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Lines on abelian varieties

EMMA PREVIATO

ABSTRACT. We study the function field of a principally polarized abelian va-

riety from the point of view of differential algebra. We implement in a concrete

case the following result of I. Barsotti, which he derived from what he called

the prostapheresis formula and showed to characterize theta functions: the log-

arithmic derivatives of the theta function along one line generate the function

field. We outline three interpretations of the differential algebra of theta func-

tions in the study of commutative rings of partial differential operators.

Henry McKean was one of the earliest contributors to the field of “integrable

PDEs”, whose origin for simplicity we shall place in the late 1960s. One way

in which Henry conveyed the stunning and powerful discovery of a linearizing

change of variables was by choosing Isaiah 40:3-4 as an epigram for [McKean

1979]: The voice of him that crieth in the wilderness, Prepare ye the way of the

Lord, make straight in the desert a highway for our God. Every valley shall be

exalted and every mountain and hill shall be made low: and the crooked shall

be made straight and the rough places plain. Thus, on this contribution to a

volume intended to celebrate Henry’s many fundamental achievements on the

occasion of his birthday, my title. I use the word line in the extended sense of

“linear flow”, of course, since no projective line can be contained in an abelian

variety — the actual line resides in the universal cover.

This article is concerned primarily with classical theta functions, with an ap-

pendix to report on a daring extension of the concept to infinite-dimensional tori,

also initiated by Henry. Thirty years (or forty, if you regard the earliest experi-

ments by E. Fermi, J. Pasta and S. Ulam, then M. D. Kruskal and N. J. Zabusky,

as more than an inspiration in the discovery of solitons; see [Previato 2008] for

references) after the ground was broken in this new field, in my view one of the

main remaining questions in the area of theta functions as related to PDEs, is

still that of straight lines, both on abelian varieties and on Grassmann manifolds

(the two objects of greatest interest to geometers in the nineteenth century!). On
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a Jacobian Pic0.X /, where X is a Riemann surface of genus g (which we also

call a “curve”, for brevity), there is a line which is better than any other. That

is, after choosing a point on the curve. Whatever point is chosen, the sequence

of hyperosculating vectors to the Abel image of the curve in the Jacobian at that

point can be taken as the flows of the KP hierarchy, according the Krichever’s

inverse spectral theory. As a side remark, also related to KP, on a curve not all

points are created equal. For a Weierstrass point, there are more independent

functions in the linear systems nP for small n than there are for generic curves,

which translates into early vanishing of (combinations of) KP flows, giving rise

to n-th KdV-reduction hierarchies of a sort; other special differential-algebraic

properties would obtain if .2g� 2/P is a canonical divisor KX [Matsutani and

Previato 2008]. However, on a general (principally polarized) abelian variety,

“there should be complete democracy”.1 My central question is: What line, or

lines, are important to the study of differential equations satisfied by the theta

function?

In this paper I put together a number of different proposed constructions and

ground them in a common project: use the differential equations for the theta

function along a generic line in an abelian variety, to characterize abelian va-

rieties, give in particular generalized KP equations, and interpret these PDEs

as geometric constraints that define the image of infinite-dimensional flag mani-

folds in PB, where B is a bosonic space. These topics are developed section-by-

section as follows: Firstly, Barsotti proved (in an essentially algebraic way) that

on any abelian variety2 there exists a direction such that the set of derivatives of

sufficiently high order of the logarithm of the theta function along that direction

generates the function field of the abelian variety. Moreover, he characterized

theta functions by a system of ordinary differential equations, polynomial in that

direction. These facts have been found hard to believe by sufficiently many ex-

perts to whom I quoted them, that it may be of some value (if only entertainment

value), to give a brutally “honest”, boring and painstaking proof in this paper,

for small dimension. This gives me the excuse for advertising a different line

of work on differential equations for theta functions (Section 1). Then, I pro-

pose to link this problem of lines and the other outstanding problem of algebro-

geometric PDEs, which was the theme of my talk at the workshop reported in

this volume: commuting partial differential operators (PDOs). There is a classi-

fication of (maximal-)commutative rings of ordinary differential operators, and

their isospectral deformations are in fact the KP flows. In more than one variable

1I quote this nice catchphrase without attribution, this being the reaction to the assertions of Section 1

evinced by an expert whom I hadn’t warned he would be “on record”.

2Assume for simplicity that it is irreducible; let me also beg forgiveness if in this introduction I do not

specify all possible degenerate cases which Barsotti must except in his statements, namely extensions of

abelian varieties by a number of multiplicative or additive 1-dimensional groups.
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very little is known, though several remarkable examples have appeared. The

two theories that I will mention here were proposed by Sato (and implemented

by Nakayashiki) and Parshin. Nakayashiki’s work produced commuting matrix

partial differential operators, but has the advantage of giving differential equa-

tions for theta functions. Since Barsotti’s equations characterize theta functions,

I believe that it would be profitable to identify Nakayashiki’s equations, which

were never worked out explicitly, among Barsotti’s (Section 2). Parshin’s con-

struction produces (in principle, though recent work by his students shows that

essential constraints must be introduced) deformations of scalar PDOs; in his

setting, it is possible to generalize the Krichever map. It is a generalization

of the Krichever map which constitutes the last link I would like to propose.

Parshin sends a surface and a line bundle on it to a flag manifold; Arbarello and

De Concini generalize the Krichever map and embed the general abelian variety

and a line bundle on it into a projective space where Sato’s Grassmannian is a

submanifold, the image of Jacobians. My proposal is to characterize the image

of the abelian varieties, in both Parshin’s and Arbarello–De Concini’s maps, by

Barsotti’s equations (Section 3). In conclusion, some concrete constructions are

touched upon (Section 4). In a much too short Appendix, I reference Henry

McKean’s contribution on infinite-genus Riemann surfaces.

1. Incomplete democracy

Lines in Jacobians. Jacobians are special among principally polarized abelian

varieties (ppav’s), in that they contain a curve that generates the torus as a sub-

group. For any choice of point on the curve, there is a specific line on the torus,

which one expects to have special properties: indeed, the hyperosculating tan-

gents to the embedding of the curve in the Jacobian given by that chosen point,

give a sequence of flows satisfying the KP hierarchy. The KP equations provide

an analytic proof that the tangent line (more precisely, its projection modulo the

period lattice) cannot be contained in the theta divisor (no geometric proof has

been given to date), while the order of vanishing of the theta function at the

point (first given in connection to the KP equation as a sum of codimensions of

a stratification of Sato’s Grassmannian) was recently interpreted geometrically

[Birkenhake and Vanhaecke 2003].

More geometrically yet, the Riemann approach links linear series on the curve

to differential equations on the Jacobian, and again these lines play a very special

role. I give two examples only. I choose these because both authors pose specific

open problems (concerning indeed the special role of Jacobians among ppav’s,

known as “Schottky problem”), through the theory of special linear series. The

subvarieties of such special linear series are acquiring increasing importance in
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providing exact solutions to Hamiltonian systems; see [Eilbeck et al. 2007] and

references therein.

EXAMPLE. In one among his many contributions to these problems, Gunning

[1986] produced in several, essentially different ways, differential equations

satisfied by level-two theta functions. These are mainly limits, after J. Fay,

of addition formulas, and this depends crucially on the tangent direction to

the curve (at any variable point), the line. Gunning’s focus is the study of the

“Wirtinger varieties”, roughly speaking, the images under the Kummer map of

the Wk (1 � k � g), which in turn are images in the Jacobian of the k-fold

symmetric products of the curve, via differential equations and thetanulls. For

example, he proves the following (his notation for level-2 theta functions is #2):

If S is the subspace of dimension dim S D
�gC1

2

�

C1 spanned by the vectors

#2.0/ and @jk#2.0/ for all .j ; k/, then the projectivization of this subspace

contains the Kummer image of the surface W1�W1, so it has intersection with

the Kummer variety of dimension higher than expected, as soon as g � 4.

So little is known about these important subvarieties, that Welters [1986]

states the following as an open problem: Does there exist a relationship between

fa 2 Pic0 X j aCW r
d
�W r�k

d
g and W 0

k
�W 0

k
(0� k � r , 0� d � g�1)? He

had previously shown that

W 0
1 �W 0

1 D fa 2 Pic0 X j aCW 1
g�1 �W 0

g�1g;

where the notation W r
d

is the classical one for linear series of degree d and

(projective) dimension at least r ; gr
d

denotes a linear series of degree d and

projective dimension r .

EXAMPLE. It is intriguing that Mumford, in his book devoted to applications of

theta functions to integrable systems, states as an open problem [1984, Chapter

IIIb, ~ 3]: If V is the vector space spanned by

�

#2.z/; #.z/ �
@2#

@zi@zj
�
@#

@zi
�
@#

@zj

�

and B is the set of “decomposition functions” #.z � a/ � #.z C a/, does the

intersection of V and B equal the set f#.z �
R q
p / � #.zC

R q
p /g, where p; q are

any two points of the curve? As Mumford notes, this is equivalent to asking: If

a 2 Jac X is such that for all w 2W 1
g�1

, either wCa or w�a is in W 0
g�1

, does

a belong to W1 �W1? The latter is settled by Welters (loc. cit.), showing that

indeed, for g � 4 (for smaller genus the statement should be modified and still

holds when it makes sense),

X �X D\�2W 1
g�1

�

.W 0
g�1/��

C .W 0
g�1/��KX

�
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(as customary, subscript denotes inverse image under translation in the Picard

group and KX the canonical divisor), unless X is trigonal, for which it was

known:
\

�2W 1
g�1

.W 0
g�1/��

C .W 0
g�1/��KX

D .W 0
3 �g1

3/[ .g
1
3 �W 0

3 /:

On the enumerative side, Beauville [1982] shows that the sum of all the divisor

classes in W r
d

is a multiple of the canonical divisor, provided r and d satisfy

g D .r C 1/.gC r � d/. The proof uses nontrivial properties of the Chow ring

of the Jacobian, and it would be nice to find an interpretation in terms of theta

functions.

A line of attack to these problems is suggested in [Jorgenson 1992a; 1992b],

where theta functions defined on the Wk ’s are related to algebraic functions,

generalizing the way that the Weierstrass points are defined in terms of ranks of

matrices of holomorphic differentials. In a related way, techniques of expansion

of the sigma function (associated to theta) along the curve, yield differential

equations; see [Eilbeck et al. 2007].

Barsotti lines. However, on a general abelian variety, there should be “complete

democracy”, the catchphrase, in reaction to my report on Barsotti’s result, that

I am appropriating. Barsotti showed — in a way which is exquisitely algebraic

(and almost, though not quite, valid for any characteristic of the field of coef-

ficients), based on his theory of “hyperfields” for describing abelian varieties

(developed in the fifties and only partly translated by his school into standard

language), and independent of the periods — that one line suffices, to produce

the differential field of the abelian variety. Barsotti’s approach was aimed at

a characterization of functions which he called “theta type”, and this means

generalized theta, pertaining to a product of tori as well as group extensions by

a number of copies of the additive and multiplicative group of the field.

I will phrase this important result, along with a sketch of the proof, reintroduc-

ing the period lattice, though aware that Barsotti would disapprove of this naive

approach, and I will give an “honest” proof in the (trigonal) case of genus 3, the

last case when all (indecomposable) ppav’s are Jacobians, yet the first case in

which several experts reacted to Barsotti’s result with “complete disbelief” (not

in the sense of deeming Barsotti wrong, but rather, in intrigued astonishment

that the democracy of lines should allow for such a property).

Barsotti is concerned with abelian group varieties, our abelian varieties, which

he studies locally by rings of formal power series kfu1;u2; : : : ;un� D kfu�,

which we will take to be the convergent power series in n indeterminates, CŒŒu��,

as usual abbreviating by u the n-tuple of variables. The context below will ac-

commodate both cases, that u signify an n-tuple or a single variable. We follow
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Barsotti’s notation for derivatives: di D @=@ui , and in case r D .r1; : : : ; rn/

is a multi-index, dr D .r !/�1dr D .r1!/�1 � � � .rn!/�1d
r1

1
� � � d

rn
n ; also, jr j WD

Pn
iD1 ri , n-tuples of indices are ordered componentwise, and if different sets

of indeterminates appear, dur will denote derivatives with respect to the u-

variables. The symbol Q.�/ generally associates to an integral domain its field

of fractions. The notation is abbreviated: kfug WD Q.kfu�/.

THEOREM 1 [Barsotti 1983, Theorem 3.7]. A function #.u/ 2 kfug is such that

#.uC v/#.u� v/ 2 kfu�˝ kfv� .1/

if and only if it has the property

F.u; v; w/ WD
#.uC vCw/#.u/#.v/#.w/

#.uC v/#.uCw/#.vCw/
2 Q.kfu�˝ kfv�˝ kfw�/: .2/

Barsotti regarded this as the main result of [Barsotti 1983]. He had called (1)

the prostapheresis formula3 and (2) the condition for being “theta-type”. His

ultimate goal was to produce a theory of theta functions that could work over

any field, and in doing so, he analyzed the fundamental role of the addition

formulas; indeed, H. E. Rauch, in his review of [Barsotti 1970] (MR0302655

– Mathematical Reviews 46 #1799) exclaims, of the fact that (2) characterizes

classical theta functions for k DC, “This . . . result is, to this reviewer, new and

beautiful and crowns a conceptually and technically elegant paper”. In order to

appreciate the scope of (1) and (2), we have to put them to the use of computing

dimensions of vector spaces spanned by their derivatives. To me (I may be

missing something more profound, of course) the segue from properties of type

(1) or (2) into dimensions of spaces of derivatives is this: u (the n-tuple) gives

us local coordinates on the abelian variety; we understand analytic functions

by computing coefficients of their Taylor expansions (derivatives) and the finite

dimensionality corresponds to the fact that, while a priori the LHS belongs

to kfu; v� WD kfu�˝kfv�, which denotes the completion of the tensor product

kfu�˝ kfv�, only finitely many tensors suffice. The precise statement is this:

LEMMA [Barsotti 1983, 2.1]. A function '.u; v/ in kfu; v� belongs to

kfu�˝ kfv�

if and only if the vector space U spanned over k by the derivatives dvr'.u; 0/

has finite dimension. If such is the case, the vector space V spanned over k by

the derivatives dur'.0; v/ has the same dimension, and '.u; v/ 2 U ˝V .

3“We are indebted to the Arab mathematician Ibn Jounis for having proposed, in the XIth century a

method, called prostapheresis, to replace the multiplication of two sines by a sum of the same functions”,

according to Papers on History of Science, by Xavier Lefort, Les Instituts de Recherche sur l’Enseignement

des Mathématiques, Nantes.
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To understand the theta-type functions as analytic functions, we also need to

introduce certain numerical invariants.

DEFINITION. We denote by C# the smallest subfield of kfug containing k

and such that F.u; v; w/ 2 C#fv;wg. Note that C# is generated over k by the

dr log# for jr j � 2. This fact has already nontrivial content, in the classical

case; the function field of an abelian variety is generated by the second and

higher logarithmic derivatives of the Riemann theta function. The transcendence

degree transc# is transc(C#=k) and the dimension dim# is the dimension (in

the sense of algebraic varieties) of the smallest local subring of kfu� whose

quotient field contains a theta-type function associated to (namely, as usual,

differing from by a quadratic exponential) # . I am giving a slightly inaccurate

definition of dimension, for in his algebraic theory Barsotti had introduced more

sophisticated objects than subrings; but I will limit myself, for the purposes of

the results of this paper, to the case of “nondegenerate” thetas, which Barsotti

defines as satisfying dim# D n. The inequality transc# � dim# always holds

and Barsotti calls # a “theta function” when equality holds.

The next result is the root of all mystery. Here Barsotti demonstrates that in fact,

the function field of the abelian variety could be generated by the derivatives of

a theta function along fewer than m directions, m being the dimension of the

abelian variety.

THEOREM 2 [Barsotti 1983, 2.4]. For a nondegenerate theta-type

#.u/ 2 kfu1; � � � ;ung;

there exist a nondegenerate theta �.v/2kfv1; � � � ; vmg; m�n; and cij 2k; 1�

i�nI 1�j �m, such that the matrix Œcij � has rank n, and #.u/D�.x1; � � � ;xm/

where xi D
P

j cij uj : The induced homomorphism of kfv� onto kfu� induces

an isomorphism between C� and C# . Conversely, given a compact abelian

variety A of dimension m, for any 0 < n < m there is a holomorphic theta-

type #.u1; � � �un/ such that C# is the function field of A, and is generated over

k by a finite number of dr log# with jr j � 2.

The example. Several experts have suggested (without producing details, as

far as I know) that the statement may be believable in the case of a hyperelliptic

Jacobian, but is already startling in the g D 3, nonhyperelliptic case, and this

is the example I report. This is current work which I happen to be involved in

for totally unrelated reasons; to summarize the motivation and goals in much

too brief a manner, it is work concerned with addition formulae for a function

associated to theta over a stratification of the theta divisor related to the abel

image of the symmetric powers of the curve. Repeating the preliminaries would

be quite lengthy and, more importantly, detract from the focus of this paper, so
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aside from indispensable notation I take the liberty of referring to [Eilbeck et al.

2007].

The key idea goes back to Klein and was developed by H. F. Baker over a

long period (see especially [Baker 1907], where he collected and systematized

this work). To generalize the theory of elliptic functions to higher-genus curves,

these authors started with curves of special (planar) type, for which they ex-

pressed algebraically as many of the abelian objects as possible, differentials of

first and second kind, Jacobi inversion formula, and ultimately, equations for the

Kummer variety (in terms of theta-nulls) and linear flows on the Jacobian. In the

process, they obtained or introduced important PDEs to characterize the abelian

functions in question, and anecdotally, even produced, in the late 1800s, exact

solutions to the KdV and KP hierarchy, without of course calling them by these

names. I just need to quote certain PDEs satisfied by these “generalized abelian

functions”, but I will mention the methods by which these can be obtained.

Firstly, the simplest function to work with, for reasons of local expansion at

the origin, is called “sigma”, it is associated to Riemann’s theta function, and

its normalized (almost-)period matrix satisfies generalized Legendre relations,

being the matrix of periods of suitable bases of differentials of first and second

kind. The definition of sigma is not explicit and considerable computer algebra

is involved, genus-by-genus. The g D 3 case I need here is explicitly reported

in [Eilbeck et al. 2007], but had been obtained earlier (by Ônishi, for instance).

In the suitable normalization, the “last” holomorphic differential !g always

gives rise to the KP flow, namely the abelian vector (0,. . . ,0,1) in the coordinates

.u1; � � � ;ug/D
R

Pg

iD1
.xi ;yi /

g1 !; ! D .!1; � � � ; !g/, simply because of the given

orders of zero of the basis of differentials at the point 1 of the curve, in the

affine .x;y/ plane, which is also chosen as the point of tangency of the KP flow

to the abel image of the curve (indeed, in [Eilbeck et al. 2007] the Boussinesq

equation is derived, as expected for the cyclic trigonal case). It is for this reason

that I choose this direction for the Barsotti variable u.

Now the role of Barsotti’s theta is played by �.u1;u2;u3/— associated to a

Riemann theta function with half-integer characteristics, and explicitly given in

[Eilbeck et al. 2007, (3.8)] — and the role of the Weierstrass }-function, by the

abelian functions }ij .u/ D �
@2

@ui @uj
log �.u/; we label the higher derivatives

the same way,

}ijk.u/D
@

@uk

}ij .u/; }ijk`.u/D
@

@u`

}ijk.u/;

(et cetera, but I only need the first four in my proof).

Barsotti’s statement now amounts to this: the function }33.0; 0;u3/ together

with all its derivatives in the u3 variable, generate the function field of the Ja-
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cobian. Here’s the boring proof! First, the work in [Eilbeck et al. 2007] (and a

series of papers that preceded it): It is straightforward to expand � in terms of

a local parameter on the curve, for example,

u1 D
1

5
u3

5C � � � ; u2 D
1

2
u3

2C � � �

and

x.u1;u2;u3/D
1

u3
3
C � � � ; y.u1;u2;u3/D

1

u3
4
C � � � :

where P ‘
R P

1 ! WD u.P /, so x.P / and y.P / are viewed as functions of

u.P /D .u1;u2;u3/; the image of the curve implicitly defines any of the three

coordinates as functions of one only. Next one expands � as a function of

.u1;u2;u3/, and with the aid of computer algebra, obtains PDEs for the abelian

functions. For example, the identity

}3333 D 6}2
33� 3}22

implies the Boussinesq equation for the function }33, as expected. It is by using

these differential equations, worked out in [Eilbeck et al. 2007] up to four indices

(Appendix B), that I prove Barsotti’s result. As a shorcut, I record a basis of

the space 3� where � (this notation slightly differs from the one chosen in that

reference) is the divisor of the � function. If we can get this basis of abelian

functions, we are sure to generate the function field of the Jacobian, since by the

classical Lefschetz theorem the 3�-divisor map is an embedding. Lemma 8.1 in

[Eilbeck et al. 2007] provides the following basis of 27 elements:
˚

1, }11, }12,

}13, }22, }23, }33, Q1333, }111, }112, }113, }122, }123, }133, }222, }223,

}233, }333, @1Q1333, @2Q1333, @3Q1333, }Œ11�, }Œ12�, }Œ13�, }Œ22�, }Œ23�,

}Œ33�
	

, where

Qijk`.u/D }ijk`.u/� 2.}ij}k`C}ik}j`C}i`}jk/.u/

and }Œij � is the determinant of the complementary .i; j /-minor of Œ}ij �3�3. It

is easy, by substituting in the equations given in [Eilbeck et al. 2007], to see that

if we can obtain all the 2-index } functions, then we can write the necessary 3,

4, and 5-index functions in the given basis. By definition of the Barsotti line,

we have }33, which gives us }22 by the Boussinesq relation given above (we

are allowed to take derivatives with respect to u3). The one that seemed most

difficult to obtain was }23, and I argued as follows: Denote by F the differential

field in the variable u3 generated over C by }33; as we saw it contains }333 and

}22. Now Fij denotes the field generated over F by adding }ij . Eliminating

}13 from the two equations

}2
333 D }

2
23C 4}13� 4}33}22C 4}3

33
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and

Q2233 D 4}13C 3�3}23C 2�2;

we see that F23 is an extension of degree at most 2 of F ; then, either equation

says that }13 belongs to F23. Now, we would like to say that F23 is also at

most a cubic extension of F , and for that, use the equation

}223}233 D 2}3
23C 2}22}23}33

C 2�1C 4}23}13C 2}23�2C 2�3}13C 2�3}
2
23C�3}22}33:

However, we can’t quite control }233, so we also bring in the equations

}333}223 D 2}33}
2
23C}33�3}23� 2}2

22C
2
3
}1333C 2}2

33
}22

and

}2
233
D 4}33}

2
23
C 4}33�3}23C}

2
22
� 4

3
}1333C 4}33�2C 8}33}13:

The first says that }1333 is at most degree two (over F ) in }23; now using the

cubic (and substituting for }1333 in it), we see that }23 satisfies an equation of

degree 3 over F Œ}233�; but from the second equation, }233 is in an extension of

degree at most 2 of F23, so if F23 and F Œ}233� were disjoint, their join would

have degree 4 and }23 could not have degree 3 over F Œ}233�. This shows that

}233 is in F23, and now the cubic together with the quadratic equation yield

}23 2 F: The proof that all other }ij are also in F is now much easier, again

using several of the equations given in [Eilbeck et al. 2007]. If there is an easier

proof, it beats me, for now at least.

REMARK. In a letter of reply to my querie (February 6, 1987), which I would

translate, were it not for fear of misrepresenting as a conjecture what he only

intended to offer as a possibility for my pursuing, Barsotti wrote that it might

be that for generic .c1; � � � ; cm/, suitably high derivatives of log#.c1u; � � � ; cmu/

generate the function field of the abelian variety. In my view, this would not only

restore democracy, but give a beautiful technique for stratifying the moduli space

of abelian varieties according to the “special” parameters c1; � � � ; cm whose line

fails to generate, and which might correspond to tangent vectors to an abelian

variety of smaller dimension (I claim all blame for this additional thought, but

see Section 4 below). In the case of the “purely trigonal” curve above, we know

that “elliptic solitons” can occur [Eilbeck et al. 2001], so does my proof say that

even though � is an elliptic function in the u3 direction, still u3 is a Barsotti

direction? I don’t think so; my proof requires obtaining }23 from algebraic

equations with coefficients in F , for example, but those coefficients depend on

the �i’s and there is no reason why for special values of �i’s the equations

shouldn’t become trivial identities (while they patently can be solved for }23

when the �i’s are generic).
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I can state with certainty at least that at the time of his tragic demise in 1987

Barsotti was very keen on pursuing these ideas [Scorza Dragoni 1988].

2. Barsotti’s and Nakayashiki’s equations

Barsotti equations include KP. Barsotti [1983; 1985] then proceeded to char-

acterize abelian varieties. Again, I give a sketchy rendition of his results, which

glosses over the technical issues of decomposable or degenerate abelian vari-

eties. These are both important and subtle (for instance, the results have to be

modified if you take for # a polynomial!) but since this paper does not make

substantial use of those exceptional cases, my goal is to give a geometric under-

standing of the generic situation. Calling “holomorphic” a theta-type function

whose divisor div# is effective, Barsotti obtains:

THEOREM 3 [Barsotti 1983, 4.1]. A nonzero function #.u/ 2 CŒŒu1; : : : ;un�� is

holomorphic theta-type if and only if all differential polynomials

Hr;s.#.u//D
X

pCqDs
iCjDr

.�1/iCpdi.#/dp.#/dj .#/dq.#/

span a finite dimensional C-vector space. In this case, if fU0; : : : ;Uhg is a

basis, the field C.: : : ; #�3Ui ; : : :/ is the same as the field of the abelian variety

associated to # , Hr;s in turn are holomorphic theta-type and their divisors are

linearly equivalent to 3div# .

Finally, by Taylor-series expansion, Barsotti writes a set of universal PDEs that

characterize abelian varieties, and because of the “incomplete democracy” re-

sult, such PDEs can be produced for any positive number of variables less than

or equal to the dimension of the abelian variety, in particular, one!

THEOREM 4 [Barsotti 1983, 5.5; Barsotti 1985, 12.2]. For the universal differ-

ential polynomials with rational coefficients P2k.y2;y4; : : : ;y2k/ defined by

#.uC v/#.u� v/D 2#2.u/

1
X

rD0

P2r .#.u//v
2r

the same criterion as the above for Hr;s holds. In particular, for the case of one

variable (nD 1), the P0 D
1
2
; : : : ;P2k.y2;y4; : : : ;y2k/ are given by

P2r .#/D
X

j

2jj j�1.j !/�1#
j1

2
#

j2

4
: : : #

jr

2r
;

where the sum is over the multi-indices j � 0 such that j1C2j2C� � �Crjr D r .
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Barsotti [1985] wrote examples of a PDE version of his result, suggesting that

it would be interesting to determine explicitly these PDEs from the ones in one

variable and the vector field @=@u, and in [1989] he conjectures that the KP

equation in his notation become

12P400.: : : ; #i ; : : :/� 3P020.: : : ; #i ; : : :/� 2P101.: : : ; #i; : : :/D 0:

Nakayashiki’s generalized KP. A generalization of the KP equation as defor-

mation of commutative rings of PDOs was long sought-after, and Nakayashiki

[1991] did in fact produce such rings, in g variables for generic (thus, not Ja-

cobians if g � 4) abelian varieties A of dimension g (as well as more general

cases), as .g!� g!/ matrix operators. He constructed modules over such rings

that deform according to a generalized KP hierarchy, though he did not pursue

explicit equations for bases of such modules, which have the form

Nct .n/D
X

s2Zg=nZg

CŒŒt ��
#

�

s=n
0

�

.nzC c � .x0 � d �x1;x
0//

#n.z/

� exp

�

�

g
X

iD1

X

m�ıi1

tm;.i/

.�1/m

m!

�

um;.i/C di.1� ıi1/umC1;.1/

�

�

;

where we have set x1D t1;.1/, xi D t0;.i/ for 2� i � g, and d D .d2; : : : ; dg/ 2

C
g�1 is such that at the point of the theta divisor we are considering (the el-

ements of the module Nct are in the stalk of a sheaf, defined via a cocycle

by the vector c 2 C
g, the “initial condition” for the hierarchy) the g-tuple

.��1
1
; ��1

1
�i C di/iD2;:::;g/ gives local coordinates; moreover x0 denotes the

vector .x2; : : : ;xg/ if x D .x1; : : : ;xg/, while .i/ denotes the .g � 1/-tuple

.0; : : : ; 0; 1; 0; : : :/ with a 1 in the .i � 1/-st position, and .1/ D .0; : : : ; 0/;

finally, ui1;:::;ig
denotes @

i1
z1
: : : @

ig

zg
log#.z/.

The differential equations are obtained as follows. Firstly, we denote by P

the ring of microdifferential operators, defined by Sato [1989] via the choice of

a codirection dx1, which can be taken to correspond to an equation x1 D 0 for

the theta divisor

DD CŒŒt1; : : : ; tg ��Œ@1; : : : ; @g�� PD CŒŒt ��ŒŒ@�1
1 ; @�1

1 @2 : : : ; @
�1
1 @g��Œ@1�

filtered by the order ˛1C � � �C˛g of @˛ D @
˛1

1
: : : @

˛g

g .

Now Nct can be embedded in P as a D-submodule, ' 2Nct ‘ �.'/DW' ,

in such a way that W@'=@xi
D .@W'=@xi/CW'@i D @iW' for 1� i �g and the

D-submodule of P; Jct .n/D � .Nct .nC 1//, satisfies P.n/ D Jct .n/˚P.Jn;ct /

where Jn;ct is a suitable collection of indices from Z�N
g�1, and

P.J /D
n

X

a˛@
˛ j a˛ D 0 unless ˛ 2 J

o

:



LINES ON ABELIAN VARIETIES 333

Lastly, a set of g! suitable D-generators W˛ of Jct , ˛ … Jn;ct for all n� 0; can

be chosen of the form @˛+[an operator whose terms have multiindices belonging

to Jj˛j;ct ] and these satisfy the evolution equations .@W˛=@tˇ/CW˛@
ˇ 2 Jct D

S1
nD0 Jct .n/, for ˇ in the index set .mC 1; .i//, with .m; .i// defined above.

In [Mironov 2002], it is claimed that the functions in

Nct � exp

�

�

g
X

iD1

X

m�ıi1

tm;.i/

.�1/m

m!

�

um;.i/C di.1� ıi1/umC1;.1/

�

�

are independent of the time variables, but I think this is due to a small oversight,

since the first g time variables do enter the argument of # , as .x1;x
0/, whereas,

as correctly asserted in [Mironov 2002], the higher-time variables are stationary.

The commutative ring of PDOs does not undergo a deformation beyond the g-

dimensional variety A_, which indeed is Pic0 A.

Nakayashiki does not claim that his equations characterize abelian varieties.

Nevertheless, it should be possible to produce them from Barsotti’s equations,

which characterize theta functions, and it would be very interesting to see how

Nakayashiki’s formulas are given by constraints on Barsotti’s universal polyno-

mials (among these, what Barsotti calls “initial conditions” return the moduli of

the each specific abelian variety; see ~ 7 of [Barsotti 1983] for the example of

elliptic curves).

3. Sato’s Grassmannian, Parshin’s flag manifold,

Arbarello–De Concini’s projective space

Grassmannian for a chosen splitting. Nakayashiki’s theory was inspired by

Sato’s programme [1989], a specific splitting P D J˚ E0 into D-modules. In

one variable, there is a natural splitting and the corresponding J are exactly the

cyclic submodules; the deformations are linear flows on the universal Grassmann

manifold modeled on the vector space Pconst W@
˛$@˛=.Pt1C� � �CPtg/:What is

the correct model in several variables? To my knowledge there is no definitive

answer known; I provide two different models below, based on Parshin’s, re-

spectively, Arbarello–De Concini’s constructions, and the project of computing

Nakayashiki’s flows in both, which should be both doable (in dimension 2) and

enlightening.

Parshin’s Krichever flag manifold. Parshin [1999] proposed a different con-

struction, based on the theory of higher local fields, in which the commuting par-

tial differential operators are scalar. An n-dimensional local field K (with “last”

residue field C) is the field of iterated Laurent series KDC..x1// : : : ..xn//, with

the structure of a complete discrete valuation ring ODC..x1// : : : ..xn�1//ŒŒxn��

having an .n � 1/-dimensional local field for its residue field. Note that the
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order of the variables matters, in the sense that C..x1//..x2// does not contain

the same elements as C..x2//..x1//— for instance, the former contains elements

of unbounded positive degree in x1 — although they are isomorphic. These are

suited to give local coordinates on an n-dimensional manifold, since the inverse

of a polynomial in x1;x2, say, can be written as the inverse of the highest-

order monomial times something entire, so as a Laurent series it is bounded

in both variables. Whereas the symbols C..x1;x2// D
˚
P

jiCj j<N cij xi
1
x

j
2

	

cannot be given a ring structure unless we want to define sums of infinitely

many complex numbers, because i C j D N involves infinitely many indices

unless we bound j (or i) from above. With this definition, Parshin constructs

a 2n-dimensional skew-field P, infinite-dimensional over its center, namely the

(formal) pseudodifferential operators

PD C..x1// : : : ..xn//..@
�1
1 // : : : ..@�1

n //:

The order of the variables is also singled out in the definition of the grading:

If L D
P

i�m ai@
i
n with am ¤ 0, we say that the operator L has order m and

write ord L D m. If Pi D fL 2 P j ord L � ig, then � � �P�1 � P0 � � � � is a

decreasing filtration of P by subspaces and PDPC˚P�, where P�DP�1 and

PC consists of operators involving only nonnegative powers of @n. The highest

term (h.t.) of an operator L is defined by induction on n. If L D
P

i�m ai@
i
n

and ord L D m, then h:t:.L/ D h:t:.am/ � @
m. If h:t:.L/ D f @

m1

1
: : : @

mn
n with

0¤ f 2C..x1// : : : ..xn//, then we let �.L/D .m1; : : : ;mn/. We consider also

the subring E D CŒŒx1; : : : ;xn��..@
�1
1
// : : : ..@�1

n // of P, and E˙ DE \P˙.

In this setting, Parshin’s original proposal for a KP hierarchy — which is cur-

rently being modified by his former student Dr. A. Zheglov [Zheglov 2005] —

makes good on his striking conjugation result, based on [Krichever 1977; Sato

1989] (I omit some technical specifications, for which see [Parshin 1999]):

PROPOSITION. (i) An operator L2E is invertible in E if and only if the coeffi-

cient f in the highest-order term of L is invertible in the ring CŒŒx1; : : : ;xn��.

If f in L 2 P is an m-th power in C..x1// : : : ..xn// (resp., CŒŒx1; : : : ;xn�� for

L2E) then there exists, unique up to multiplication by m-th root of unity, an

operator M 2 P (resp. M 2 E) such that M m D L. Thus, P0 is a discrete

valuation ring in P with residue field C..x1// : : : ..xn//..@
�1
1
// : : : ..@�1

n�1
//.

(ii) Let L1 2 @1CE�; : : : ;Ln 2 @nCE�. Then ŒLi ;Lj �D 0 for all i; j if and

only if there exists an operator S 2 1CE� such that Li DS�1@iS , for all i .

(iii) For LD .L1; : : : ;Ln/ as in (ii), the flows

@L

@tM
D

�

Œ.L
m1

1
� � �Lmn

n /C;L1� : : : Œ.L
m1

1
� � �Lmn

n /C;Ln�
�

;

M D .m1; : : : ;mn/ 2 Z�0 � : : :�Z�0
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commute, and if S 2 1CP� satisfies

@S

@tM
D�.S@

m1

1
� � � @mn

n S�1/�S;

then LD .S@1S�1; : : : ;S@nS�1/ evolves according to them.

REMARK. Barsotti’s field .kfug WD Q.kfu�/ is larger than Sato’s ring of pseu-

dodifferential operators. Parshin’s E is much larger than Sato’s ring

CŒŒx1; : : : ;xn��ŒŒ@
�1
1 ; @�1

1 @2; : : : ; @
�1
1 @g��

when n > 1. Finally, Barsotti’s and Parshin’s rings are different, though both

adapted to a local description of a (say, if g D 2) surface. Parshin’s ring is

smaller and it is not symmetric in x;y, for instance, while Barsotti’s kfx;y� is.

Parshin [2001a; 2001b] generalizes the Krichever map, which associates to a

local parameter on a curve and other geometric data a point of an infinite-

dimensional Grassmannian (via the Baker–Akhiezer function), and to two local

parameters, roughly speaking the choice of a curve on a surface and a point

on that curve, and geometric data (a sheaf on the surface), associates a point

of an infinite-dimensional 2-step flag manifold. This would be an appropriate

setting for producing Nakayashiki’s .2�2) matrix operators, via a choice of one

basis element in a subspace and one in the quotient. This approach has not been

taken, but the operators are explicit enough for genus 2 that the plan is concrete.

At the same time, the brothers Aloysius and Gerard Helminck [1994a; 1994b;

1995; 2002] put a Fubini–Study metric on the infinite-dimensional projective

space of flags, computed the central extension of the restricted linear group that

acts on the manifold, and adapted the resulting (Kähler) manifold to flows of

completely integrable systems, which include well-known ones. This is a natural

setting for linearizing Nakayashiki’s and Parshin’s generalizations of the KP

hierarchy. Sato’s result, to the effect that Hirota’s bilinear equation is equivalent

to the Plücker relations which characterize the image of the Grassmannian in its

Plücker embedding, should then be extended to the image of the Parshin flags.

Arbarello–De Concini’s Plücker embedding. A different Grassmannian con-

struction for abelian varieties is devised by Arbarello and De Concini [Arbarello

and De Concini 1991]. They model a moduli space of abelian varieties on a

Grassmannian, making use of one local parameter only, reminiscent of Sato’s

codirection, though they do not assume that its dual is tangent to the theta divisor,

as Sato and Parshin do. They succeed, using classical theta-function theory, in

producing enough data to embed the moduli space QHg (very roughly, a univer-

sal family of abelian varieties of dimension g, QAg extended by a Heisenberg

action) in PB, where B is the usual Boson space CŒŒt1; : : : ; tk ; : : :��; they also
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give a theta-function formula for the � function. The significant advantage of

this construction is that they can compare this embedding with that of Jacobians

via the usual Krichever map and they prove that the diagram

QAg  QHg � PB

" " % "
QMg  QFg Œ GrH Œ PF

is commutative, where QMg is, again roughly speaking, a moduli space of genus-

g curves, and QFg is fibred over QMg by the Pic.g�1/’s of the curves, H DC..z//

is the space of formal Laurent series, F D � .GrH; det�1/�:

In their moduli spaces, Arbarello and De Concini use one complex variable z,

which suggests that Barsotti’s line may provide the embedding equations. This is

also the principle of the (formal) work we carried out in [Lee and Previato 2006].

Thanks to Parshin’s conjugation result, one “Sato operator” S suffices. One

then can write, by the usual boson-fermion correspondence, a Baker function,

as done by M. H. Lee and also in [Plaza-Martı́n 2000]; the function comprises

.z1; : : : ; zn/ but essentially records points of a Grassmannian where the variable

z1 plays a distinguished role (as in Parshin’s grading), and one can write a formal

inversion of the logarithm and a formal � function in the following way. (I omit

as usual technical provisos; see [Lee and Previato 2006] for those.)

In analogy to the Segal–Wilson construction for the one-variable case, we let

H D L2.T n/ be the Hilbert space consisting of all square-integrable functions

on the n-torus

T n D f.z1; : : : ; zn/ 2 C
n j jz1j D � � � D jznj D 1g;

which can be identified with the product of n copies of the unit circle S1 �C
n.

Then the Hilbert space H can be written in the form

H D hz˛j˛ 2 Z
niC:

The multi-index notation is defined as follows: z˛ D z
˛1

1
� � � z

˛n
n , j˛j D ˛1C� � �

C˛n if zD .z1; : : : ; zn/2C
n and ˛D .˛1; : : : ; ˛n/2Z

n. If ˇD .ˇ1; : : : ; ˇn/ is

another element of Z
n, we write ˛�ˇ when ˛i �ˇi for each i 2 f1; : : : ; ng. We

define a splitting H D HC˚H� adapted to Parshin’s filtration [1999; 2001b;

2001a] and the Krichever map. Then, as in the one-variable case, there is a

one-to-one correspondence between certain subspaces of H commensurable to

HC WD CŒŒz1; : : : ; zn�� and wave functions, given by  ‘W , where a spanning

set for W is given by all derivatives @
j1

1
: : : @

jn
n  , evaluated at z D 0, where

0 D .0; : : : ; 0/ 2 Z
n. We take this to be the Grassmannian Gr.H /. We denote

by pC WH !HC and p� WH !H� the natural projection maps. A subspace

W of H is said to be transversal to H� if the restriction pC jW WW !HC of
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pC to W is an isomorphism. For a holomorphic function g WDn! C defined

on the closed polydisk

Dn D f.z1; : : : ; zn/ 2 C
n j jz1j � 1; : : : ; jznj � 1g

with g.0/D 1, g.z/D g.z1; : : : ; zn/ can be written in the form

g.z/D exp

�

X

˛2Z
n
C

t˛z˛

�

with t˛ 2 C for all ˛ 2 Z
n
C WD f˛ 2 Z

nj˛ � 0; ˛ ¤ 0g. We define the maps

�g; �g�1 WH !H by

.�gf /.z/D g.z/f .z/; .�g�1f /.z/D g.z/�1f .z/

for all f 2 W and z 2 C
n. Since �g�1.HC/ � HC, with respect to the de-

composition of H , the map �g�1 can be represented by a block matrix of the

form

�g�1 D

�

a b

0 c

�

;

whose entries are the maps a WHC!HC; b WH�!HC; c WH�!H�:

Given W 2 Gr.H /, we set

� W
C D fg 2 �C j �g�1W is transversal to H�g:

Thus g belongs to � W
C if and only if the map pCj�

g�1W W�g�1W !HC is an

isomorphism.

Let S be the complex vector space of formal Laurent series in z�1
1
; : : : ; z�1

n

consisting of series of the form

v D
X

˛��

f˛.t/z
˛

for some � 2Z
n with tD .t˛/˛2Z

n
C

. We consider the subspace S� of S consisting

of the series which can be written as

v D

k0
X

kD�1

fk.t I z1; : : : ; zn�1/z
k
n

for some k0 2 Z with k0 � �1, so that there is a decomposition of the form

SD SC˚ S�; where SC consists of the series of the form

`0
X

kD0

fk.t I z1; : : : ; zn�1/z
k
n



338 EMMA PREVIATO

for some nonzero integer `0. Given an element W of the Grassmannian Gr.H /,

the associated Baker function wW .g; z/ is the function defined for g 2� W
C and

z 2 T n satisfying the conditions

wW .g; z/ 2W; �g�1wW .g; z/D 1Cu

with u2S�. Since each element g2� W
C can be written in the exponential form,

the Baker function wW .g; z/ may be regarded as a function for t D .t˛/˛2Z
n
C

and z 2 T n. Thus we may write wW .g; z/D wW .t; z/; t D .t˛/˛2Z
n
C

.

Let W 2 Gr.H / be transversal to H�, so that the map pCjW WW !HC is

an isomorphism, and let g be an element of � W
C . We consider the sequence

HC

.pC jW /
�1

! W

�g�1

! �g�1W

pC

! HC

�g

! HC

of complex linear maps. Given g 2 � W
C and an element W 2 Gr.H / transver-

sal to H�, the associated �-function �W .g/ D �W .t/ D �W ..t˛/˛2Z
n
C
/ is the

function

�W .g/D det
�

�g ıpC ı�g�1 ı .pC jW /
�1

�

given by the determinant of the composite of the linear maps above. Let � W

HC!H� be the linear map given by�Dp�ı.pCjW /
�1. Then the �-function

can be written in the form

�W .g/D det.1C a�1b�/;

where a and b are as above and 1 denotes the identity map on HC. We define

the rational numbers "˛ for ˛ 2 Z
n
C by requiring

X

˛2Z
n
C

"˛x˛ D

1
X

kD1

.�1/k

k

�

X

ˇ2Z
n
C

xˇ

�k

;

where x D .x1; : : : ;xn/ is a multivariable.

THEOREM 5 [Lee and Previato 2006]. Let W 2 Gr.H / be transversal, and let

g WDn! C be an exponential. Then the associated �-function

�W .g/D �W ..t˛/˛2Z
n
C
/

satisfies

�g�1wW .g; z/D
�W

�

.t˛C "˛z�˛/˛2Z
n
C

�

�W ..t˛/˛2Z
n
C
/

;

where wW .g; z/ is the Baker function.

The next step would be to write this formula in terms of theta functions after

Arbarello–De Concini.
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4. Reducible cases

A project which I believe less trivial than it seems, occurs in the case of

reducible abelian varieties. For example, the Schrödinger operator

@

@x2
C

@

@y2
�}.x/}.y/

has commutator which must be isomorphic to the ring C.@=@x2 � }.x// ˝

C.@=@y2�}.y//, whose associated “spectral” variety is E0�E0, where E0 is

the spectral variety of C.@=@x2�}.x//.

While this case can be regarded as trivial, by analogy, the elliptic (or rational)

curve case of the Hitchin system for vector bundles, in which the moduli of

vector bundles are simply a product of copies of the curve, is still the only

one in which the solutions can be given explicitly ([Nekrasov 1996] is just one

earliest reference). In the reducible-potential case, Parshin’s flows for L1;L2

and Nakayashiki’s equations can be written explicitly, but they have not yet been

compared; in this case there is a KP hierarchy.

The differential resultant for this case, in which the variety is known, can

serve as a toy model for a truly generalized theory. (The model used in [Kas-

man and Previato 2001], by analogy with the algebraic definition of resultant

of polynomial equations in several variables given by Macaulay [1916], falls

short because, due to the additional variables at infinity, it is often identically

zero.) It can also serve for testing the conjecture made in [Kasman and Previato

2001] that the resultant is independent of the operator variables, up to a factor

whose numerical nature (degrees in the variables, e.g., for the case of the Weyl

algebra), should be the same in general as in the reducible case. Moreover this

reducible case provides a nonexample for Barsotti’s theorem.4 Indeed, if an

abelian surface is isogenous to the product E1�E2 of two elliptic curves, as is

the case for the Jacobian of a genus-2 curve that covers an elliptic curve, then

we can take u to be the direction that projects to one of the tori; the derivatives

in the u direction will only produce the elliptic functions in one variable; an

explicit calculation is known classically and was reproduced by J. C. Eilbeck

(unpublished notes) to input the parametrization of all the genus-2 elliptic covers

whose Jacobian is isomorphic (without principal polarization) to the product of

two elliptic curves. I briefly provide some motivation and the formula (which

does not do sufficient justice to Eilbeck’s considerable work in implementing

two reduction algorithms, on Siegel matrices and Fourier expansions, given in

theory by H. H. Martens and J.-I. Igusa). The motivation was a recent result

4 “Quite often in mathematics, a “nonexample” is as helpful in understanding a concept as an example” —

J. A. Gallian, Contemporary abstract algebra, Chapter 4.
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of C. Earle [2006], who described all the 2 � 2 matrices in the Siegel upper-

half space that correspond to genus-2 curves whose Jacobian is isomorphic to

a product of elliptic curves. Note that the expected parameter count should be

one and not two (Jacobians that split up to isogeny) since Martens had shown

that in the isomorphic case the two elliptic curves must be isomorphic. I asked

Eilbeck whether we could do the effectivization of the KdV solutions for all

these matrices. The “Earle matrix”5

Z D �

�

na nb

nb d

�

with � in the upper-half plane, and a; b; d; n positive integers such that ad �

nb2 D 1, nonsymplectically equivalent to a diagonal:

.I; z/D .I; �V /

�

I 0

0 T

�

;

where V WD

�

n 0

0 1

�

; T WD �

�

a b

nb d

�

can be symplectically transformed into

2

6

4

�
1

�na
�

b

a

�
b

a
1C

�

a

3

7

5
:

Eilbeck implemented (by creating Maple routines) a special case, the 2-dimen-

sional abelian variety being (2:1)-isogenous to E1�E2, the two elliptic curves

Ei having invariants �i , and decomposed the theta function � (with character-

istics) of A thus: For the matrix

Q� D

2

4

1
2
�1

1
2

1
2
�

1

2.2C �2/

3

5 ;

we have

�
h

0
1
2

0
0

i

��

�1
2
v1

� v1�2v2

2.2C�2/

�

; Q�

�

D�
h

0
1
2

i �

�
v1

2
;
�1

2

�

�
h

0
0

i

�

v1� 2v2

2C �2
;�

2

2C �2

�

C�
h

0
0

i �

�
v1

2
;
�1

2

�

�

�

1
2

0

� �

v1� 2v2

2C �2
;�

2

2C �2

�

:

5Not all matrices of this form are period matrices of genus-2 curves; Earle gives a criterion. Also, not all

the matrices of this form that are period matrices correspond to different curves, as they may come from the

same curve via a different choice of homology basis; in two further theorems Earle gives criteria to tell curves

apart.



LINES ON ABELIAN VARIETIES 341

This shows that higher derivatives of � in the directions �i are elliptic functions

in �i , thus cannot generate the function field of A.

Appendix

I cannot help mentioning the theory of infinite-genus Riemann surfaces that

Henry McKean, originally in collaboration with Eugene Trubowitz, developed

for KdV spectral varieties attached to a periodic potential that is not “finite-

gap”. In a rigorous analytic way, this extends the theory of the Jacobian, and

the theta function.6 There is still scope for a theory of reduction, elliptic soli-

tons, and differential operators with elliptic coefficients; there are many more

“Variations on a Theme of Jacobi”, in other words, awaiting for Henry’s face-

altering contributions to the field: one more reason to say, Henry, many, many

happy returns!
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