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To Henry, teacher and friend, with admiration and gratitude

ABSTRACT. Consider n nonintersecting Brownian motions on R, which leave

from p definite points and are forced to end up at q points at time t D 1. When

n ! 1, the equilibrium measure for these Brownian particles has its support

on p intervals, for t � 0, and on q intervals, for t � 1. Hence it is clear that,

when t evolves, intervals must merge, must disappear and be created, leading

to various phase transitions between times t D 0 and 1.

Near these moments of phase transitions, there appears an infinite-dimen-

sional diffusion, a Markov cloud, in the limit n % 1, which one expects to

depend only on the nature of the singularity associated with this phase change.

The transition probabilities for these Markov clouds satisfy nonlinear PDE’s,

which are obtained from taking limits of the Brownian motion model with

finite particles; the finite model is closely related to Hermitian matrix inte-

grals, which themselves satisfy nonlinear PDE’s. The latter are obtained from

investigating the connection between the Karlin-McGregor formula, moment

matrices, the theory of orthogonal polynomials and the associated integrable

systems. Various special cases are provided to illustrate these general ideas.
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1. Introduction

This lecture in honor of Henry McKean forms a step in the direction of un-

derstanding the behavior of nonintersecting Brownian motions on R (Dyson’s

Brownian motions), when the number of particles tends to 1. It explains a

novel interface between diffusion theory, integrable systems and the theory of

orthogonal polynomials. These subjects have been at the center of Henry McK-

ean’s oeuvre. I am delighted to dedicate this paper to Henry, teacher and friend,

with admiration for his pioneering work in these fields.

Consider n Brownian particles leaving from points a1 < � � �< ap and forced

to end up at b1 < � � � < bq at time t D 1. It is clear that, when n ! 1, the

equilibrium measure for t � 0 has its support on p intervals and for t � 1 on

q intervals. It is also clear that, when t evolves, intervals must merge, must

disappear and be created, leading to various phase transitions, depending on

the respective fraction of particles leaving from the points ai and arriving at the

points bj . Therefore the region R in the space-time strip .x; t/ formed by the

support .� R/ of the equilibrium measure as a function of time 0 � t � 1 will

typically present singularities of different types.

Near the moments, where a phase transition takes place, one would expect

to find in the limit n % 1 an infinite-dimensional diffusion, a Markov cloud,

having some universality properties. Universality here means that the infinite-

dimensional diffusion is to depend on the type of singularity only. These Markov

clouds are infinite-dimensional diffusions, which ‘in principle’ could be de-

scribed by an infinite-dimensional Laplacian with a drift term. We conjecture

that each of the Markov clouds obtained in this fashion is related to some in-

tegrable system, which enables one to derive a nonlinear (finite-dimensional)

PDE, satisfied by the joint probabilities. The purpose of this lecture is to show

the intimate relationship between these subjects: nonintersecting Brownian mo-

tions and integrable systems, via the theory of orthogonal polynomials. Special

cases have also shown an intimate connection between the integrable system

and the Riemann-Hilbert problem associated with the singularity. These ideas

will then be applied to a simple model, where we show that the transition

probabilities for the infinite-dimensional Brownian motions near a cusp satisfy

a nonlinear PDE. The interrelations between all such equations, “initial” and

“final” (t ! ˙1) conditions, are interesting and challenging open problems.

Universality in this context is a largely open field. For references, see later.
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2. Biorthogonal polynomials and the 2-component KP hierarchy

Consider the inner product for the weight �.x;y/ on R2,

hf j gi WD
ZZ

R2

f .x/g.y/�.x;y/dxdy:

and an inner product for this weight, augmented with an extra-exponential factor,

depending on “time” parameters t WD .t1; t2; : : : / and s WD .s1; s2; : : : /,

hf j git;s WD
ZZ

R2

f .x/g.y/�.x;y/e
P1

1 .ti yi �si xi /dxdy:

Construct monic biorthogonal polynomials p
.1/
m .y/ and p

.2/
n .x/ (also depending

on the parameters t and s) with regard to this deformed weight,

D

p.2/
n .x/e�

P1
1 si xi

ˇ
ˇ
ˇp.1/

m .y/e
P1

1 ti yi
E

D
ZZ

R2

p.2/
n .x/p.1/

m .y/�.x;y/e
P1

1 .ti yi �si xi / dx dy

D ınmhn;

and let �n be the determinant of the moment matrix

�n.t; s/ WD det
�D

xke�
P1

1 si xi
ˇ
ˇ
ˇy`e

P1
1 ti yi

E�

0�k;`�n�1
:

The following theorem and its corollary, due to Adler and van Moerbeke

[1997; 1999b] and inspired by Sato’s theory, establishes a link between the

functions �n and the biorthogonal polynomials:

THEOREM 2.1. Given these data, the determinant �n.t; s/ and the biorthogonal

polynomials are related by the following relations, where we have set Œ˛� WD
.˛; 1

2
˛2; 1

3
˛3; : : : / for ˛ 2 C:

zn �n.t � Œz�1�; s/

�n.t; s/
D p.1/

n .z/;

zn �n.t; s C Œz�1�/

�n.t; s/
D p.2/

n .z/;

z�n�1 �nC1.t C Œz�1�; s/

�n.t; s/
D
ZZ

R2

p
.2/
n .x/

z � y
e
P1

1 .ti yi �si xi /�.x;y/ dx dy;

z�n�1 �nC1.t; s � Œz�1�/

�n.t; s/
D
ZZ

R2

p
.1/
n .y/

z � x
e
P1

1 .ti yi �si xi /�.x;y/ dx dy; (2-1)
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with the �n.t; s/ satisfying bilinear equations, for all integers n;m � 0 and all

t; t 0; s; s0 2 C1:
I

zD1
�n�1.t � Œz�1�; s/�mC1.t

0 C Œz�1�; s0/e
P1

1 .ti �t 0
i
/zi

zn�m�2dz

D
I

zD1
�n.t; s � Œz�1�/�m.t

0; s0 C Œz�1�/e
P1

1 .si �s0
i
/zi

zm�ndz:

Two-component KP hierarchy. Define the Hirota symbol between functions

f D f .t1; t2; : : : / and g D g.t1; t2; : : : / by

p
�
@

@t1
;
@

@t2
; : : :

�

f ı g WD p
�
@

@y1
;
@

@y2
; : : :

�

f .t C y/g.t � y/
ˇ
ˇ
ˇ
yD0

:

The elementary Schur polynomials S` are defined by e
P1

1 ti zi WD
P

i�0 Si.t/z
i

for `� 0 and S`.t/D 0 for ` < 0; moreover, set for later use

S`.Q@t / WD S`

�
@

@t1
;

1

2

@

@t2
;

1

3

@

@t3
; : : :

�

:

Finally, recall that the Wronskian ff;ggx of f and g is given by

@f

@x
g.x/� @g

@x
f .x/:

COROLLARY. From Theorem 2.1, one deduces the equations

Sj

�
@

@t1
;
1

2

@

@t2
; : : :

�

�nC1 ı �n�1 D ��2
n

@2

@s1@tjC1
log �n;

Sj

�
@

@s1
;

1

2

@

@s2
; : : :

�

�n�1 ı �nC1 D ��2
n

@2

@t1@sjC1
log �n;

(2-2)

and finally a single partial differential equation for �n in terms of Wronskians,

(

@2 log �n

@t1@s2

;
@2 log �n

@t1@s1

)

t1

C
(

@2 log �n

@s1@t2
;
@2 log �n

@t1@s1

)

s1

D 0: (2-3)

SKETCH OF PROOF OF THEOREM 2.1 AND ITS COROLLARY. The following

double integral can be expanded in two different ways with regard to the param-

eters a WD .a1; a2; : : : /:
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�n.t;s/�nC1.t
0;s0/

ZZ

R2

dx dy p
.2/
nC1

.t 0; s0I x/p.1/
n .t; sI y/e

P1
1 .ti yi �s0

i
xi /�.x;y/

ˇ
ˇ
ˇ
ˇ t‘t�a

t 0‘tCa
s0Ds

D
� 1
X

jD0

�2ajC1Sj

�
@

@t1
;
1

2

@

@t2
;
1

3

@

@t3
; : : :

�

�nC2 ı �n C O.a2/

�

D
� 1
X

jD0

2ajC1�
2
nC1

@2

@s1@tjC1

log �nC1 C O.a2/

�

; (2-4)

using the fact that the space H WD spanfzi ; i 2 Zg can be equipped with two

(formal) inner products:

(i) hf;gi D
Z

R

f .z/g.z/ dz;

(ii) a residue pairing about z D 1 between f D
P

i�0 aiz
i 2 HC and h D

P

j2Z
bj z�j�1 2 H:

hf; hi1 D
I

zD1
f .z/h.z/

dz

2� i
D
X

i�0

aibi :

The two inner products are related by

hf;gi D
Z

R

f .z/g.z/ dz D
�

f;

Z

R

g.u/

z � u
du

�

1
:

Then the two expansions (2-4) are obtained, using the �-function representa-

tion (2-1) of the biorthogonal polynomials, transforming the double integral

(2-4) into a contour integral about 1 and finally computing the residues. Upon

equating the two series in (2-4) for arbitrary aj , one finds the first identity (2-2).

Application of a similar shift s ‘ s � a, s0 ‘ s C a, t 0 D t yields the second

identity (2-2). Then combining the identities (2-2) for j D 0 and 1 leads to the

PDE (2-3). ˜

3. Orthogonal polynomials with regard to several weights and the

n-component KP hierarchy

Now considering two sets of weights,

 1; : : : ;  q and '1; : : : ; 'p;

and deform each weight with its own set of times:

 �s
k .x/ WD  k.x/e

�
P1

1 ski xi

and 't
k.y/ WD 'k.y/e

P1
1 tki yi

;
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the time parameters being

sk D .sk1; sk2; : : : / for 1 � k � q and tk D .tk1; tk2; : : : / for 1 � k � p:

Take a moment matrix consisting of p � q blocks of sizes mi � nj , formed

of moments with regard to all the different combinations of  i and 'j ’s; of

course for the full matrix to be a square matrix, the integers m1;m2; : : :� 0 and

n1; n2; : : : � 0 must satisfy
Pq

1
mi D

Pp
1

ni . Define the determinant �mn of

these moment matrices (the inner product is the same as in Section 2):

�m1;:::;mqIn1;:::;np
.s1; : : : ; sqI t1; : : : ; tp/ WD

det

0

B
B
B
B
B
@

�˝

xk 
�s1

1
.x/ j y`'

t1

1
.y/
˛�

0�k<m1
0�`<n1

: : :
�˝

xk 
�s1

1
.x/ j y`'

tp
p .y/

˛�

0�k<m1
0�`<np

:::
:::

�˝

xk 
�sq

q .x/ j y`'
t1

1
.y/
˛�

0�k<mq
0�`<n1

: : :
�˝

xk 
�sq

q .x/ j y`'
tp
p .y/

˛�

0�k<mq
0�`<np

1

C
C
C
C
C
A

:

(3-1)

Notice that Section 1 is a special case of this situation, where p D q D 1.

In this general setup, the analogue of Theorem 2.1 is the following statement,

due to [Adler et al. 2006]. (The precise signs ˙, which we omit here, can be

found in that reference. The symbol e˛ stands for 0; : : : ; 0; 1; 0; : : : /, with 1 at

the ˛-th place. The meaning of �mn.t` � Œz�1�/ is that only the t` variable gets

shifted and no other, i.e., reference to the unshifted variables is omitted.)

I. The expressions

zn`
�mn.t` �

�

z�1
�

/

�mn
WD Q.``/

mn .z/D zn` C � � � ;

zn˛�1 �m;nCe`�e˛
.t˛ �

�

z�1
�

/

�mn
D Q.`˛/

mn .z/D c˛zn˛�1 C � � � for ˛ ¤ `

are polynomials (involving
Pp

1
n˛ coefficients), satisfying

Pq
1

m˛ orthogonal-

ity conditions

�

xj �s
˛ .x/

ˇ
ˇ
ˇ
ˇ

p
X

iD1

Q.`i/
mn .y/'

t
i .y/

�

D 0 for

(

1 � ˛ � q;

0 � j � m˛ � 1:

II. Similarly, the expressions

˙ zm˛�1 �m�e˛ ;n�e`
.s˛ C Œz�1�/

�mn
D P .`˛/

nm .z/ of degree <m˛
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are polynomials (involving
Pq

1
m˛ coefficients), satisfying

Pp
1

n˛ orthogonal-

ity conditions:

� q
X

iD1

P .`i/
nm .x/ �s

i .x/

ˇ
ˇ
ˇ
ˇ
yj't

˛.y/

�

D 0 for

�
1 � ˛ � p; 0 � j � n˛ � 1

except ˛ D `; j D n` � 1;

� q
X

iD1

P .`i/
nm .x/ �s

i .x/

ˇ
ˇ
ˇ
ˇ
yn`�1't

`
.y/

�

D 1:

III. The Cauchy transforms of the polynomials in II are

z�n`
�mn.t` C Œz�1�/

�mn
WD

� q
X

iD1

P .`i/
nm .x/ �s

i .x/

ˇ
ˇ
ˇ
ˇ

't
`
.y/

z � y

�

;

˙z�n`�1 �m;nCe`�e˛
.t` C Œz�1�/

�mn
D
� q
X

iD1

P .˛i/
nm .x/ �s

i .x/

ˇ
ˇ
ˇ
ˇ

't
`
.y/

z � y

�

:

IV. The Cauchy transforms of the polynomials in I are

˙z�m˛�1 �mCe˛;nCe`
.s˛ � Œz�1�/

�mn
D
�
 �s

˛ .x/

z � x

ˇ
ˇ
ˇ
ˇ

p
X

iD1

Q.`i/
mn .y/'

t
i .y/

�

:

The orthogonality conditions for these polynomials lead to the following state-

ment:

PROPOSITION 3.1. The determinants �mn defined in (3-1) satisfy the .pCq/-KP

hierarchy; that is,

p
X

ˇD1

I

1
�m;n�eˇ

.tˇ �Œz�1�/�m0;n0Ceˇ
.t 0

ˇ CŒz�1�/e
P1

1 .tˇi �t 0
ˇi

/zi

znˇ�n0
ˇ

�2dz D

˙
q
X

˛D1

I

1
�mCe˛;n.s˛�Œz�1�/�m0�e˛;n0.s0

˛CŒz�1�/e
P1

1 .s˛i �s0
˛i

/zi

zm0
˛�m˛�2dz;

where
P

m0
˛ D

P
n0

˛ C 1 and
P

m˛ D
P

n˛ C 1.

These polynomials happen to be the so-called multiple orthogonal polynomials

of mixed type, introduced in [Daems and Kuijlaars 2007] in the context of nonin-

tersecting Brownian motions; they generalize multiple orthogonal polynomials,

introduced in [Aptekarev 1998; Aptekarev et al. 2003; Adler and van Moerbeke

1999a]. This will now be used in the next section.
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4. Nonintersecting Brownian motions

If the transition density for standard Brownian motion x.t/ in R, leaving from

x and arriving at y, is given by

p.t;x;y/D 1p
� t

e�.x�y/2=t ;

then the probability that N nonintersecting Brownian motions x1.t/; : : : ;xN .t/

in R, leaving at ˛ WD .˛1; : : : ; ˛N / and arriving at ˇ WD .ˇ1; : : : ; ˇN /, belong

to E at time t , is given by the Karlin–McGregor formula [1959]:

Z

EN

det
�

p.t; ˛i ;xj /
�

1�i;j�N
det

�

p.1 � t;xi ; ǰ /
�

1�i;j�N

N
Y

iD1

dxi :

Considering the particular case where several points coincide, i.e., where

˛ WD a D .

m1
‚ …„ ƒ
a1; a1; : : : ; a1;

m2
‚ …„ ƒ
a2; a2; : : : ; a2; : : : ;

mq
‚ …„ ƒ
aq; aq; : : : ; aq/ 2 R

N

ˇ WD b D .

n1
‚ …„ ƒ

b1; b1; : : : ; b1;

n2
‚ …„ ƒ

b2; b2; : : : ; b2; : : : ;

np
‚ …„ ƒ

bp; bp; : : : ; bp/ 2 R
N ;

(4-1)

one verifies that the probability below can be expressed as a determinant of a

moment matrix of the form (3-1) with p � q blocks,

P

�

all xi.t/ 2 E

ˇ
ˇ
ˇ
ˇ

.x1.0/; : : : ;xN .0//D ˛

.x1.1/; : : : ;xN .1//D ˇ

�

.0< t < 1/

D lim
.˛1;:::;˛N /!a
.ˇ1;:::;ˇN /!b

1

ZN

Z

EN

detŒp.t; ˛i ;xj /�1�i;j�N det
�

p.1 � t;xi ; ǰ /
�

1�i;j�N

N
Y

iD1

dxi

D N !

Z0
N

det

 �Z

QE
dy e� y2

2 yiCj e.Qa˛C Qbˇ/y

�

0�i<m˛

0�j<nˇ

!

1�˛�q
1�ˇ�p

; (4-2)

where

QE D E

s

2

t.1 � t/
; Qai D

r

2.1�t/

t
ai ; Qbi D

r

2t

1�t
bi :

PROOF. It is based on the matrix identity

det .Aik/1�i;k�n det .Bik/1�i;k�n D
X

�2Sn

det
�

Ai;�.j/ Bj ;�.j/

�

1�i;j�n
: ˜
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Upon adding extra-time parameters

tˇ D .tˇ;1; tˇ;2; : : : / and s˛ D .s˛;1; s˛;2; : : : /

to

det

 �Z

QE
dy e� y2

2 yiCj e.Qa˛C Qbˇ/y

�

0�i<m˛

0�j<nˇ

!

1�˛�q
1�ˇ�p

;

it follows automatically from Section 3 that the expression

�m1;:::;mqIn1;:::;np
.t1; : : : ; tpI s1; : : : ; sq/

D det

 �Z

QE
dy e� y2

2 yiCj e.Qa˛C Qbˇ/yC
P1

1 .tˇ;k�s˛;k/yk

�

0�i<m˛

0�j<nˇ

!

1�˛�q
1�ˇ�p

satisfies the p Cq-KP hierarchy, where p denotes the number of starting points

and q the number of end points of the Brownian motions; see (4-1). Noninter-

secting Brownian motions have been studied in [Karlin and McGregor 1959;

Dyson 1962; Grabiner 1999; Johansson 2001; Bleher and Kuijlaars 2004b;

2004a; Daems and Kuijlaars 2007; Tracy and Widom 2004; 2006; Adler and

van Moerbeke 2005; 2006].

In the next section, I work out the example where the Brownian motions all

depart from 0 and end up at the points �a and a.

5. Nonintersecting Brownian motions leaving from the origin and

forced to end up at two points

Consider n D n1 C n2 nonintersecting Brownian motions on R, all leaving

from the origin, with n1 paths forced to go to �a and n2 paths forced to go to

a, at time t D 1. The probability that all the particles belong to the set E at

time 0 < t < 1 can be expressed as a Gaussian Hermitian random matrix “with

external potential”, specified by the diagonal matrix

A WD

0

B
B
B
B
B
B
B
B
@

˛
: : : O

˛

�˛
O

: : :

�˛

1

C
C
C
C
C
C
C
C
A

l n1

l n2

with ˛ D a

r

2t

1 � t
;

but also as a determinant of a moment matrix, a consequence of Section 4. This
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gives (with n D n1 C n2),

P
˙a
0

0

@all xi.t/ 2 E

ˇ
ˇ
ˇ
ˇ
ˇ

all xj .0/D 0,

n1 left paths end up at �a at time t D 1,

n2 right paths end up at Ca at time t D 1

1

A

D Pn

�

a

r

2t

1�t
I E

r

2

t.1�t/

�

; (5-1)

with Pn being an integral over the space Hn.E
0/ of Hermitian matrices with

spectrum belonging to the set E0 � R:

Pn.˛I E0/ WD 1

Zn

Z

Hn.E0/

dM e� Tr. 1
2

M 2�AM /

D 1

Zn
det

0

B
B
B
B
B
B
@

�Z

E0

ziCj�1e�z2=2C˛zdz

�

1�i�n1;
1�j�n1Cn2

�Z

E0

ziCj�1e�z2=2�˛zdz

�

1�i�n2;
1�j�n1Cn2

1

C
C
C
C
C
C
A

(5-2)

THEOREM 5.1 [Adler and van Moerbeke 2007]. The log of the probability

Pn.˛I E/ satisfies a fourth-order PDE in ˛ and in the boundary points b1; : : : ;

b2r of the set E, with quartic nonlinearity:

det

0

@

FC F� 0

B�1FC B�1F� F�GC C FCG�

B2
�1

FC B2
�1

F� F�B�1GC C FCB�1G�

1

AD 0; (5-3)

where Bk WD
P2r

iD1 bkC1
i @=@bi and

FCW D 2B�1

�
@

@˛
� B�1

�

log Pn � 4n1; F� D FCˇˇ ˛!�˛
n1$n2

2GCW D
˚

H C
1
;FC	

B�1
�
˚

H C
2
;FC	

@=@˛
; G� D GCˇˇ ˛!�˛

n1$n2

;

with

H C
1

WD @

@˛

�

B0�˛ @
@˛

�˛B�1

�

log PnC
�

B0B�1C4
@

@˛

�

log PnC4n1

�

˛Cn2

˛

�

;

H C
2

WD @

@˛

�

B0�˛ @
@˛

�˛B�1

�

log Pn�.B0�2˛B�1�2/B�1 log Pn:

SKETCH OF PROOF. In view of the results in Section 3, we add extra parameters

t1; t2; : : : , s1; s2; : : : and ˇ to the integrals in the moment matrix above (5-2). In

terms of the Vandermonde determinants �k.x/ D
Q

1�i<j�k.xi � xj / for the
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variables x1; : : : ;xn1
and �n.x;y/ for all variables x1; : : : ;xn1

;y1; : : : ;yn2
,

we obtain from the results in Section 4 that (again with n D n1Cn2) the function

�n1n2
.t;s;uI˛;ˇIE/ WD det

 

.�C
ij .t; s; ˛; ˇ;E//1�i�n1; 1�j�n1Cn2

.��
ij .t;u; ˛; ˇ;E//1�i�n2; 1�j�n1Cn2

!

D 1

n1! n2!

Z

En

�n.x;y/

n1Y

jD1

e
P1

1 ti xi
j

n2Y

jD1

e
P1

1 ti yi
j

�
�

�n1
.x/

n1Y

jD1

e�x2
j

=2C˛xj Cˇx2
j e�

P1
1 si xi

j dxj

�

�
�

�n2
.y/

n2Y

jD1

e�y2
j

=2�˛yj �ˇy2
j e�

P1
1 ui yi

j dyj

�

(5-4)

satisfies the 3-component KP equation, since pCq D 2C1 D 3, since this matrix

corresponds to p D2; q D1. The function �n1n2
.t; s;uI˛; ˇI E/ also satisfies

Virasoro constraints, to be explained below.

(i) The three-component KP bilinear equations of Proposition 3.1 imply,

using a standard residue computation on the bilinear equation (equations of the

type (2-2) for j D 0 and j D 1, except that the three-component KP bilinear

equations give rise to �-functions depending on two integer indices)

@2 log �n1;n2

@t1@s1

D��n1C1;n2
�n1�1;n2

�2
n1;n2

(5-5)

and

@

@t1
log

�n1C1;n2

�n1�1;n2

D.@
2=@t2@s1/ log �n1;n2

.@2=@t1@s1/ log �n1;n2

(5-6)

� @

@s1

log
�n1C1;n2

�n1�1;n2

D.@
2=@t1@s2/ log �n1;n2

.@2=@t1@s1/ log �n1;n2

: (5-7)

(ii) The Virasoro equations are as follows: The integral �n1n2
.t;s;uI˛;ˇIE/,

as defined in (5-4), satisfies

Bm�n1;n2
D V

n1;n2
m �n1;n2

for m � �1; (5-8)

where Bm and Vm are differential operators:

Bm D
2r
X

1

bmC1
i

@

@bi
; for E D

2r
[

1

Œb2i�1; b2i �� R



384 PIERRE VAN MOERBEKE

and (with the convention that ti is omitted whenever it appears for i D0;�1; : : : )

V
n1n2
m WD 1

2

X

iCjDm

� @2

@ti@tj
C @2

@si@sj
C @2

@ui@uj

�

C
X

i�1

�

i ti
@

@tiCm
C isi

@

@siCm
C iui

@

@uiCm

�

C .n1 C n2/
� @

@tm
C .�m/t�m

�

� n1

� @

@sm
C .�m/s�m

�

� n2

� @

@um
C .�m/u�m

�

C .n2
1 C n1n2 C n2

2/ım0

C˛.n1 � n2/ımC1;0 C m.m C 1/

2
.t�m C s�m C u�m/

� @

@tmC2

C˛
�

� @

@smC1

C @

@umC1

C .m C 1/.s�mC1 � u�mC1/
�

C 2ˇ
� @

@umC2

� @

@smC2

�

:

These Virasoro equations are obtained by setting

xi ‘ xi C "xmC1
i ;

yi ‘ yi C "ymC1
i

in the integral (5-4) and observing that this substitution does not change the

value of the integral, provided the boundary is changed infinitesimally as well.

The Virasoro constraints (5-8) above for m D �1 and m D 0 lead to the fol-

lowing equations for f D log �n1n2
.t; s;uI˛; ˇI E/ along the locus L of points

where t D s D u D 0, ˇ D 0:

@f

@t1
D �B�1f C˛.n1 � n2/;

@f

@s1

D 1

2

�

B�1 � @

@˛

�

f C ˛

2
.n2 � n1/;

2
@2f

@t1@s1

D B�1

�
@

@˛
� B�1

�

f � 2n1;

2
@2f

@t1@s2

D
�

˛
@

@˛
C @

@ˇ
� B0 C 1

�

B�1f � 2
@f

@˛
� 2˛.n1 � n2/;

2
@2f

@t2@s1

D @

@˛
.B0 �˛ @

@˛
C˛B�1/f � B�1.B0�1/f � 2˛.n1�n2/: (5-9)
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From the differential equations (5-6)–(5-7) and from the two first two Virasoro

equations (5-9) it follows that, along the locus L, and for the indices n1 ˙1; n2,

@2

@t2@s1
log �n1n2

@2

@t1@s1
log �n1n2

D @

@t1
log

�n1C1;n2

�n1�1;n2

D �B�1 log
�n1C1;n2

�n1�1;n2

C 2˛;

�
@2

@t1@s2
log �n1n2

@2

@t1@s1
log �n1n2

D @

@s1

log
�n1C1;n2

�n1�1;n2

D 1

2

�

B�1 � @

@˛

�

log
�n1C1;n2

�n1�1;n2

�˛:

From these two equations, the logarithmic expression on the right can be elim-

inated, by acting on the first equation with the operator 1
2

�

B�1 � .@=@˛/
�

and

on the second with �B�1 and subtracting, thus yielding

1

2

�

B�1 � @

@˛

�

0

B
B
@

@2

@t2@s1
log �n1n2

@2

@t1@s1
log �n1n2

� 2˛

1

C
C
A

D B�1

0

B
B
@

@2

@t1@s2
log �n1n2

@2

@t1@s1
log �n1n2

�˛

1

C
C
A

or, equivalently,

B�1

0

B
B
@

�

@2

@t2@s1
� 2

@2

@t1@s2

�

log �n1n2

@2

@t1@s1
log �n1n2

1

C
C
A

� @

@˛

0

B
B
@

�

@2

@t2@s1
� 2˛

@2

@t1@s1

�

log �n1n2

@2

@t1@s1
log �n1n2

1

C
C
A

D 0: (5-10)

Using the remaining Virasoro relations (5-9), one obtains along L the equalities

4
@2

@t1@s1

log �n1n2
D FC; 2

 

@2

@t2@s1

� 2˛
@2

@t1@s1

!

log �n1n2
D H C

2
;

2

 

@2

@t2@s1

� 2
@2

@t1@s2

!

log �n1n2
D H C

1
� 2B�1

@

@ˇ
log �n1n2

where we have set1

FC WD 2B�1

� @

@˛
� B�1

�

log �n1n2
� 4n1 D 2B�1

� @

@˛
� B�1

�

log Pn � 4n1;

1One checks that �n1n2
.t; s; uI ˛; ˇ; R/jL D .�2/n1n2 .2�/

n1Cn2
2

Qn1�1

0
j!
Qn2�1

0
j! ˛n1n2 e

n1Cn2
2

˛2
.
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H C
1 :D @

@˛

�

B0�˛ @
@˛

�˛B�1

�

log �n1n2
C
�

B0B�1C4
@

@˛

�

log �n1n2
C2˛.n1�n2/

D @

@˛

�

B0�˛ @
@˛

�˛B�1

�

log PnC
�

B0B�1C4
@

@˛

�

log PnC4˛n1C 4n1n2

˛

H C
2

:D @

@˛

�

B0�˛ @
@˛

�˛B�1

�

log �n1n2
C.2˛B�1�B0C2/B�1log �n1n2

C2˛.n1Cn2/

D @

@˛

�

B0�˛ @
@˛

�˛B�1

�

log PnC.2˛B�1�B0C2/B�1 log Pn:

Further define

F� D FCˇˇ ˛!�˛
n1$n2

; H �
i D H C

i

ˇ
ˇ ˛!�˛

n1$n2

:

With this notation, equation 5-10 becomes
n

B�1
@

@ˇ
log �n1n2

ˇ
ˇ
ˇ
L

;FC
o

B�1

D
˚

H C
1
; 1

2
FC	

B�1
�
˚

H C
2
; 1

2
FC	

@=@˛
DW GC;

yielding automatically a second equation, using the involution ˛‘�˛, ˇ‘�ˇ,

n1 $ n2 (which leaves (5-4) unchanged):

�
n

B�1
@

@ˇ
log �n1n2

ˇ
ˇ
ˇ
L

;F�
o

B�1

D
˚

H �
1 ;

1
2
F�	

B�1
�
˚

H �
2 ;

1
2
F�	

�@=@˛
DWG�:

The last two displays yield a linear system of equations in

B�1

@ log �n1n2

@ˇ

ˇ
ˇ
ˇ
ˇ
L

and B
2
�1

@ log �n1n2

@ˇ

ˇ
ˇ
ˇ
ˇ
L

from which

B�1

@ log �n1n2

@ˇ

ˇ
ˇ
ˇ
ˇ
L

D G�FC C GCF�

�F�.B�1FC/C FC.B�1F�/
;

B
2
�1

@ log �n1n2

@ˇ

ˇ
ˇ
ˇ
ˇ
L

D G�.B�1FC/C GC.B�1F�/

�F�.B�1FC/C FC.B�1F�/
:

Subtracting the second equation from B�1 of the first equation yields the dif-

ferential equation
�

FC
B�1G� C F�

B�1GC��FC
B�1F� � F�

B�1FC�

�
�

FCG� C F�GC��FC
B

2
�1F� � F�

B
2
�1FC�D 0; (5-11)

which can be rewritten as

FCF� det

0

B
B
B
@

FC F� 0

B�1FC B�1F� GC

FC C G�

F�

B2
�1

FC B2
�1

F� B�1GC

FC C B�1G�

F�

1

C
C
C
A

D 0; (5-12)

establishing (5-3) for log Pn. ˜
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6. The Pearcey process

As in section 5, consider n D 2k nonintersecting Brownian motions on R

(Dyson’s Brownian motions), all starting at the origin, such that the k left paths

end up at �a and the k right paths end up at Ca at time t D 1.

Also as observed in section 5, the transition probability can be expressed

in terms of the Gaussian Hermitian random matrix probability Pn.˛I E/ with

external source, for which the PDE (5-3) was deduced.

Let now the number n D 2k of particles go to infinity, and let the points a

and �a, properly rescaled, go to ˙1. This forces the left k particles to �1 at

t D 1 and the right k particles to C1 at t D 1. Since the particles all leave from

the origin at t D 0, it is natural to believe that for small times the equilibrium

measure (mean density of particles) is supported by one interval, and for times

close to 1, the equilibrium measure is supported by two intervals. With a precise

scaling, t D 1=2 is critical in the sense that for t < 1=2, the equilibrium measure

for the particles is supported by one, and for t > 1=2, it is supported by two

intervals. The Pearcey process P.t/ is now defined [Tracy and Widom 2006] as

the motion of an infinite number of nonintersecting Brownian paths, just around

time t D 1=2 near x D 0, with the precise scaling (upon introducing the scaling

parameter z):

n D 2k D 2

z4
; ˙a D ˙ 1

z2
; xi ‘ xiz; t ‘ 1

2
C tz2; for z ! 0: (6-1)

The Pearcey process has also arisen in the context of various growth models

[Okounkov and Reshitikhin 2005]. Even though the pathwise interpretation of

P.t/ is unclear and deserves investigation, it is natural to define the following

probability for t 2 R, in terms of the probability (5-1),

P.P.t/\ E D ?/ WD lim
z!0

P
˙1=z2

0

�

all xj

�
1
2

C tz2
�

… zEI 1 � j � n
�ˇ
ˇ
ˇ
nD2=z4

:

The results of Brézin and Hikami [1996; 1997; 1998b; 1998a] for the Pearcey

kernel and Tracy and Widom [2006] for the extended kernels show that this limit

exists and equals a Fredholm determinant:

P.P.t/\ E D ?/D det
�

I � Kt�E

�

;

where Kt .x;y/ is the Pearcey kernel, defined as follows:

Kt .x;y/ WD p.x/q00.y/� p0.x/q0.y/C p00.x/q.y/� tp.x/q.y/

x � y

D
Z 1

0

p.x C z/q.y C z/ dz; (6-2)
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where (note that ! D ei�=4)

p.x/ WD 1

2�

Z 1

�1
e�u4=4�tu2=2�iuxdu;

q.y/ WD 1

2� i

Z

X

eu4=4�tu2=2Cuydu

D Im

�
!

�

Z 1

0

du e�u4=4�.it=2/ u2

.e!uy � e�!uy/

�

satisfy the differential equations

p000 � tp0 � xp D 0 and q000 � tq0 C yq D 0:

The contour X is given by the ingoing rays from ˙1ei�=4 to 0 and the outgoing

rays from 0 to ˙1e�i�=4, i.e., X stands for the contour

- .
0

% &

For compact E D
Sr

iD1Œx2i�1;x2i � � R, define the gradient and the Euler

operator with regard to the boundary points of E,

B�1 D
2r
X

1

@

@xi
; B0 D

2r
X

1

xi
@

@xi
: (6-3)

THEOREM 6.1 [Adler and van Moerbeke 2007].

Q.t I x1; : : : ;x2r / WD log P

�

P.t/\ E D ?

�

D log det .I � Kt�E/ (6-4)

satisfies a fourth-order, third-degree PDE, which can be written as a single

Wronskian:
(

1

2

@3Q

@t3
C .B0 � 2/B2

�1Q C 1

16

n

B�1

@Q

@t
;B2

�1Q
o

B�1

; B
2
�1

@Q

@t

)

B�1

D 0:

(6-5)

REMARK. A similar PDE can be written for the transition probability involving

several times; see [Adler and van Moerbeke 2006]. Such equations can be used

to compute the asymptotic behavior of the Pearcey process for t ! �1.

SKETCH OF PROOF. Consider the function Qz.sI x1; : : : ;x2r /, defined in terms

of the probabilities P˙a
0

, defined in (5-1) and Pn, defined in (5-2), as follows:

Qz.sI x1; : : : ;x2r / WD log P
˙a
0 .t I b1; : : : ; b2r /

ˇ
ˇ

nD2=z4; aD1=z2;

bi Dxi z; tD 1
2

Csz2
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D log Pn

�

a

r

2t

1�t
I b1

r

2

t.1�t/
; : : : ; b2r

r

2

t.1�t/

�ˇ
ˇ
ˇ
ˇ nD2=z4; aD1=z2;

bi Dxi z; tD 1
2

Csz2

D log P2=z4

 p
2

z2

v
u
u
t

1
2

C sz2

1
2

� sz2
I x1z

p
2

q

1
4

� s2z4

; : : : ;
x2r z

p
2

q

1
4

� s2z4

!

;

from which it follows, by inversion, that

Qz

 

u2z4 � 2

2z2
�

u2z4 C 2
� I v1uz

u2z4 C 2
; : : : ;

v2r uz

u2z4 C 2

!

D log P2=z4.uI v1; : : : ; v2r /: (6-6)

This expression satisfies the PDE (5-3), with ˛ and b1; : : : ; b2r replaced by u

and v1; : : : ; v2r . Therefore all the partials of log P with regard to these variables

u and v1; : : : ; vr , as appears in the PDE (5-3), can be expressed, by virtue of

(6-6), by partials of Qz with regard to s and x1; : : : ;x2r .

For this, we need to compute the expressions F˙; QB�1F˙; QB2
�1

F˙;G˙ and

QB�1G˙ appearing in (5-3) (where we use tildes in contrast to the operators

defined in (6-3)), in terms of

Qz.sI x1; : : : ;x2r /

D log P2=z4

 p
2

z2

v
u
u
t

1
2

C sz2

1
2

� sz2
I x1

z
p

2
q

1
4

� s2z4

; : : : ;x2r

z
p

2
q

1
4

� s2z4

!

D Q.sI x1; : : : ;x2r /C O.z/; (6-7)

with

Q.sI x1; : : : ;x2r /D log det
�

I � Ks�Ec

�

: (6-8)

Without taking the limit z ! 0 on Qz.sI x1; : : : ;x2r / yet, one computes, upon

setting " WD ˙,

F " D � 4

z4
� 1

4z2
B

2
�1Qz C "

4z
B�1

@Qz

@s
C O.z/;

1p
2

QB�1F " D � 1

16z3
B

3
�1Qz C "

16z2
B

2
�1

@Qz

@s
� "s

8
B

2
�1

@Qz

@s
C O.z/;

QB2
�1F " D � 1

32z4
B

4
�1Qz C "

32z3
B

3
�1

@Qz

@s
� "s

16z
B

3
�1

@Qz

@s
C O.1/;
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G" D 3"

8z9
B

3
�1Qz C "s

4z7
B

3
�1Qz

� 1

128z6

��

B�1

@Qz

@s

�

.B3
�1Qz/C 32B0B

2
�1Qz

� .B2
�1Qz C 64s/B2

�1

@Qz

@s
� 64B

2
�1Qz C 16

@3Qz

@s3

�

C O
�

1

z5

�

;

1p
2

QB�1G" D 3"

32z10
B

4
�1Qz C "s

16z8
B

4
�1Qz

C 1

512z7

�

�
�

B�1

@Qz

@s

�

.B4
�1Qz/� 32B0B

3
�1Qz

C .B2
�1Q C 64s/B3

�1

@Qz

@s

C 32B
3
�1Qz � 16B�1

@3Qz

@s3

�

C O
�

1

z6

�

:

Using these expressions, one easily deduces for small z,

0 D
�

FC QB�1G� C F� QB�1GC��FC QB�1F� � F� QB�1FC�

�
�

FCG� C F�GC��FC QB2
�1F� � F� QB2

�1FC�

D � "

2z17

�n

B
2
�1

@Qz

@s
;
1

2

@3Qz

@s3
C .B0 � 2/B2

�1Qz

o

B�1

C 1

16
B�1

@Qz

@s

n

B
3
�1Qz;B

2
�1

@Qz

@s

o

B�1

�

C O
�

1

z15

�

D � "

2z17

�

the same expression for Q.sI x1; : : : ;x2r /
�

C O
�

1

z16

�

;

using (6-8) in the last equality. Taking the limit when z ! 0 yields equation 6-5

of Theorem 6.1. ˜

7. The Airy process

Consider n nonintersecting Brownian motions on R, all leaving from the ori-

gin and forced to return to the origin. According to formula (4-2), this proba-

bility,

˘ WD P
0
0

�

all xi.t/ 2 E
ˇ
ˇ all xj .0/D xj .1/D 0

�

;

can be expressed in terms of the determinant of a moment matrix and further

as an integral over Hermitian matrices, both with rescaled space, for 0 � t � 1.

To do this we let Hn.E/ denote the space of n � n Hermitian matrices with
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spectrum in the set E � R, and one checks that

˘ D 1

Zn
det

�Z

E.
p

2=
p

t.1�t//

dy yiCj e�y2=2

�

0�i;j�n�1

D 1

Z0
n

Z

Hn.E.1=
p

t.1�t///

e� Tr M 2

dM:

The Airy process A.�/ describes the nonintersecting Brownian motions above

for large n, but viewed from the (right-hand) edge
p

2nt.1� t/ of the set of

particles, with time and space properly rescaled, so that the new time scale �

equals 0 when t D 1=2. Random matrix theory suggests the following time and

space rescaling (edge rescaling):

t D 1

1 C e�2�=n1=3
; E D

p
2n C .�1;x/p

2n1=6

2 cosh
�

n1=3

:

Taking the limit when n ! 1, one finds that the rescaled motion becomes

time-independent (stationary),

P .A.�/� x/

WD lim
n!1

P
0
0

�

all xi

�
1

1Ce�2�=n1=3

�

2

p
2nC.�1;x/p

2n1=6

2 cosh.�=n1=3/

ˇ
ˇ
ˇ
ˇ

all xj .0/D xj .1/D 0

�

D lim
n!1

1

Zn

Z

Hn

�p
2nC..�1;x/=

p
2n1=6/

� e� Tr M 2

dM

D lim
n!1

Prob

�

.all eigenvalues of M / �
p

2n C xp
2n1=6

�

D exp

�

�
Z 1

x

.˛� x/g2.˛/d˛

�

DW F2.x/D Tracy–Widom distribution;

with g.˛/ the unique solution of

8

<̂

:̂

g00 D ˛g C 2g3

g.˛/Š �e�.2=3/ ˛3=2

2
p
�˛1=4

for ˛ % 1:
.Painlevé II/: (7-1)

This is to say the outmost particle in the nonintersecting Brownian motions

fluctuates according to the Tracy–Widom distribution [1994] for n ! 1.

Since the Airy process is stationary, the joint distribution for two times t1< t2
in Œ0; 1� is of interest; here one checks that
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P
0
0

�

all xi.t1/ 2 E1; all xi.t2/ 2 E2

ˇ
ˇ all xj .0/D xj .1/D 0

�

D Pn

 s

t1.1 � t2/

t2.1 � t1/
I E1

s

2t2

.t2 � t1/t1
;E2

s

2.1 � t1/

.1 � t2/.t2 � t1/

!

; (7-2)

where

Pn.cI E0
1;E

0
2/ WD 1

Zn

ZZ

H.E0
1
/�H.E0

2
/

dM1 dM2 e� 1
2

Tr.M 2
1

CM 2
2

�2cM1M2/

D c0
N

ZZ

EN

�N .x/�N .y/

N
Y

kD1

e� 1
2

.x2
k

Cy2
k

�2cxkyk/ dxk dyk :

According to [Adler and van Moerbeke 1999b], given

E D E1 � E2 WD
rS

iD1

Œa2i�1; a2i � �
sS

iD1

Œb2i�1; b2i �� R2; (7-3)

log Pn.cI E1;E2/ satisfies a nonlinear third-order partial differential equation

(in terms of the Wronskian ff;ggX D g.Xf /�f .Xg/, with regard to the first

order differential operator X ):

n

B2A1 log Pn; B1A1 log Pn C nc

c2 � 1

o

A1

�
n

A2B1 log Pn; A1B1 log Pn C nc

c2 � 1

o

B1

D 0: (7-4)

in terms of the differential operators, depending on the coupling term c and the

boundary of E,

A1 D 1

c2�1

� r
X

1

@

@aj
C c

s
X

1

@

@bj

�

;

A2 D
r
X

jD1

aj

@

@aj
� c

@

@c
;

B1 D 1

1�c2

�

c

r
X

1

@

@aj
C

s
X

1

@

@bj

�

;

B2 D
s
X

jD1

bj

@

@bj
� c

@

@c
: (7-5)

Using the same rescaled space and time variables, as before, introduce new

times �1 < �2 and points x; y 2 R, defined as

ti D 1

1 C e�2�i =n1=3
; E1 D

p
2n C .�1;x/p

2n1=6

2 cosh
�1

n1=3

; E2 D

p
2n C .�1;y/p

2n1=6

2 cosh
�2

n1=3

:
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One verifies, in view of (7-2), that

E1

s

2t2

.t2 � t1/t1
D

p
2

�p
2n C .�1;x/p

2n1=6

�

p

1 � e�2.�2��1/=n1=3
;

E2

s

2.1 � t1/

.1 � t2/.t2 � t1/
D

p
2

�p
2n C .�1;y/p

2n1=6

�

p

1 � e�2.�2��1/=n1=3
;

c D

s

t1.1 � t2/

t2.1 � t1/
D e�.�2��1/=n1=3

:

Defining

Q.�2 � �1I x;y/ WD

log Pn

 

e�.�2��1/=n1=3 I

�

2
p

n C x

n1=6

�

p

1 � e�2.�2��1/=n1=3
;

�

2
p

n C y

n1=6

�

p

1 � e�2.�2��1/=n1=3

!

;

one checks, setting z D n�1=6 and using the inverse map, that

log Pn.cI a; b/D Q
�

�z�2 log cI az�1
p

1 � c2 � 2z�4; bz�1
p

1 � c2 � 2z�4
�

:

But log Pn.cI E1;E2/ satisfies the PDE (7-4), which induces a PDE for Q; then

letting z ! 1, the leading term in this series must be D 0. One finds thus the

following PDE for the Airy joint probability, namely

H.t I x;y/ WD log P .A.�1/� y C x;A.�2/� y � x/ ;

takes on the following simple form in x;y and t2, with t D�2��1, also involving

a Wronskian (see [Adler and van Moerbeke 2005])

2t
@3H

@t@x@y
D
�

t2

2

@

@x
� x

@

@y

��
@2H

@x2
� @2H

@y2

�

C
�
@2H

@x@y
;
@2H

@y2

�

y

; (7-6)

with initial condition

lim
t&0

H .t I x;y/D log F2 .min.y C x;y � x// :

The edge sup A.t/ of the cloud is non-Markovian, as is the largest particle in

the finite nonintersecting Brownian problem. As t D �2 � �1 ! 1, the edges

sup A.�1/ and sup A.�2/ become independent. This poses the question: How
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much does the process remember from the remote past? The following asymp-

totics for the covariance of the edge of the cloud, for large t D �2��1, is deduced

from the PDE:

E.sup A.�2/ sup A.�1//� E.sup A.�2//E.sup A.�1//

D 1

t2
C 2

t4

ZZ

R2

˚.u; v/ du dvC � � � ;

where

˚.u; v/ WD F2.u/F2.v/

�
1

4

�Z 1

u

g2d˛

�2 �Z 1

v

g2d˛

�2

Cg2.u/

�
1

4
g2.v/� 1

2

�Z 1

v

g2d˛

�2�

C
Z 1

v

d˛
�

2.v�˛/g2 C g02 � g4
�
Z 1

u

g2d˛

�

:

(Here g D g.˛/ is the function (7-1) and F2.u/ is the Tracy–Widom distribu-

tion.)

The Airy process was introduced by Spohn and Prähofer [2002] in the context

of polynuclear growth models. It has been further investigated by Johansson

[2001; 2003; 2005], by Tracy and Widom [2004] and by Adler and van Moer-

beke [2005]; see also [Widom 2004].
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[Brézin and Hikami 1996] E. Brézin and S. Hikami, “Correlations of nearby levels

induced by a random potential”, Nuclear Phys. B 479:3 (1996), 697–706.
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[Brézin and Hikami 1998a] E. Brézin and S. Hikami, “Level spacing of random

matrices in an external source”, Phys. Rev. E .3/ 58:6, part A (1998), 7176–7185.
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