
Games of No Chance 3
MSRI Publications
Volume 56, 2009

Tigers and Goats is a draw

LIM YEW JIN AND JURG NIEVERGELT

ABSTRACT. Bagha Chal, or “Moving Tiger”, is an ancient Nepali board game

also known as Tigers and Goats. We briefly describe the game, some of its

characteristics, and the results obtained from an earlier computer analysis. As

in some other games such as Merrill’s, play starts with a placement phase

where 20 pieces are dropped on the board, followed by a sliding phase during

which pieces move and may be captured. The endgame sliding phase had

been analyzed exhaustively using retrograde analysis, yielding a database con-

sisting of 88,260,972 positions, which are inequivalent under symmetry. The

placement phase involves a search of 39 plies whose game tree complexity is

estimated to be of the order 1041. This search has now been completed with the

help of various optimization techniques. The two main ones are: confronting a

heuristic player with an optimal opponent, thus cutting the search depth in half;

and constructing a database of positions halfway down the search tree whose

game-theoretic value is determined exhaustively. The result of this search is

that Tigers and Goats is a draw if played optimally.

1. Introduction

Bagha Chal, or “Moving Tiger”, is an ancient Nepali board game, which

has recently attracted attention among game fans under the name Tigers and

Goats. This game between two opponents, whom we call “Tiger” and “Goat”,

is similar in concept to a number of other asymmetric games played around

the world — asymmetric in the sense that the opponents fight with weapons of

different characteristics, a feature whose entertainment value has been known

since the days of Roman gladiator combat.

On the small, crowded board of 5 x 5 grid points shown in Figure 1, four

tigers face up to 20 goats. A goat that strays away from the safety of the herd

and ventures next to a tiger gets eaten, and the goats lose if too many of them get

swallowed up. A tiger that gets trapped by a herd of goats is immobilized, and

the tigers lose if none of them can move. Various games share the characteristic

163

164 LIM YEW JIN AND JURG NIEVERGELT

that a multitude of weak pieces tries to corner a few stronger pieces, such as

“Fox and Geese” in various versions, as described in “Winning ways” [BCG

2001] and other sources.

The rules of Tigers and Goats are simple. The game starts with the four tigers

placed on the four corner spots (grid points), followed by alternating moves with

Goat to play first. In a placement phase, which lasts 39 plies, Goat drops his

20 goats, one on each move, on any empty spot. Tiger moves one of his tigers

according to either of the following two rules:

– A tiger can slide from his current spot to any empty spot that is adjacent and

connected by a line.

– A tiger may jump in a straight line over any single adjacent goat, thereby

killing the goat (removing it from the board), provided the landing spot be-

yond the goat is empty.

If Tiger has no legal move, he loses the game; if a certain number of goats have

been killed (typically five), Goat loses.

T

T

T

TG

T

T

T

TG

G

G G

G

G

G

G G

G

G

G

G

G

G

G

G

Figure 1. Left: The position after the only (modulo symmetry) first Goat
move that avoids an early capture of a goat. At Right: Tiger to move
can capture a goat, but thereafter Goat suffocates the tigers with a forcing
sequence of 5 plies (challenge: find it).

These rules are illustrated in Figure 2, which also show that Goat loses a goat

within 10 plies unless his first move is on the center spot of a border.

The 39-ply placement phase is followed by the sliding phase that can last for-

ever. Whereas the legal Tiger moves remain the same, the Goat rule changes: on

his turn to play, Goat must slide any of his surviving goats to an adjacent empty

spot connected by a line. If there are 17 or fewer goats on the board, 4 tigers

cannot block all of them and such a move always exists. In some exceptional

cases (which arise only if Goat cooperates with Tiger) with 18 or more goats,

the 4 tigers can surround and block off a corner and prevent any goat moves.

Since Goat has no legal moves, he loses the game.

TIGERS AND GOATS IS A DRAW 165

T

T

T

T

T

T

T

T

1

2

3

4

5

6

7

8 1

2

34

Figure 2. Goat has 5 distinct first moves (ignoring symmetric variants).
All but the first move shown in Figure 1 lead to the capture of a goat
within at most 10 plies, as these two forcing sequences show. At right,
Tiger’s last move 8 sets up a double attack against the two goats labeled
1 and 3.

Although various web pages that describe Tigers and Goats offer advice on

how to play the game, we have found no expert know-how about strategy and

tactics. Plausible rules of thumb about play include the following. First, it is

obvious that the goats have to hug the border during the placement phase — any

goat that strays into the center will either get eaten or cause the demise of some

other goat. Goat’s strategy sounds simple: first populate the borders, and when at

full strength, try to advance in unbroken formation, in the hope of suffocating the

tigers. Unfortunately, this recipe is simpler to state than to execute. In contrast,

we have found no active Tiger strategy. It appears that the tigers cannot do much

better than to wait, “doing nothing” (just moving back and forth), until near the

end of the placement phase. Their goal is to stay far apart from each other, for

two reasons: to probe the full length of the goats’ front line for gaps, and to make

it hard for the goats to immobilize all four tigers at the same time. Tiger’s big

chance comes during the sliding phase, when the compulsion to move causes

some goat to step forward and offers Tiger a forcing sequence that leads to

capture. Thus, it seems that Tiger’s play is all tactics, illustrating chess Grand-

master Tartakover’s famous pronouncement: “Tactics is what you do when there

is something to do. Strategy is what you do when there is nothing to do”.

2. Results of a previous investigation

Our earlier investigation with the goal of solving Tigers and Goats had given

us partial results and a good understanding of the nature of this game, but we

fell short of achieving an exhaustive analysis in the sense of determining the

outcome: win, loss or draw, under optimal play. Here we summarize the main

insights reported in [Lim 2004].

166 LIM YEW JIN AND JURG NIEVERGELT

Size and structure of the state space. The first objective when attacking any

search problem is to learn as much as possible about the size and structure of the

state space in which the search takes place. For Tigers and Goats it is convenient

to partition this space into 6 subspaces:

S0: all the positions that can occur during the placement phase,

including 4 tigers and 1 to 20 goats.

Sk : for k D 1 : : : 5, all the positions that can occur during the sliding phase,

with 4 tigers, 21 � k goats, and k empty spots on the board.

Notice that any position in any S1 to S5 visually looks exactly like some position

in S0, yet the two are different positions: in S0, the legal Goat moves are to drop

a goat onto an empty spot, whereas in S1 to S5, the legal moves are to slide one

of the goats already on the board. For each subspace S1 to S5, a position is

determined by the placement of pieces on the board, which we call the board

image, and by the player whose turn it is to move. Thus, the number of positions

in S1 to S5 is twice the number of distinct board images.

For S0, however, counting positions is more difficult, since the same board

image can arise from several different positions, depending on how many goats

have been captured. As an example consider an arbitrary board image in S5,

hence with 16 goats and 5 empty spots. This same board image could have

arisen, as an element of S0, from ten different positions, in which 0, 1, 2, 3,

or 4 goats have been captured, and in each case, it is either Tiger’s or Goat’s

turn to move. Although for board images in S1 through S4 the multiplier is less

than 10, these small subspaces do not diminish the average multiplier by much.

Thus, we estimate that the number of positions in S0 is close to 10 times the

number of board images in S0, which amounts to about 33 billion.

Since the game board has all the symmetries of a square that can be rotated

and flipped, many board positions have symmetric “siblings” that behave iden-

tically for all game purposes. Thus, all the spaces S0 to S5 can be reduced in

size by roughly a factor of 8, so as to contain only positions that are pairwise

inequivalent. Using Polya’s counting theory [Polya 1937] we computed the

exact size of the symmetry-reduced state spaces S1 to S5, and of the board

images of S0, as shown in Table 1.

S0 is very much larger than all of S1 to S5 together, and has a more com-

plex structure. Due to captures during the placement phase, play in S0 can

proceed back and forth between more or fewer goats on the board, whereas

play in the sliding phase proceeds monotonically from Sk to SkC1. These two

facts suggest that the subspaces are analyzed differently: S1 to S5 are analyzed

exhaustively using retrograde analysis, whereas S0 is probed selectively using

forward search [Gasser 1996].

TIGERS AND GOATS IS A DRAW 167

of board images # of positions

S0 3,316,529,500 �33,000,000,000

S1 33,481 66,962

S2 333,175 666,350

S3 2,105,695 4,211,390

S4 9,469,965 18,939,930

S5 32,188,170 64,376,340

Table 1. Number of distinct board images and positions for corresponding
subspaces

Database and statistics for the sliding phase. Using retrograde analysis [Wu

2002] we determined the game-theoretic value of each of the 88,260,972 po-

sitions in the spaces S1 to S5, i.e., during the sliding phase. A Tiger win is

defined as the capture of 5 goats, a Tiger loss as the inability to move, and a

draw (by repetition) is defined as a position where no opponent can force a win,

and each can avoid a loss. Table 2 shows the distribution of won, drawn and

lost positions.

Number of goats captured

4 3 2 1 0

Wins
913,153 1,315,111 882,523 252,381 30,609

(2.8%) (13.9%) (41.9%) (75.8%) (91.4%)

Draws
8,045,787 6,226,358 1,199,231 80,706 2,812

(25.0%) (65.7%) (57.0%) (24.2%) (8.4%)

G
o
at

to
m

o
v
e

Losses
23,229,230 1,928,496 23,941 88 60

(72.2%) (20.4%) (1.1%) (0.03%) (0.2%)

Total 32,188,170 9,469,965 2,105,695 333,175 33,481

Wins
30,469,634 6,260,219 465,721 6,452 146

(94.7%) (66.1%) (22.1%) (1.9%) (0.4%)

Draws
1,569,409 2,918,104 1,353,969 197,537 9,468

(4.9%) (30.8%) (64.3%) (59.3%) (28.3%)

T
ig

er
to

m
o
v
e

Losses
149,127 291,642 286,005 129,186 23,867

(0.5%) (3.1%) (13.6%) (38.8%) (71.3%)

Table 2. Endgame database statistics. Percentages are relative to totals
for a given player to move.

168 LIM YEW JIN AND JURG NIEVERGELT

Goats captured 1 2 3 4 5

Complexity 1:28�1024 4:23�1036 8:92�1038 3:09�1040 4:88�1041

Table 3. Estimated tree complexity for various winning criteria.

Game tree complexity. The search space S0, with approximately 33 billion

positions, is too large for a static data structure that stores each position exactly

once. Hence it is generated on the fly, with portions of it stored in hash tables.

As a consequence, the same position may be generated and analyzed repeatedly.

A worst case measure of the work thus generated is called game tree complexity.

The size of the full search tree can be estimated by a Monte Carlo technique as

described by [Knuth 1975]. For each of a number of random paths from the root

to a leaf, we evaluate the quantity F D1Cf1Cf1�f2Cf1�f2�f3C� � �, where

fj is the fan out, or the number of children, of the node at level j encountered

along this path. The average of these values F , taken over the random paths

sampled, is the expected number of nodes in the full search tree. Table 3 lists

the estimated game tree complexity (after the removal of symmetric positions)

of five different “games”, where the game ends by capturing 1 to 5 goats during

the placement phase. These estimates are based on 100,000 path samples.

Cutting search trees in half. A 39-ply search with a branching factor that

often exceeds a dozen legal moves is a big challenge. Therefore, the key to

successful forward searches through the state space S0 of the placement phase

is to replace a 39-ply search with a number of carefully designed searches that

are effectively only 20 plies deep. This is achieved by 1) formulating hypotheses

of the type “player X can achieve result Y”, 2) programming a competent and

efficient heuristic player X that generates only one or a few candidate moves

in each position, and 3) confronting the selective player X with his exhaustive

opponent who tries all his legal moves. If this search that alternates selective

and exhaustive move generation succeeds, the hypothesis Y is proven. If not,

one may try to develop a stronger heuristic player X, or weaken the hypothesis,

e.g. from “X wins” to “X can get at least a draw”. Using such searches designed

to verify a specific hypothesis we were able to prove several results including

the following:

(i) Tiger can force the capture of a single goat within 30 plies, but no sooner.

(ii) Tiger can force the capture of two goats within 40 plies, i.e., by the end of

the placement phase, but not earlier.

(iii) After the most plausible first two moves (the first by Goat, the second by

Tiger) Goat has a drawing strategy.

TIGERS AND GOATS IS A DRAW 169

Heuristic attackers and defenders. In order to make these searches feasible

we had to develop strong heuristic players. Given our lack of access to human

expertise, we developed player programs that learn from experience by being

pitted against each other — a topic described in [Lim 2005]. For example, the

proof that Tiger can kill a certain number of goats requires a strong Tiger that

tries to overcome an exhaustive Goat. Conversely, the proof that Goat has a

drawing strategy after the most plausible opening requires a strong heuristic

Goat that defies an exhaustive Tiger.

Goat has at least a draw. After Goat’s most reasonable first move, Tiger has 6

symmetrically distinct replies at ply 2. Using the same techniques and software

as described above, further computer runs that stretched over a couple of months

proved that Goat has a successful defense against all of them. Having shown

that Goat can ensure at least a draw, the next question is “does Goat have a

winning strategy?”.

Insights into the nature of the game. We were unable to discover easily

formulated advice to players beyond plausible rules-of-thumb such as “goats

cautiously hug the border, tigers patiently wait to spring a surprise attack”. On

the other hand, our database explains the seemingly arbitrary number “five” in

the usual winning criterion “Tiger wins when 5 goats have been killed”. This

magic number “5” must have been observed as the best way to balance the

chances. We know that Tiger can kill some goats, so Tiger’s challenge must be

more ambitious than “kill any one goat”. On the other hand, we see from Table

2 that there is a significant jump in number of lost positions for Goat from three

goats captured to four goats captured. It is therefore fairly safe to conjecture

that once half a dozen goats are gone, they are all gone — Goat lacks the critical

mass to put up resistance. But as long as there are at least 16 goats on the board

(at most 4 goats have been captured), the herd is still large enough to have a

chance at trapping the tigers.

Table 2 also shows that unless Tiger succeeds in capturing at least two goats

during the placement phase, he has practically no chance of winning. If he

enters the sliding phase facing 19 goats, less than 2% of all positions are won

for Tiger, regardless of whether it is his turn to move or not. The fact that Tiger

can indeed force the capture of 2 goats within 40 plies, that is, by the end of the

placement phase (see page 168), is another example of how well-balanced the

opponents’ chances are.

3. Proving Tiger’s draw

The previous investigation, with the result that Goat has at least a draw, had

brought us tantalizingly close to determining the game-theoretic value of Tigers

170 LIM YEW JIN AND JURG NIEVERGELT

and Goats. Computing the endgame database had been relatively straightfor-

ward, but the 39-ply forward search had not yielded to the judicious application

of established techniques. Experience had shown that by approximating a 39-

ply search by various 19-ply and 20-ply searches (see “Cutting search trees in

half”, page 168), we were able to answer a variety of questions. It appeared

plausible that by formulating sufficiently many well-chosen hypotheses this ap-

proach would eventually yield a complete analysis of the game. We conjectured

that Tiger also has a drawing strategy, and set out to try to prove this using the

same techniques that had yielded Goat’s drawing strategy.

The asymmetric role of the two opponents, however, made itself felt at this

point: the searches pitting a heuristic Tiger player against an exhaustive Goat

progressed noticeably more slowly than those involving a heuristic Goat versus

an exhaustive Tiger. In retrospect we interpret this different behavior as due

to the phenomenon “Tiger’s play is all tactics”. Positional considerations —

keep the goats huddled together — make it easy to generate one or a few “prob-

ably safe” Goat’s moves, even without any look-ahead at the immediate con-

sequences. For Tiger, on the other hand, neither we nor apparently the neural

network that trained the player succeeded in recognizing “good moves” without

a local search. An attempt to make Tiger a stronger hunter (by considering the

top 3 moves suggested by the neural network followed by a few plies of full-

width search) is inconsistent with the approach of “cutting the tree in half” and

made the search unacceptably slow.

Thus, a new approach had to be devised. The experience that 20-ply forward

searches proved feasible suggests a more direct approach: compute a database

of positions of known value halfway down the search tree. Specifically, we

define halfway position as one arising after 19 plies, i.e., after the placement

of 10 goats, with Tiger to move next. The value of any such position can be

computed with a search that ends in the endgame database after at most 20 plies.

If sufficiently many such “halfway positions” are known and stored, searches

from the root of the tree (the starting position of the game) will run into them

and terminate the search after at most 19 plies.

The problem with this approach is that the number of halfway positions is

large, even after symmetric variants have been eliminated. Because of captures

not all 10 goats placed may still be on the board, hence a halfway position has

anywhere between 6 and 10 goats, and correspondingly, 15 to 11 empty spots.

Using the terminology of Section 2, the set of halfway positions is (perhaps

a subset of) the union of S11, S12, S13, S14 and S15, where Sk is the set

of all symmetrically inequivalent positions containing 4 tigers, 21 � k goats,

and k empty spaces. S11, with about equally as many goats as empty spots,

is particularly large. On the assumption that in any subspace Sk the number

TIGERS AND GOATS IS A DRAW 171

of symmetrically inequivalent positions is close to 1/8 of the total, S11 contains

about 550 million inequivalent positions. The union of S11 through S15 contains

about 1:6� 109 positions. This number is about 25 times larger than the largest

endgame database we had computed before, namely S5.

The approach to overcome the problem of constructing a large halfway data-

base exploits two ideas. First, the database of halfway positions of known value

need not necessarily include all halfway positions. In order to prove that Tiger

has a drawing strategy, the database need only include a sufficient number of

positions known to be drawn or a win for Tiger so that any forward search is

trapped by the filter of these positions. Second, the database of halfway positions

is built on the fly: whenever a halfway position is encountered whose value

is unknown, this position is entered into the database and a full-width search

continues until its value has been computed.

Although there was no a priori certainty that this approach would terminate

within a reasonable time, trial and error and repeated program optimization over

a period of five months led to success. Table 4 contains the statistics of the

halfway database actually constructed. For each of S15 through S11, it shows

the number of positions whose value was actually computed, broken down into

the two categories relevant from Tiger’s point of view, win-or-draw vs. loss.

Estimated
Captured # Win or Draw # Loss Total state space size

4 17,902,335 0 17,902,335 85,804,950

3 33,152,214 0 33,152,214 183,867,750

2 64,336,692 17,944 64,354,636 321,768,563

1 84,832,697 329,183 85,161,880 464,776,813

0 15,857,243 91,676 15,948,919 557,732,175

Total 216,081,181 438,803 216,519,984 1,613,950,251

Table 4. Halfway database statistics: the number of positions computed
and their value from Tiger’s point of view: win-or-draw vs. loss

Although the construction of the halfway database is intertwined with the

forward searches — a position is added and evaluated only as needed — logically

it is clearest to separate the two. We discuss details of the forward searches in

the next section.

4. Implementation, optimization, verification

Our investigation of Tigers and Goats has been active, on and off, for the past

three years. The resources used have varied form a Pentium 4 personal computer

172 LIM YEW JIN AND JURG NIEVERGELT

to a cluster of Linux PC workstations. Hundreds of computer runs were used

to explore the state space, test and confirm hypotheses, and verify results. The

longest continuous run lasted for five months as a background process on an

Apple PowerMac G5 used mainly for web surfing.

The algorithmic search techniques used are standard, but three main chal-

lenges must be overcome in order to succeed with an extensive search problem

such as Tigers and Goats. First, efficiency must be pushed to the limit by adapt-

ing general techniques to the specific problem at hand, such as the decision

described above on how to combine different search techniques. Second, pro-

grams must be optimized for each of the computer systems used. Third, the

results obtained must be verified to insure they are indeed correct. We address

these three issues as follows.

Domain-specific optimizations. The two databases constructed, of endgame

positions and halfway positions, limit all forward searches to at most 20 plies.

Still, performing a large number of 20-ply searches in a tree with an average

branching factor of 10 remains a challenge that calls for optimization wherever

possible.

The most profitable source of optimizations is the high degree of symmetry of

the game board. Whereas the construction of the two databases of endgame and

halfway positions is designed to avoid symmetric variants, this same desirable

goal proved not to be feasible during forward searches — it would have meant

constructing a database consisting of all positions.

Instead, the goal is to avoid generating some, though not necessarily all, sym-

metrically equivalent positions when this can be done quickly, namely during

move generation. Although the details are cumbersome to state, in particular

for Tiger moves, the general idea is straightforward. Any position that arises

during the search is analyzed to determine all active symmetries. Thereafter,

among all the moves that generate symmetric outcomes, only that one is retained

that generates the resulting position of lowest index. This analysis guarantees

that all immediate successors to any given position are inequivalent. Because

of transpositions, of course, symmetric variants will appear among successor

positions further down in the tree. Table 5 shows the effect of this symmetry-

avoiding move generation for the starting position. Although there is a con-

siderable reduction in the number of positions generated, the relative savings

diminish with an expanding horizon.

TIGERS AND GOATS IS A DRAW 173

Naı̈ve move Symmetry-avoiding Number of
Ply generator move generator distinct positions

1 21 5 5

2 252 36 33

3 5,052 695 354

4 68,204 9,245 2,709

5 1,304,788 173,356 18,906

6 18,592,000 2,441,126 93,812

Table 5. Number of positions created by different move generators.

System-specific optimization. Our previous result for Tigers and Goats used

a cluster of eight Linux PC workstations with a simple synchronous distributed

game-tree search algorithm. However, there are fundamental problems with

synchronous algorithms, discussed in [Brockington 1997], that limit their effi-

ciency. Furthermore, the cluster was becoming more popular and was constantly

overloaded. We therefore decided against implementing a more sophisticated

asynchronous game-tree search and instead relied on a sequential program run-

ning on a single dedicated processor.

We focused our attention on improving the sequential program to run on an

Apple PowerMac G5 1.8 GHz machine running Mac OS-X. Firstly, the neural

network code was optimized using the Single Instruction Multiple Data (SIMD)

unit in the PowerPC architecture called AltiVec. AltiVec consists of highly

parallel operations which allow simultaneous execution of up to 16 operations in

a single clock cycle. This provided a modest improvement of about 15% to the

efficiency of neural network evaluations of the board, but sped up the overall

efficiency of the search much more as the neural network is used repeatedly

within the search to evaluate and reorder the moves.

Next, we moved many of the computations off-line. For example, the moves

for Tiger at each point on the board in every combination of surrounding pieces

were precomputed into a table so that the program simply retrieved the table

and appended it to the move list during search. Operations like the indexing

of the board and symmetry transformation were also precomputed so that the

program only needed to retrieve data from memory to get the result. Finally, we

recompiled the software with G5-specific optimizations.

174 LIM YEW JIN AND JURG NIEVERGELT

Verification. Two independent re-searches confirm different components of the

result. They used separately coded programs written in C, and took 2 months to

complete.

The first verification search used the database of halfway positions to confirm

the result at the root, namely, “Tiger has a drawing strategy”. Notice that this

verification used only the positions marked as win-or-draw in the database.

The second verification search confirmed the halfway positions marked as

win-or-draw by searching to the endgame database generated by the retrograde

analysis described in [Lim 2004]. All other positions can be ignored, as they

have no effect on the first search.

Another program was written in C to ‘reprove’ the results. This program

had the benefit of a posteriori knowledge that the game is a draw, and this fact

allowed us to concentrate on using aggressive forward pruning techniques to

verify the result. The program used the same domain-specific optimizations

such as symmetry reduction and the halfway databases.

The halfway database was optimized for size by storing the boolean eval-

uation of each position using a single bit. Depending on the type of search,

this boolean evaluation could mean “Goat can at least draw” or “Tiger can at

least draw”. Due to this space optimization the halfway positions and endgame

databases could be stored in memory, thereby avoiding disk accesses and speed-

ing up the search by orders of magnitude.

As Tiger is able to force the capture of two goats only by the end of the place-

ment phase, at ply 40, the search for “Goat can at least draw” used an aggressive

forward pruning strategy of pruning positions which had two or more goats

already captured. The halfway database was set at ply 23, when 12 goats have

already been placed and it is Tiger’s turn to move. The search confirmed that

“Goat can at least draw” in approximately 7 hours while visiting 7,735,443,119

nodes.

The program was also able to confirm that “Tiger can at least draw”. Due

to the large game-tree complexity of this search, two intermediate databases

were placed at ply 21 and ply 31. These databases contribute towards effi-

ciency in two ways: first, they terminate some searches early, and second, they

generate narrower search trees. The latter phenomenon is due to the fact that

these databases are free of symmetrically equivalent positions. In exchange

for a large memory footprint of approximately 2 GB, search performance was

dramatically improved. The searched confirmed that “Tiger can at least draw”

in approximately 48 hours while visiting 40,521,418,103 nodes.

TIGERS AND GOATS IS A DRAW 175

5. Conclusion

The theory of computation has developed powerful techniques for estimating

the asymptotic complexity of problem classes. By contrast, there is little or no

theory to help in estimating the concrete complexity of computationally hard

problem instances, such as determining the game-theoretic value of Tigers and

Goats. Although the general techniques for attacking such problems have been

well-known for decades, there are only rules of thumb to guide us in adapting

them to the specific problem at hand in an attempt to optimize their efficiency

[Nievergelt 2000].

The principal rule of thumb we have followed in our approach to solving

Tigers and Goats is to precompute the solutions of as many subproblems as can

be handled efficiently with the storage available, both in main memory (hash-

tables) and disks (position data bases). If the net of these known subproblems is

dense enough, it serves to truncate the depth of many forward searches, an effect

that plays a decisive role since the computation time tends to grow exponentially

with search depth. Beyond such rules of thumb, at the present state of knowl-

edge about exhaustive search there is not much more we can do than persistent

experimentation. Developing a technology that gives us quantitative estimates

of the complexity of computationally hard problems remains a challenge.

Acknowledgment

Elwyn Berlekamp pointed out Tigers and Goats and got us interested in trying

to solve this game — an exhaustive search problem whose solution stretched out

over three years. We are grateful to Elwyn, Tony Tan, Thomas Lincke and H.

J. van den Herik for helpful comments that improved this paper. Some of the

present text is taken from our earlier paper [Lim 2004].

Note about references

We are not aware of any widely available publications on Tigers and Goats.

Searching the web for Tigers and Goats, or Bagha Chal in various spellings,

readily leads to a collection of web sites that describe the game and/or let you

play against a computer program.

References

[BCG 2001] E. Berlekamp, J. H. Conway, R. K. Guy, Winning Ways For Your Mathe-

matical Plays, A K Peters, 4 volumes, 2nd edition, 2001.

[Brockington 1997] M. G. Brockington, Asynchronous parallel game-tree search,

Ph.D. Thesis, Department of Computing Science, University of Alberta, 1997.

176 LIM YEW JIN AND JURG NIEVERGELT

[Gasser 1996] R. Gasser, Solving Nine Men’s Morris, pp. 101–113 in Games of

No Chance, edited by Richard Nowakowski, MSRI Publications 29, Cambridge

University Press, New York, 1996.

[Knuth 1975] D. E. Knuth, Estimating the efficiency of backtrack programs, Math.

Comp. 29, 1975, 121–136.

[Lim 2004] Y. J. Lim and J. Nievergelt, Computing Tigers and Goats, ICGA Journal

27:3, 131–141, Sep 2004.

[Lim 2005] Y. J. Lim, Using biased two-population co-evolution to evolve heuristic

game players for Tigers and Goats, Unpublished manuscript.

[Nievergelt 2000] J. Nievergelt, Exhaustive search, combinatorial optimization and

enumeration: Exploring the potential of raw computing power, pp. 18–35 in Sofsem

2000: Theory and Practice of Informatics, edited by V. Hlavac, K.G. Jeffery and J.

Wiedermann, Lecture Notes in Computer Science 1963, Springer, Berlin, 2000.

[Polya 1937] G. Polya, Kombinatorische Anzahlbestimmungen für Gruppen, Graphen

und chemische Verbindungen, Acta Mathematica 68, 1937, 145–253.

[Wu 2002] R. Wu and D. F. Beal, A Memory efficient retrograde algorithm and its

application to Chinese Chess endgames, pp. 213–227 in More Games of No Chance,

edited by Richard Nowakowski, MSRI Publications 42, Cambridge University Press,

New York, 2002.

LIM YEW JIN

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

SINGAPORE

limyewjin@gmail.com

JURG NIEVERGELT

INFORMATIK ETH

8092 ZURICH

SWITZERLAND

jn@inf.ethz.ch

