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Dedicated to Henry McKean, on the occasion of his 75th birthday

ABSTRACT. Integrable partial differential equations have been studied be-

cause of their remarkable mathematical structure ever since they were discov-

ered in the 1960s. Some of these equations were originally derived to describe

approximately the evolution of water waves as they propagate in shallow water.

This paper examines how well these integrable models describe actual waves

in shallow water.

1. Introduction

Zabusky and Kruskal [1965] introduced the concept of a soliton — a spatially

localized solution of a nonlinear partial differential equation with the property

that this solution always regains its initial shape and velocity after interacting

with another localized disturbance. They were led to the concept of a soliton

by their careful computational study of solutions of the Korteweg–de Vries (or

KdV) equation,

@tu C u@xu C @3
xu D 0: (1)

(See [Zabusky 2005] for his summary of this history.) After that breakthrough,

they and their colleagues found that the KdV equation has many remarkable

properties, including the property discovered by Gardner, Greene, Kruskal and

Miura [Gardner et al. 1967]: the KdV equation can be solved exactly, as an

initial-value problem, starting with arbitrary initial data in a suitable space.

This discovery was revolutionary, and it drew the interest of many people. We

note especially the work of Zakharov and Faddeev [1971], who showed that

the KdV equation is a nontrivial example of an infinite-dimensional Hamilton-

ian system that is completely integrable. This means that under a canonical
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change of variables, the original problem can be written in terms of action-angle

variables, in which the action variables are constants of the motion, while the

angle variables evolve according to nearly trivial ordinary differential equations

(ODEs). Zakharov and Faddeev showed that GGKM’s method to solve the KdV

equation amounts to transforming from u.x; t/ into action-angle variables at the

initial time, integrating the ODEs forward in time, and then transforming back

to u.x; t/ at any later time. In this way the Korteweg-de Vries equation, (1),

became the prototype of a completely integrable partial differential equation,

the study of which makes up one facet of this conference.

Zabusky and Kruskal had derived (1) as an approximate model of longitudinal

vibrations of a one-dimensional crystal lattice. Later they learned that Korteweg

and de Vries [1895] had already derived the same equation as an approximate

model of the evolution of long waves of moderate amplitude, propagating in

one direction in shallow water of uniform depth. So the KdV equation, (1), is

of interest to at least two communities of scientists:

� mathematicians, who are primarily interested in its extraordinary mathemat-

ical structure; and

� coastal engineers and oceanographers, who use it to make engineering and

environmental decisions related to physical processes in shallow water.

The KdV equation is one of several equations that are known to be completely

integrable and that also describe approximately waves in shallow water. Other

well known examples include the KP equation, a two-dimensional generaliza-

tion of the KdV equation due to Kadomtsev and Petviashvili [1970]:

@x

�

@tu C u@xu C ˛ � @3
x

�

C @2
yu D 0I (2)

an equation first studied by Boussinesq [1871]:

@2
t u D c2@2

xu C @2
x.u2/ C ˇ � @4

xuI (3)

and the Camassa–Holm equation [1993],

@tm C c@xu C u@xm C 2m@xu C 
 � @3
xu D 0; (4)

where

m D u � ı2@2
xu:

Here are four comments about these equations.

� Among all known integrable equations, this subset is particularly relevant for

this conference, because of the many important contributions of Henry McK-

ean and his coauthors to the development of the theory for (1), (3) and (4) with

periodic boundary conditions. See [Constantin and McKean 1999; McKean
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1977; 1978; 1981a; 1981b; McKean and van Moerbeke 1975; McKean and

Trubowitz 1976; 1978].

� The coefficients in (1) are not important, because they can be scaled into

fu; x; tg. But in (2), (3), (4), both the physical meaning and the mathematical

structure of each equation changes, depending on the signs of f˛; ˇ; 
 g re-

spectively. Judgmental nicknames like “good Boussinesq” and “bad Boussi-

nesq” indicate the importance of these signs.

� Equation (1) is a special case of (2), after setting @yu � 0 and neglecting

a constant of integration. Equation (3) is also a special case of (2), after

setting @tu D �c2@xu, rescaling u ! 2u, and then interpreting y in (2) as

the time-like variable.

� The KP equation is degenerate: for example, it does not have a unique solu-

tion. If u.x; y; 0/ � 0 at t D 0, then both u D 0 and u D t solve (2) and satisfy

this initial condition. In this paper, we remove this degeneracy by requiring

that any solution of (2) also satisfy

Z

1

�1

u.x; y; t/ dx D 0: (5)

Every completely integrable equation possesses extraordinary mathematical

structure. Each of the equations listed above is completely integrable, and also

describes (approximately) waves in shallow water. This paper addresses the

question: Does this extra mathematical structure provide useful information

about the behavior of actual, physical waves in shallow water?

The outline of the rest of this paper is as follows. Section 2 reviews the deriva-

tion of (1)–(4) as approximate models for waves in shallow water. Sections 3,

4, 5 all discuss applications of these approximate models to practical problems

involving ocean waves. Section 3 discusses an application of (1) on the whole

line (or of (2) on the whole plane): the tsunami of December 26, 2004. Section 4

focusses on spatially periodic, travelling wave solutions of (2), and their relation

to periodic travelling waves in shallow water. Section 5 relates doubly periodic

waves to the phenomenon of rip currents. Finally Section 6 discusses more

complicated, quasiperiodic solutions of (2).

2. Derivation of integrable models from the problem of inviscid

water waves

The mathematical theory of water waves goes back at least to Stokes [1847],

who first wrote down the equations for the motion of an incompressible, invis-

cid fluid, subject to a constant (vertical) gravitational force, where the fluid is

bounded below by an impermeable bottom and above by a free surface. In the
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Figure 1. The integrable models of waves in shallow water in (1)–(4) all
depend on an ordering of the scales shown here. A fourth scale, the typical
length scale out of the page, is not shown.

discussion that follows, we assume that the bottom of the fluid is strictly hori-

zontal (at z D �h). In addition to gravity, we also include the effect of surface

tension, because including it provides the extra freedom needed to change the

signs of f˛; ˇ; 
 g in (2), (3) and (4).

Without viscosity, we may consider purely irrotational motions. Then the

fluid velocity can be written in terms of a velocity potential,

Eu D r�;

and the velocity potential satisfies

r2� D 0 for � h < z < �.x; y; t/;

@z� D 0 on z D �h;

@t� C @x� � @x� C @y� � @y� D @z� on z D �.x; y; t/;

@t�C 1
2

jr�j2Cg� D T
@2

x�.1C.@y�/2/C@2
y�.1C.@x�/2/�2@x@y� �@x�@y�

.1C.@x�/2C.@y�/2/3=2

on z D �.x; y; t/; (6)

where g is the acceleration due to gravity, T represents surface tension, and

z D �.x; y; t/ is the instantaneous location of the free surface.

These equations, known for more than 150 years, are still too difficult to solve

in any general sense. Even well-posedness (for short times) was established only

recently; see [Wu 1999; Lannes 2005; Coutand and Shkoller 2005]. Progress

has been made by focusing on specific limits, in which the equations simplify.

The limit of interest here can be stated in terms of length scales, which must

be arranged in a certain order. Three of the four relevant lengths are shown

in Figure 1. The derivation of either KdV or KP from (6) is based on four

assumptions:

(a) long waves (or shallow water), h � �;

(b) small amplitude; a � h;

(c) the waves move primarily in one direction;
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(d) All these small effects are comparable in size; for KdV, this means

" D a

h
D O

�

�

h

�

�2
�

: (7)

If (c) is exactly true, the derivation leads to the KdV equation, (1) If it is ap-

proximately true, the derivation can lead to the KP equation, (2).

As we discuss below, assumptions (a)–(d) are also implicit in (3) and (4).

One imposes these assumptions on both the velocity potential, �.x; y; z; t/, and

the location of the free surface, �.x; y; t/, in (6). (See [Ablowitz and Segur

1981, ~ 4.1] or [Johnson 1997, ~ 3.2] for details.) At leading order (" D 0 in

a formal expansion), the waves in question are infinitely long, infinitesimally

small, and the motion at the free surface is exactly one-dimensional. The result

is the one-dimensional wave equation:

@2
t � D c2@2

x�; with c2 D gh: (8)

Inserting D’Alembert’s solution of (8) back into the expansion for �.x; y; t I "/

yields

�.x; y; t I "/ D "h
�

F .x � ct I y; "t/ C G .x C ct I y; "t/
�

C O."2/; (9)

where F and G are determined from the initial data. At leading order, F and G

are required only to be bounded, and to be smooth enough for the terms in (6)

to make sense.

There are two ways to proceed to the next order. The simpler but more re-

stricted method, used by Johnson [1997], is to ignore one of the two waves in

(9). Then we may follow (for example) the F -wave by changing to a coordinate

system that moves with that wave, at speed
p

gh. To do so, set

� D
p

"

h

�

x � t
p

gh
�

: (10a)

At leading order, according to (9), F does not change in this coordinate sys-

tem, so we may proceed to the next order, O."2/. Now small effects that were

ignored at leading order — namely, that the wave amplitude is small but not

infinitesimal, that the wavelength is long but not infinitely long, and that slow

transverse variations are allowed — can be observed. These small effects can

build up over a long distance, to produce a significant cumulative change in F .

To capture this slow evolution of F , introduce a slow time scale,

� D "t

r

"g

h
; (10b)
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and find that F satisfies approximately the KdV equation,

2@�F C 3F@�F C
�

1

3
� T

gh2

�

@3
� F D 0; (11)

if the surface waves are strictly one-dimensional (that is, if @yF � 0). Or, if

the surface patterns are weakly two-dimensional, we can obtain instead the KP

equation,

@�

�

2@�F C 3F@�F C
�

1

3
� T

gh2

�

@3
� F

�

C @2
�F D 0: (12)

After rescaling the variables in (11) or (12) to absorb constants, (11) becomes

(1), and (12) becomes (2). The dimensionless parameter, T =gh2, which appears

in both (11) and (12), is the inverse of the Bond number — its value determines

the relative strength of gravity and surface tension. The magnitudes and signs of

all coefficients in (11) can be scaled out of the problem, but this is not possible

in (12) with any real-valued scaling. The sign of 1
3

�T =gh2 determines the sign

of ˛ in (2), of ˇ in (3) and of 
 in (4).

In words, (9) says that one wave (F ) propagates to the right, while another

wave (G) propagates to the left, both with speed
p

gh. Neither wave changes

shape as it propagates, during the short time when (9) is valid without correc-

tion. On a longer time-scale, the KdV equation (11) describes how F changes

slowly, due to weak nonlinearity .F@�F / and weak dispersion .@3
�
F /. Or, the

KP equation (12) shows how F changes because of these two weak effects and

also because of weak two-dimensionality .@2
�F /.

The KdV and KP equations have been derived in many physical contexts,

and they always have the same physical meaning: on a short time-scale, the

leading-order equation is the one-dimensional, linear wave equation; on a longer

time-scale, each of the two free waves that make up the solution of the 1-D

wave equation satisfies its own KdV (or KP) equation, so each of the two waves

changes slowly because of the cumulative effect of weak nonlinearity, weak

dispersion and (for KP) weak two-dimensionality.

The Boussinesq equation, (3), describes approximately the evolution of water

waves under the same assumptions as KdV. It is the basis for several numerical

codes to model wave propagation in shallow water; see, for instance, [Wei et al.

1995; Bona et al. 2002; 2004; Madsen et al. 2002]. Equation (3) appears to be

more general than (1) because (3) allows waves to propagate in two directions,

as (1) does not. But Bona et al. [2002] note that the usual derivation of (3)

from (6) includes an assumption that the waves are propagating primarily in

one direction, so (1) and (3) are formally equivalent.

Conceptually, the Camassa–Holm equation, (4), is based on the same set of

assumptions as (1) and (3). But Johnson [2002] shows that the usual derivations
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of (4) are logically inconsistent. He then gives a self-consistent derivation of (4)

from (6), but the price he pays is that the solution of (4) does not approximate

the shape of the free surface — an additional step is needed. The shape of the

free surface is an easy quantity to measure experimentally, so this extra cost is

not trivial.

The next three sections of this paper compare predictions of (1) and (2) with

experimental observations of waves in shallow water.

3. Application: the tsunami of 2004

A dramatic example of a long ocean wave of small amplitude was the tsunami

that occurred in the Indian Ocean on December 26, 2004. The tsunami caused

terrible destruction in many coastal regions around the Indian Ocean, killing

more than 200,000 people. Even so, we show next that until the tsunami neared

the shoreline, it was well approximated by the theory leading to (8) and (9). We

also show that the nonlinear integrable models, (1)–(4), were not relevant for

the 2004 tsunami.

The tsunami was generated by a strong, undersea earthquake off the coast

of Sumatra. Figure 2 shows a map of the northern Indian Ocean, and the

initial shape of the tsunami. (This figure is the first image in an informative

animation of the tsunami’s propagation, done by Kenji Satake of Japan. To

see his entire animation, go to http://staff.aist.go.jp/kenji.satake/animation.html.

A comparable simulation by S. Ward can be found at http://www.es.ucsc.edu/

˜ward.) The fault line of the earthquake, clearly evident in Figure 2, lies on or

near the boundary of two tectonic plates, one that carries India and one that holds

Burma (Myanmar). Most of the seismic activity in this region occurs because

the India plate is slowly sliding beneath the Burma plate.

The original earthquake (near Sumatra) triggered a series of other quakes,

which occurred along this fault line, all within about 10 minutes. The north-

south distance along this line of quakes was about 900 km. As Figure 2 shows,

the effect of the quakes was to raise the ocean floor to the west of this (curved)

line, and to lower it to the east of the line. The lateral extent of this change

in the sea floor was about 100 km, on each side of the fault line. The verti-

cal displacement was 1–2 meters or less. The change in level of the sea floor

occurred quickly enough that the water above it simply rose (or fell) with the

sea floor. These conditions provided the initial conditions for the tsunami. (The

estimates quoted here were given by S. Ward. None of the conclusions drawn

in this section changes qualitatively if any of these estimates is changed by a

factor of 2.)

The ocean depth in the Bay of Bengal (the part of the Indian Ocean west and

north of the fault line in Figure 2) is about 3 km. The region east of the fault
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line, called the Andaman Sea, is shallower: it average depth is about 1 km.

These estimates provide enough information to consider the theory summa-

rized in Section 2. In the Bay of Bengal, the requirements for KdV theory at

leading order are:

� small amplitude:
a

h
D 1

3000
D 3:3 � 10�4 � 1I

� long waves:
�

h

�

�2

D
�

3

100

�2

D 9 � 10�4 � 1I
� nearly 1-D surface patterns:

�

L
D 100

900
� 1I

� comparable scales:

" D a

h
D O

�

�

h

�

�2
�

:

These estimates show that the theory for long waves of small amplitude should

work well for the tsunami that propagated westward, across the Bay of Ben-

gal. The reader can verify that this conclusion also holds for the eastward-

propagating tsunami, in the Andaman Sea. Therefore, the tsunami in the Bay of

Bengal propagated with a speed .
p

gh/ of about 620 km/hr, while the speed in

the Andaman Sea was about 360 km/hr.

(The analysis that follows also assumes constant ocean depth. This is the

weakest assumption in the analysis, but it is easily corrected; see [Segur 2007].)

We may take the initial shape of the wave to be that shown in Figure 2, with

no vertical motion initially. If we neglect variations along the fault line, then

according to (8), a wave with this shape and half of its amplitude propagated to

the west, and an identical wave propagated to the east. Neither wave changed

its shape as it propagated, so the wave propagating towards India and Sri Lanka

consisted of a wave of elevation followed by a wave of depression. The wave

propagating towards Thailand was the opposite: a wave of depression, followed

by a wave of elevation. These conclusions are consistent with reports from

survivors in those two regions.

This description applies on a short time-scale. The KdV (or KP) equation

applies on the next time-scale, approximately "�1 longer. Equivalently, the dis-

tance required for KdV dynamics to affect the wave forms is approximately "�1

longer than a typical length scale in the problem. Using h as a typical length,

this suggests that we need about 3000�3 km = 9000 km of propagation distance

to see KdV dynamics in the westward propagating wave. But the distance across
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Figure 2. Map of the northern Indian Ocean, showing the shape and
intensity of the initial tsunami, 10 minutes after the beginning of the first
earthquake. This image is the first frame from a simulation by K. Satake;
it shows an elevated water surface west of the island chain and a depressed
water surface east of that chain. (For the color coding see this article
online at http://www.msri.org/publications/books; Satake’s animation can

be found at http://staff.aist.go.jp/kenji.satake/animation.html.)

the Bay of Bengal is nowhere larger than about 1500 km, much too short for

KdV dynamics to have built up. The numbers for the eastward propagating wave

are different, but the conclusion is the same: the distance across the Andaman

Sea is too short to see significant KdV dynamics. Thus, the 2004 tsunami did

not propagate far enough for either the KdV or KP equation to apply.

This conclusion, that propagation distances for tsunamis are too short for

soliton dynamics to have an important effect, applies to many tsunamis, but

not all. Lakshmanan and Rajasekar [2003] point out that the 1960 Chilean

earthquake, the largest earthquake ever recorded (magnitude 9.6 on a Richter

scale), produced a tsunami that propagated across the Pacific Ocean. It reached

Hawaii after 15 hours, Japan after 22 hours, and it caused massive destruction

in both places. This tsunami propagated over a long enough distance that KdV

dynamics probably were relevant. For more information about this earthquake
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and its tsunami, see the reference just cited, [Scott 1999], or http://neic.usgs.gov/

neis/eq depot/world/1960 05 22 tsunami.html. More recently, a seismic event

off the Kuril Islands in 2006 sent a wave across the Pacific that damaged the

harbor in Crescent City, CA. KdV (or KP) dynamics probably were relevant for

this wave, which took more than 8 hours to cross the Pacific. For more informa-

tion about this tsunami, see http://www.usc.edu/dept/tsunamis/2005/tsunamis/

Kuril 2006/.

Back to the tsunami of 2004. The discussion presented here might leave

the reader wondering how a wave of such small amplitude, satisfying a linear

equation, could be responsible for so much damage and so much loss of life.

The answer is that the “long waves, small amplitude” model applies only away

from shore — near shore the wave changes its nature entirely. To see this change

in tsunami dynamics, imagine sitting in a boat in the middle of the Indian Ocean

when a tsunami like that in 2004 passes by. The tsunami is 1 m high, 100 km

long, and it travels at 620 km/hr. It would take about 10 minutes to pass the

boat, so in the course of 10 minutes, the boat would rise 1 meter and then fall

1 meter. Hence in the open ocean, it is difficult for a sensor at the free surface

even to detect a passing tsunami.

Near shore, everything changes. The local speed of propagation is still
p

gh,

but h decreases near shore, so the wave slows down. More precisely, the front

of the wave slows down — the back of the wave, still 100 km out at sea, is not

slowing down. The result is that the wave must compress horizontally, as the

back of the wave catches up with the front. But water is nearly incompressible,

so if the wave compresses horizontally, then it must grow vertically as it ap-

proaches shore. The result is that a very long wave that was barely noticeable in

the open ocean becomes shorter (horizontally), larger (vertically), and far more

destructive near shore.

See articles in Science, 308 (2005), 1125–1146 or in [Kundu 2007] for more

discussion of the 2004 tsunami.

4. Application: periodic ocean waves

Among ocean waves, tsunamis are anomalous. The vast majority of ocean

waves are approximately periodic, and they are generated by winds and storms

[Munk et al. 1962]. The water surface is two-dimensional, so the KP equation,

(2), is a natural place to seek solutions that might describe approximately peri-

odic waves in shallow water. Gravity dominates surface tension except for very

short waves, so we may set ˛ D 1 in (2).

The simplest periodic solution of (2) is a (one-dimensional) plane wave, of

the form

u D 12k2m2 cn2 fkx C ly C wt C �0I mg C u0; .13/
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where cnf� I mg is a Jacobian elliptic function with elliptic modulus m. If we

impose (5), then the solution in (13) has four free parameters; for example

fk; l; �0; mg. If l D 0, then (13) solves the KdV equation; this solution was

first discovered by Korteweg and de Vries [1895], who named it a cnoidal wave.

Wiegel [1960] brought cnoidal waves to the attention of coastal engineers, who

now use them regularly for engineering calculations. (See Chapter 2 of the Shore

Protection Manual [SPM 1984] for this viewpoint.)

Figure 3 shows ocean waves photographed by Anna Segur near the beach in

Lima, Peru. These plane, periodic waves have broad, flat troughs and narrow,

sharp crests — typical of cnoidal waves with elliptic modulus near 1, and also

typical of plane, periodic waves in shallow water of nearly uniform depth. It is

unusual to see such a clean example of a cnoidal wave train, but that might be

because few beaches are as flat as the beach in Lima.

Cnoidal waves are appealing because of their simplicity, but they are degen-

erate in the sense that the water surface is two-dimensional, while cnoidal waves

vary only in the direction of propagation. One might wish for a wave pattern

that is nontrivially periodic in two spatial directions, and that travels as a wave

of permanent form in water of uniform depth.

Figure 4 shows a photograph of a wave pattern photographed by Terry Toedte-

meier off the coast of Oregon. This photo can be interpreted in two different

ways, each with some validity. The first interpretation is that Figure 4 shows two

plane solitary waves, interacting obliquely in shallow water of nearly uniform

depth. A basic rule of soliton theory is that the interaction of two solitons results

in a phase shift. A phase shift is evident in Figure 4: each wave crest is shifted

beyond the interaction region from where it would have been without the inter-

action. The KP equation admits a 2-soliton solution that looks very much like

the wave pattern in Figure 4. Equivalently, one can identify this wave pattern

with a 2-soliton solution of the Boussinesq equation, (3).

Figure 3. Periodic plane waves in shallow water, off the coast of Lima,
Peru. (Photographs courtesy of A. Segur)
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Figure 4. Oblique interaction of two shallow water waves, off the coast
of Oregon. (Photograph courtesy of T. Toedtemeier)

The other interpretation is that Figure 4 shows the oblique, nonlinear interac-

tion of two (plane) cnoidal wave trains. Each wave train exhibits the flat-trough,

sharp-crest pattern seen in Figure 3, but in Figure 4 successive wave crests in

the same train are so far apart that each crest acts nearly like a solitary wave.

Even so, if one looks carefully at Figure 4, one can see the next crest after the

prominent crest in each wave train. With this interpretation, Figure 4 shows a

wave pattern that propagates with permanent form, and is nontrivially periodic

in two horizontal directions. Each wave crest in one wavetrain undergoes a

phase shift every time it interacts with a wave crest from the other wavetrain.

The result is a two-dimensional, periodic wave pattern, in which the basic “tile”

of the pattern is a hexagon: two parallel sides of the hexagon are crests from

one wavetrain, two sides are crests from the other wavetrain, and the last two

sides are two, short interaction regions. (Only one interaction region is evident

in Figure 4.)

The KP equation admits an 8-parameter family of real-valued solutions like

this — each KP solution is a travelling wave of permanent form, nontrivially

periodic in two spatial directions; see [Segur and Finkel 1985] for details. In

terms of Riemann surface theory, every cnoidal wave solution of KdV or KP cor-

responds to a Riemann surface of genus 1; each of the KP solutions considered

here corresponds to a Riemann surface of genus 2. These two-dimensional, dou-

bly periodic wave patterns are the simplest periodic or quasiperiodic solutions

of the KP equation beyond cnoidal waves.

In a series of experiments, Joe Hammack and Norm Scheffner created waves

in shallow water with spatial periodicity in two directions, in order to test the KP

model of such waves [Hammack et al. 1989; 1995]. Figure 5 shows overhead

photographs of three of their propagating wave patterns. Each wave pattern in
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these photos is generated by a complicated set of paddles at one end of a long

wave tank. The photos are oriented so that the waves propagate downward in

each pair of photos. The pattern in the top photos is symmetrical, and it propa-

gates directly away from the paddles (so straight down in Figure 5). The other

two patterns are asymmetric; these patterns propagate with nearly permanent

form but not directly away from the paddles — there is also a uniform drift to the

left or right for each wave pattern. The corresponding KP solution predicts this

direction of propagation, along with the detailed shape of the two-dimensional,

doubly periodic wave pattern. Hammack et al. [1995] showed experimentally

that for each wave pattern they generated, the appropriate KP solution of genus

2 predicts the detailed shape of that pattern with remarkable accuracy. See their

paper for these comparisons.

In addition to these photographs, they also made videos of the experiments.

There was no convenient way to present those videos in 1989, but now they are

archived at the MSRI website. Go to http://phoebe.msri.org:8080/vicksburg/

vicksburg.mov to see the first video. The experiments were conducted in a

large (30 m x 56 m) wave tank at the US Army Corps of Engineers Waterways

Experiment Station, in Vicksburg, MS. A segmented wavemaker, consisting of

60 piston-type paddles that spanned the tank width, is shown in the first scene.

In this scene the paddles all move together, and they generate a train of plane,

periodic (i.e., cnoidal) waves that propagate to the other end of the tank, where

they are absorbed.

In the second scene, the camera looks down on the tank from above; the

paddles are visible along the end of the tank at the upper right. The paddles were

programmed to create approximately a KP solution of genus 2, with a specific

set of choices of the free parameters. Hence the wave pattern coming off the

paddles is periodic in two spatial directions. The experiment shows that the

entire two-dimensional pattern propagates as a wave of nearly permanent form.

As in Figures 4 and 5, the basic tile of the periodic pattern is a hexagon, but

the long, straight, dominant crests seen in the video are the interaction regions,

which are quite short in Figure 4. The relatively narrow, zigzag region that

connects adjacent cells contains the other four edges of the hexagonal tile. Wave

amplitudes in the zigzag region are smaller than those of the long, dominant

crests, and the KP solution shows that horizontal velocities are smaller in this

region as well.

The relative length of the long, straight, dominant crests within a hexagonal

tile is a parameter that one can chose by choosing properly the free parameters

of the KP solution. This freedom of choice is demonstrated in the third scene

in the video. In this experiment, all of the parameters of the KP solution are the
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Figure 5. Mosaics of two overhead photos, showing three surface patterns
of travelling waves of nearly permanent form, with periodicity in two spatial
directions, in shallow water of uniform depth. The basic tile of each pattern
is a hexagon; one hexagon is drawn in the middle photos. Each wave
pattern is generated by a set of paddles, above the top of each pair of
photos. The wave pattern propagates away from the paddles, so downward
in these photos. The waves are illuminated by a light that shines towards
the paddles, so a bright region identifies the front of a wave crest, a dark
region lies behind the crest, and a sharp transition from bright to dark
represents a steep wave crest. (Figure taken from [Hammack et al. 1995].)
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same as those in the previous experiment, except that the length of the dominant

crest is shorter.

Almost all real-valued genus 2 solutions of the KP equation define wave

patterns like this: travelling waves of permanent form that are periodic in two

spatial directions. The existence of these KP solutions does not guarantee that

such solutions are stable within the KP equation, or that the corresponding water

waves are stable. The video shows that these water waves look stable. See

Section 6 for more discussion of stability.

Wiegel [1960] pointed out the practical, engineering value of KdV (or KP)

solutions of genus 1, and the experiments shown here demonstrate the practical

value of KP solutions of genus 2 — both sets of KP solutions describe accurately

waves of nearly permanent form in shallow water of uniform depth. See Section

6 for a discussion of KP solutions of higher genus.

We end this discussion of spatially periodic waves of permanent form by

noting the work of Craig and Nicholls [2000; 2002]. Motivated in part by the

experimental results shown here, these authors proved directly that the equations

of inviscid water waves, (6), admit travelling wave solutions that are spatially

periodic in two horizontal directions, like those shown here. The parameter

range of their family of solutions is not identical with the parameter range of

KP solutions of genus 2, but the two overlap. (The KP equation approximates

water waves only in shallow water, but Craig and Nicholls find solutions in

water of any depth. In the other direction, they have not yet found asymmetric

solutions, like those shown in the middle and bottom photos of Figure 5.) One

value of an approximate model, like KP, is that it provides hypotheses about

what might be true in the unapproximated problem. The success of Craig and

Nicholls demonstrates how effective that strategy has been in this particular

problem.

5. Application: rip currents

The material in this section can be considered an application of an application.

The KP equation predicts the existence of spatially periodic wave patterns of

permanent form, approximately like those shown in Figure 5, in shallow water

of uniform depth. As these waves propagate into a region near shore where

the water depth decreases (to zero at the shoreline), the KP equation no longer

applies. But the waves themselves persist, and their behavior near shore can

have important practical consequences, as we discuss next.

A rip current is a narrow jet that forms in shallow water near shore under

certain circumstances. It carries water away from shore, through the “surf zone”

(the region of breaking waves), out to deeper water. A typical rip current flows

directly away from the shoreline, and it remains a strong, narrow jet through
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Figure 6. Rip currents on two beaches on the Pacific coast. Left: Rosarita
Beach in Baja California, Mexico. Starting at the lower left, the dark region
shows vegetation, the white strip above it is sandy beach, the shoreline
runs from upper left to lower right, the white water beyond that is the surf
zone, with deeper water at the upper right. Three separated rip currents
are shown. Right: Sand City, California. The land is to the lower left, the
Pacific Ocean is to the upper right, with a white surf zone in between.
Here the entire coastline is filled with an approximately periodic array of
rip currents.

the surf zone. Beyond the surf zone, the current “blossoms” into a wider flow

and loses its strength. Figure 6, left, shows three rip currents, while the right-

hand part shows an approximately periodic array of rip currents all along the

coastline. Rip currents can be dangerous because even a good swimmer cannot

overcome the high flow rate in a strong rip current. As a result, every year rip

currents carry swimmers out to deep water, where they drown.

What causes rip currents? They form in the presence of breaking waves, but

breaking waves alone do not guarantee their formation. Some rip currents are

stationary, while others migrate slowly along the beach. Some persist for a few

hours, while others last longer.

There is a standard explanation for how rip currents form, which can be found

at http://www.ripcurrents.noaa.gov/science.shtml and elsewhere. According to

this explanation, rip currents require a long sandbar, parallel to the beach and

just beyond the surf zone. Incoming waves break in the surf zone, and then a

return flow carries that water back out to sea. Where can the return flow go?

The easiest place for the return flow to carry water past the sandbar is where

the height of the sandbar has a local minimum. So the return flow goes through

this (initially small) pass. In doing so, its flow scours out more sand at the local

minimum, which makes the height even lower there. Then more water can go

through, and a feedback loop carves a larger hole in the sandbar. As it carves this

hole, the return flow strengthens until it forms into a narrow jet — a rip current.
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The rip current is located at the hole in the sandbar, and the width of the current

is the width of the hole.

This is a sensible explanation, and it is probably correct sometimes. But

the left half of Figure 6 shows three rip currents, with some spacing between

them. What determines their spacing? The right half shows a long array of rip

currents, with an approximately constant spacing between adjacent rips. What

determines their spacing? Not all rip currents appear in these approximately

periodic arrays, but they often do. And the standard explanation, summarized

above, provides no insight into why rips appear in these regular arrays, and no

way to predict the spacing between adjacent rips. Separately, this explanation

seems to imply that a rip current cannot migrate slowly along the beach, even

though some do.

An alternative mechanism to create rip currents was proposed by Hammack

et al. [1991]. It requires no sand bars. Recall the doubly periodic wave pat-

terns from their movie, which travel with nearly permanent form (see http://

phoebe.msri.org:8080/vicksburg/vicksburg.mov). What would happen to such

a spatially periodic wave pattern, as it traveled up a sloping beach? It is easy to

imagine that the large, dominant wave crests would break first, while the smaller

crests in the narrow zigzag region would break later, or not at all. After the waves

break, a return flow must carry that water back out to deep water. Where can

the return flow go? The return flow is likely to go where the incoming flow is

the weakest. Where is that?

[Once waves break, the KP equation no longer applies. The next two para-

graphs, therefore, define a conjecture, with little mathematical justification at

this time.] The derivation of either (1) of (2) from (6) shows that the horizontal

velocity of the water is proportional to the wave height, so the strongest hori-

zontal flow occurs where the waves are highest. For the wave patterns shown

in the video, therefore, the long, dominant wave crests are also regions of large

forward velocity, where a return flow would be resisted by a strong incoming

flow. In the narrow zigzag regions, wave heights are smaller, horizontal flows

are also smaller, and here the return flow would meet less resistance.

If the return flow travelled through the narrow zigzag region of the incoming

flow field, then the return flow would acquire a spatial structure determined by

the structure of the incoming waves. Specifically, suppose the incoming wave

pattern were one of the hexagonal patterns seen in the previous video. Then:

� The return flow would appear in narrow jets (i.e., rip currents) because in-

coming flow contains narrow zigzag regions, where the incoming velocities

are smaller.

� These narrow jets would be periodically arranged along the beach because

the incoming wave patterns are periodic in the direction along the beach.
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� The spacing between adjacent rips would be determined by the spacing be-

tween adjacent zigzag regions in the incoming waves.

� The width of the jets would be related to the width of the zigzag region in the

incoming wave pattern.

Hammack et al. [1991] tested this conjecture with another set of experiments,

after some modifications of their wave tank. For the experiments on rip currents,

the set of paddles was moved from the end of the tank to the side, so the waves

now propagate across the tank instead of along it. In addition, they installed a

sloping beach in the tank. The result was that the waves propagated across a

region of uniform depth, and then up a uniformly sloping beach. The beach was

made of concrete, so there were no sandbars.

The experiments can be viewed in another video, which is available at http://

phoebe.msri.org:8080/ripcurrent84/ripcurrent84.mov. As the video opens, one

sees dry beach along the bottom of the screen, with quiescent water higher up the

screen. A strip of dye (food coloring) has been poured along the water’s edge,

to mark where the return flow goes. As the camera scans the entire tank, one

sees the array of paddles on the far side of the tank. These paddles then create

a set of hexagonally shaped, periodic waves of nearly permanent form, which

propagate away from the paddles and towards the beach. As the hexagonal wave

patterns climb the beach, their crests begin to break. Then a few seconds later,

the dye begins to move from the shoreline, away from the beach, in a narrow

jet. The jet is clearly in the zigzag region of the incoming flow, because we see

the dye zigzagging out to deep water in the video. After the experiment has

run for a while, the dye shows the spatial pattern of the rip currents: a periodic

array of jets that remain narrow through the surf zone, and then spread out and

stop beyond the surf zone. Both the spacing between jets and the width of

an individual jet are determined by the spatial structure of the incoming wave

pattern. Sand bars are irrelevant for these rip currents.

(In addition to the array of narrow rip currents marked by dye at the end of the

experiment, one also sees a weaker, roughly circular glob of dye between each

pair of rip currents. This secondary flow of dye might be due to undertow, which

exists because the bottom boundary layer of the incoming waves is another place

where the incoming flow is weaker. But this is a separate conjecture, with little

experimental support at this time.)

6. Quasiperiodic solutions of the KP equation

Krichever [1977a] showed that the KP equation, (2), admits a large family of

quasiperiodic solutions of the form

u.x; y; t/ D 12@2
x ln �; .14/
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where � is a Riemann theta-function, associated with a (compact, connected)

Riemann surface of some finite genus. Such a formulation was already known

for KdV: (13) with u0 D 0 can be written in this form, with genus 1. The

Riemann surface is necessarily hyperelliptic (so only square-root branch points

are allowed) for KdV, but Krichever [1976; 1977b] proved that any Riemann

surface would do for KP.

As described in detail in [Dubrovin 1981; Belokolos et al. 1994], a Riemann

theta function with g phases is defined by a g-fold Fourier series; the coefficients

in this series are defined by a g�g Riemann matrix. If one starts with a Riemann

surface of genus g, then by a standard procedure one generates a g�g Riemann

matrix associated with that surface. Krichever showed that (14), with the theta

function obtained in this way, solves the KP equation. Then S. P. Novikov con-

jectured that the connection between the KP equation and Riemann surfaces is

even stronger, and that (14) solves KP only if its theta function is associated with

some Riemann surface. In other words, out of all possible theta functions, of any

finite genus, the KP equation can identify those associated with some compact

Riemann surface. The conjecture seems remarkable, but Shiota [1986] proved

it, after earlier work by Mulase [1984] and by Arbarello and de Concini [1984].

Thus the KP equation, (2), can be studied from at least three perspectives:

� as a completely integrable partial differential equation;

� as an approximate model of waves in shallow water; and

� because of its deep connection with the theory of Riemann surfaces.

An objective of this paper is to relate the extra mathematical structure of the

KP equation to the behavior of physical waves in shallow water, if possible.

The theory for the KP equation is much less developed than the corresponding

theory for the KdV equation, especially for the quasiperiodic KP solutions given

by (14). This final section summarizes our current knowledge of four aspects

of these solutions: (a) the qualitative nature of quasiperiodic KP solutions; (b)

effective methods to construct KP solutions of a given genus; (c) solving the

initial-value problem; and (d) stability of quasiperiodic KP solutions.

(a) the qualitative nature of quasiperiodic KP solutions. Here is a summary

of what is known about bounded, real-valued, KP and KdV solutions of various

genera. (See [Dubrovin 1981] for details.)

g D1: Any KP solution of genus 1 is a cnoidal wave — a plane wave that travels

with permanent form, given by (13). The cnoidal wave solutions of KdV are

special cases of this, with l D 0 in (13).

g D 2: A KP solution of genus 2 has two phase variables:fkj xClj yCwj t C�j g
for j D 1; 2. There are two possibilities.
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� If k1l2 D k2l1, then all lines of constant phase are parallel, so the spa-

tial pattern of the wave is always one-dimensional. Any such solution of

KP can be transformed (“rotated”) into a solution of KdV, also of genus

2. These KdV solutions are necessarily time-dependent, in any Galilean

coordinate system.

� Otherwise k1l2 ¤ k2l1, and the solution is spatially periodic — the basic

tile of the pattern is a hexagon, as discussed in Section 4. The wave pat-

terns shown in Figure 5 approximate KP solutions of genus 2. Each such

solution travels as a wave of permanent form in an appropriately translating

coordinate system. Almost all KP solutions of genus 2 have k1l2 ¤ k2l1,

so they are travelling waves of permanent form.

g � 3: Almost all KP solutions of genus 3 or higher are time-dependent, in

every Galilean coordinate system. Hence these KP solutions can describe

physical processes that are time-dependent, including energy transfer among

modes. Because of this nontrivial time-dependence, snapshots at a particular

time, like those in Figure 5, are inadequate to view these solutions.

g � 3: For g � 3, the only KP solutions that are waves of permanent form

are those that also solve the Boussinesq equation, (3). For g D 3, the KP

equation admits a 12-parameter family of bounded, real-valued, quasiperiodic

solutions, each with three independent phases. The Boussinesq solutions with

g D 3 comprise an 11-parameter subfamily, so almost all KP solutions with

g D3 are intrinsically time-dependent. Even so, this 11-parameter sub-family

is much larger than the 8-parameter family of KP solutions of genus 2. Which

of these solutions are stable, and in what sense, are open questions.

g ! 1: The development of “finite-gap” solutions of the KdV equation by

Novikov [1974], Lax [1975], McKean and van Moerbeke [1975] and others

can be considered a nonlinear generalization of a finite Fourier series (which

contains only a finite number of terms). Each such finite-gap solution of

KdV is based on a hyperelliptic Riemann surface of finite genus. The genus

determines the number of open gaps in the spectrum of Hill’s equation; it

corresponds to the number of terms in a finite Fourier series. McKean and

Trubowitz [1976] made this correspondence legitimate, by developing a the-

ory of hyperelliptic curves with infinitely many branch points. In this context,

one can discuss convergence of a sequence of finite-gap solutions of KdV, as

the number of gaps (and the genus of the Riemann surface) increases without

bound.

g !1: When we switch from the KdV to the KP equation, we also switch from

hyperelliptic to general Riemann surfaces, and things become more compli-

cated. The recent book by Feldman et al. [2003] (see Bull. Amer. Math. Soc.

42 (2004), 79–87 for McKean’s review) explores Riemann surfaces of infinite
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genus, generalizing [McKean and Trubowitz 1976]. When KP solutions of

finite genus are understood well enough to consider questions of convergence,

one can hope that this recent work will provide a suitable framework in which

to address such questions.

g � 3: Back to finite genus. Time-dependent or not, KP solutions with g � 3

are typically not periodic in space, but only quasiperiodic.

The fact that KP solutions of higher genus are typically only quasiperiodic in

space or time is worth discussing. Physically, it is common to see water waves

that are approximately periodic, but truly periodic water waves seem to be rare.

In this sense, a mathematical model that naturally produces quasiperiodic solu-

tions is an advantage. In terms of scientific computations, people often use peri-

odic boundary conditions, not because the physical problem is periodic but for

computational simplicity. How to build numerical codes that compute efficiently

in a space of almost periodic functions seems to be an open problem. In terms

of mathematical theory, Dubrovin et al. [1976] developed a theory to construct

solutions of the KdV equation that need be only almost periodic. Their task was

simpler than for the corresponding problem for KP, because the KdV equation

only allows hyperelliptic Riemann surfaces, which are better understood than

general Riemann surfaces.

(b) effective methods to construct KP solutions of a given (finite) genus. The

method of inverse scattering, to solve the initial-value problem for a completely

integrable evolution equation, typically has three parts: map the initial data into

scattering data, evolve the scattering data forward in time, and then map back.

For solutions of the form (14), one can identify the “scattering data” with the

Riemann surface plus a divisor on that surface. Hence, one part of the method

of inverse scattering is to produce an explicit Riemann theta function from these

scattering data. This procedure is carried out for KP and several other integrable

problems in [Belokolos et al. 1994].

Earlier, Bobenko and Bordag [1989] started with different “scattering data”,

and demonstrated that their method is effective by producing KP solutions. In

principle their method can generate solutions of any genus, and they exhibit a

solution of genus 4, among others.

Any method that uses the underlying Riemann surface as scattering data faces

inherent difficulties related to our inadequate knowledge of Riemann surface

theory. A Riemann surface can be defined by an algebraic curve: a polynomial

relation of finite degree between two complex variables, P .w; z/ D 0. But this

relation might have singularities, where @P .w; z/=@w D 0 and @P .w; z/=@z D 0

simultaneously. One does not obtain a Riemann surface until all such singular-

ities are resolved. Separately, a given Riemann surface can have more than one
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such representation, and it can be difficult to tell whether two such polynomial

relations represent the same surface.

Consequently it has been necessary to build computational machinery, to

make the abstract theory of Riemann surfaces concrete and effective. See [De-

coninck and van Hoeij 2001; Deconinck et al. 2004] for some of this machinery.

At this time, computing the ingredients in a Riemann theta function from a

representation of its algebraic curve is still not straightforward.

Dubrovin [1981] proposed another approach, which is effective for genus 1,

2 or 3, and only for them. He observed that for these low genera, any Riemann

matrix that is “irreducible” can be associated with some Riemann surface. Hence

one can skip the Riemann surface altogether, and work directly with the Rie-

mann matrix. The papers [Segur and Finkel 1985; Dubrovin et al. 1997] were

both based on this approach. These authors demonstrated the effectiveness of

their method not only with example solutions, but also with publicly available

computer codes that allow an interested reader to compute and to visualize real-

valued KP solutions of genus 1, 2 or 3. The limitation of their method is that it

fails for any genus larger than 3.

(c) solving the initial-value problem. Let us focus on two published methods

to solve the KP equation as an initial-value problem, starting with either periodic

or quasiperiodic initial data: by [Krichever 1989; Deconinck and Segur 1998].

Both methods rely on (14) to describe KP solutions of some finite genus.

Krichever requires that the initial data be periodic in x and in y, with fixed

periods in each direction (i.e., in a fixed rectangle). Any KP solution that evolves

from these initial data then retains that periodicity. He establishes the formal

existence of a sequence of KP solutions, each of finite genus and in the form

(14), which provide better and better approximations to the given initial data at

t D 0. An important accomplishment in this work is his approximation theorem,

which shows that these finite-genus solutions are dense in a suitable space of

KP solutions with the given periods in x and in y.

Our approach in [Deconinck and Segur 1998] differed from that of Krichever

in several respects. We considered initial data that are quasiperiodic in space,

rather than requiring strict periodicity in x and in y. Even at genus 2, requiring

that waves be periodic in x and in y is overly restrictive. Mathematically, the

family of real-valued KP solutions of genus 2 that are periodic in x and in y has

5 free parameters, while the full family of real-valued KP solutions of genus 2

has 8. Physically, all three patterns of water waves photographed in Figure 5

are spatially periodic, but only the top pattern is periodic in x and in y.

We paid for the extra flexibility of allowing initial data that are quasiperiodic

in space, by requiring that their initial data have the form (14), with some finite

number (g) of phases. Then we gave a constructive procedure to determine
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g (the number of phases and the genus of the Riemann surface), the Riemann

surface itself and the divisor on that surface. Unfortunately, we have no approx-

imation theorem, so we cannot prove that the KP solutions obtained in this way

are dense in any suitable space of KP solutions.

The opinion of this writer is that more work is needed to produce a con-

structive method to solve the initial-value problem for the KP equation with

quasiperiodic initial data.

(d) stability of quasiperiodic KP solutions. If one views the KP equation as

a mathematical model of a physical system, like waves in shallow water, then

the stability of its solutions is an essential piece of information about the model.

The video at http://phoebe.msri.org:8080/vicksburg/vicksburg.mov shows water

waves that are well approximated by KP solutions of genus 2, and that appear

to be stable as they propagate. But one cannot prove stability experimentally —

the video only shows that if there is an instability, then its growth rate must be

slow enough that it does not appear within the test section of the tank.

At this time, almost nothing is known about the stability of quasiperiodic

solutions of the KP equation. The problem is even more difficult than usual

because standard numerical methods to test for stability/instability are based

on codes with periodic boundary conditions, and these are not suitable for KP

solutions that are only quasiperiodic. The problem seems to be completely open

at this time.
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