of distinct primes in P . With f; ˛ subject to the multiplicative



LECTURES ON ZETA FUNCTIONS, L-FUNCTIONS AND MODULAR FORMS 25

condition (3.2), we assume that �f .s0/ converges absolutely where s0 2 C is

some fixed number. For n � 1, we have 0 � Ql
jD1

�

1 � d.pj ; n/
�

� 1; therefore

the series
P1

nD1

�
Ql

jD1.1�d.pj ; n//
�

f .n/=ns0 converges absolutely. We now

show by induction on l that

l
Q

jD1

�

1C˛.pj /p
�2s0

j �f .pj /p
�s0

j

�

�f .s0/

D
1
P

nD1

� l
Q

jD1

�

1 � d.pj ; n/
�

�f .n/

ns0

: (3.12)

For l D 1, the claim follows by (3.8) with p D p1, h.n/D f .n/, �.p/D f .p/.

Proceeding inductively, we consider a set fp1;p2; : : : ;pl ;plC1g of lC1 distinct

primes in P . Then

lC1
Q

jD1

�

1C˛.pj /p
�2s0

j �f .pj /p
�s0

j

�

�f .s0/

D
�

1C˛.plC1/p
�2s0

lC1
�f .plC1/p

�s0

lC1

�

l
Q

jD1

�

1C˛.pj /p
�2s0

j �f .pj /p
�s0

j

�

�f .s0/

D
�

1C˛.plC1/p
�2s0

lC1
�f .plC1/p

�s0

lC1

�

1
P

nD1

� l
Q

jD1

�

1�d.pj ; n/
�

�f .n/

ns0

D
�

1C˛.plC1/p
�2s0

lC1
�f .plC1/p

�s0

lC1

�

1
P

nD1

g.n/

ns0

; (3.13)

where the second equality follows by induction and the last one by definition

(3.3). We noted, just above (3.12), that
P1

nD1

�
Ql

jD1.1 � d.pj ; n//
�

f .n/=ns0

converges absolutely; that is,
P1

nD1 g.n/=ns0 converges absolutely. Thus we

choose h.n/D g.n/, p D plC1, �.p/D f .p/. Condition (3.7) is then a conse-

quence of equation (3.4), since plC1 2P �fp1;p2; : : : ;plg, and one is therefore

able to apply formula (3.8) again:
�

1C˛.plC1/p
�2s0

lC1
�f .plC1/p

�s0

lC1

�

�g.s0/

D
1
P

nD1

�

1 � d.plC1; n/
�

g.n/

ns0

.3:3/D
1
P

nD1

�

1 � d.plC1; n/
�

ns0

l
Q

jD1

�

1 � d.pj ; n/
�

f .n/

D
1
P

nD1

lC1
Q

jD1

�

1 � d.pj ; n/
�f .n/

ns0

(3.14)

which, together with equation (3.13), allows one to complete the induction, and

thus the proof of the claim (3.12). ˜
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Now let pl be the l-th positive prime, so p1 D 2, p2 D 3, p3 D 5, p4 D 7, . . . .

We can write the right-hand side of (3.12) as

f .1/C
1
P

nD2

� l
Q

jD1

�

1 � d.pj ; n/
�

�f .n/

ns0

;

since no pj divides 1. We show that if 2 � n � l then

l
Q

jD1

�

1 � d.pj ; n/
�

D 0: (3.15)

Namely, for n � 2 choose q 2 P such that q j n. If no pj divides n, 1 � j � l ,

then q ¤ p1; : : : ;pl (since q j n); hence q �plC1 (since pl is the l-th prime) and

so q � l C1. But this is impossible since n � l (by hypothesis) and q � n (since

q j n). This contradiction proves that some pj divides n, that is, 1 D d.pj ; n/,

which gives (3.15).

It follows that

1
P

nD1

� l
Q

jD1

�

1 � d.pj ; n/
�

�f .n/

ns0

�f .1/D
1
P

nDlC1

� l
Q

jD1

�

1 � d.pj ; n/
�

�f .n/

ns0

;

where (using again that 0 � Ql
jD1

�

1 � d.pj ; n/
�

� 1) we have

ˇ

ˇ

ˇ

ˇ

ˇ

1
P

nDlC1

� l
Q

jD1

�

1 � d.pj ; n/
�

�f .n/

ns0

ˇ

ˇ

ˇ

ˇ

ˇ

�
1
P

nDlC1

ˇ

ˇ

ˇ

ˇ

f .n/

ns0

ˇ

ˇ

ˇ

ˇ

D
1
P

nD1

ˇ

ˇ

ˇ

ˇ

f .n/

ns0

ˇ

ˇ

ˇ

ˇ

�
l

P

nD1

ˇ

ˇ

ˇ

ˇ

f .n/

ns0

ˇ

ˇ

ˇ

ˇ

:

But this difference tends to 0 as l ! 1. That is, by equation (3.12), the limit

Q

p2P

�

1C˛.p/p�2s0 �f .p/p�s0
�

�f .s0/

defD lim
l!1

l
Q

jD1

�

1C˛.pj /p
�2s0

j �f .pj /p
�s0

�

�f .s0/ (3.16)

exists, where pj D the j-th positive prime, and it equals f .1/.

We have therefore finally reached the main theorem.

THEOREM 3.17. (As before, Z
C defD f1; 2; 3; : : :g and P denotes the set of pos-

itive primes.) Let f W Z ! R or C and ˛ W P ! R or C be functions where

f is not identically zero and where f is subject to the multiplicative condition

(3.2). Then f .1/ ¤ 0. Let D � C be some subset on which the corresponding

Dirichlet series �f .s/D P1
nD1 f .n/=n

s converges absolutely. Then on D,

Y

p2P

�

1C˛.p/p�2s �f .p/p�s
�

�f .s/D f .1/
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(see equation (3.16)). In particular both
Q

p2P

�

1C˛.p/p�2s �f .p/p�s
�

and

�f .s/ are nonzero on D and

�f .s/D f .1/
Q

p2P

�

1C˛.p/p�2s �f .p/p�s
� (3.18)

on D (which is equation (3.1)).

We remark (again) that the proof of Theorem 3.17 is entirely elementary, if

a bit long-winded; it only requires a few basic facts about primes, and a weak

version of the fundamental theorem of arithmetic — namely that an integer n�2

is divisible by a prime.

As a simple example of Theorem 3.17, suppose f W Z
C ! R or C is not

identically zero, and is completely multiplicative: f .nm/ D f .n/f .m/ for all

n;m 2 Z
C. Assume also that s 2 C is such that

P1
nD1 f .n/=n

s converges

absolutely. Then
1

X

nD1

f .n/

ns
D 1

Q

p2P

�

1 � f .p/

ps

�
: (3.19)

To see this, first we note directly that f .1/ ¤ 0. In fact since f 6� 0, choose

n 2 Z
C such that f .n/ ¤ 0. Then f .n/ D f .n � 1/ D f .n/f .1/, so f .1/ D 1.

Also f satisfies condition (3.2) for the choice ˛ D 0 (that is, ˛.p/ D 0 for all

p 2 P ). Equation (3.19) therefore follows by (3.18). In Lecture 5, we apply

(3.19) to Dirichlet L-functions.

Before concluding this lecture, we feel some obligation to explain the pivotal,

abstract multiplicative condition (3.2). This will involve, however, some facts re-

garding modular forms that will be discussed in the next lecture, Lecture 4. Thus

suppose that f .z/ is a holomorphic modular form of weight k D 4; 6; 8; 10; : : : ,

with Fourier expansion

f .z/D
1

X

nD0

ane2� inz (3.20)

on the upper half-plane �C. Then there is naturally attached to f .z/ a Dirichlet

series

�f .s/D
1

X

nD1

an

ns
; (3.21)

called a Hecke L-function, which is known to converge absolutely for Re s > k,

and which is holomorphic on this domain. Actually, if f .z/ is a cusp form (i.e.,

a0 D 0) then �f .s/ is holomorphic on the domain Re s > 1 C k
2

. As in the

case of the Riemann zeta function, Hecke theory provides for the meromorphic
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continuation of �f .s/ to the full complex plane, and for an appropriate functional

equation for �f .s/.

For each positive integer n D 1; 2; 3; : : : , there is an operator T .n/ (called a

Hecke operator) on the space of modular forms of weight k given by

.T .n/f /.z/D nk�1
X

d>0
d j n

X

a2Z=dZ

f

�

nz C da

d2

�

d�k : (3.22)

Here the inner sum is over a complete set of representatives a in Z for the cosets

Z=dZ. We shall be interested in the case when f .z/ is an eigenfunction of all

Hecke operators: T .n/f D �.n/f for all n � 1, where f ¤ 0 and �.n/2 C. We

assume also that a1 D 1, in which case f .z/ is called a normalized simultaneous

eigenform. For such an eigenform it is known from the theory of Hecke opera-

tors that the Fourier coefficients and eigenvalues coincide for n � 1 W an D �.n/

for n � 1. Moreover the Fourier coefficients satisfy the “multiplicative” condi-

tion

an1
an2

D
X

d>0
d j n1;d j n2

dk�1an1n2=d2 (3.23)

for n1; n2 � 1. In particular for a prime p 2 P and an integer n � 1, condition

(3.23) clearly reduces to the simpler condition

anap D
�

anp if p - n,

anp C pk�1anp=p2 if p j n,
(3.24)

which is the origin of condition (3.2), where we see that in the present context

we have f .n/ D an and ˛.p/ D pk�1; f .n/ here is the function f W Z ! C

of condition (3.2), of course, and is not the eigenform f .z/. By Theorem 3.17,

therefore, the following strong result is obtained.

THEOREM 3.25 (EULER PRODUCT FOR HECKE L-FUNCTIONS). Let f .z/

be a normalized simultaneous eigenform of weight k (as desribed above), and

let �f .s/ be its corresponding Hecke L-function given by definition (3.21) for

Re s > k. Then, for Re s > k,

�f .s/D 1
Q

p2P

�

1C pk�1�2s � app�s
� ; (3.26)

where ap is the p-th Fourier coefficient f .z/; see equation (3.20). If , moreover,

f .z/ is a cusp form (i.e., the 0-th Fourier coefficient a0 of f .z/ vanishes), then

for Re s> 1C k
2

, �f .s/ converges (in fact absolutely) and formula (3.26) holds.

The following example is important, though no proofs (which are quite involved)
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are supplied. If

�.z/
defD e� iz=12

1
Y

nD1

.1 � e2� inz/ (3.27)

is the Dedekind eta function on �C, then the Ramanujan tau function �.n/ on

Z
C is defined by the Fourier expansion

�.z/24 D
1

X

nD1

�.n/e2� inz ; (3.28)

which is an example of equation (3.20), where in fact �.z/24 is a normalized

simultaneous eigenform of weight k D 12. It turns out, remarkably, that every

�.n/ is real and is in fact an integer. For example, �.1/ D 1, �.2/ D �24,

�.3/D 252, �.4/D �1472, �.5/D 4830. Note also that, since the sum in (3.27)

starts at n D 1, �.z/24 is a cusp form. By Theorem 3.25 we get:

COROLLARY 3.29. For Re s > 1C k
2

D 7,

1
X

nD1

�.n/

ns
D 1

Q

p2P

�

1C p11�2s � �.p/p�s
� : (3.30)

The Euler product formula (3.30) was actually proved first by L. Mordell (in

1917, before E. Hecke) although it was claimed earlier to be true by S. Ra-

manujan.

Since we have introduced the Dedekind eta function �.z/ in (3.27), we check,

as a final point, that it is indeed holomorphic on �C. For

an.z/
defD �e2� inz and G.z/

defD
1
Q

nD1

.1C an.z//;

write �.z/D e� iz=12G.z/. The product G.z/ converges absolutely on �C since
P1

nD1 jan.z/j D P1
nD1 e�2�ny (for z D xCiy, x;y 2 R;y > 0) is a convergent

geometric series as e�2�y < 1. We note also that an.z/ ¤ �1 since (again)

jan.z/j D e�2�ny < 1 for n � 1. If K � �C is any compact subset, then the

continuous function Im z on K has a positive lower bound B: Im z � B > 0 for

every z 2 K. Hence

jan.z/j D e�2�n Im z � e�2�nB on K;

where
P1

nD1 e�2�nB is a convergent geometric series as e�2�B < 1 for B > 0.

Therefore the series
P1

nD1 an.z/ converges uniformly on compact subsets of

�C (by the M-test), which means that the product G.z/ converges uniformly on

compact subsets of �C. That is, G.z/ is holomorphic on �C (as the an.z/ are

holomorphic on �C), and therefore �.z/ is holomorphic on �C.



30 FLOYD L. WILLIAMS

Lecture 4. Modular forms: the movie

In the previous lecture we proved an Euler product formula for Hecke L-

functions, in Theorem 3.25 which followed as a concrete application of Theo-

rem 3.17. That involved, in part, some notions/results deferred to the present lec-

ture for further discussion. Here the attempt is to provide a brief, kaleidoscopic

tour of the modular universe, whose space is Lobatchevsky–Poincáre hyperbolic

space, the upper half-plane �C, and whose galaxies of stars are modular forms.

As no universe would be complete without zeta functions, Hecke L-functions

play that role. In particular we gain, in transit, an enhanced appreciation of

Theorem 3.25.

There are many fine texts and expositions on modular forms. These obviously

venture much further than our modest attempt here which is designed to serve

more or less as a limited introduction and reader’s guide. We recommend, for

example, the books of Audrey Terras [35], portions of chapter three, (also note

her lectures in this volume) and Tom Apostol [2], as supplements.

We begin the story by considering a holomorphic function f .z/ on �C that

satisfies the periodicity condition f .z C 1/ D f .z/. By the remarks following

Theorem B.7 of the Appendix (page 84), f .z/ admits a Fourier expansion (or

q-expansion)

f .z/D
X

n2Z

anq.z/n D
X

n2Z

ane2� inz (4.1)

on �C, where q.z/
defD e2� iz , and where the an are given by formula (B.6). We

say that f .z/ is holomorphic at infinity if an D 0 for every n � �1:

f .z/D
1

X

nD0

ane2� inz (4.2)

on �C. Let G D SL.2;R/ denote the group of 2�2 real matrices g D
�a

c
b
d

�

with

determinant D 1, and let � D SL.2;Z/ � G denote the subgroup of elements

 D
�

a
c

b
d

�

with a; b; c; d 2 Z. The standard linear fractional action of G on �C,

given by

g � z defD az C b

cz C d
2 �C for .g; z/ 2 G ��C (4.3)

restricts to any subgroup of G, and in particular it restricts to � .

A (holomorphic) modular form of weight k 2 Z, k � 0, with respect to � , is

a holomorphic function f .z/ on �C that satisfies the following two conditions:

(M1) f . � z/D .cz C d/kf .z/ for  D
�

a
c

b
d

�

2 � , z 2 �C.

(M2) f .z/ is holomorphic at infinity.
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Here we note that for the case of  D T
defD

�

1
0

1
1

�

2 � , we have  � z D z C 1

by (4.3). Then f .z C 1/ D f .z/ by (M1), which means that condition (M2)

is well-defined, and therefore f .z/ satisfies equation (4.2), which justifies the

statement of equation (3.20) of Lecture 3. One can also consider weak modular

forms, where the assumption that an D 0 for every n � �1 is relaxed to allow

finitely many negative Fourier coefficients to be nonzero. One can consider,

moreover, modular forms with respect to various subgroups of � . There are

two other quick notes to make. First, if  D �1
defD

��1
0

0
�1

�

2 � , then by (4.3)

and (M1) we must have f .z/D .�1/kf .z/ which means that f .z/� 0 if k is

odd. For this reason we always assume that k is even. Secondly, condition (M1)

is equivalent to the following two conditions:

(M1)0 f .z C 1/D f .z/, and

(M1)00 f .�1=z/D zkf .z/ for z 2 �C.

For we have already noted that (M1) ) (M1)0, by the choice  D T . Also

choose  D S
defD

�

0
1

�1
0

�

2� . Then by (4.3) and (M1), condition (M1)00 follows.

Conversely, the conditions (M1)0 and (M1)00 together, for k � 0 even, imply

condition (M1) since the two elements T;S 2 � generate � ; a proof of this is

provided in Appendix F (page 96).

Basic examples of modular forms are provided by the holomorphic Eisenstein

series Gk.z/, which serve in fact as building blocks for other modular forms:

Gk.z/
defD

X

.m;n/2Z�Z�f.0;0/g

1

.m C nz/k
(4.4)

for z 2�C, k D4; 6; 8; 10; 12; : : : . The issue of absolute or uniform convergence

of these series rests mainly on the next observation, whose proof goes back to

Chris Henley [2]. Given A; ı > 0 let

SA;ı
defD f.x;y/ 2 R

2 j jxj � A;y � ıg (4.5)

be the region � �C, as illustrated:

y

x
0

ı

�A A



32 FLOYD L. WILLIAMS

LEMMA 4.6. There is a constant K D K.A; ı/ > 0, depending only on A and

ı, such that for any .x;y/ 2 SA;ı and .a; b/ 2 R
2 with b ¤ 0 the inequality

.a C bx/2 C b2y2

a2 C b2
� K (4.7)

holds. In fact one can take

K
defD ı2

1C .A C ı/2
: (4.8)

PROOF. Given .x;y/ 2 SA;ı and .a; b/ 2 R
2 with b ¤ 0, let q

defD a=b. Then

(4.7) amounts to

.q C x/2 C y2

1C q2
� K:

Two cases are considered. First, if jqj � ACı, then 1Cq2 � 1C.ACı/2, so

1

1C q2
� 1

1C .A C ı/2
:

Also .q C x/2 C y2 � y2 � ı2 (since y � ı for .x;y/ 2 SA;ı). Therefore

.q C x/2 C y2

1C q2
� ı2

1C .A C ı/2
D K;

with K as in (4.8).

If instead jqj>ACı, we have 1=jqj< 1=.ACı/, so �jxj=q � �jxj=.ACı/.
Use the triangular inequality and the fact that jxj � A for .x;y/ 2 SA;ı to write

ˇ

ˇ

ˇ

ˇ

1C x

q

ˇ

ˇ

ˇ

ˇ

� 1 �
ˇ

ˇ

ˇ

ˇ

x

q

ˇ

ˇ

ˇ

ˇ

� 1 � jxj
A C ı

� 1 � A

A C ı
D ı

A C ı
:

That is, jq C xj � jqj ı

ACı , which implies .q C x/2 � q2ı2

.ACı/2 , or again

.q C x/2 C y2

1C q2
� .q C x/2

1C q2
� ı2

.ACı/2
q2

1Cq2
: (4.9)

On the other hand, f .x/
defD x2=.1 C x2/ is a strictly increasing function

on .0;1/ since f 0.x/ D 2x=..1 C x2/2/ is positive for x > 0. Thus, since

jqj>A C ı, we have

q2

1C q2
D f .jqj/ > f .A C ı/D .A C ı/2

1C .A C ı/2
;

which leads to
.q C x/2 C y2

1C q2
� ı2

.ACı/2
.ACı/2

1C.ACı/2
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by the second inequality in (4.9). But the right-hand side is again the constant

K of (4.8). This concludes the proof. ˜

Now suppose b D 0, but a ¤ 0. Then
.aCbx/2Cb2y2

a2Cb2
D a2

a2
D 1> 1

2
; which

by Lemma 4.6 says that

.a C bx/2 C b2y2

a2 C b2
� K1

defD min
�

1
2
;K

�

for .x;y/2 SA;ı, .a; b/2 R�R�f.0; 0/g. Hence if z 2 SA;ı , say z D xCiy, and

.m; n/2 Z�Z�f.0; 0/g, we get jmCnzj2 D .mCnx/2Cn2y2 � .m2Cn2/K1 D
K1jm C ni j2. This implies, for ˛ � 0, that jm C nzj˛ � K

˛=2
1

jm C ni j˛ , or

1

jm C nzj˛ � 1

K
˛=2
1

jm C ni j˛
: (4.10)

Moreover — setting for convenience Z
2
�

defD Z � Z � f.0; 0/g — we know from

results in Appendix G that
P

.m;n/2Z
2
�

1=jm C ni j˛ converges for ˛ > 2. This

shows that Gk.z/ converges absolutely and uniformly on every SA;ı for k > 2,

which (since k is even) is why we take k D 4; 6; 8; 10; 12; : : : in (4.4). In

particular, since any compact subset of �C is contained in some SA;ı , the holo-

morphicity of Gk.z/ on �C is established.

Since the map .m; n/‘ .m�n; n/ is a bijection of Z
2
�, we have

Gk.z C 1/D P

.m;n/2Z
2
�

1

.m C n C nz/k
D P

.m;n/2Z
2
�

1

.m � n C n C nz/k
D Gk.z/:

Similarly,

Gk

�

�1

z

�

D
X

.m;n/2Z
2
�

1

.m�n=z/k
D zk

X

.m;n/2Z
2
�

1

.mz�n/k
D zk

X

.m;n/2Z
2
�

1

.nzCm/k
;

since the map .m; n/ ‘ .n;�m/ is a bijection of Z
2
�. This shows that Gk.z/

satisfies the conditions (M1)0 and (M1)00.
To complete the argument that the Gk.z/, for k even � 4, are modular forms

of weight k, we must check condition (M2). Although this could be done more

directly, we take the route whereby the Fourier coefficients of Gk.z/ are actually

computed explicitly. For this, consider the function

�k.z/
defD

X

m2Z

1

.z C m/k
(4.11)
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on �C for k 2 Z, k � 2. The inequality (4.10) gives

1

jm C zjk � 1

K
k=2
1

jm C i jk
D 1

K
k=2
1
.m2 C 1/k=2

(4.12)

for z 2 SA;ı . Since

X

m2Z

1

.m2 C 1/k=2
D 1C 2

1
X

mD1

1

.m2 C 1/k=2
� 1C 2

1
X

mD1

1

m2.k=2/ D mk
<1

for k > 1, we see that �k.z/ converges absolutely and uniformly on every SA;ı ,

and is therefore a holomorphic function on �C such that

�k.z C 1/D
X

m2Z

1

.z C m C 1/k
D

X

m2Z

1

.z C m/k
D �k.z/:

Thus (again) there is a Fourier expansion

�k.z/D
X

n2Z

an.k/e
2� inz (4.13)

on �C, where by formula (B.6) of page 84 (with the choice b1 D 0, b2 D 1)

an.k/D
Z 1

0

�k.t C ib/e�2� in.tCib/ dt (4.14)

for n 2 Z, b > 0.

PROPOSITION 4.15. In the Fourier expansion (4.13), an.k/D 0 for n � 0 and

an.k/D .�2� i/knk�1=.k � 1/! for n � 1. Therefore

�k.z/D .�2� i/k

.k � 1/!

1
X

nD1

nk�1e2� inz

is the Fourier expansion of the function �k.z/ of (4.11) on �C. Here k 2 Z,

k � 2 as in (4.11).

PROOF. For fixed n 2 Z and b > 0, define hm.t/
defD e�2� int=.tCibCm/k on

Œ0; 1�, for m2 Z. Since .t; b/2S1;b for t 2 Œ0; 1� according to (4.5), the inequality

in (4.12) gives

jhm.t/j � 1

K
k=2
1
.m2 C 1/k=2

:
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As we have seen,
P

m2Z
1=.m2 C 1/k=2 <1 for k > 1, so

P

m2Z
hm.t/ con-

verges uniformly on Œ0; 1�. By (4.11) and (4.14), therefore, we see that

an.k/D
Z 1

0

X

m2Z

hm.t/e
2�nb dt D e2�nb

X

m2Z

Z 1

0

hm.t/ dt

D e2�nb
X

m2Z

Z 1

0

e�2� int

.t C ib C m/k
dt: (4.16)

By the change of variables x D t C m, we get

Z 1

0

e�2� int dt

.t C ib C m/k
D

Z mC1

m

e�2� in.x�m/

.x C ib/k
dx D

Z mC1

m

e�2� inx

.x C ib/k
dx;

so

X

m2Z

Z 1

0

e�2� int

.t C ib C m/k
dt

D
X

m2Z

Z mC1

m

e�2� inx

.x C ib/k
dx

D
1

X

mD0

Z mC1

m

e�2� inx

.x C ib/k
dx C

1
X

mD1

Z �mC1

�m

e�2� inx

.x C ib/k
dx

D
Z 1

0

e�2� inx

.x C ib/k
dx C

Z 0

�1

e�2� inx

.x C ib/k
D

Z 1

�1

e�2� inx

.x C ib/k
dx: (4.17)

(Note that the integrals on the last line are finite for k > 1, since
ˇ

ˇ

ˇ

ˇ

ˇ

e�2� inx

.x C ib/k

ˇ

ˇ

ˇ

ˇ

ˇ

D 1

.x2 C b2/k=2
(4.18)

and the map x ‘ 1=.x2 C b2/� lies in L1.R; dx/ for 2� > 1.) From (4.16) and

(4.17), we have

an.k/D e2�nb

Z 1

�1

e�2� inx

.x C ib/k
dx: (4.19)

In particular,

jan.k/j � e2�nb

Z

R

dx

bk
��

x
b

�2 C 1
�k=2

;

by (4.18). Setting t D x=b, we can rewrite the right-hand side as

e2�nb

bk

Z

R

b dt

.t2 C 1/k=2
D e2�nbck

bk�1
; (4.20)
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where ck
defD

R

R
dt=.t2 C 1/k=2 <1 for k > 1. Since b > 0 is arbitrary, we let

b ! 1. For n D 0 or for n< 0, we see by the inequality (4.20) that an.k/D 0.

Also for n D 1; 2; 3; 4; : : : and k > 1, it is known that
Z

R

e�2� inx

.x C ib/k
dx D e�2�nb .�2� i/k

.k � 1/!
nk�1I (4.21)

see the Remark below. The proof of Proposition 4.15 is therefore completed by

way of equation (4.19). ˜

REMARK. Equation (4.21) follows from a contour integral evaluation:
Z 1Cib

�1Cib

e�2� i�z

zk
dz D .2�/k�k�1e�k� i=2

� .k/
(4.22)

where �; b > 0, k > 1. The left-hand side here is
Z 1

�1

e�2� i�.xCib/

.x C ib/k
dx D e2��b

Z 1

�1

e�2� i�x

.x C ib/k
dx:

Thus we can write
R 1

�1 e�2� i�xdx=.x C ib/k De�2��b.�2� i/k�k�1=.k�1/!

for �; b > 0 and k > 1 an integer. The choice �D n (n D 1; 2; 3; 4; : : : ) gives

(4.21).

For n 2 Z, define

 n.z/
defD �k.nz/D

X

m2Z

1

.nz C m/k

(see (4.11) for the last equality) on �C. In definition (4.4), the n D 0 contri-

bution to the sum is
P

m2Z�f0g 1=mk D P1
mD1 1=mk C P1

mD1 1=.�m/k D
2

P1
mD1 1=mk (since k is even) D 2�.k/: Thus we can write Gk.z/D 2�.k/C

P

n2Z�f0g
P

m2Z
1=.m C nz/k D 2�.k/C P1

nD1 n.z/C P1
nD1 �n.z/. But

 �n.z/ D  n.z/, again because k is even (the easy verification is left to the

reader). Therefore

Gk.z/D 2�.k/C 2

1
X

nD1

 n.z/D 2�.k/C 2

1
X

nD1

�k.nz/

D 2�.k/C 2.2� i/k

.k � 1/!

1
X

nD1

1
X

mD1

mk�1e2� imnz

(by Proposition 4.15, for k even), leading to

Gk.z/D 2�.k/C 2.2� i/k

.k � 1/!

1
X

nD1

�k�1.n/e
2� inz;

by formula (D.8) of Appendix D. This proves:
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THEOREM 4.23. The holomorphic Eisenstein series Gk.z/, k D 4; 6; 8; 10; 12;

: : : , defined in (4.4) satisfy conditions (M1)0, (M1)00, and are holomorphic at

infinity. In fact, Gk.z/ has Fourier expansion (4.2), where a0 D 2�.k/ and

an D 2.2� i/k

.k � 1/!
�k�1.n/

defD 2.2� i/k

.k � 1/!

X

d>0
d j n

dk�1

for n � 1. The Gk.z/ are therefore modular forms of weight k.

Since k is even in Theorem 4.23, formula (2.1) applies to �.k/.

As mentioned, a modular form is a cusp form if its initial Fourier coefficient

a0 in equation (4.2) vanishes. By Theorem 4.23 the Gk.z/, for example, are not

cusp forms since �.k/¤ 0 for k even, k � 4. In fact we know (by Theorem 3.17)

that since �.s/ is given by an Euler product, it is nonvanishing for Re s > 1.

We return now to the discussion of Hecke L-functions, where we begin with

results on estimates of Fourier coefficients of modular forms. The Gk.z/ already

provide the example of how the general estimate looks. This involves only an

estimate of the divisor function ��.n/ for � > 1, where we first note that d > 0

runs through the divisors of n 2 Z, n � 1, as does n=d :

��.n/
defD

X

0<d
d j n

d� D
X

0<d
d j n

� n

d

��

D n�
X

0<d
d j n

1

d�
� n�

X

0<d2Z

1

d�
D n��.�/:

Therefore for an the n-th Fourier coefficient of Gk.z/, Theorem 4.23 gives, for

n � 1, janj � 2.2�/k=.k � 1/!�.k � 1/nk�1 D C.k/nk�1, where we have set

C.k/
defD 2.2�/k

.k � 1/!
�.k � 1/:

In general:

THEOREM 4.24. For a modular form f .z/ of weight k D 4; 6; 8; 10; : : : ; with

Fourier expansion given by equation (4.2), there is a constant C.f; k/ > 0,

depending only on f and k, such that janj < C.f; k/nk�1 for n � 1. If f .z/ is

a cusp form, C.f; k/ > 0 can be chosen so that janj< C.f; k/nk=2 for n � 1.

The idea of the proof is to first establish the inequality

janj< C.f; k/nk=2; n � 1; (4.25)

for a cusp form f .z/ by estimating f .z/ on a fundamental domain F � �C

for the action of � on �C (given by restriction of the action of G in equation
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(4.3) to � ), whence an estimate of f .z/ on �C is readily obtained. Then an is

estimated from the formula

an D
Z 1

0

f .t C ib/e�2� in.tCib/ dt (4.26)

for any b > 0; compare formula (4.14). By these arguments one can discover,

in fact, that a modular form f .z/ of weight k is a cusp form if and only if there

is a constant M.f; k/ > 0, depending only on f and k, such that

jf .z/j<M.f; k/.Im z/�k=2 (4.27)

on �C. Once (4.25) is established for a cusp form, the weaker result janj <
C.f; k/nk�1, n � 1, for an arbitrary modular form f .z/ of weight k fol-

lows from the fact that it holds for Gk.z/ (as shown above), and the fact that

f .z/ differs from a cusp form (where one can apply the inequality (4.25)) by

a constant multiple of Gk.z/. In fact, write f .z/ D a0 C P1
nD1 ane2� inz ,

Gk.z/D b0 CP1
nD1 bne2� inz (by equation (4.2)) where b0 D 2�.k/, for exam-

ple (by Theorem 4.23). Then f0.z/
defD f .z/� .a0=b0/Gk.z/ is a modular form

of weight k, with Fourier expansion

f0.z/D a0 C
1

X

nD1

ane2� inz � a0

b0

b0 �
1

X

nD1

a0

b0

bne2� inz

D
1

X

nD1

�

an � a0bn

b0

�

e2� inz;

which shows that f0.z/ is a cusp form such that

f .z/D f0.z/C a0

b0

Gk.z/: (4.28)

To complete our sketch of the proof of Theorem 4.24, details of which can

be found in section 6.15 of [2], for example, we should add further remarks

regarding F . By definition, a fundamental domain for the action of � on �C is

an open set F � �C such that (F1) no two distinct points of F lie in the same

� -orbit: if z1; z2 2 F with z1 ¤ z2, then there is no  2 � such that z1 D  �z2.

We also require condition: (F2) given z 2 �C, there exists some  2 � such

that  � z 2 NF (= the closure of F ). The standard fundamental domain, as is

well-known, is given by

F
defD

˚

z 2 �C j jzj> 1; j Re zj< 1
2

	

; (4.29)

and is shown at the the top of the next page.
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F is this

interior region

x
�1

2
1
20

If Mk.� / and Sk.� / denote the space of modular forms and cusp forms of

weight k D 4; 6; 8; 10; : : : , respectively, there is the C-vector space direct sum

decomposition

Mk.� /D Sk.� /˚ CGk ; (4.30)

by (4.28). The sum in (4.30) is indeed direct since (as we have seen) Gk.z/ is

not a cusp form.

If f 2 Mk.� / with Fourier expansion (4.2), the corresponding Hecke L-

function L.sI f / is given by definition (3.21):

L.sI f /D �f .s/
defD

1
X

nD1

an

ns
: (4.31)

By Theorem 4.24 this series converges absolutely for Re s > k, and for Re s >

1Ck
2

if f 2Sk.� /. On these respective domains L.sI f / is holomorphic in s (by

an argument similar to that for the Riemann zeta function), as we have asserted

in Lecture 3. Since Theorem 3.25 is based on equation (3.24), which is based

on equation (3.23), our proof of it actually shows the following reformulation:

THEOREM 4.32. Suppose the Fourier coefficients an of f 2 Mk.� / satisfy the

multiplicative condition (3.23), with at least one an nonzero:

an1
an2

D
X

d>0
d j n1; d j n2

dk�1 an1n2

d2
(4.33)
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for n1; n2 � 1. Then L.sI f / has the Euler product representation

L.sI f /D
Y

p2P

1

1C pk�1�2s � app�s
(4.34)

for Re s > k. If f 2 Sk.� /, equation (4.34) holds for Re s > 1C k=2.

Here, we only need to note that a1 D 1. For if some an ¤ 0, then by (4.33)

ana1 D an�1=12 D an and so a1 D 1.

Theorem 4.32 raises the question of finding modular forms whose Fourier

coefficients satisfy the multiplicative condition (3.23) = condition (4.33). This

question was answered by Hecke (in 1937), who found, in fact, all such forms.

As was observed in Lecture 3, the multiplicative condition is satisfied by nor-

malized simultaneous eigenforms: nonzero forms f .z/ with a1 D 1, that are

simultaneous eigenfunctions of all the Hecke operators T .n/; n � 1; see defini-

tion (3.22). More concretely, among the non-cusp forms the normalized simul-

taneous eigenforms turn out to be the forms

f .z/D .k � 1/!

2.2� i/k
Gk.z/;

where indeed, by Theorem 4.23, a1 D �k�1.1/D 1.

We mention that the Hecke operators fT .n/gn�1 map the space Mk.� / to

itself, and also map the space Sk.� / to itself. For f 2 Mk.� / with Fourier

expansion f .z/D P1
nD0 ane2� inz on �C, as in (4.2), .T .n/f /.z/ has Fourier

expansion

.T .n/f /.z/D
1

X

mD0

a.n/m e2� imz

on �C, where a
.n/
0

D a0�k�1.n/ and a
.n/
m D P

0<d; d j n; d j m dk�1a n
d

m
d

for

m � 1 — a result that leads to condition (4.33); in particular a
.n/
1

Dan.

Besides his striking observations regarding the connection between modular

forms f .z/ and their associated Dirichlet series L.sI f /, that we have briefly

discussed so far, Enrich Hecke also obtained the analytic continuation and func-

tional equation of L.sI f /, which we now describe. Hecke showed that

.2�/�sL.sI f /� .s/

D
Z 1

1

�

f .i t/� a0

�

.t s�1 C ik tk�s�1/ dt C a0

�

ik

s � k
� 1

s

�

(4.35)

for Re s > k. Here the integral

Jf .s/
defD

Z 1

1

�

f .i t/� a0

�

t s�1 dt (4.36)
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is an entire function of s. Notice that equation (4.35) is similar in form to

(1.12). Again since 1=� .s/ is an entire function, and since .1=s/ .1=� .s// D
1=� .s C 1/, we can write equation (4.35) as

L.sI f /D .2�/s

� .s/

�

Jf .s/C ikJf .k � s/
�

C .2�/s

� .s/

a0ik

.s�k/
� .2�/sa0

� .sC1/
(4.37)

for Re s > k. If f .z/ is a cusp form, we see that L.sI f / extends to an entire

function by way of the first term in (4.37). In general, we see that L.sI f /
extends meromorphically to C, with a single (simple) pole at s D k with residue

.2�/ka0ik=� .k/D .2�/ka0ik=.k�1/! . Also by equation (4.37), for k�s ¤ k

(i.e., s ¤ 0), we have

ik.2�/s�k� .k � s/L.k � sI f /

D ik.2�/s�k� .k�s/
.2�/k�s

� .k�s/

�

Jf .k�s/C ikJf .s/C a0ik

�s
� a0� .k�s/

� .k�sC1/

�

D ikJf .k � s/C Jf .s/C a0

�s
� ika0

k � s

(again since � .wC1/Dw� .w/, and since i2k D 1 for k even); the right-hand

side in turn equals .2�/�s� .s/L.sI f /. That is,

.2�/�s� .s/L.sI f /D ik.2�/s�k� .k � s/L.k � sI f / (4.38)

for s ¤ 0, which is the functional equation for L.sI f /, which compares with

the functional equation for the Riemann zeta function; see [17; 18].

The Eisenstein series Gk.z/ can be used as building blocks to construct other

modular forms. It is known that any modular form f .z/ is, in fact, a finite sum

of the form f .z/D P

n;m�0 cnmG4.z/
nG6.z/

m for suitable complex numbers

cnm. Of particular interest are the discriminant form

�.z/
defD .60G4.z//

3 � 27 .140G6.z//
2 (4.39)

and the modular invariant

J.z/
defD .60G4.z//

3 =�.z/ (4.40)

which is well-defined since it is true that �.z/ never vanishes on �C. �.z/ is a

modular form of weight 12, since if f1.z/; f2.z/ are modular forms of weight

k1; k2, then f1.z/f2.z/ is a modular form of weight k1 C k2. Similarly J.z/ is

a weak modular form of weight k D 0: J.; z/D J.z/ for  2 � , z 2 �C. The

form J.z/ was initially constructed by R. Dedekind in 1877, and by F. Klein in

1878. Associated with it is the equally important modular j-invariant

j .z/
defD 1728J.z/: (4.41)
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�.z/ is connected with the Dedekind eta function �.z/ (see definition (3.27))

by the Jacobi identity

�.z/D .2�/12�.z/24; (4.42)

which with equation (3.28) shows that �.z/ has Fourier expansion

�.z/D .2�/12
1
P

nD1

�.n/e2� inz ; (4.43)

where �.n/ is the Ramanujan tau function, and which in particular shows that

�.z/ is a cusp form: �.z/ 2 S12.� /, which can also be proved directly by

definition (4.39) and Theorem 4.23, for k D 4; 6. There are no nonzero cusp

forms of weight < 12.

Note that by Theorem 4.24, there is a constant C > 0 such that j�.n/j<C n6

for n � 1. However P. Deligne proved the Ramanujan conjecture j�.n/j �
�0.n/n

11=2 for n � 1, where �0.n/ is the number of positive divisors of n.

As we remarked in Lecture 3, the �.n/ (remarkably) are all integers. This can

be proved using definition (4.39) and Theorem 4.23, for k D 4; 6. It is also true

that, thanks to the factor 1728 in definition (4.41), all of the Fourier coefficients

of the modular j-invariant are integers:

j .z/D 1e�2� iz C
1
P

nD0

ane2� inz (4.44)

with each an 2 Z:

a0 D 744; a1 D 196;884; a2 D 21;493;760; a3 D 864;299;970;

a4 D 20;245;856;256; a5 D 333;202;640;600; : : : (4.45)

An application of the modular invariant j .z/, and of the values in (4.45), to

three-dimensional gravity with a negative cosmological constant will be given

in my Speaker’s Lecture; see especially equation (5-8) on page 343 and the

subsequent discussion.

In the definition (4.4) of the holomorphic Eisenstein series Gk.z/, one can-

not take k D 2 for convergence reasons. However, Theorem 4.23 provides a

suggestion of how one might proceed to construct a series G2.z/. Namely, take

k D 2 there and thus define

G2.z/
defD 2�.2/C2.2� i/2

1
P

nD1

�.n/e2� inz D �2

3
�8�2

1
P

nD1

�.n/e2� inz (4.46)

on �C, where �.n/
defD �1.n/

defD P

0<d; d j n d . Note that the series on the

right does converge on �C and, in fact, the convergence is absolute: since

�.n/� Pn
dD1 d D 1

2
n.nC1/ we have j�.n/e2� inzj � 1

2
n.nC1/e�2�n Im z , and

convergence is assured by the ratio test. Given any compact subset K � �C, a

positive lower bound B for the continuous function Im z on K exists: we have
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Im z � B > 0 on K, so j�.n/e2� inzj � 1
2
n.n C 1/e�2�nB on K, and again

P1
nD1 n.nC1/e�2�nB <1 for B > 0. By the M -test,

P1
nD1 �.n/e

2� inz con-

verges uniformly on K, which (by the Weierstrass theorem) means that G2.z/

is a holomorphic function on �C.

Another expression for G2.z/ is

G2.z/D 2�.2/C
X

n2Z�f0g

X

m2Z

1

.m C nz/2
: (4.47)

To check this, start by taking k D 2 in definition (4.11) and in Proposition 4.15:

1

z2
C

X

m2Z�f0g

1

.z C m/2
D �2.z/D .�2� i/2

1
X

kD1

ke2� ikz : (4.48)

Replace z by nz in (4.48) and sum on n from 1 to 1:

1

z2
�.2/C

1
X

nD1

X

m2Z�f0g

1

.nz C m/2
D .�2� i/2

1
X

nD1

1
X

kD1

ke2� iknz : (4.49)

By (D.6) (see page 90), we obtain

�.n/D
1

X

kD1

d.k; n/k: (4.50)

For an
defD e2� inz , n � 1, z 2 �C, and for k � 1 fixed the series

P1
nD1 d.k; n/an

clearly converges absolutely, since Im z > 0 and 0 � d.k; n/ � 1. Then the

series
P1

nD1 akn converges and equals
P1

nD1 d.k; n/an, by the Scholium of

Appendix D (page 91):

1
X

nD1

e2� iknz D
1

X

nD1

d.k; n/e2� inz (4.51)

which gives, by equation (4.50)

1
X

nD1

�.n/e2� inz D
1

X

nD1

1
X

kD1

d.k; n/e2� inz D
1

X

kD1

k

1
X

nD1

d.k; n/e2� inz

D
1

X

kD1

k

1
X

nD1

e2� iknz D
1

X

nD1

1
X

kD1

ke2� iknz; (4.52)

which in turn allows for the expression

2

z2
�.2/C 2

1
X

nD1

X

m2Z�f0g

1

.nzCm/2
D 2.2� i/2

1
X

nD1

�.n/e2� inz

D G2.z/� 2�.2/ (4.53)
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by equation (4.49), provided the commutations of the summations over k; n in

(4.52) are legal. But for y D Im z,

1
P

nD1

1
P

kD1

jd.k; n/ke2� inzj D
1
P

nD1

1
P

kD1

d.k; n/ke�2�ny D
1
P

nD1

�.n/e�2�ny

by (4.50), and this equals
P1

nD1 j�.n/e2� inzj, which is finite, as we have seen.

This justifies the first commutation. Similarly,

1
P

kD1

1
P

nD1

jke2� iknzjD
1
P

kD1

k
1
P

nD1

.e�2�ky/n D
1
P

kD1

k

�

e�2�ky

1�e�2�ky

�

D
1
P

kD1

k

e2�ky�1

is finite by the integral test:
Z 1

1

t dt

e2�yt � 1
D 1

.2�y/2

Z 1

2�y

u du

eu � 1
<1; (4.54)

as we shall see later by Theorem 6.1, for example. This justifies the second

commutation in equation (4.52). Since for n � 1

X

m2Z�f0g

1

.m � nz/2
D

X

m2Z�f0g

1

.�m � nz/2
D

X

m2Z�f0g

1

.m C nz/2
; (4.55)

the double sum on the right-hand side of (4.47) can be written as

1
X

n2Z�f0g

�

1

.nz/2
C

X

m2Z�f0g

1

.m C nz/2

�

D 2

1
X

nD1

1

n2z2
C

1
X

nD1

X

m2Z�f0g

1

.m C nz/2
C

1
X

nD1

X

m2Z�f0g

1

.m � nz/2

D 2
�.2/

z2
C 2

1
X

nD1

X

m2Z�f0g

1

.m C nz/2
; (4.56)

which is the left-hand side of (4.53). That is, G2.z/� 2�.2/ equals the double

sum on the right-hand side of (4.47), proving (4.47).

Using equation (4.47) one can eventually show that G2.z/ satisfies the rule

G2

�

�1

z

�

D z2G2.z/� 2� iz: (4.57)

Because of the term �2� iz in (4.57), G2.z/ is not a modular form of weight 2.

That is, condition (M1)00 above is not satisfied, although condition (M1)0 is:

G2.z C 1/ D G2.z/ by definition (4.46). Equation (4.57) also follows by a

transformation property of the Dedekind eta function, whose logarithmic deriv-

ative turns out to be a constant multiple of G2.z/. Thus we indicate now an

alternative derivation of the rule (4.57).
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On the domain D
defD fw 2 C j jwj < 1g, the holomorphic function 1 C w

is nonvanishing and it therefore has a holomorphic logarithm g.w/ that can

be chosen so as to vanish at w D 0: eg.w/ defD 1 C w on D. In fact g.w/ D
� P1

nD1.�w/n=n. Again for q.z/
defD e2� iz , z 2 �C, consider the n-th partial

sum sn.z/
defD Pn

kD1 g.�q.z/k/, which is well-defined, because q.z/ 2 D for

z 2 �C implies �q.z/k 2 D for k > 0. We claim that the series

 .z/
defD �

1
X

kD1

g.�q.z/k/D � lim
n!1 sn.z/ (4.58)

converges. We have  .z/ D P1
kD1

P1
nD1.q.z/

k/n=n, where for y D Im z

(again)

1
X

nD1

1
X

kD1

ˇ

ˇ

ˇ

ˇ

ˇ

.q.z/k/n

n

ˇ

ˇ

ˇ

ˇ

ˇ

D
1

X

nD1

1

n

1
X

kD1

.e�2�ny/k

D
1

X

nD1

1

n

�

e�2�ny

1 � e�2�ny

�

D
1

X

nD1

1

n

�

1

e2�ny � 1

�

;

which is finite by the integral test; compare with (4.54), for example. This allows

us to write
P1

nD1

P1
kD1.q.z/

k/n=n D P1
kD1

P1
nD1.q.z/

k/n=n, and shows

the finiteness of these series. Hence  .z/ is finite. Now
Q1

nD1.1 � q.z/n/ D
limn!1

Qn
kD1.1 � q.z/k/ D limn!1

Qn
kD1 eg.�q.z/k/, by the definition of

g.w/, and this equals e� .z/ by (4.58). That is, for the Dedekind eta function

�.z/D e� iz=12
1
Y

nD1

.1 � q.z/n/ (4.59)

on �C defined in (3.27) we see that

�.z/D e� iz=12� .z/: (4.60)

Differentiation of the equation eg.w/ defD 1Cw gives g0.w/D1=eg.w/D1=.1Cw/
(of course), which with termwise differentiation of (4.58) (whose justification

we skip) gives

 0.z/D �
1

X

kD1

g0.�q.z/k/.�kq.z/k�1q0.z//D 2� i

1
X

kD1

kq.z/k

1 � q.z/k

D 2� i

1
X

kD1

k

1
X

nD1

.q.z/k/n D 2� i

1
X

nD1

�.n/e2� inz;
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by equation (4.52). Therefore, by (4.60), we obtain

�0.z/D �.z/
�� i

12
� 2� i

1
P

nD1

�.n/e2� inz
�

;

or
�0.z/
�.z/

D �G2.z/

4� i
(4.61)

by definition (4.46).

Now �.z/ satisfies the known transformation rule

�
�

�1

z

�

D e�i�=4
p

z�.z/;

where we take arg z 2 .��; �/. Differentiation gives

�0
�

�1

z

�

1

z2

�
�

�1

z

� D
e�i�=4

�p
z�0.z/C

p
z

2z
�.z/

�

�
�

�1

z

� D �0.z/
�.z/

C 1

2z
(4.62)

which by equation (4.61) says that �G2

�

�1
z

�

=4� iz2 D�G2.z/=4� iC 1

2z
. This

is immediately seen to imply the transformation rule (4.57).

In the lectures of Geoff Mason and Michael Tuite the particular normaliza-

tion Gk.z/=.2� i/k of the Eisenstein series is considered, which they denote by

Ek.z/. In particular, by definition (4.46),

E2.z/D � 1

12
C 2

1
X

nD1

�.n/e2� inz :

However, other normalized Eisenstein series appear in the literature that also

might be denoted by Ek.z/. For example, in [20] there is the normalization

(and notation) Ek.z/
defD Gk.z/=2�.k/.

Lecture 5. Dirichlet L-functions

Equation (3.19) has an application to Dirichlet L-functions, which we now

consider. To construct such a function, we need first a character � modulo m,

where m > 0 is a fixed integer. This is defined as follows. Let Um denote the

group of units in the commutative ring Z.m/
defD Z=mZ. Thus if Nn D n C mZ

denotes the coset of n 2 Z in Z.m/, we have Nn 2 Um () 9Na 2 Z.m/ such

that Na Nn D N1. One knows of course that Nn 2 Um () .n;m/ D 1 (i.e. n and

m are relatively prime). A character modulo m is then (by definition) a group

homomorphism � W Um ! C
� defD C �f0g. For our purpose, however, there is an
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equivalent way of thinking about characters modulo m. In fact, given �, define
�

Z W Z ! C by

�
Z.n/

defD
�

�. Nn/ if .n;m/D 1,

0 otherwise,
(5.1)

for n 2 Z. For n; n1; n2 2 Z, �Z satisfies:

(D1) �Z.n/D 0 () .n;m/¤ 1;

(D2) �Z.n1/D �
Z
.n2/ when Nn1 D Nn2 in Z.m/;

(D3) �Z.n1n2/D �
Z.n1/�Z.n2/ when .n1;m/D 1 and .n2;m/D 1.

Conversely, suppose �0 WZ !C is a function that satisfies the three conditions

(D1), (D2), and (D3). Define � W Um ! C by �. Nn/D �
0.n/ for n 2 Z such that

.n;m/ D 1. The character � is well-defined by (D2), and � W Um ! C
� by

(D1). By (D3), �.ab/D �.a/�.b/ for a; b 2 Um, so we see that � is a character

modulo m. Moreover the induced map .�0/Z W Z ! C given by definition (5.1)

coincides with �0.

Note that �Z is completely multiplicative:

(D4) �Z.n1n2/D �
Z.n1/�Z.n2/ for all n1; n2 2 Z.

For if either .n1;m/¤ 1 or .n2;m/¤ 1, then .n1n2;m/¤ 1, so that by (D1)

both �Z.n1/�Z.n2/ and �Z.n1n2/ are zero. If both .n1;m/D 1 and .n2;m/D 1,

then already �Z.n1n2/D �
Z.n1/�Z.n2/ by (D3).

Note also that since �.a/ 2 C
� for every a 2 Um (that is, �.a/¤ 0), we have

0 ¤�.N1/D�.N1N1/D�.N1/�.N1/ by (D4), so �.N1/D 1. Moreover since .1;m/D 1,
�

Z.1/D �.N1/, by (5.1), which in turn equals 1.

One final property of �Z that we need is:

(D5) j�.a/j D 1 for all a 2 Um; hence j�Z.n/j � 1 for all n 2 Z.

The proof of (D5) makes use of a little theorem in group theory which says

that if G is a finite group with jGj elements, then ajGj D 1 for every a 2 G. Now,

given a 2 Um, we can write (as just seen) 1 D�.N1/D�.ajUmj/D�.a/jUmj (since
� is a group homomorphism), which shows that �.a/ is a jUmj-th root of unity:

j�.a/j D 1 for all a 2 Um. Hence j�Z.n/j � 1 for all n 2 Z, by definition (5.1).

Given a character � modulo m, it follows that we can form the zeta function,

or Dirichlet series

L.s; �/
defD

1
X

nD1

�
Z.n/

ns
D

X

.n;m/D1

�. Nn/
ns

; (5.2)

called a Dirichlet L-function, which converges for Re s > 1, by (D5). L.s; �/ is

holomorphic on the domain Re s > 1, by the same argument given for the Rie-

mann zeta function �.s/. Since �Z 6� 0 (�Z.1/D 1), and since �Z is completely

multiplicative, formula (3.19) implies:
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THEOREM 5.3 (EULER PRODUCT FOR DIRICHLET L-FUNCTIONS). Assume

Re s > 1. Then

L.s; �/D 1
Q

p2P

�

1 ��Z.p/p�s
� D 1

Q

p2P
p - m

�

1 ��Z.p/p�s
� : (5.4)

The second statement of equality follows by (D1), since for a prime p 2 P ,

saying that .p;m/¤ 1 is the same as saying that p j m.

As an example, define �0 W Z ! C by

�
0.n/D

�

1 if .n;m/D 1,

0 otherwise,

for n2 Z. Then �0 satisfies (D1). If n1; n2; l 2 Z such that n1 D n2 C lm (i.e.,

Nn1 D Nn2/, then .n1;m/D 1 () .n2;m/D 1, so �0 satisfies (D2). If .n1;m/D 1

and .n2;m/D 1, then .n1n2;m/D 1, so �0 also satisfies (D3), and �0 therefore

defines a Dirichlet character modulo m. We call �0 (or the induced character

Um ! C
�) the principal character modulo m. Again since p is a prime, we see

by equation (5.4) that for Re s > 1

L.s; �0/D 1
Q

p2P
p - m

.1 � p�s/
: (5.5)

Then for Re s > 1

L.s; �0/
1

Q

p2P
p j m

.1 � p�s/
D 1

Q

p2P

.1 � p�s/
D �.s/ (5.6)

by formula (0.2). That is,

L.s; �0/D �.s/
Y

p2P
p j m

.1 � p�s/ (5.7)

for Re s > 1.

If �0 W Um ! C
� also denotes the character modulo m induced by �0 W Z ! C,

then �0. Nn/D 1 for every Nn 2 Um (by (5.1)) since .n;m/D 1.

As another simple example, take m D 5: Z.5/ D fN0; N1; N2; N3; N4g, and it is

easily checked that U5 D fN1; N2; N3; N4g. Moreover the equations �.N1/ defD �.N4/ defD 1,
�.N2/ defD �.N3/ defD �1 define a character �.5/ D � W U5 ! C

� modulo 5. The

induced map �Z W Z ! C in definition (5.1) is given by �Z.1/D 1, �Z.2/D �1,
�

Z.3/D �1, �Z.4/D 1, �Z.5/D 0 (since .5; 5/¤ 1), �Z.6/D 1, �Z.7/D �1,
�

Z.8/D �1, �Z.9/D 1, . . . (since N6 D N1, N7 D N2, N8 D N3, N9 D N4, with .n; 5/D 1
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for n D 6; 7; 8; 9). The corresponding Dirichlet L-function is therefore given,

for Re s > 1, by

L.s; �.5//D 1 � 1

2s � 1

3s C 1

4s C 1

6s � 1

7s � 1

8s C 1

9s ˙ � � � ;

Next take m D 8 W Z.8/ D fN0; N1; N2; N3; N4; N5; N6; N7g, U8 D fN1; N3; N5; N7g: The map

�.8/D� W U8 ! C
� given by �.N1/ defD �.N7/ defD 1, �.N3/ defD �.N5/ defD �1 is a character

modulo 8, with �Z W Z ! C in definition (5.1) given by �Z.1/D 1, �Z.2/D 0,
�

Z.3/ D �1, �Z.4/ D 0, �Z.5/ D �1, �Z.6/ D 0, �Z.7/ D 1, �Z.8/ D 0,
�

Z.9/D 1, �Z.10/D 0, �Z.11/D �1, �Z.12/D 0, �Z.13/D �1, �Z.14/D 0,
�

Z.15/D 1, �Z.16/D 0, �Z.17/D 1, . . . . Then

L.s; �.8//D 1 � 1

3s � 1

5s C 1

7s C 1

9s � 1

11s � 1

13s C 1

15s C 1

17s ˙ � � � :

From formula (5.7) it follows that the L-function L.s; �0/ admits a meromor-

phic continuation to the full complex plane, with s D 1 as its only singularity —

a simple pole with residue
Q

p2P; p j m

�

1� 1
p

�

. If �¤�
0 it is known that L.s; �/

at least extends to Re s>0 and, moreover, that L.1; �/¤ 0. For example, for the

characters �.5/, �.8/ modulo 5 and 8, respectively, constructed in the previous

examples, one has

L.1; �.5//D 1p
5

log

�

3 C
p

5

2

�

; L.1; �.8//D 1p
8

log.3 C 2
p

2/:

If � ¤ �
0 is a primitive character modulo m, a notion that we shall define

presently, then L.s; �/ does continue meromorphically to C, and it has a decent

functional equation.

First we define the notion of an imprimitive character. Suppose k>0 is a divisor

of m. Then there is a natural (well-defined) map q W Z=mZ ! Z=kZ, given by

q.n C mZ/
defD n C kZ for n 2 Z. If .n;m/ D 1 then .n; k/ D 1 since k j m.

Therefore the restriction q� defD qjUm
maps Um to Uk , and is a homomorphism

between these two groups. Let  .k/ W Uk ! C
� be a character modulo k. By

definition,  .k/ is a homomorphism and hence so is  .k/ ıq� W Um ! C
�. That

is, given a positive divisor k of m we have an induced character �
defD  .k/ ı q�

modulo m. Characters � modulo m that are induced this way, say for k ¤ m,

are called imprimitive. � is called a primitive character if it is not imprimitive,

in which case m is also called the conductor of �. Thus for a primitive character
� modulo m, the L-function L.s; �/ satisfies a theory similar to (but a bit more

complicated than) that of the Riemann zeta function �.s/.

In the Introduction we referred to the prime number theorem, expressed in

equation (0.3), as a monumental result, and we noted quite briefly the role of

�.s/ in its proof. Similarly, the study of the L-functions L.s; �/ leads to a
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monumental result regarding primes in an arithmetic progression. Namely, in

1837 Dirichlet proved that there are infinitely many primes in any arithmetic

progression n, n C m, n C 2m, n C 3m, : : : , where n;m are positive, relatively

prime integers — a key aspect of the proof being the fact (pointed out earlier) that

L.1; �/¤ 0 if �¤ �
0. Dirichlet’s proof relates, moreover, L.1; �/ to a Gauss-

ian class number — an invariant in the study of binary quadratic forms. One

can obtain, also, a prime number theorem for arithmetic progressions (from the

Siegel–Walfisz theorem), where the counting function �.x/ in (0.3) is replaced

by the function �.xI m; n/
defD the number of primes p � x, with p � n.mod m/,

for n;m relatively prime. One can also formulate and prove a prime number

theorem for graphs. This is discussed in section 3.3 of the lectures of Audrey

Terras.

Lecture 6. Radiation density integral, free energy, and a

finite-temperature zeta function

Theorems 1.13 and 1.18 provide for integral representations of �.s/, for

Re s > 1, that serve as starting points for its analytic continuation. The fol-

lowing, nice integral representation also serves as a starting point. We apply it

to compute Planck’s radiation density integral. We also consider a free energy –

zeta function connection.

THEOREM 6.1. For Re s > 1

�.s/D 1

� .s/

Z 1

0

t s�1 dt

et � 1
: (6.2)

We can regard the integral on the right as the sum

Z 1

0

t s�1 dt

et � 1
C

Z 1

1

t s�1 dt

et � 1
;

where the second integral converges absolutely for all s 2 C, and the first inte-

gral, understood as the limit lim˛!0C

R 1
˛ t s�1 dt=.et � 1/, exists for Re s > 1.

The proof of Theorem 6.1 is developed in two stages. First, for ˛; ˇ; a 2 R and

s 2 C, with ˛ < ˇ and a > 0, write
R ˇ
˛ e�at t s�1 dt D a�s

R aˇ
a˛ e�vvs�1dv, by

the change of variables v D at . In particular,

Z ˇ

1

e�at t s�1 dt D a�s

Z aˇ

a

e�t t s�1 dt for ˇ > 1; (6.3)

Z 1

˛

e�at t s�1 dt D a�s

Z a

a˛

e�t t s�1 dt for ˛ < 1. (6.4)
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For s 2 C;m> 0, consider the integral

Im.s/
defD

Z 1

0

t s�1e�mt e�t

1 � e�t
dt D

Z 1

0

t s�1e�mt

et � 1
dt (6.5)

which we check does converge for Re s > 1. For t > 0, we have et > 1C t , so

1=.et � 1/ < 1=t , and hence

ˇ

ˇ

ˇ

ˇ

t s�1e�mt

et � 1

ˇ

ˇ

ˇ

ˇ

<
t��1e�mt

t
D t��2e�mt (6.6)

for � D Re s. By (6.3),
R ˇ

1 t��2e�mt dt D m�.��1/
R mˇ

m e�t t��2 dt for ˇ > 1.

Let ˇ ! 1: then
R 1

1 t��2e�mt dt exists and

Z 1

1

t��2e�mt dt D 1

m��1

Z 1

m

e�t t��2 dt:

In view of (6.6), therefore,
R 1

1

t s�1e�mt

et �1
dt converges absolutely for every

s 2 C and m> 0, and

ˇ

ˇ

ˇ

ˇ

Z 1

1

t s�1e�mt

et � 1
dt

ˇ

ˇ

ˇ

ˇ

�
Z 1

1

ˇ

ˇ

ˇ

ˇ

t s�1e�mt

et � 1

ˇ

ˇ

ˇ

ˇ

dt � 1

m��1

Z 1

m

e�t t��2 dt: (6.7)

By the change of variables v D 1=t for t > 0,

Z 1

˛

t s�1e�mt

et � 1
dt D

Z 1=˛

1

�

1

v

�s�1
e�m.1=v/

.e1=v � 1/v2
dv (6.8)

for 0< ˛ < 1. Here, by the inequality in (6.6), we can write
ˇ

ˇ

ˇ

ˇ

ˇ

�

1

v

�s�1 e�m.1=v/

.e1=v � 1/v2

ˇ

ˇ

ˇ

ˇ

ˇ

<
�

1

v

���2 e�m=v

v2
D v��e�m=v � v�� : (6.9)

But

Z 1=˛

1

v��dvD .1=˛/1�� �1

1 � � , so lim
˛!0C

Z 1=˛

1

v��dvD 1

��1
for � > 1, i.e.,

Z 1

1

�

1

v

�s�1

e�m.1=v/

.e1=v � 1/v2
dv

converges absolutely for Re s > 1 and

ˇ

ˇ

ˇ

ˇ

ˇ

Z 1

1

�

1

v

�s�1

e�m.1=v/

.e1=v � 1/v2
dv

ˇ

ˇ

ˇ

ˇ

ˇ

�
Z 1

1

ˇ

ˇ

ˇ

ˇ

ˇ

�

1

v

�s�1

e�m.1=v/

.e1=v � 1/v2

ˇ

ˇ

ˇ

ˇ

ˇ

dv �
Z 1

1

v��e�m=vdv;
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by the inequality in (6.9). The right-hand side equals limˇ!1
R ˇ

1 v
��e�m=vdv,

or, by the change of variables t D 1=v,

lim
ˇ!1

Z 1

1=ˇ

t��2e�mt dt D lim
ˇ!1

m�.��1/

Z m

m=ˇ

e�t t��2 dt

D 1

m��1

Z m

0

e�t t��2 dt:

That is, by (6.8), lim
˛!0C

Z 1

˛

t s�1e�mt

et � 1
dt exists for Re s> 1, and, with � D Re s,

ˇ

ˇ

ˇ

ˇ

lim
˛!0C

Z 1

˛

t s�1e�mt

et � 1
dt

ˇ

ˇ

ˇ

ˇ

� 1

m��1

Z m

0

e�t t��2 dt: (6.10)

We have therefore checked that the integral Im.s/ defined by (6.5) converges

for Re s > 1 (and in fact the portion
R 1

1 t s�1e�mt=.et � 1/ dt converges abso-

lutely for all s 2 C), and that, moreover, for � D Re s, we have

ˇ

ˇ

ˇ

ˇ

Z 1

0

t s�1e�mt

et � 1
dt

ˇ

ˇ

ˇ

ˇ

� 1

m��1

Z m

0

e�t t��2 dt;

ˇ

ˇ

ˇ

ˇ

Z 1

1

t s�1e�mt

et � 1
dt

ˇ

ˇ

ˇ

ˇ

� 1

m��1

Z 1

m

e�t t��2 dt;

by the inequalities (6.7) and (6.10). This says that
ˇ

ˇ

ˇ

ˇ

Im.s/

ˇ

ˇ

ˇ

ˇ

� 1

m��1

�
Z m

0

e�t t��2 dt C
Z 1

m

e�t t��2 dt

�

D 1

m��1

Z 1

0

e�t t��2 dt D 1

m��1
� .� � 1/;

by definition (1.6). Since m��1 ! 0 as m ! 1 for � > 1, we see that

lim
m!1 Im.s/D 0 (6.11)

for Re s > 1 !

We move now to the second stage of the proof of Theorem 6.1, which is quite

brief. Fix integers n;m with 1 � n � m and s 2 C with Re s > 1, and set vD nt .

Again by (1.6),
R 1

0 e�nt t s�1 dt D n�s
R 1

0 e�vvs�1dv D � .s/=ns , so

� .s/

m
X

nD1

1

ns
D

Z 1

0

t s�1

� m
X

nD1

e�nt

�

dt D
Z 1

0

t s�1 e�t .1 � e�mt /

1 � e�t
dt

D
Z 1

0

t s�1e�t

1 � e�t
dt C Im.s/:
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(Here the the last equality comes from (6.5) and the last but one from the formula

for the partial sum of the geometric series.) Therefore

� .s/

m
X

nD1

1

ns
D

Z 1

0

t s�1

et � 1
dt C Im.s/: (6.12)

We check the existence of the integral on the right-hand side for Re s > 1: write

t s�1

et � 1
D t s�1e�t C t s�1e�t

et � 1

for t > 0; the integral
R 1

0 t s�1e�t dt D � .s/ converges for Re s > 0 and the

integral of the last term, which equals I1.s/ by (6.5), converges for Re s > 1, as

established in the first stage of the proof.

Let m ! 1 in equation (6.12): then � .s/�.s/D
Z 1

0

t s�1 dt

et �1
by (6.11) for

Re s > 1, concluding the proof of Theorem 6.1.

COROLLARY 6.13. For a> 0, Re s > 1,
Z 1

0

t s�1 dt

eat � 1
D � .s/�.s/

as
: (6.14)

In particular, for a> 0, n D 1; 2; 3; 4; : : :

Z 1

0

t2n�1

eat � 1
dt D .�1/nC1 .2�=a/2n B2n

4n
: (6.15)

PROOF. This follows from (6.2) once the obvious change of variables vD at is

executed. By formula (6.14),
Z 1

0

t2n�1

eat � 1
dt D � .2n/�.2n/

a2n

for n 2 Z, n � 1. Since � .2n/ D .2n � 1/! (because � .m/ D .m � 1/! for

m 2 Z;m � 1), one can now appeal to formula (2.1) to conclude the proof of

equation (6.15). ˜

As an application of formula (6.15) we shall compute Planck’s radiation density

integral. But first we provide some background.

On 14 December 1900, a paper written by Max Karl Ernst Ludwig Planck and

entitled “On the theory of the energy distribution law of the normal spectrum”

was presented to the German Physical Society. That date is considered to be

the birthday of quantum mechanics, as that paper set forth for the first time the

hypothesis that the energy of emitted radiation is quantized. Namely, the energy

cannot assume arbitrary values but only integral multiples 0; h�; 2h�; 3h�; : : : of

the basic energy value E D h�, where � is the frequency of the radiation and h

is what is now called Planck’s constant. We borrow a quotation from Hermann
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Weyl’s notable book [37]: “The magic formula E D h� from which the whole

of quantum theory is developed, establishes a universal relation between the

frequency � of an oscillatory process and the energy E associated with such a

process”. The quantization of energy has profound consequences regarding the

structure of matter.

Planck was led to his startling hypothesis while searching for a theoretical

justification for his newly proposed formula for the energy density of thermal (or

“blackbody”) radiation. Lord Rayleigh had proposed earlier that year a theoreti-

cal explanation for the experimental observation that the rate of energy emission

f .�I T / by a body at temperature T in the form of electromagnetic radiation

of frequency � grows, under certain conditions, with the square of �, and the

total energy emitted grows with the fourth power of T . In the quantitative form

derived by James Jeans a few years later, Rayleigh’s formula reads

f .�I T /D 8��2

c3
kT; (6.16)

where c is the speed of light and k is Boltzmann’s constant. As � grows, how-

ever, this formula was known to fail. Wilhelm Wien had already proposed, in

1896, the empirically more accurate formula

f .�I T /D a�3e�b�=T : (6.17)

Unlike the Rayleigh–Jeans formula (6.16), Wien’s avoids the “ultraviolet

catastrophe”. (This colorful name was coined later by Paul Ehrenfest for the

notion that a functional form for f .�I T / might yield an infinite value for the

total energy,
R 1

0 f .�I T /d�D 1 — “ultraviolet” because the divergence sets in

at high frequencies.) However, the lack of a theoretical explanation for Wien’s

law, and its wrong prediction for the asymptotic limit at low frequencies —

proportional to �3 rather than �2 — made it unsatisfactory as well.

By October 1900 Planck had come up with a formula that had the right as-

ymptotic behavior in both directions and was soon found to be very accurate:

f .�I T /D 8��2

c3

h�

eh�=kT � 1
; (6.18)

where the new constant h was introduced. In his December paper, already men-

tioned, he provides a justification for this formula using the earlier notions of

electromagnetic oscillators and statistical-mechanical entropy, but invoking the

additional assumption that the energy of the oscillators is restricted to multiples

of E� D h�. This then is the genesis of quantization.

Note that given the approximation ex ' 1Cx for a very small value of x, one

has the low frequency approximation eh�=kT � 1 ' h�=kT , which when used
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in formula (6.18) gives f .�I T / ' 8��2kT=c3 — the Rayleigh–Jeans result

(6.16), as expected by our previous remarks.

We now check that in contrast to an infinite total energy value implied by

formula (6.16), integration over the full frequency spectrum via Planck’s law

(6.18) does yield a finite value. The result is:

PROPOSITION 6.19. Planck’s radiation density integral

I.T /
defD

Z 1

0

f .�I T /d� D 8�h

c3

Z 1

0

�3d�

eh�=kT � 1

(see (6.18)) has the finite value 8�5k4T 4=15c3h3.

The proof is quite immediate. In formula (6.15) choose n D 2, a D h=kT ; then

I.T /D 8�h

c3
.�1/3

�

2�kT

h

�4 B4

8
:

Since B4 D �1=30 by (2.2), the desired value of I.T / is achieved.

The radiation energy density f .�I T / in (6.18) is related to the thermody-

namics of the quantized harmonic oscillator; namely, it is related to the ther-

modynamic internal energy U.T /. We mention this because U.T /, in turn, is

related to the Helmholtz free energy F.T / which has, in fact, a zeta function

connection. A quick sketch of this mix of ideas is as follows, where proofs and

details can be found in my book on quantum mechanics [42] (along with some

historic remarks).

One of the most basic, elementary facts of quantum mechanics is that the

quantized harmonic oscillator of frequency � has the sequence
˚

En
defD

�

n C 1
2

�

h�
	1

nD0

as its energy levels. The corresponding partition function Z.T / is given by

Z.T /
defD

1
X

nD0

exp
�

� En

kT

�

; (6.20)

where again T denotes temperature and k denotes Boltzmann’s constant. This

sum is easily computed:

Z.T /D
1

X

nD0

e�h�=2kT
�

e�h�=kT
�n D e�h�=2kT 1

1 � e�h�=kT
I

i.e.,

Z.T /D 1

2 sinh
h�

2kT

: (6.21)
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The importance of the partition function Z.T / is that from it one derives basic

thermodynamic quantities such as

the Hemholtz free energy F.T /
defD �kT log Z.T /;

the entropy S.T /
defD �@F=@T ;

the internal energy U.T /
defD F.T /C TS.T /D F.T /� T

@F

@T
:

Using (6.21), one computes that by these definitions

F.T / D h�

2
C kT log

�

1 � exp
�

� h�

kT

��

;

S.T / D k

�

h�=kT

exp.h�=kT /� 1
� log

�

1 � exp
�

� h�

kT

��

�

; (6.22)

U.T / D h�

2
C h�

exp.h�=kT /�1
;

which means that the factor h�=.eh�=kT � 1/ of f .�I T / in equation (6.18)

differs from the internal energy U.T / exactly by the quantity E0 D 1
2
h�, which

is the ground state energy (also called the zero-point energy) of the quantized

harmonic oscillator
�

since En D .n C 1
2
/h�

�

. However, our main interest is in

setting up a free energy – zeta function connection. Here’s how it goes.

For convenience let ˇ
defD 1=.kT / denote the inverse temperature. Form the

finite temperature zeta function

�.sI T /
defD

X

n2Z

1

.4�2n2 C h2�2ˇ2/s
; (6.23)

which turns out to be well-defined and holomorphic for Re s > 1
2

. In [42] we

show that �.sI T / has a meromorphic continuation to Re s < 1 given by

�.sI T /D � .s � 1
2
/p

4�� .s/as�1=2
C 2.

p
a/1�2a sin�s

�

Z 1

1

.x2 � 1/�s

exp.
p

ax/�1
dx (6.24)

for a
defD h2�2ˇ2. Moreover �.sI T / is holomorphic at s D 0 and

�0.0I T /D �p
a � 2 log

�

1 � exp.�p
a/

�

I (6.25)

see Theorem 14.4 and Corollary 14.2 of [42]. By definition,
p

a D h�ˇ D
h�=kT . Therefore by formula (6.25) (which does require some work to derive

from (6.24)), and by the first formula in (6.22), one discovers that

F.T /D �kT

2
�0.0I T /; (6.26)

which is the free energy – zeta function connection.
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We will meet the zero-point energy E0 D 1
2
h� again in the next lecture re-

garding the discussion of Casimir energy. In chapter 16 of [42] another finite

temperature zeta function is set up in the context of Kaluza–Klein space-times

with spatial sector R
m �� nG=K, where � is a discrete group of isometries of

the rank 1 symmetric space G=K; here K is a maximal compact subgroup of

the semisimple Lie group G. In this broad context a partition function Z.T /

and free energy-zeta function connection still exist.

Lecture 7. Zeta regularization, spectral zeta functions, Eisenstein

series, and Casimir energy

Zeta regularization is a powerful, elegant procedure that allows one to assign

to a manifestly infinite quantitiy a finite value by providing it a special value zeta

interpretation. Such a procedure is therefore of enormous importance in physics,

for example, where infinities are prolific. As a simple example, we consider the

sum S D 1 C 2 C 3 C 4 C � � � D P1
nD1 n, which is obviously infinite. This

sum arises naturally in string theory — in the discussion of transverse Virasoro

operators, for example. A string (which replaces the notion of a particle in

quantum theory, at the Plancktian scale 10�33 cm) sweeps out a surface called

a world-sheet as it moves in d-dimensional space-time R
d D R

1 � R
d�1 - in

contrast to a world-line of a point-particle. For Bosonic string theory (where

there are no fermions, but only bosons) certain Virasoro constraints force d to

assume a specific value. Namely, the condition

1 D �
�

d �2

2

�

S (7.1)

arises, which as we shall see forces the critical dimension d D 26, 1 being the

value of a certion normal ordering constant. In fact, we write S D P1
nD1 1=ns ,

where s D �1, which means that it is natural to reinterpret S as the special zeta

value �.�1/. Thus we zeta regularize the infinite quantity S by assigning to it

the value � 1
12

, according to (2.14). Then by condition (7.1), indeed we must

have d D 26.

Interestingly enough, the “strange” equation

1C 2 C 3 C 4 C � � � D � 1
12
; (7.2)

which we now understand to be perfectly meaningful, appears in a paper of

Ramanujan — though he had no knowledge of the zeta function. It was initially

dismissed, of course, as ridiculous and meaningless.

As another simple example we consider “1! ”, that is, the product P D
1 � 2 � 3 � 4 � � � , which is also infinite. To zeta regularize P , we consider first

log P D P1
nD1 log n (which is still infinite), and we note that since �0.s/ D
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� P1
nD1.log n/n�s for Re s> 1, by equation (1.1), if we illegally take s D 0 the

false result ��0.0/D P1
nD1 log n D log P follows. However the left-hand side

here is well-defined and in fact it has the value 1
2

log 2� by equation (2.6). The

finite value 1
2

log 2� , therefore, is naturally assigned to log P and, consequently,

we define

P D
1
Q

nD1

n D 1!
defD e��0.0/ D e

1

2
log 2� D

p
2�: (7.3)

More complicated products can be regularized in a somewhat similar manner.

A typical set-up for this is as follows. One has a compact smooth manifold M

with a Riemannian metric g, and therefore a corresponding Laplace–Beltrami

operator �D�.g/ where �� has a discrete spectrum

0 D �0 < �1 < �2 < �3 < � � � ; lim
j!1

�j D 1: (7.4)

If nj denotes the (finite) multiplicity of the j-th eigenvalue �j of ��, then one

can form the corresponding spectral zeta function (cf. definition (0.1))

�M .s/D
1

X

jD1

nj

�s
j

; (7.5)

which is well-defined for Re s > 1
2

dim M , due to the discovery by H. Weyl

of the asymptotic result �j � j 2=dim M , as j ! 1. S. Minakshisundaram and

A. Pleijel [26] showed that �M .s/ admits a meromorphic continuation to the

complex plane and that, in particular, �M .s/ is holomorphic at s D 0. Thus

e��M .0/ is well-defined and, as in definition (7.3), we set

0
det ��D

1
Y

jD1

�
nj

j

defD e��0
M
.0/; (7.6)

where the prime 0 here indicates that the product of eigenvalues (which in finite

dimensions corresponds to the determinant of an operator) is taken over the

nonzero ones. Indeed, similar to the preceding example with the infinite product

P D Q1
jD1 j , the formal, illegal computation

exp

�

� d

ds

1
X

jD1

nj

�s
j

ˇ

ˇ

ˇ

ˇ

sD0

�

D exp

� 1
X

jD1

nj

�s
j

log �j

ˇ

ˇ

ˇ

ˇ

sD0

�

D exp

� 1
X

jD1

nj log �j

�

D
1
Y

jD1

enj log�j D
1
Y

jD1

�
nj

j (7.7)

serves as the motivation for definition (7.6). Clearly this definition of determi-

nant makes sense for more general operators (with a discrete spectrum) on other
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infinite-dimensional spaces. It is useful, moreover, for Laplace-type operators

on smooth sections of a vector bundle over M .

The following example is more involved, where M is a complex torus (in

fact M is assumed to be the world-sheet of a bosonic string; see Appendix C

of [42], for example). For a fixed complex number � D �1 C i�2 in the upper

half-plane (�2 > 0) and for the corresponding integral lattice,

L�
defD fa C b� j a; b 2 Zg; M

defD CnL� : (7.8)

In this case it is known that �� has a multiplicity free spectrum (i.e., every

nj D 1) given by
n

�mn
defD 4�2

�2
2

jm C n� j2
o

m;n2Z

;

and consequently the corresponding spectral zeta function of (7.5) is given by

�M .s/D �s
2

.4�2/s
E�.s; �/ (7.9)

for Re s > 1, where

E�.s; �/ defD
X

.m;n/2Z
2
�

�s
2

jm C n� j2s
(7.10)

(with Z
2
� D Z � Z �f.0; 0/g as before) is a standard nonholomorphic Eisenstein

series. That is, in contrast to the series Gk.�/ in definition (4.4), E�.s; �/ is not a

holomorphic function of � . As a function of s, it is a standard fact that E�.s; �/,
which is holomorphic for Re s > 1, admits a meromorphic continuation to the

full complex plane, with a simple pole at s D 1 as its only singularity. Hence,

by equation (7.9), the same assertion holds for �M .s/. By [7; 14; 35; 38], for

example, the continuation of E�.s; �/ is given by

E�.s; �/D 2�.2s/�s
2 C 2�.2s � 1/

p
�
� .s � 1

2
/

� .s/
��sC1

2

C 4�s

� .s/
�

1=2
2

1
X

mD1

1
X

nD1

e�2� imn�1

� n

m

�s� 1
2

K
s� 1

2

.2�mn�2/

C 4�s

� .s/
�

1=2
2

1
X

mD1

1
X

nD1

e2� imn�1

� n

m

�s� 1
2

K
s� 1

2

.2�mn�2/ (7.11)

for Re s > 1, where

K�.x/
defD 1

2

Z 1

0

exp
�

�x

2

�

t C 1

t

��

t��1 dt (7.12)
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is the Macdonald–Bessel (or K-Bessel) function for � 2 C, x > 0. Introduc-

ing the divisor function ��.n/
defD P

0<d; d j n d� , and using forumla (D.11) on

page 92 on the entire functions of s appearing in the last two sums, we can

rewrite (7.11) as

D 2�.2s/�s
2 C 2�.2s � 1/

p
�
� .s � 1

2
/

� .s/
��sC1

2

C 4�s

� .s/
�

1=2
2

1
X

nD1

��2sC1.n/e
�2�n�1iK

s� 1
2

.2�n�2/n
s� 1

2

C 4�s

� .s/
�

1=2
2

1
X

nD1

��2sC1.n/e
2�n�1iK

s� 1
2

.2�n�2/n
s� 1

2 : (7.13)

The sum of the first two terms in (7.13) has s D 1
2

as a removable singularity.

To see this, note first that since �.s/ has residue D 1 at s D 1,

lim
s! 1

2

�

s � 1
2

�

�.2s/�s
2 D 1

2
lim
z!1

.z � 1/�.z/�
z=2
2

(for z D 2s), and this equals �
1=2
2
=2. We also have � .1/ D 1, � .1

2
/ D p

� ,

�.0/D �1
2

(by (2.5)), and w� .w/D � .wC 1/. Thus

�

z�1

2

�

�
�

z�1

2

�

D �
�

zC1

2

�

I

hence

lim
s! 1

2

�

s � 1
2

�

�.2s � 1/
p
�
� .s � 1

2
/

� .s/
��sC1

2

D lim
z!1

�.z � 1/
p
�

�

z�1

2

��
�

z�1

2

�

�
�

z

2

� �
�z=2C1
2

D �.0/

p
�

� .1
2
/

lim
z!1

�
�

zC1

2

�

�
1=2
2

D ��1=2
2
=2:

It follows that the limit as s ! 1
2

of .s � 1
2
/ � the first two terms in (7.13)

vanishes, as desired. This proves our claim that s D 1 is the only singularity

of E�.s; �/, which arises as a simple pole from the second term, 2�.2s � 1/�p
�� .s � 1

2
/=� .s/��sC1

2
, in (7.13), due to the factor �.2s � 1/. Moreover the
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residue at s D 1 can be easily evaluated setting z D 2s � 1:

lim
s!1

.s � 1/2�.2s � 1/
p
�� .s � 1

2
/=� .s/��sC1

2

D lim
z!1

.z � 1/�.z/
p
�

�

�
�

z

2

�

ı

�
�

zC1

2

��

�
�z=2C1=2
2

D p
�.

p
�=1/D �:

From (7.13) we also get E�.0; �/D 2�.2s/�s
2

ˇ

ˇ

sD0
W

E�.0; �/D �1: (7.14)

Moreover, the functional equation

E�.1 � s; �/

� .s/
D �1�2sE�.s; �/

� .1 � s/
; (7.15)

say for s ¤ 0; 1, follows since ��.n/, K�.x/ satisfy the functional equations

��.n/D n����.n/; K�.x/D K��.x/; (7.16)

and since �.s/ satisfies the functional equation (1.16). The second equation in

(7.16) follows by the change of variables u D 1=t in definition (7.12), and the

first equation is the formula

��.n/D n�
X

0<d
d j n

1

d�
;

which we checked in remarks following the statement of Theorem 4.23. Namely,

d > 0 runs through the divisors of n as n
d

does. We check equation (7.15) by

replacing s by 1 � s in equation (7.13). By (7.16), ��2.1�s/C1.n/n
1�s� 1

2 D
��2sC1ns� 1

2 and K1�s� 1

2

.2�n�2/D Ks� 1

2

.2�n�2/; hence

4�1�s

� .1 � s/
�

1=2
2

1
X

nD1

��2.1�s/C1.n/e
˙2�n�1iK

1�s� 1
2

.2�n�2/n
1�s� 1

2 D

4�1�s

� .1 � s/
�

1=2
2

1
X

nD1

��2sC1.n/e
˙2�n�1iK

s� 1
2

.2�n�2/n
s� 1

2 : (7.17)

In equation (1.16) replace s by 2s and 2s � 1 separately, to obtain

�.1 � 2s/D �
�2sC 1

2� .s/�.2s/

� .1
2

� s/
;

�.2 � 2s/D �.1 � .2s � 1//D �1=2�1�2s
� .s � 1

2
/�.2s � 1/

� .1 � s/
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say for 2s; 2s � 1 ¤ 0; 1 (i.e., s D 0; 1
2
; 1). This gives

2�.2.1 � s//�1�s
2 C 2�.2.1 � s/� 1/

p
�
� .1 � s � 1

2
/

� .1 � s/
�

�.1�s/C1
2

D 2
p
��1�2s

� .s � 1
2
/�.2s � 1/

� .1 � s/
��sC1

2

C 2�
�2sC 1

2� .s/�.2s/
p
�� .1

2
� s/

� .1
2

� s/� .1 � s/
�s

2: (7.18)

By (7.13), (7.17), (7.18), we have for
E�.1�s; �/

� .s/
the value

�1�2s

� .1 � s/

�

2
p
�
� .s � 1

2
/

� .s/
�.2s � 1/��sC1

2
C 2�.2s/�s

2

�

C �1�2s

� .1 � s/

�

4�s

� .s/
�

1=2
2

1
P

nD1

��2sC1.n/e
�2�n�1iK

s� 1
2

.2�n�2/n
s� 1

2

C 4�s

� .s/
�

1=2
2

1
P

nD1

��2sC1.n/e
2�n�1iK

s� 1
2

.2�n�2/n
s� 1

2

�

D �1�2s

� .1 � s/
E�.s; �/

which gives (7.15), as desired. (Note that we have stayed away from s D 0; 1
2
; 1;

but equation (7.15) clearly holds for s D 1
2

.)

One other result is needed in order to compute �0
M
.0/:

THEOREM 7.19 (KRONECKER’S FIRST LIMIT FORMULA).

lim
s!1

�

E�.s; �/� �

s�1

�

D 2�
�

 � log 2 � log �
1=2
2

j�.�/j2
�

: (7.20)

where  is the Euler–Mascheroni constant in definition (1.26), and where �.�/

is the Dedekind eta function in definition (3.27).

Formula (7.20) compares with the limit result (1.25), though it is a more involved

result; see [35].

For f .z/
defD � .z/�2�2z=� .2 � z/

f 0.1/D �2 log� C 2� 0.1/D �2 log� � 2 (7.21)

by the quotient rule. By equations (7.14), (7.15), (7.21) and Theorem 7.19, and

the fact that .1 � z/� .1 � z/D � .2 � z/ (i.e., w� .w/D � .wC 1/), we have,
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with z D 1 � s,

@E�

@s
.0; �/

defD lim
s!0

E�.s; �/C 1

s
D lim

z!1

E�.1 � z; �/C 1

1 � z

D lim
z!1

�

E�.1 � z; �/� .z/

� .z/.1 � z/
� 1

z � 1

�

D lim
z!1

�

� .z/

.1 � z/
�1�2z E�.z; �/

� .1 � z/
� 1

z � 1

�

D lim
z!1

�

� .z/�1�2z

� .2 � z/

�

E�.z; �/� �

z�1

�

C � .z/�1�2z

� .2 � z/

�

z�1
� 1

z�1

�

defD 2Œ � log 2 � log �
1=2
2

j�.�/j2�C
�

lim
z!1

f .z/�f .1/
z � 1

D f 0.1/
�

D �2 log 2 � 2 log �
1=2
2

j�.�/j2 � 2 log�

D � log 4�2�2 j�.�/j4 ;
which, with equations (7.9), (7.14) gives (finally)

�0
M .0/D � log �2

2 j�.�/j4 : (7.22)

Hence, by definition (7.6), the regularized determinant is given by

0
det ��D �2

2 j�.�/j4 : (7.23)

One is actually interested in the power .det0��/�d=2 D��d
2

j�.�/j�2d , where

d D 26 is the critical dimension mentioned above. This power represents a one-

loop contribution to the “sum of embeddings” of the string world sheet (the

complex torus in definition (7.8)) into the target space R
26.

In the next lecture we shall make use, similarly, of the meromorphic contin-

uation of the generalized Epstein zeta function

E.s;mI Ea; Eb/ defD
X

EnD.n1;n2;:::;nd /2Z
d

�

a1.n1 �b1/
2 C� � �Cad .nd �bd /

2 Cm2
��s

(7.24)

for Re s > d=2, m > 0, Ea D .a1; : : : ; ad /, Eb D .b1; : : : ; bd / 2 R
d , ai > 0. The

result is, setting Z
d
� D Z

d � f0g,

E.s;mI Ea; Eb/D �d=2� .s � d
2
/md�2s

p
a1a2 � � � ad � .s/

C 2�smd=2�s

p
a1a2 � � � ad � .s/

�
X

En2Z
d
�

e2� i
P

d

j D1 nj bj

� d
P

jD1

n2
j

aj

�

s�d=2
2

Kd
2

�s

�

2�m
� d

P

jD1

n2
j

aj

�

1
2

�

(7.25)
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for Re s > d=2. In particular, we shall need the special value E.dC1
2
;mI Ea; Eb/,

which we now compute. For s D dC1
2

the first term on the right in (7.25) is

�
dC1

2

m
�
Qd

jD1 aj

�1=2
�

�

dC1
2

�

;

since �
�

1
2

�

D �1=2: Also

Kd
2

�s
.x/D K� 1

2
.x/D K1

2
.x/;

by (7.16). This equals
p

�=2x e�x for x > 0; hence

� d
P

jD1

n2
j

aj

�

s�d=2
2

Kd
2

�s

�

2�m
� d

P

jD1

n2
j

aj

�

1
2

�

D
� d

P

jD1

n2
j

aj

�1=4
r

�

2
.2�m/

� 1
2

� d
P

jD1

n2
j

aj

�� 1
4

exp

�

�2�m
� d

P

jD1

n2
j

aj

�

1
2

�

:

Therefore the second term on the right-hand side of (7.25) is

2�
dC1

2 m�1=2

�
Qd

jD1 aj

�1=2
�

�

dC1
2

�

X

En2Z
d
�

1

2
p

m
exp

�

2� i
d
P

jD1

nj bj

�

exp

�

�2�m
� d

P

jD1

n2
j

aj

�

1
2

�

:

That is:

E
�

d C1

2
;mI Ea; Eb

�

D �
dC1

2

m
�
Qd

jD1 aj

�1=2
�

�

dC1
2

�

C �
dC1

2

m
�
Qd

jD1 aj

�1=2
�

�

dC1
2

�

X

En2Z
d
�

e2� iEn�Eb exp

�

�2�m
� d

P

jD1

n2
j

aj

�

1
2

�

D �
dC1

2

m
�
Qd

jD1 aj

�1=2
�

�

dC1
2

�

X

En2Z
d

e2� iEn�Eb exp

�

�2�m
� d

P

jD1

n2
j

aj

�

1
2

�

: (7.26)

As a final example we consider the zeta regularization of Casimir energy,

after a few general remarks.

In Lecture 6 it was observed that the sequence
˚

En
defD

�

n C 1
2

�

h�
	

is the

sequence of energy levels of the quantized harmonic oscillator of frequency �,

where h denotes Planck’s constant. In particular there exists a nonvanishing

ground state energy (also called the zero-point energy) given by E0 D 1
2
h�.

Zero-point energy is a prevalent notion in physics, from quantum field theory

(QFT), where it is also referred to as vacuum energy, to cosmology (concerning
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issues regarding the cosmological constant, for example), and in between. Based

on Planck’s radiation density formula (6.18), A. Einstein and O. Stern concluded

(in 1913) that even at zero absolute temperature, atomic systems maintain an

energy of the amount E0 D 1
2
h�. It is quite well experimentally established

that a vacuum (empty space) contains a large supply of residual energy (zero-

point energy). Vacuum fluctuations is a large scale study. The energy due to

vacuum distortion (Casimir energy), for example, was considered by H. Casimir

and D. Polder in a 1948 ground-breaking study. Here the vacuum energy was

modified by the introduction of a pair of uncharged, parallel, conducting metal

plates. A striking prediction emerged: the prediction of the existence of a force

of a purely quantum mechanical origin — one arising from zero-point energy

changes of harmonic oscillators that make up the normal modes of the electro-

magnetic field. This force, which has now been measured experimentally by

M. Spaarnay, S. Lamoreaux, and others, is called the Casimir force.

Casimir energy in various contexts has been computed by many Physicists,

including some notable calculations by the co-editor Klaus Kirsten. We refer to

his book [22] for much more information on this, and on related matters - a book

with 424 references. The author has used the Selberg trace formula for general

compact space forms � nG=K, mentioned in Lecture 6, of rank-one symmetric

spaces G=K to compute the Casimir energy in terms of the Selberg zeta function

[40; 39]. This was done by Kirsten and others in some special cases.

Consider again a compact smooth Riemannian manifold .M;g/with discrete

spectrum of its Laplacian ��.g/ given by (7.4). In practice, M is the spatial

sector of a space-time manifold R � M with metric � dt2 C g. Formally, the

Casimir energy in this context is given by the infinite quantity

EC D 1

2

1
X

jD1

nj�
1=2
j ; (7.27)

up to some omitted factors like h. It is quite clear then how to regularize EC .

Namely, consider �
1=2
j as 1=�s

j for s D �1
2

and therefore assign to EC the

meaning

EC D 1
2
�M .�1=2/; (7.28)

where �M .s/ is the spectral zeta function of definition (7.5), meromorphically

continued. If dim M is even, for example, the poles of �M .s/ are simple, finite

in number, and can occur only at one of points s D 1; 2; 3; : : : ; d=2 (see [26]),

in which case EC in (7.28) is surely a well-defined, finite quantity. However if

dim M is odd, �M .s/ will generally have infinitely many simple poles — at the

points s D 1
2

dim M � n, for 0 � n 2 Z. This would include the point s D �1
2

if dim M D 5 and n D 3, for example. Assume therefore that dim M is even.
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When M is one of the above compact space forms, for example, then (based

on the results in [41]) EC can be expressed explicitly in terms of the structure

of � and the spherical harmonic analysis of G=K — and in terms of the Selberg

zeta function attached to � nG=K, as just mentioned. Details of this are a bit too

technical to mention here; we have already listed some references. We point out

only that by our assumptions on M , the corresponding Lie group pairs .G;K/

are given by

G D SO1.m; 1/;

G D SU.m; 1/;

G D SP.m; 1/;

G D F4.�20/;

K D SO.m/;

K D U.m/;

K D SP.m/� SP.1/;

K D Spin.9/;

m � 2;

m � 2;

m � 2;

where F4.�20/ is a real form of the complex Lie group with exceptional Lie

algebra F4 with Dynkin diagram 0—0 H 0—0. More specifically, F4.�20/ is

the unique real form for which the difference dim G=K � dim K assumes the

value �20.

In addition to the reference [22], the books [13; 12] are a good source for

information on and examples of Casimir energy, and for applications in general

of zeta regularization.

Lecture 8. Epstein zeta meets gravity in extra dimensions

We compute the Kaluza–Klein modes of the 4-dimensional gravitational po-

tential V4Cd in the presence of d extra dimensions compactified on a d-torus.

The result is known of course [3; 21], but we present here an argument based

on the special value E
�

dC1
2
;mI Ea; Eb

�

computed in equation (7.26) of the gener-

alized Epstein zeta function E.s;mI Ea; Eb/ defined in (7.24).

G. Nordström in 1914 and T. Kaluza (independently) in 1921 were the first

to unify Einstein’s 4-dimensional theory of gravity with Maxwell’s theory of

electromagnetism. They showed that 5-dimensional general relativity contained

both theories, but under an assumption that was somewhat artificial - the so-

called “cylinder condition” that in essence restricted physicality of the fifth di-

mension. O. Klein’s idea was to compactify that dimension and thus to render

a plausible physical basis for the cylinder assumption.

Consider, for example, the fifth dimension (the “extra dimension”) compact-

ified on a circle � . This means that instead of considering the Einstein gravita-

tional field equations

Rij .g/� gij

2
R.g/��gij D �8�G

c4
Tij (8.1)
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on a 4-dimensional space-time M 4 [8; 11], one considers these equations on

the 5-dimensional product M 4 �� . In (8.1), g D Œgij � is a Riemannian metric

(the solution of the Einstein equations) with Ricci tensor Rij .g/ and scalar

curvature R.g/;� is a cosmological constant, and Tij is an energy momentum

tensor which describes the matter content of space-time — the left-hand side of

(8.1) being pure geometry; G is the Newton constant and c is the speed of light.

Given the non-observability of the fifth dimension, however, one takes � to be

extremely small, say with an extremely small radius R > 0. Geometrically we

have a fiber bundle M 4 �� ! M 4 with structure group � .

M 4 ��

M 4

M 4

�

On all “fields” F.x; �/ W M 4 � R ! C on M 4 � R there is imposed, moreover,

periodicity in the second variable:

F.x; � C 2�R/D F.x; �/ (8.2)

for .x; �/ 2 M 4 � R.

For n 2 Z and f .x/ on M 4 fixed, the function Fn;f .x; �/
defD f .x/ein�=R is

an example of a field on M 4 �R that satisfies equation (8.2). For a general field

F.x; �/, subject to reasonable conditions, and the periodicity condition (8.2),

one would have a Fourier series expansion

F.x; �/D
X

n2Z

Fn;fn

defD
X

n2Z

fn.x/e
in�=R (8.3)

in which case the functions fn.x/ are called Kaluza–Klein modes of F.x; �/.

Next we consider d extra dimensions compactified on a d-torus

� d defD �1 � � � � ��d ;

where the �j are circles with extremely small radii Rj > 0, and we consider a

field V4Cd .x;y; z;x1; : : : ;xd / on .R3�f0g/�R
d . Thus R

3�f0g replaces M 4,
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� d replaces � , and Ex defD .x1; : : : ;xd / 2 R
d replaces � in the previous discus-

sion. The field is given by

V4Cd .x;y; z;x1; : : : ;xd /
defD

�MG4Cd

X

EnD.n1;:::;nd /2Z
d

1

�

r2 C
d
P

jD1

.xj � 2�nj Rj /2
�

dC1
2

; (8.4)

which is the gravitational potential due to extra dimensions of an object of mass

M at a distance
�

r2 C Pd
jD1 x2

j

�1=2
for r2 defD x2 C y2 C z2; here G4Cd is the

.4Cd/-dimensional Newton constant. Note that, analogously to equation (8.2),

V4Cd .x;y; z;x1 C 2�R1; : : : ;xd C 2�Rd /

defD �MG4Cd

X

.n1;:::;nd /2Z
d

1

�

r2 C
d
P

jD1

.xj � 2�.n�1/jRj /2
�

dC1
2

D �MG4Cd

X

.n1;:::;nd /2Z
d

1

�

r2 C
d
P

jD1

.xj � 2�nj Rj /2
�

dC1
2

D V4Cd .x;y; z;x1; : : : ;xd /;

(8.5)

where of course we have used that nj � 1 varies over Z as nj does. Thus,

analogously to equation (8.3), we look for a Fourier series expansion

V4Cd .x;y;z;x1; : : : ;xd /D
X

En2Z
d

fEn.x;y;z/exp

�

i En �
����������!�

x1

R1
; : : : ;

xd

Rd

�

�

; (8.6)

where the functions fEn.x;y; z/ on R
3 � f0g would be called the Kaluza–Klein

modes of V4Cd .x;y; z; Ex D .x1; : : : ;xd //.

It is easy, in fact, to establish the expansion (8.6) and to compute the modes

fEn.x;y; z/ explicitly. For this, define

aj
defD .2�Rj /

2 > 0; bj
defD xj

2�Rj
;

and note that since .xj � 2�nj Rj /
2 D

�

2�Rj

�

xj

2�Rj
� nj

��2

D aj .bj � nj /
2

we can write, by definition (8.4),

V4Cd .x;y; z; Ex/D �MG4Cd

X

En2Z
d

1

� d
P

jD1

aj .nj � bj /2 C r2
�

dC1
2

D �MG4Cd E
�

d C1

2
; r I Ea; Eb

�

; (8.7)
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by definition (7.24). Thus we are in a pleasant position to apply formula (7.26):

For

˙d
defD .2�/d

d
Y

jD1

Rj ; ˝d
defD 2�

dC1
2

�
�

d C1

2

�
(8.8)

we have
�
Qd

jD1 aj

�1=2 D˙d , and we see that

V4Cd .x;y; z; Ex/D

�MG4Cd˝d

2r˙d

X

En2Z
d

exp

�

i En �
�����������!�

x1

R1
; : : : ;

xd

Rd

�

�

exp

�

�r
� d

P

jD1

n2
j

R2
j

�
1
2

�

(8.9)

by definition of aj and bj , for r2 defD x2 Cy2 Cz2. This proves the Fourier series

expansion (8.6), where we see that the Kaluza–Klein modes fEn.x;y; z/ are in

fact given by

fEn.x;y; z/D �MG4Cd˝d

2r˙d

exp

�

�r
� d

P

jD1

n2
j

R2
j

�
1
2

�

(8.10)

for En D .n1; : : : ; nd / 2 Z
d ; .x;y; z/ 2 R

3 � f0g. Since V4Cd .x;y; z; Ex/ is

actually real-valued, we write equation (8.9) as

V4Cd .x;y; z;x1; : : : ;xd /D

�MG4Cd˝d

2r˙d

X

En2Z
d

exp

�

�r
� d

P

jD1

n2
j

R2
j

�
1
2

�

cos

�

En �
�����������!�

x1

R1
; : : : ;

xd

Rd

�

�

: (8.11)

Since 2�Ri is the length of �i ; �
d defD Qd

iD1 �i has volume
Qd

iD1 2�Ri D
.2�/d

Qd
iD1 Ri . That is, ˙d in definition (8.8) (or in formula (8.11)) is the

volume of the compactifying d-torus � d . Similarly ˝d in (8.8) or in (8.11),

one knows, is the surface area of the unit sphere
˚

x 2 R
dC1 j kxk D 1

	

in R
dC1.

In [21], for example, the choice x1 D � � � D xd D 0 is made. Going back to

the compactification on a circle, d D 1;R1 D R for example, we can write the

sum in (8.11) as

1C
X

n2Z�f0g
e�r jnj=R D 1C 2

1
X

nD1

�

e�r=R
�n

D 1C 2e�r=R

1 � e�r=R
' 1C 2e�r=R (8.12)

for x1 D 0, where we keep in mind that R is extremely small. Thus in (8.12),

r=R is extremely large; i.e., e�r=R is extremely small. For

Kd
defD MG4Cd˝d=2˙d ;
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we get by (8.11) and (8.12)

V5.x;y; z;x1/' �K1

r
.1C 2e�r=R/; (8.13)

which is a correction to the Newtonian potential V D �K1=r due to an extra

dimension.

The approximation (8.13) compares with the general deviations from the

Newtonian inverse square law that are known to assume the form

V D �K

r
.1C˛e�r=�/

for suitable parameters ˛; �. Apart from the toroidal compactification that we

have considered, other compactifications are important as well [21] — especially

Calabi–Yau compactifications. Thus the d-torus � d is replaced by a Calabi–

Yau manifold — a compact Kähler manifold whose first Chern class is zero.

Lecture 9. Modular forms of nonpositive weight, the entropy of a

zero weight form, and an abstract Cardy formula

A famous formula of John Cardy [9] computes the asymptotic density of

states �.L0/ (the number of states at level L0) for a general two-dimensional

conformal field theory (CFT): For the holomorphic sector

�.L0/D e2�
p

cL0=6; (9.1)

where the Hilbert space of the theory carries a representation of the Virasoro

algebra V i r with generators fLngn2Z and central charge c. V i r has Lie algebra

structure given by the usual commutation rule

ŒLn;Lm�D .n � m/LnCm C c

12
n.n2 � 1/ınCm;0 (9.2)

for n;m 2 Z. The CFT entropy S is given by

S D log �.H0/D 2�

r

cL0

6
: (9.3)

From the Cardy formula one can derive, for example, the Bekenstein–Hawking

formula for BTZ black hole entropy [10]; see also my Speaker’s Lecture pre-

sented later. More generally, the entropy of black holes in string theory can be

derived — the derivation being statistical in nature, and microscopically based

[34].

For a CFT on the two-torus with partition function

Z.�/D t race e2� i.L0� c

24
/� (9.4)
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on the upper half-plane �C [5], the entropy S can be obtained as follows. Re-

garding Z.�/ as a modular form with Fourier expansion

Z.�/D
X

n�0

cne2� i.n�c=24/� ; (9.5)

one takes

S D log cn (9.6)

for large n. In [5], for example, (also see [4]) the Rademacher–Zuckerman exact

formula for cn is applied, where Z.�/ is assumed to be modular of weightwD0.

This is problematic however since the proof of that exact formula works only for

modular forms of negative weight. In this lecture we indicate how to resolve this

contradiction (thanks to some nice work of N. Brisebarre and G. Philibert), and

we present what we call an abstract Cardy formula (with logarithmic correction)

for holomorphic modular forms of zero weight. In particular we formulate, ab-

stractly, the sub-leading corrections to Bekenstein–Hawking entropy that appear

in formula (14) of [5].

The discussion in Lecture 4 was confined to holomorphic modular forms

of non-negative integral weight. We consider now forms of negative weight

w D �r for r > 0, where r need not be an integer. The prototypic example

will be the function F0.z/
defD 1=�.z/, where �.z/ is the Dedekind eta function

defined in (3.27), and where it will turn out that w D �1
2

. We will use, in fact,

the basic properties of F0.z/ to serve as motivation for the general definition of

a form of negative weight.

We begin with the partition function p.n/ on Z
C. For n a positive integer,

define p.n/ as the number of ways of writing n as an (orderless) sum of positive

integers. For example, 3 is expressible as 3 D 1C 2 D 1C 1C 1, so p.3/D 3;

4 D 4 D 1C 3 D 2 C 2 D 1C 1C 2 D 1C 1C 1C 1, so p.4/D 5;

5 D 5 D 2C3 D 1C4 D 1C1C3 D 1C2C2 D 1C1C1C2 D 1C1C1C1C1;

so p.5/ D 7; similarly p.2/ D 2, p.1/ D 1. We set p.0/
defD 1. Clearly p.n/

grows quite quickly with n. A precise asymptotic formula for p.n/ was found

by G. Hardy and S. Ramanujan in 1918, and independently by J. Uspensky in

1920:

p.n/� e�
p

2n=3

4n
p

3
as n ! 1 (9.7)

(the notation means that the ratio between the two sides of the relation (9.7)

tends to 1 as n ! 1). For example, it is known that

p.1000/D 24;061;467;864;032;622;473;692;149;727;991

' 2:4061 � 1031; (9.8)
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whereas for n D 1000 in (9.7)

e
�

q

2n
3 =4n

p
3 ' 2:4402 � 1031; (9.9)

which shows that the asymptotic formula is quite good.

L. Euler found the generating function for p.n/. Namely, he showed that

1
X

nD0

p.n/zn D 1
Q1

nD1.1 � zn/
(9.10)

for z 2 C with jzj < 1. By this formula and the definition of �.z/, we see

immediately that

F0.z/
defD 1

�.z/
D e�� i�=12

1
X

nD0

p.n/e2� in� (9.11)

on �C.

The following profound result is due to R. Dedekind. To prepare the ground,

for x 2 R define

..x//
defD

�

x � Œx�� 1
2

if x 62 Z,

0 if x 2 Z,

where, as before, Œx� denotes the largest integer not exceeding x.

THEOREM 9.12. Fix  D
�a

c
b
d

�

2 � defD SL.2;Z/, with c > 0, and define

S. /D aCd

12c
� 1

4
� s.d; c/;

where s.d; c/ (called a Dedekind sum) is given by

s.d; c/
defD

X

�2Z=cZ

��

�

c

����

d�

c

��

: (9.13)

Then, for z 2 �C,

F0. � z/D e
�i�(S. /C 1

4
)��i.cz C d/

�� 1

2 F0.z/ (9.14)

for ��=2 < arg
�

�i.cz C d/
�

< �=2, where  � z is defined in equation (4.3).

The sum in definition (9.13) is over a complete set of coset representatives � in

Z. The case c D 0 is much less profound; then

 D
�˙1 b

0 ˙1

�

(since 1 D det  D ad), and

F0.z ˙ b/D F0. � z/D e�� ib=12F0.z/: (9.15)
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In particular we can write F0.z C 1/D e�� i=12F0.z/D e�2� i=24C2� iF0.z/D
e2� i.1� 1

24
/F0.z/D e2� i˛F0.z/ for ˛

defD 1 � 1
24

D 23
24

.

In summary, F0.z/D 1=�.z/ satisfies the following conditions:

(i) F0.z/ is holomorphic on �C. (This follows from Lecture 3).)

(ii) F0.z C 1/D e2� i˛F0.z/ for some real ˛ 2 Œ0; 1/ (indeed, with ˛ D 23
24

).

(iii) F0. � z/ D ".a; b; c; d/
�

�i.cz C d/
��r

F0.z/ for  D
�

a
c

b
d

�

2 � with

c > 0, for some r > 0, ��=2 < arg
�

�i.cz C d/
�

< �=2, and for a function

". /D".a; b; c; d/ on� with j". /jD1 (indeed, for r D 1
2

and ".a; b; c; d/D
exp

�

�i�
�

aCd
12c

� s.d; c/
��

, by Theorem 9.12).

(iv) F0.z/D e2� i˛z
P1

nD�� ane2� inz on �C for some integer � � 1 (indeed,

for � D 1, an D p.n C 1/ for n � �1, and an D 0 for n � �2, by Euler’s

formula (9.11)).

Note that by conditions (i) and (ii), the function f .z/
defD e�2� i˛zF0.z/ is holo-

morphic on �C, and it satisfies f .z C 1/ D f .z/. Thus, again by equation

(4.1), f .z/ has a Fourier expansion f .z/ D P

n2Z
ane2� inz on �C. That is,

conditions (i) and (ii) imply that F0.z/ has a Fourier expansion

F0.z/D e2� i˛z P

n2Z

ane2� inz

on �C, and condition (iv) means that we require that a�n D 0 for n > �, for

some positive integer �.

We abstract these properties of F0.z/ and, in general, we define a modular

form of negative weight �r , for r > 0, with multiplier " W � ! fz 2 C j jzj D 1g
to be a function F.z/ on �C that satisfies conditions (i), (ii), (iii), and (iv) for

some ˛ and � with 0 � ˛ < 1, � 2 Z, �� 1. Thus �.z/�1 is a modular form of

weight �1
2

and multiplier ".a; b; c; d/Dexp
�

�i�
�

aCd
12c

�s.d; c/
��

, with ˛D 23
24

,

�D 1, and with Fourier coefficients an D p.nC1/, as we note again.

For modular forms of positive integral weight, there are no general formulas

available that explicitly compute their Fourier coefficients — apart from Theo-

rem 4.23 for holomorphic Eisenstein series. For forms of negative weight how-

ever, there is a remarkable, explicit (but complicated) formula for their Fourier

coefficients, due to H. Rademacher and H. Zuckerman [31]; also see [29; 30].

Before stating this formula we consider some of its ingredients. First, we

have the modified Bessel function

I�.t/
defD

�

t

2

��
1

X

mD0

�

t
2

�2m

m!� .�C m C 1/
(9.16)

for t > 0; � 2 C; the series here converges absolutely by the ratio test. Next, for

k; h 2 Z with k � 1; h � 0; .h; k/ D 1, and h < k choose a solution h0 of the
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congruence hh0 � �1.mod k/. For example, .h; k/D 1 means that the equation

xh C yk D 1 has a solution .x;y/ 2 Z � Z. Then �xh D �1 C yk means

that h0 defD �x is a solution. Since hh0 D �1 C lk for some l 2 Z, we see that

.hh0 C 1/=k D l is an integer and

det

�

h0 �.hh0C1/=k

k �h

�

D 1; so 
defD

�

h0 �.hh0C1/=k

k �h

�

2 �:

Hence

". /D "
�

h0;�hh0C1

k
; k;�h

�

(9.17)

is well-defined. Finally, for u; v 2 C we define the generalized Kloosterman

sum

Ak;u.v/D Ak.v;u/
defD

X

0�h<k
.h;k/D1

". /�1e
� 2� i

k
..u�˛/h0C.vC˛/h/

(9.18)

for ". / given in (9.17), and for 0 � ˛ < 1 above. If k D 1, for example, then

0 � h< k, so h D 0, and we can take h0 D 0:

A1;�.v/D A1.v;u/D ".0;�1; 1; 0/�1 D ".0;�1; 1; 0/
defD "0: (9.19)

The desired formula expresses the coefficients an for n � 0 in terms of the

finitely many coefficients a��; a��C1; a��C2; : : : ; a�2; a�1 as follows:

THEOREM 9.20 (H. RADEMACHER AND H. ZUCKERMAN). Let F.z/ be a

modular form of negative weight �r; r > 0, with multiplier ", and with Fourier

expansion F.z/De2� i˛z
P1

nD��ane2� inz on �C given by condition (iv) above,

where 0 � ˛ < 1 � � 2 Z. Then for n � 0 with not both n; ˛ D 0,

an D

2�

�
X

jD1

a�j

1
X

kD1

Ak;j .n/

k

�

j �˛
nC˛

�
rC1

2
IrC1

�

4�

k
.j �˛/1=2.nC˛/1=2

�

; (9.21)

where Ak;j .n/ is defined in (9.18) and I�.t/ is the modified Bessel function in

(9.16).

Note that for 1 � j � �; j � 1 > ˛ ) j � ˛ > 0 in equation (9.21). Also

n C˛ > 0 there since n; ˛ � 0 with not both n; ˛ D 0.

Using the asymptotic result

lim
t!1

p
2� tI�.t/e

�t D 1 (9.22)

for the modified Bessel function I�.t/ in (9.16), and also the trivial estimate

jAk;j .n/j � k that follows from (9.18), one can obtain from the explicit formula
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(9.21) the following asymptotic behavior of an as n ! 1. Assume that a��¤ 0

and define

a1.n/ defD a��p
2
"0

.��˛/ r
2

C 1
4

.n C˛/
r
2

C 3
4

exp
�

4�.��˛/1=2.n C˛/1=2
�

; (9.23)

say for n � 1, for "0
defD "

��0
1

�1
0

��

in (9.19). Then in [23], for example, it is

shown that

an � a1.n/ as n ! 1 (9.24)

which gives the asymptotic behavior of the Fourier coefficients of a modular

form F.z/ of negative weight �r with Fourier expansion as in the statement of

Theorem 9.20. For forms of zero weight a quite similar result is given in equation

(9.30) below. The asymptotic result (9.7) follows from (9.24) applied to F0.z/,

in which case formula (9.21) provides an exact formula (due to Rademacher)

for p.n/ [2; 29; 30].

For a; b; k 2 Z with k �1 the classical Kloosterman sum S.a; bI k/ is defined

by

S.a; bI k/D
X

h2Z=kZ

.h;k/D1

e
2�i

k
.ahCb Nh/ (9.25)

where h Nh � 1.mod k/. These sums will appear in the next theorem (Theorem

9.27) that is a companion result of Theorem 9.20.

We consider next modular forms F.z/ of weight zero. That is, F.z/ is a

holomorphic function on �C such that F. � z/ D F.z/ for  2 � , and with

Fourier expansion

F.z/D
1

X

nD��
ane2� inz (9.26)

on �C, for some positive integer �. In case F.z/ is the modular invariant j .z/,

for example, this expansion is that given in equation (4.44) with �D 1, in which

case the an there are computed explicitly by H. Petersson and H. Rademacher

[27; 28], independently - by a formula similar in structure to that given in (9.21).

For the general case in equation (9.26) the following extension of the Petersson–

Rademacher formula is available [6]:

THEOREM 9.27 (N. BRISEBARRE AND G. PHILIBERT). For a modular form

F.z/ of weight zero with Fourier expansion given by equation (9.26), its n-th

Fourier coefficient an is given by

an D 2�

�
X

jD1

a�j

r

j

n

1
X

kD1

S.n;�j I k/

k
I1

�

4�
p

nj

k

�

(9.28)
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for n � 1, where S.n;�j I k/ is defined in (9.25) and I1 .t > 0/ in (9.16).

M. Knopp’s asymptotic argument in [23] also works for a weight zero form (as

he shows), provided the trivial estimate jAk;j .n/j � k used above is replaced

by the less trivial Weil estimate jS.a; bI k/j � C."/.a; b; k/1=2k1=2C";8" > 0.

The conclusion is that if a�� ¤ 0, and if

a1.n/ defD a��p
2

�1=4

n3=4
e4�

p
�n; n � 1; (9.29)

then

an � a1.n/ W lim
n!1

an

a1.n/
D 1: (9.30)

We see that, formally, definition (9.29) is obtained by taking "0 D 1; r D 0;

and ˛ D 0 in definition (9.23) - in which case formulas (9.21) and (9.28) are

also formally the same. Going back to the Fourier expansion of the modular

invariant j .z/ given in equation (4.44), where a�� D a�1 D 1, we obtain from

(9.30) that ([27; 28])

an � e4�
p

n

p
2n3=4

as n ! 1: (9.31)

A stronger result than (9.31), namely that

an D e4�
p

n

p
2n3=4

�

1 � 3

32�
p

n
C "n

�

; j"nj � :055

n
(9.32)

(also due to Brisebarre and Philibert [6]) plays a key role in my study of the

asymptotics of the Fourier coefficients of extremal partition functions of certain

conformal field theories; see Theorem 5-16 of my Speaker’s Lecture (page 345),

and the remark that follows it.

Motivated by physical considerations, and by equation (9.5) in particular, we

consider a modular form of weight zero with Fourier expansion

f .z/D e2� i�z
X

n�0

cne2� inz (9.33)

on �C, where we assume that � is a negative integer. � corresponds to �c=24

in (9.5), say for a positive central charge c; thus c D 24.��/, a case considered

in my Speaker’s Lecture. �
defD �� is a positive integer such that for an

defD cnC�,

we have (taking cn D 0 for n � �1) a�n D 0 for n > �. Moreover, since
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P1
nD0 dn�� D P1

nD�� dn, we see that for dn
defD ane2� inz we have

1
P

nD��
ane2� inz D

1
P

nD0

an��e2� i.n��/z

defD
1
P

nD0

cne2� i.nC�/z D f .z/; (9.34)

by (9.33). That is, f .z/ has the form (9.26), which means that we can apply

formula (9.28), and the asymptotic result (9.30).

Assume that c0 ¤ 0, and define

c1.n/ defD c0p
2

j�j1=4
.n C�/3=4

e4�j�j1=2.nC�/1=2

(9.35)

for n C� � 1. By definition (9.29), for n �� defD n C� � 1,

a1.n ��/D a���1=4

p
2.n ��/3=4

e4�
p
�.n��/ defD c1.n/;

as a��
defD c0 ¤ 0. Therefore by (9.30)

1 D lim
n!1

an��
a1.n ��/ D lim

n!1
cn

c1.n/
W cn � c1.n/ as n ! 1; (9.36)

for c1.n/ defined in (9.35). Thus (9.36) gives the asymptotic behavior of the

Fourier coefficients cn of the modular form f .z/ of weight zero in (9.33).

Motivated by equation (9.6), and given the result (9.36) we define entropy

function S.n/ associated to f .z/ by

S.n/
defD log c1.n/ (9.37)

for n C� � 1, in case c0 > 0. Also we set

S0.n/
defD 2�

p

4j�j.n C�/; (9.38)

for n C� � 1. Then for c D 24.��/ D 24j�j, as considered above, (i.e., for

4j�j D c=6) S0.n/ corresponds to the CFT entropy in equation (9.3), where

n C� corresponds to the L0 there. Moreover, by definition (9.37) we obtain

S.n/D S0.n/C
�

1
4

log j�j � 3
4

log.n C�/� 1
2

log 2 C log c0

�

; (9.39)

which we can regard as an abstract Cardy formula with logarithmic correc-

tion, given by the four terms parenthesized. Note that, apart from, the term

log c0, equation (9.39) bears an exact resemblance to equation (5.22) of my

Speaker’s Lecture. We regard S0.n/ in definition (9.38), of course, as an abstract

Bekenstein–Hawking function associated to the modular form f .z/ in (9.33) of

zero weight. Equation (9.39) also corresponds to equation (14) of [5].
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To close things out, we also apply formula (9.28) to f .z/. For n �� � 1,

cn D an�� D 2�

�
X

jD1

a�j

r

j

n��
S.n��;�j I k/

k
I1

�

4�
p

.n ��/j
k

�

: (9.40)

Use
P�

jD1
dj D d�C d��1 C : : :C d2 C d1 D P��1

jD0
d��j and a�.��j/

defD cj

to write equation (9.40) as

cn D 2�

��1
X

jD0

cj

r

��j

n��
S.n��;�.��j /I k/

k
I1

�

4�
p

.n��/.��j /

k

�

(9.41)

where �
defD ��. For 0 � j � � � 1 D �� � 1; j 2 Z; we have j � 0 and

j C� � �1 < 0. Conversely if j � 0, j 2 Z, and j C� < 0, then as � 2 Z

we have j C� � �1, so 0 � j � ��� 1 D �� 1: Of course j C� < 0 also

means that �� j D ��� j D jj C�j. Thus we can write equation (9.41) as

cn D 2�
X

j�0
jC�<0

cj

r

jj C�j
nC�

S.nC�; j C�I k/

k
I1

�

4�
p

.nC�/jj C�j
k

�

(9.42)

for n C� (D n ��) � 1:

THEOREM 9.43 (A REFORMULATION OF THEOREM 9.27). For a modular

form f .z/ of weight zero with Fourier expansion given by equation (9.33), its

n-th Fourier coefficient cn is given by equation (9.42), for n C�� 1. Here � is

assumed to be a negative integer.

Instead of applying Theorem 9.20 and taking r D 0 there, without justification,

physicists can now use Theorem 9.43 for a CFT modular invariant partition func-

tion, such as that of equation (9.4), and therefore stand on steady mathematical

ground.

Appendix

A. Uniform convergence of improper integrals. For the reader’s convenience

we review the conditions under which an improper integral f .s/D
R 1

a F.t; s/ dt

defines a holomorphic function f .s/. In particular, a verification of the entirety

of the function J.s/ in equation (1.4) is provided.

The function F.t; s/ is defined on a product Œa;1/� D with D � C some

open subset, where it is assumed that
R 1

a F.t; s/ dt exists for each s 2 D — say

t ‘ F.t; s/ is integrable on Œa; b� for every b > a. Thus f .s/ is well-defined

on D. By definition, the integral f .s/ is uniformly convergent on some subset

D0 � D if to each " > 0 there corresponds a number B."/ > a such that for b >

B."/ one has
ˇ

ˇ

R b
a F.t; s/ dt �f .s/

ˇ

ˇ< " for all s 2 D0. An equivalent definition
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is given by the following Cauchy criterion: f .s/ is uniformly convergent on

D0 if and only if to each " > 0 there corresponds a number B."/ > a such that
ˇ

ˇ

R b2

b1
F.t; s/ dt

ˇ

ˇ< " for all b2 > b1 >B."/ and all s 2 D0. For clearly if f .s/ is

uniformly convergent on D0 and " > 0 is given, we can choose B."/ > a such

that
ˇ

ˇ

R b
a F.t; s/ dt �f .s/

ˇ

ˇ<"=2 for b>B."/, s 2 D0. Then for b2> b1>B."/

and s 2 D0, we have

Z b2

b1

F.t; s/ dt D
Z b2

a

F.t; s/ dt �f .s/�
�Z b1

a

F.t; s/ dt �f .s/
�

;

which implies
ˇ

ˇ

R b2

b1
F.t; s/ dt

ˇ

ˇ<"=2C"=2D". Conversely, assume the alternate

condition. Define the sequence ffn.s/gn>a of functions on D0 by

fn.s/
defD

Z n

a

F.t; s/ dt:

Given ">0 we can choose, by hypothesis, B."/>a such that
ˇ

ˇ

R b2

b1
F.t; s/ dt

ˇ

ˇ<"

for b2 > b1 > B."/ and s 2 D0. Let N."/ be an integer > B."/. Then for

integers n > m � N."/ and for all s 2 D0 we see that
ˇ

ˇfn.s/ � fm.s/
ˇ

ˇ D
ˇ

ˇ

R n
m F.t; s/ dt

ˇ

ˇ < ". Therefore, by the standard Cauchy criterion, the sequence

ffn.s/gn>a converges uniformly on D0 to a function g.s/ on D0: For any "1>0,

there exists an integer N."1/ > a such that for an integer n � N."1/, one has

"1 >
ˇ

ˇfn.s/� g.s/
ˇ

ˇ D
ˇ

ˇ

R n
a F.t; s/ dt � f .s/

ˇ

ˇ for all s 2 D0, since necessarily

g.s/ D f .s/. Now let " > 0 be given. Again, by hypothesis, we can choose

B."/ > a such that for b2 > b1 > B."/ one has that
ˇ

ˇ

R b2

b1
F.t; s/ dt

ˇ

ˇ < "=2

for all s 2 D0. Taking the quantity "1 considered a few lines above equal to

"=2, we can find an integer N."1/ > B."1/ such that for an integer n � N."1/,

"=2 D "1 >
ˇ

ˇ

R n
a F.t; s/ dt � f .s/

ˇ

ˇ for all s 2 D0. Thus suppose b > N."1/.

Then, for all s 2 D0,

ˇ

ˇ

ˇ

ˇ

Z b

a

F.t; s/ dt �f .s/
ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z N."1/

a

F.t; s/ dt �f .s/C
Z b

N."1/

F.t; s/ dt

ˇ

ˇ

ˇ

ˇ

� "

2
C "

2
D ";

where N."1/> a since B."1/> a, with N."1/ dependent only on ". This shows

that f .s/ is uniformly convergent on D0. The Cauchy criterion is therefore

validated.

As an example, we use the Cauchy criterion to prove the following, very

useful result:

THEOREM A.1 (WEIERSTRASS M-TEST). Let M.t/ � 0 be a function on

Œa;1/ that is integrable on each Œa; b� with b > a. Assume also that I
defD
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R 1
a M.t/ dt exists. If jF.t; s/j�M.t/ on Œa;1/�D0, thenf .s/D

R 1
a F.t; s/ dt

converges uniformly on D0. Again D0 is any subset of D.

PROOF. Let " > 0 be assigned. That I D limb!1
R b

a M.t/ dt implies there

exists a number B."/ > a such that
ˇ

ˇI �
R b

a M.t/ dt
ˇ

ˇ < "=2 for b > B."/. If

b2 > b1 > B."/, then

ˇ

ˇ

ˇ

ˇ

Z b2

b1

M.t/ dt

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

Z b2

a

M.t/ dt � I C I �
Z b1

a

M.t/ dt

ˇ

ˇ

ˇ

ˇ

<
"

2
C "

2
D "I

hence
ˇ

ˇ

R b2

b1
F.t; s/ dt

ˇ

ˇ �
R b2

b1

ˇ

ˇF.t; s/
ˇ

ˇ dt �
R b2

b1
M.t/ dt D

ˇ

ˇ

R b2

b1
M.t/ dt

ˇ

ˇ (since

M.t/� 0; b2> b1). But this is less than ", for all s 2 D0. Theorem A.1 follows,

therefore, by the Cauchy criterion. ˜

The question of the holomorphicity of f .s/ is settled by the following theorem.

THEOREM A.2. Again let F.t; s/ be defined on Œa;1/�D with D � C an open

subset. Assume

(i) F.t; s/ is continuous on Œa;1/�D (in particular for each s 2 D, t ‘ F.t; s/

is integrable on Œa; b� for every b > a);

(ii) for every t � a fixed, s ‘ F.t; s/ is holomorphic on D;

(iii) for every s 2 D fixed, t ‘ @F.t; s/=@s is continuous on Œa;1/;

(iv) f .s/
defD

R 1
a F.t; s/ dt converges for every s 2 D; and

(v) f .s/ converges uniformly on compact subsets of D.

Then f .s/ is holomorphic on D, and f 0.s/D
R 1

a @F.t; s/=@s dt for every s 2D.

Implied here is the existence of the improper integral
R 1

a @F.t; s/=@s dt on D.

The idea of the proof is to reduce matters to a situation where the integration
R 1

a over an infinite range is replaced by that over a finite range
R n

a , where

holomorphicity is known to follow. This is easily done by considering again the

sequence ffn.s/gn>a discussed earlier: fn.s/
defD

R n
a F.t; s/ dt on D, which is

well-defined by (i). If K � D is compact, then given (v), the above argument

with D0 now taken to be K shows exactly (by way of the Cauchy criterion) that

ffn.s/gn>a converges uniformly on K (to f .s/ by (iv)). On the other hand, by

(i), (ii), (iii) we have that (i)0 F.t; s/ is continuous on Œa; n�� D; (ii)0 for every

t 2 Œa; n� fixed, s ‘ F.t; s/ is holomorphic on D, and (iii)0 for every s 2 D

fixed, t ‘ @F.t; s/=@s is continuous on Œa; n�I here a < n 2 Z. Given (i)0, (ii)0

and (iii)0, it is standard in complex variables texts that fn.s/D
R n

a F.t; s/ dt is

holomorphic on D and that f 0
n.s/D

R n
a @F=@s.t; s/ dt . Since we have noted that

the sequence ffn.s/gn>a converges uniformly to f .s/ on compact subsets K of

D, it follows by the Weierstrass theorem that f .s/ is holomorphic on D, and that

f 0
n.s/‘f 0.s/ pointwise on D — with uniform convergence on compact subsets
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of D, in fact. That is, f 0.s/ D limn!1 f 0
n.s/ D limn!1

R n
a @F.t; s/=@s dt D

R 1
a @F.t; s/=@s dt on D, which proves Theorem A.2.

As an application, we check that the function J.s/ in definition (1.4) is an

entire function. First we claim that the function �0.t/
defD P1

nD1 e��n2t , for t >0,

converges uniformly on Œ1;1/. This is clear, by the Weierstrass M-test, since

for n; t � 1, we have n2 � n, hence �n2t � �nt � �n, hence e��n2t � e��n,

and moreover
P1

nD1 e��n is a convergent geometric series. Therefore �0.t/ is

continuous on Œ1;1/, since the terms e��n2t are continuous in t on Œ1;1/. By

definitions (1.2), (1.4), J.s/D
R 1

1 F.t; s/ dt for F.t; s/
defD �0.t/t

s on Œ1;1/�C,

where F.t; s/ therefore is also continuous. Again for n; t � 1, �n2t � �nt and

also � t � � , so e��n2t � e��nt and e�� t � e�� , so 1 � e�� t � 1 � e�� , so

1

1 � e�� t
� 1

1 � e�� D e�

e� � 1

defD C:

That is,

�0.t/D
1

X

nD1

e��n2t �
1

X

nD1

e��nt D
1

X

nD1

.e�� t /n D e�� t

1 � e�� t
� Ce�� t

for t � 1, so
ˇ

ˇF.t; s/
ˇ

ˇ � Ce�� t tRe s on Œ1;1/ � C, where
R 1

1 e�bt ta dt con-

verges for b > 0; a 2 R. Thus J.s/ converges absolutely for every s 2 C.

We see that conditions (i) and (iv) of Theorem A.2 hold. Conditions (ii) and

(iii) certainly hold. To check condition (v), let K � C be any compact subset.

The continuous function s ! Re s on K has an upper bound � W Re s � �

on K ) tRe s � t� on Œ1;1/ � K (since log t � 0 for t � 1). That is, on

Œ1;1/� K the estimate jF.t; s/j � Ce�� t t� holds where
R 1

1 e�� t t� dt <1,

implying that J.s/ converges uniformly on K, by Theorem A.1. Therefore J.s/

is holomorphic on C by Theorem A.2.

B. A Fourier expansion (or q-expansion). The function q.z/
defD e2� iz is holo-

morphic and it satisfies the periodicity condition q.zC1/D q.z/. Suppose f .z/

is an arbitrary holomorphic function defined on an open horizontal strip

Sb1;b2

defD fz 2 C j b1 < Im z < b2g (B.1)

as indicated in the figure at the top of the next page, where b1; b2 2 R, b1 < b2.

Suppose also that f .z/ satisfies the periodicity condition f .z C 1/ D f .z/

on Sb1;b2
; clearly z 2 Sb1;b2

implies z C r 2 Sb1;b2
for all r 2 R. Then f .z/

has a Fourier expansion (also called a q-expansion)

f .z/D
X

n2Z

anq.z/n D
X

n2Z

ane2� inz (B.2)
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y

y D b1

y D b2

Sb1;b2

on Sb1;b2
, for suitable coefficients an 2 C; see Theorem B.7 and equation (B.6)

below for an expression of the an. The finiteness of b2 is not essential for the

validity of equation (B.2). In fact, one of its most useful applications is in case

when Sb1;b2
is the upper half plane: b1 D 0, b2 D 1. The Fourier expansion

of f .z/ follows from the local invertibility of the function q.z/ and the Laurent

expansion of the function .f ı q�1/.z/. We fill in the details of the proof.

Note first that q.z/ is a surjective map of the strip Sb1;b2
onto the annulus

Ar1;r2

defD fw 2 C j r1 < jwj < r2g for r1
defD e�2�b2 > 0, r2

defD e�2�b1 > 0 (see

figure below).

y

x

r1

r2

Ar1;r2
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For if z D x C iy 2 Sb1;b2
, we have jq.z/j D e�2�y and b1 < y < b2,

so e�2�b1 > e�2�y > e�2�b2 , and w D q.z/ 2 Ar1;r2
. On the other hand, if

w2 Ar1;r2
is given choose t 2 R such that eit Dw=jwj (since w¤ 0), and define

r D log jwj. Then one quickly checks that z
defD t=2�C i r=.�2�/ 2 Sb1;b2

such

that q.z/Dw, as desired.

From f .z C 1/ D f .z/, it follows by induction that f .z C n/ D f .z/ for

every positive integer n, and therefore for every negative integer n, f .z/ D
f .z C nC .�n//D f .z C n/; i.e. f .z C n/D f .z/ for every n 2 Z. Also since

q.z1/D q.z2/ () e2� iz1 D e2� iz2 () e2� i.z1�z2/ D 1 () z1 D z2 Cn for

some n 2 Z, the surjectivitiy of q.z/ implies that the equation F.q.z//D f .z/

provides for a well-defined function F.w/ on the annulus Ar1;r2
. To check that

F.w/ is holomorphic, given that f .z/ is holomorphic, take any w0 2 Ar1;r2

and choose z0 2 Sb1;b2
such that q.z0/D w0, again by the surjectivity of q.z/.

Since q0.z/D 2� ie2� iz implies in particular that q0.z0/¤ 0, one can conclude

that q.z/ is locally invertible at z0: there exist " > 0 and a neighborhood N of

z0, N � Sb1;b2
, on which q is injective with

q.N /D N".q.z0//D N".w0/
i:e:D fw 2 C j jw�w0j< "g � Ar1;r2

;

and with q�1 holomorphic on N".w0/. Thus, on N".w0/,

F.w/D F
�

q.q�1.w//
�

D .f ı q�1/.w/;

which shows that F is holomorphic on N".w0/ and thus is holomorphic on

Ar1;r2
, as w0 2 Ar1;r2

is arbitrary.

Now F.w/ has a Laurent expansion

F.w/D
1

X

nD0

Qanw
n C

1
X

mD1

Qbm

wm

on the annulus Ar1;r2
where the coefficients Qan; Qbm are given by

Qan D 1

2� i

Z

�

F.w/ dw

wnC1
; Qbm D 1

2� i

Z

�

F.w/

w�mC1
dw;

for any circle � in Ar1;r2
that separates the circles jwj D r1, jwj D r2. We

choose � to be the circle centered at w D 0 with radius R
defD e�2�b , given any

b with b1 < b < b2; r1 < R < r2. For a continuous function  .w/ on � the

change of variables v.t/D 2� t on Œ0; 1� permits the expression

Z

�

 .w/ dw D
Z 2�

0

 .Reiv/Rieivdv D 2� i

Z 1

0

 .Re2� it /Re2� it dt

D 2� i

Z 1

0

 .e2� i.tCib//e2� i.tCib/ dt;
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by definition of R. For the choices  .w/ D F.w/=wnC1, F.w/=w�mC1, re-

spectively, one finds that

Qan D
Z 1

0

F.e2� i.tCib//e�2� in.tCib/ dt;

Qbm D
Z 1

0

F.e2� i.tCib//e2� im.tCib/ dt;

(B.3)

for n � 0;m � 1. However t C ib 2 Sb1;b2
since b1 < b < b2 so by definition

of F.w/ the equations in (B.3) are

Qan D
Z 1

0

f .t C ib/e�2� in.tCib/ dt;

Qbm D
Z 1

0

f .t C ib/e2� im.tCib/ dt;

(B.4)

for n � 0;m � 1, and moreover the Laurent expansion of F.w/ has a restatement

f .z/D
1

X

nD0

Qanq.z/n C
1

X

mD1

Qbm

q.z/m
(B.5)

on Sb1;b2
. One can codify the preceding formulas by defining

an
defD

Z 1

0

f .t C ib/e�2� in.tCib/ dt (B.6)

for n 2 Z, again for b1 < b < b2. Then an D Qan for n � 0 and a�n D Qbn for

n � 1. By equation (B.5) we have therefore completed the proof of equation

(B.2):

THEOREM B.7 (A FOURIER EXPANSION). Let f .z/ be holomorphic on the

open strip Sb1;b2
defined in equation (B.1), and assume that f .z/ satisfies the

periodicity condition f .z C 1/ D f .z/ on Sb1;b2
. Then f .z/ has a Fourier

expansion on Sb1;b2
given by equation (B.2), where the an are given by equation

(B.6) for n 2 Z, for arbitrary b subject to b1 < b < b2.

Theorem B.7 is valid if Sb1;b2
is replaced by the upper half-plane �C (with

b1 D 0, b2 D 1), for example, as we have indicated. For clearly the preceding

arguments hold for b2 D 1. Here, in place of the statement that q W Sb1;b2
!

Ar1;r2
is surjective (again for r1

defD e�2�b2 , r2
defD e�2�b1 ; b2 <1), one simply

employs the statement that q W �C ! fw 2 C j 0< jwj< 1g is surjective.
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C. Poisson summation and Jacobi inversion. The Jacobi inversion formula

(1.3) can be proved by a special application of the Poisson summation formula

(PSF). The latter formula, in essence, is the statement
X

n2Z

f .n/D
X

n2Z

Of .n/; (C.1)

for a suitable class of functions f .x/ and a suitable normalization of the Fourier

transform Of .x/ of f .x/. The purpose here is to prove a slightly more general

version of the PSF, which applied in a special case, coupled with a Fourier

transform computation, indeed does provide for a proof of equation (1.3).

For a function h.x/ on R, the definition

Oh.x/ defD
Z 1

�1
h.t/e�2� ixt dt (C.2)

will serve as our normalization of its Fourier transform. Here’s what we aim to

establish:

THEOREM C.3 (POISSON SUMMATION). Let f .z/ be a holomorphic function

on an open horizontal strip Sı
defD fz 2 C j �ı < Im z < ıg; ı > 0, say with

f jR 2 L1.R; dx/. Assume that the series
P1

nD0 f .z C n/,
P1

nD1 f .z � n/

converge uniformly on compact subsets of Sı . Then for any z 2 Sı
X

n2Z

f .z C n/D
X

n2Z

e2� inz Of .n/: (C.4)

In particular for z D 0 we obtain equation (C.1).

PROOF. By the Weierstrass theorem, the uniform convergence of the series
P1

nD0 f .z C n/ and
P1

nD1 f .z � n/ on compact subsets of Sı means that the

function

F.z/
defD P

n2Z

f .z C n/D
1
P

nD0

f .z C n/C
1
P

nD1

f .z � n/

on Sı is holomorphic. F.z/ satisfies F.z C 1/ D P

n2Z
f .z C n C 1/ D

P

n2Z
f .z C n/ D F.z/ on Sı. Therefore, Theorem B.7 of Appendix B is

applicable, where the choice b D 0 is made (b1 D �ı; b2 D ı): F.z/ has a

Fourier expansion

F.z/D P

n2Z

ane2� inz (C.5)

on Sı, where an
defD

R 1
0 F.t/e�2� int dt for n 2 Z. Since Œ0; 1�� Sı is compact,

for n 2 Z fixed the series
P1

lD0 f .t C l/e�2� int and
P1

lD1 f .t � l/e�2� int

(whose sum is F.t/e�2� int ) converge uniformly on Œ0; 1� (by hypothesis, given
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of course that je�2� int j D 1). Therefore an can be obtained by termwise inte-

gration; we start by writing

an D
Z 1

0

� 1
P

lD0

f .t C l/e�2� int C
1
P

lD1

f .t � l/e�2� int
�

dt

D
1
P

lD0

Z 1

0

f .t C l/e�2� int dt C
1
P

lD1

Z 1

0

f .t � l/e�2� int dt

D
1
P

lD0

Z lC1

l

f .v/e�2� in.v�l/dvC
1
P

lD1

Z �lC1

�l

f .v/e�2� in.vCl/dv;

by the change of variables v.t/D t C l and v.t/D t � l on Œl; lC1�, Œ�l;�lC1�,

respectively (with l 2 Z), This is further equal to
P1

lD0

R lC1
l f .t/e�2� int dt C

P1
lD1

R �lC1
�l f .t/e�2� int dt D

R 1
0 f .t/e�2� int dt C

R 0
�1 f .t/e�2� int dt D

R 1
�1 f .t/e�2� int dt D Of .n/, by definition (C.2). That is, by (C.5), for z 2 Sı

P

n2Z
Of .n/e2� inz D F.z/

defD P

n2Z
f .z C n/, which concludes the proof of

Theorem C.3. ˜

Other proofs of the PSF exist. In contrast to the complex-analytic one just pre-

sented, a real-analytic proof (due to Bochner) is given in Chapter 14 of [38],

for example, based on Fejér’s Theorem, which states that the Fourier series of a

continuous, 2�-periodic function  .x/ on R is Cesàro summable to  .x/.

As an example, choose f .z/D ft .z/
defD e��z2t for t > 0 fixed. In this case

f .z/ is an entire function whose restriction to R is Lebesgue integrable; the

restriction is in fact a Schwartz function. We claim that the series

1
P

nD0

f .z C n/ and
1
P

nD1

f .z � n/

converge uniformly on compact subsets K of the plane. Since K is compact

the continuous functions z ‘ e��z2t and z ‘ Re z on C are bounded on K W
ˇ

ˇe��z2t
ˇ

ˇ � M1,
ˇ

ˇ Re z
ˇ

ˇ � M2 on K for some positive numbers M1;M2. Let n0

be an integer > 1C2M2. Then for n 2 Z with n � n0 one has n2 � n.1C2M2/,

hence n2 � 2nM2 � n, so that f .z C n/D e��z2te��.n2C2nz/t for z 2 K. But

ˇ

ˇe��.n2C2nz/t
ˇ

ˇ D e��.n2C2n Re z/t � e��.n2�2nM2/t D e��nt

and
ˇ

ˇe��z2t
ˇ

ˇ � M1, so jf .z C n/j � M1e��nt on K, with
P1

nD0 Me��nt

clearly convergent for t > 0. Therefore, by the M -test,
P1

nD0 f .z C n/ con-

verges absolutely and uniformly on K. Similarly, for n 2 Z, we have f .z�n/D
e��z2te��.n2�2nz/t , where for n � n0 and z 2 K again n2 � 2nM2 � n, but

where we now use the bound Re z � M2: n2 � 2n Re z � n2 � 2nM2 � n
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jf .z � n/j � M1e�� tn on K (for n � n0), so
P1

nD1 f .z � n/ converges abso-

lutely and uniformly on K, which shows that ft .z/
defD e��z2t ; t > 0, satisfies

the hypotheses of Theorem C.3. The conclusion
X

n2Z

e��n2t D
X

n2Z

Oft .n/ (C.6)

is therefore safe, and the left-hand side here is �.t/ by definition (1.2). One is

therefore placed in the pleasant position of computing the Fourier transform

Oft .x/
.C:2/D

Z 1

�1
e��y2te�2� ixy dy; (C.7)

which is a classical computation that we turn to now (for the sake of complete-

ness).

For real numbers a; b; c; t with a < b, t > 0, note that e�v2

e2� icv=
p
� t D

e�v2

e2icv
p
�=t D e��c2=te�.v�ic

p
�=t/2 . By the change of variables v.x/ Dp

� tx on Œa
p
� t ; b

p
� t �, therefore,

Z b

a

e��x2te2� icxdx D e��c2=t

p
� t

Z b
p
� t

a
p
� t

e�.v�ic
p
�=t/2dv: (C.8)

Next we show that for b 2 R
Z 1

�1
e�.xCib/2dx D

Z 1

�1
e�x2

dx: (C.9)

To do this, assume first that b > 0 and consider the counterclockwise oriented

rectangle CR of height b and width 2R W CR D C1 C C2 C C3 C C4.

x

y

C3

C1

C2

C4
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By Cauchy’s theorem, 0 D IR
defD

R

CR
e�z2

dz. Now

R

C1
e�z2

dz D
R R

�R e�x2

dx;
R

C2
e�z2

dz D i
R b

0 e�.RCix/2dx D ie�R2 R b
0 e�2xRiex2

dx;
R

C3
e�z2

dz D �
R R

�R e�.xCib/2dx;
R

C4
e�z2

dz D �
R

C2
e�z2

dz

:

Thus
ˇ

ˇ

R

C2
e�z2

dz
ˇ

ˇ � e�R2R b
0 ex2

dx, which tends to 0 as R ! 1. That is,

0 D limR!1 IR D
R 1

�1 e�x2

dx �
R 1

�1 e�.xCib/2dx, which proves equation

(C.9) for b > 0. If b < 0, write
R 1

�1 e�.xCib/2dx D
R 1

�1 e�.�xCib/2dx D
R 1

�1 e�.xCi.�b//2dx D
R 1

�1 e�x2

dx by the previous case, since �b > 0. Thus

(C.9) holds for all b 2 R (since it clearly holds for b D 0). By (C.8) it then

follows that
Z 1

�1
e��x2te2� icxdx D lim

R!1

Z R

�R

e��x2te2� icxdx

D e��c2=t

p
� t

lim
R!1

Z R
p
� t

�R
p
� t

e�.xCi.�c/
p
�=t/2dx

D e��c2=t

p
� t

Z 1

�1
e�x2

dx D e��c2=t

p
� t

p
�: (C.10)

PROPOSITION C.11. For c 2 R and t > 0, we have

Z 1

�1
e��x2te�2� icxdx D

Z 1

�1
e��x2te2� icxdx D e��c2=t

p
t

:

Hence equation (C.7) is the statement that Oft .x/D e��x2=t=
p

t :

Having noted that the left-hand side of equation (C.6) is �.t/, we see that (C.6)

(by Proposition C.11) now reads �.t/D P

n2Z
e��n2=t=

p
t

defD �.1
t
/=

p
t , which

proves the Jacobi inversion formula (1.3).

D. A divisor lemma and a scholium. The following discussion is taken, nearly

word for word, from [38] and thus it has wider applications — for example,

applications to the theory of Eisenstein series (see pages 274–276 of that ref-

erence). For integers d; n with d ¤ 0 write d j n, as usual, if d divides n, and

write d - n if d does not divide n. For n � 1; � 2 C let ��.n/
defD P

0<d; d j n d�

denote the divisor function, and for k; n � 1 in Z let

d.k; n/D
�

1 if k j n,

0 if k - n.
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Let fang1
nD1

be a sequence of complex numbers such that a
defD P1

nD1 janj<1.

We shall prove a lemma to the effect that

1
X

nD1

� 1
X

mD1

m�amn

�

D
1

X

nD1

��.n/an: (D.1)

Before formulating a precise statement of (D.1) it is useful to consider some

simple observations. For m; k � 1 in Z set

s.k/m
defD

m
P

jD1

akj ; t .k/m
defD

km
P

lD1

d.k; l/al :

We first prove by induction that the m-th partial sum s
.k/
m equals t

.k/
m for every

m. For m D 1, s
.k/
1

D ak . On the other hand, t
.k/
1

D ak because an integer l in

the range 1� l �k is a multiple of k if and only if l Dk. Proceeding inductively,

one has s
.k/
mC1

D s
.k/
m C ak.mC1/ D t

.k/
m C ak.mC1/. On the other hand, t

.k/
mC1

D
t
.k/
m C d.k; kmC1/akmC1 C d.k; kmC2/akmC2 C � � � C d.k; kmCk/akmCk .

For l 2 Z and 1 � l � k, we have k j kmCl () k j l () k D l (again), so

t
.k/
mC1

D t
.k/
m C akmCk D s

.k/
mC1

, which completes the induction.

Now take m ! 1 in the equality s
.k/
m D t

.k/
m to conclude that

P1
jD1 akj

exists and
1

X

jD1

akj D
1

X

lD1

d.k; l/al : (D.2)

If Re � < �1, then since jd.k; n/k�anj � janj=k� Re � , we have

1
P

kD1

jd.k; n/k�anj � janj�.� Re �/

(where �.s/DP1
nD1 1=ns , Re s>1, is the Riemann zeta function) and moreover

the iterated series
P1

nD1

�
P1

kD1 jd.k; n/k�anj
�

converges:

1
X

nD1

� 1
X

kD1

jd.k; n/k�anj
�

� a�.� Re �/: (D.3)

By elementary facts regarding double series (found in advanced calculus texts) it

follows that one can conclude that the double series
P1

nD1

P1
kD1 d.k; n/k�an

converges absolutely, and that

1
X

nD1

� 1
X

kD1

d.k; n/k�an

�

D
1

X

kD1

� 1
X

nD1

d.k; n/k�an

�

: (D.4)

Similarly for k � 1 fixed, equation (D.2) (with fang1
nD1

replaced by fjanjg1
nD1

)

yields
P1

mD1 jk�akmj D kRe �
P1

mD1 jakmj D kRe �
P1

lD1 d.k; l/jal j. That is,
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P1
mD1 jk�akmj<1 and moreover the iterated series

P1
kD1

�
P1

mD1 jk�akmj
�

converges, as it equals
P1

kD1 kRe �
P1

lD1 d.k; l/jal j � a�.� Re �/. Thus, sim-

ilarly to equation (D.4), one has that the double series
P1

kD1

P1
mD1 k�akm

converges absolutely, and equality of the corresponding iterated series prevails:

1
P

kD1

� 1
P

mD1

k�akm

�

D
1
P

mD1

� 1
P

kD1

k�akm

�

: (D.5)

Given these observations, we can now state and prove the main lemma regarding

the validity of equation (D.1):

DIVISOR LEMMA. Let fang1
nD1

be a sequence of complex numbers such that the

series
P1

nD1 janj converges. Let ��.n/D P

0<d; d j n d� be the divisor function,

as above, for � 2 C; n � 1 in Z. If Re � < �1, then the series
P1

nD1 ��.n/an

converges absolutely, the iterated series
P1

nD1

�
P1

mD1 m�amn

�

converges and

formula (D.1) holds, i.e.,

1
P

nD1

� 1
P

mD1

m�amn

�

D
1
P

nD1

��.n/an:

The double series
P1

mD1

P1
nD1 m�amn, in fact, converges absolutely and the

corresponding iterated series
P1

nD1

�
P1

mD1 m�amn

�

,
P1

mD1

�
P1

nD1 m�amn

�

coincide.

PROOF.
Pn

kD1 d.k; n/k�
defD P

1�k�n; k j n k�
defD ��.n/ , where d.k; n/D 0 for

k > n. That is,
1

X

kD1

d.k; n/k� D ��.n/ (D.6)

for any � 2 C. The series
P1

nD1 �Re �.n/janj is, by (D.6), the iterated series
P1

nD1

�
P1

kD1 d.k; n/kRe �janj
�

, which we have seen converges and is bounded

above by �.� Re �/ according to (D.3). Clearly j��.n/j � �Re�.n/, so that

also
P1

nD1 j��.n/jjanj converges. Again by (D.6), we have
P1

nD1 ��.n/an D
P1

nD1

�
P1

kD1 d.k; n/k�an

�

. Now apply equations (D.4), (D.2), (D.5), suc-

cessively, to express the latter iterated series as
P1

kD1

�
P1

nD1 d.k; n/k�an

�

D
P1

kD1

�

k�
P1

mD1 akm

�

D P1
mD1

�
P1

kD1 k�akm

�

, which proves (D.1). We

have already seen that the double series
P1

mD1

P1
nD1 m�amn

�

which equals
P1

kD1

P1
mD1 k�akm

�

converges absolutely. By equation (D.5), then one de-

rives the equality of the corresponding iterated series
P1

mD1

�
P1

nD1 m�amn

�

and
P1

nD1

�
P1

mD1 m�amn

�

. ˜

Going back to the equality s
.k/
m D t

.k/
m of the previous page, we actually have

the following fact, recorded for future application:



LECTURES ON ZETA FUNCTIONS, L-FUNCTIONS AND MODULAR FORMS 91

SCHOLIUM. Given a sequence of complex numbers fang1
nD1

and k 2 Z with

k � 1, the series
P1

jD1 akj converges if and only if the series
P1

jD1 d.k; j /aj

converges, in which case these series coincide.

As an example, we use the Divisor Lemma to prove the next lemma, which is

important for Lecture 4.

LEMMA D.7. Fix z; k 2 C with Im z > 0, Re k > 2. Then the iterated series
P1

mD1

�
P1

nD1 nk�1e2� imn
�

exists, the series
P1

nD1 �1�k.n/n
k�1e2� inz con-

verges absolutely, and

1
P

mD1

� 1
P

nD1

nk�1e2� imn
�

D
1
P

nD1

�1�k.n/n
k�1e2� inz D

1
P

nD1

�k�1.n/e
2� inz : (D.8)

PROOF. The last equality comes from ��.n/ D n����.n/. To show the first,

set an
defD nk�1e2� inz . Then

P1
nD1 janj D P1

nD1 nRe k�1e�2�n Im z converges

by the ratio test, since Im z > 0. Also m1�kamn D m1�k.mn/k�1e2� imnz

D nk�1e2� imnz , where Re k > 2 ) Re.1 � k/ < �1. By the Divisor Lemma

(for � D 1 � k), the series
P1

nD1 �1�k.n/an converges absolutely, the iterated

series
P1

nD1

�
P1

mD1 m1�kamn

�

converges, and
P1

nD1

�
P1

mD1 m1�kamn

�

D
P1

nD1 �1�k.n/an. Substituting the value of an proves the desired equality. ˜

As another example, consider the sequence fang1
nD1

given by

an
defD e˙2�nxiKs� 1

2

.2�ny/ns� 1

2

for x;y 2 R, y > 0, s 2 C fixed, where

K�.z/
defD 1

2

Z 1

0

exp
�

�z

2

�

t C 1

t

��

t��1 dt (D.9)

is the K-Bessel function for Re z > 0, � 2 C. To see that
P1

nD1 janj <1, one

applies the asymptotic result

lim
t!1

p
tK�.t/e

t D
r

�

2
: (D.10)

In particular, choose M�>0 such that
ˇ

ˇ

p
tK�.t/e

t�
p

�=2
ˇ

ˇ<
p

�=2 for t>M� ;

that is, jK�.t/j < 2
p

�=2te�t for t > M� . Then if Ns;y is an integer with

Ns;y >Ms� 1

2

=2�y we see that for n � Ns;y , 2�ny >Ms� 1

2

, so

ˇ

ˇKs� 1

2

.2�ny/
ˇ

ˇ< 2

r

�

2 � 2�ny
e�2�ny D n�1=2

p
y

e�2�ny I

therefore janj< .nRe s�1=
p

y/ e�2�ny , where
P1

nD1 nRe s�1e�2�ny converges

by the ratio test since y > 0.
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Now assume that Re s > 1 so that �
defD �2s C 1 satisfies Re � < �1. Also

m�amn
defD e˙2�mnxiKs� 1

2

.2�mny/
�

n
m

�s� 1

2 for m; n � 1. The Divisor Lemma

gives

1
P

mD1

� 1
P

nD1

e˙2�mnxiKs� 1

2

.2�mny/
� n

m

�s� 1

2

�

D
1
P

nD1

��2sC1.n/e
˙2�nxiKs� 1

2

.2�ny/ns� 1

2 ; (D.11)

with absolute convergence of the latter series, and convergence of the iterated

series which coincides with the iterated series

1
P

nD1

� 1
P

mD1

e˙2�mnxiKs� 1

2

.2�mny/
�

n

m

�s� 1

2

�

:

E. Another summation formula and a proof of formula (2.4). In addition to

the useful Poisson summation formula
X

n2Z

f .n/D
X

n2Z

Of .n/ (E.1)

of Theorem C.3, there are other very useful, well known summation formulas.

The one that we consider here assumes the form
P

n2Z

f .n/D �the sum of residues of .� cot�z/f .z/ at the poles off .z/; (E.2)

for a suitable class of functions f .z/. As we applied formula (E.1) to a specific

function (namely the function f .z/D e��z2t for t > 0 fixed) to prove the Jacobi

inversion formula (1.3), we will, similarly, apply formula (E.2) to a specific

function (namely the function f .z/ D .z2 C a2/�1 for a > 0 fixed) to prove

formula (2.4) of Lecture 2. The main observation towards the proof of formula

(E.2) is that there is a nice bound for jcot�zj on a square CN with side contours

RN ;LN and top and bottom contours TN ;BN , as illustrated on the next page,

for a fixed integer N > 0. The bound, in fact, is independent of N . Namely,

jcot�zj � max.1;B/ < 2 (E.3)

on CN , for B
defD .1Ce��/=.1�e��/. We begin by checking this known result.

For z D x C iy, x;y 2 R, we have i�z D ��y C i�x, and simple manipu-

lations give

cot�z D i
ei�z C e�i�z

ei�z � e�i�z
D i

e��yei�x C e�ye�i�x

e��yei�x � e�ye�i�x
: (E.4)

Hence

jcot�zj � e��y C e�y

je��yei�x � e�ye�i�xj � e��y C e�y

je��y � e�yj
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� �

� �

x

y

�

�.N C 1
2
/;�.N C 1

2
/
� �

N C 1
2
;�.N C 1

2
/
�

�

N C 1
2
;N C 1

2

��

�.N C 1
2
/;N C 1

2

�

� � �
N N C1

N C 1
2

LN

RN

TN

BN

(since ja�bj �
ˇ

ˇjaj�jbj
ˇ

ˇ for a; b 2 C). Since jaj � ˙a for a 2 R, this becomes

jcot�zj � e��y C e�y

˙.e��y � e�y/
: (E.5)

Suppose (in general) that y> 1
2

. Then 2�y>� , so e�2�y<e�� and 1�e�2�y>

1 � e�� , which, by the choice of the minus sign in (E.5), allows us to write

jcot�zj �
�

e��y C e�y

e�y � e��y

�

e��y

e��y
D e�2�y C 1

1 � e�2�y
<

e�� C 1

1 � e��
defD B;

for y > 1
2

. Similarly if y <�1
2

, then 2�y <�� , so e2�y < e�� and 1�e2�y >

1 � e�� , and by the choice of the plus sign in (E.5) we get

jcot�zj �
�

e��y C e�y

e��y � e�y

�

e�y

e�y
D 1C e2�y

1 � e2�y
<

1C e��

1 � e�� D B:

Thus we see that

jcot�zj< B
defD 1C e��

1 � e�� (E.6)

for z 2 C with either Im z > 1
2

or Im z < �1
2

. In particular on TN , Im z D
N C 1

2
> 1

2
and on BN , Im z D �.N C 1

2
/ < �1

2
so by (E.6) the estimate

jcot�zj< B (E.7)

holds on both the contours TN and BN .
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Regarding the contours RN and LN we have z D N C 1
2

C iy on RN and

z D �.N C 1
2
/C iy on LN . On RN we have e2� iz D �e�2�y (since N 2 Z)

and, similarly, e2� iz D �e�2�y on LN .

Now consider the first equation in (E.4) and multiply the fraction by 1 D
ei�z=ei�z . On both RN and LN this leads to

cot�z D i
e2� iz C 1

e2� iz � 1
D i

�e�2�y C 1

�e�2�y � 1
;

and we conclude that

jcot�zj D j1 � e�2� Im zj
1C e�2� Im z

� 1C e�2� Im z

1C e�2� Im z
D 1 (E.8)

on both contours RN and LN . The inequalities (E.7), (E.8) therefore imply

(E.3), as desired, where we note that et � 1C t for t 2 R, so e� � 1C� > 3 )
2.e� � 1/� .e� C 1/D e� � 3> 0. That is, indeed

2>

�

e� C 1

e� � 1

�

e��

e�� D 1C e��

1 � e��
defD B:

We note also that sin�z D 0 () z D n 2 Z. That is, since (again) N 2 Z we

cannot have sin�z D 0 on CN ; in particular CN avoids the poles of cot�z D
cos�z=sin�z, and cot�z is continuous on CN .

Consider now a function f .z/ subject to the following two conditions:

C1. f .z/ is meromorphic on C, with only finitely many poles z1; z2; : : : ; zk ,

none of which is an integer.

C2. There are numbers M; � > 0 such that jf .z/j � M=jzj2 holds for jzj> �.

Then:

THEOREM E.9. limN !1
PN

nD�N f .n/ exists and equals minus the sum of the

residues of the function f .z/� cot�z at the poles z1; z2; : : : ; zk of f .z/. One

can replace condition C2, in fact, by the more general condition (E.11) below.

PROOF. Since the poles zj are finite in number we can choose N sufficiently

large that CN encloses all of them. The function � cot�z has simple poles at

the integers (again as sin�z D 0 () z D n 2 Z) and the residue at z D n 2 Z is

immediately calculated to be 1. Therefore the residue of �.z/
defD f .z/� cot�z

at z D n 2 Z is f .n/. As none of the zj are integers (by C1) the poles of �.z/

within CN are given precisely by the set fzj ; n j 1 � j � k;�N � n � N; n 2 Zg.

By the residue theorem, accordingly, we deduce that

1

2� i

Z

CN

�.z/dz D

the sum of the residues of �.z/ at the zj C
N
P

nD�N

f .n/: (E.10)
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Now if

lim
N !1

Z

CN

�.z/dz D 0; (E.11)

we can let N ! 1 in equation (E.10) and conclude the validity of Theorem E.9

(more generally, without condition C2).

We check that condition (E.11) is implied by condition C2. Since jzj � N C 1
2

on CN , we have for N C 1
2
> � and z on CN the bound

jf .z/j � M

jzj2 � M
�

N C 1
2

�2
:

By the main inequality (E.3), we have j� cot�zj < 2� on CN , so j�.z/j D
jf .z/� cot�zj < 2�M=

�

N C 1
2

�2
on CN . Given that the length of CN is

4
�

2
�

N C 1
2

��

we therefore have the following estimate (for N C 1
2
> �):

ˇ

ˇ

ˇ

ˇ

Z

CN

�.z/dz

ˇ

ˇ

ˇ

ˇ

� 2�M
�

N C 1
2

�2
8
�

N C 1
2

�

D 32�M

2N C 1
; (E.12)

where we note that �.z/ is continuous on CN , because, as seen, cot�z is con-

tinuous on CN . The inequality (E.12) clearly establishes the condition (E.11),

by which the proof of Theorem E.9 is concluded. ˜

As an example of Theorem E.9 we choose

f .z/D 1

z2 C a2
D 1

.z � ai/.z C ai/

for a > 0 fixed. Hence f is meromorphic on C with exactly two simple poles

z1
defD ai , z2

defD �ai . Suppose, for example, that jzj>
p

2a: Then

1 � a2

jzj2 >
1

2
; so

ˇ

ˇ

ˇ

ˇ

1C a2

z2

ˇ

ˇ

ˇ

ˇ

� 1 � a2

jzj2 ; so

ˇ

ˇ

ˇ

ˇ

z2

z2 C a2

ˇ

ˇ

ˇ

ˇ

D 1
ˇ

ˇ

ˇ
1C a2

z2

ˇ

ˇ

ˇ

< 2:

Therefore jf .z/j< 2=jzj2; that is, f .z/ satisfies conditions C1, C2 with M D 2,

�D
p

2a. The residue of �.z/
defD f .z/� cot�z at z1 is

lim
z!z1

.z � z1/�.z/D lim
z!ai

� cot�z

z C ai
D � cot�ai

2ai
D � �

2a
coth�a;

since cos iw D coshw, sin iw D i sinhw. Similarly, the residue of �.z/ at z2

is �.�=2a/ coth�a. As f .�z/D f .z/,
PN

nD�N f .n/D 1
a2

C2
PN

nD1
1

n2Ca2
.

Theorem E.9 therefore gives

1

a2
C 2

1
X

nD1

1

n2 C a2
D �

�

� �

2a
coth�a � �

2a
coth�a

�

D �

a
coth�a;
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which proves the summation formula (2.4).

F. Generators of SL.2;Z/. Let �
defD SL.2;Z/. To prove that the elements

T
defD

�1
0

1
1

�

and S
defD

�0
1

�1
0

�

2 � generate � , we start with a lemma.

LEMMA F.1. Let  D
�

a
c

b
d

�

2 � with c � 1. Then  is a finite product 1 � � � l ,

where each j 2 � has the form j D T nj Smj for some nj ;mj 2 Z. Here for a

group element g and 0> n 2 Z, we have set gn defD .g�1/�n.

The proof is by induction on c. If c D 1, then 1 D det  D ad � bc D ad � b,

so b D ad � 1, so

 D
�

a
1

ad�1
d

�

D
�

1
0

a
1

��

0
1

�1
0

��

1
0

d
1

��

1
0

0
1

�

D 12

for 1 D
�1

0
a
1

��0
1

�1
0

�

D T aS1, 2 D
�1

0
d
1

��1
0

0
1

�

D T dS0. Proceeding by

induction, we use the Euclidean algorithm to write d D qc C r for q; r 2 Z with

0 � r < c � 2, say. If r D 0, then 1 D det  D ad � bc D .aq � b/c, which

shows that c is a positive divisor of 1. That is, the contradiction c D 1 implies

that r > 0. Now

T �q D
�

a
c

b
d

��

1
0

�q
1

�

D
�

a
c

�aqCb
�cqCd

�

D
�

a
c

�aqCb
r

�

;

so T �qS D
�

a
c

�aqCb
r

��

0
1

�1
0

�

D
��aqCb

r
�a
�c

�

, which equals 1 � � � l by induc-

tion (since 1 � r < c), where each j has the form j D T nj Smj for some

nj ;mj 2 Z. Consequently,

 D 1 � � � lS
�1T q D .1 � � � l�1/.T

nl Sml �1/T qS0;

which has the desired form for  and which therefore completes the induction

and the proof of Lemma F.1.

THEOREM F.2. The elements T;S generate � : Every  2 � is a finite product

1 � � � l where each j 2 � has the form j D T nj Smj for some nj ;mj 2 Z.

PROOF. Let  D
�

a
c

b
d

�

2 � be arbitrary. If c D 0, then 1 D det  D ad , so

a D d D ˙1, so

 D
�

1
0

b
1

�

D T bS0 or  D
��1

0
b

�1

�

D
�

1
0

�b
1

���1
0

0
�1

�

D T �bS2:

Since the case c � 1 is already settled by Lemma F.1, there remains only the case

c � �1. Then S2 D 
��1

0
0

�1

�

D
��a

�c
�b
�d

�

D 1 � � � l , by Lemma F.1 (since

�c � 1), where the j have the desired form. Thus  D 1 � � � l � .T 0S�2/, as

desired. ˜
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G. Convergence of the sum of jmCni j�˛ for ˛>2. To complete the argument

that the Eisenstein series Gk.z/ converge absolutely and uniformly on each of

the strips SA;ı in definition (4.5) (for k D 4; 6; 8; 10; 12; : : : ), we must show,

according to the inequality (4.10), that the series

S.˛/
defD

X

.m;n/2Z
2
�

1

jm C ni j˛

converges for ˛ > 2, where Z
2
� D Z � Z � f.0; 0/g.

For n � 1; n 2 Z, let �n denote the set of integer points on the boundary of

the square with vertices .n; n/, .�n; n/, .�n;�n/, .n;�n/. As an example, �3

is illustrated here, with 24 D 8 � 3 points.

� �

� �

x

y

� � � �

� � � �

�

�

�

�

�

�

�

�

In general �n has j�nj .i/D 8n points. Also the �n partition out all of the

nonzero integer pairs:

Z � Z � f.0; 0/g D
1
S

nD1

�n (G.1)

is a disjoint union.

LEMMA G.2.
P

.a;b/2�n

1

jaCbi j˛ � 8
n˛�1

for ˛ � 0; n � 1.

PROOF. For .a; b/ 2 �n, either a D ˙n or b D ˙n, according to whether .a; b/

lies on one of the vertical sides of the square (as illustrated above for �3), or

on one of the horizontal sides, respectively. Thus a2 C b2 D either n2 C b2 or
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a2Cn2 ) a2Cb2 �n2. That is, for .a; b/2�n we have jaCbi j2 Da2Cb2 �n2,

so ja C bi j˛ � n˛ (since ˛ � 0). Inverting and summing we get

X

.a;b/2�n

1

ja C bi j˛ �
X

.a;b/2�n

1

n˛
� 8n

n˛
(by (i))

D 8

n˛�1
;

which proves Lemma G.2. ˜

Now use (G.1) and Lemma G.2 to write

S.˛/D
1

X

nD1

X

.a;b/2�n

1

ja C bi j˛ �
1

X

nD1

8

n˛�1
(G.3)

for ˛ � 0, which proves that S.˛/ <1 for ˛� 1> 1, as desired.
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[18] , Über Modulfunktionen und die Dirichletschen Reihen mit Eulerscher

Produktentwicklung, I, Math. Ann. 114 (1937), no. 1, 1–28.
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