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ABSTRACT. The study of several naturally arising “nearest neighbour” ran-

dom walks benefits from the study of the associated orthogonal polynomials

and their orthogonality measure. I consider extensions of this approach to a

larger class of random walks. This raises a number of open problems.

1. Introduction

Consider a birth and death process, i.e., a discrete time Markov chain on the

nonnegative integers, with a one step transition probability matrix P. There is

then a time-honored way of writing down the n-step transition probability matrix

P
n in terms of the orthogonal polynomials associated to P and the spectral

measure. This goes back to Karlin and McGregor [1957] and, as they observe,

it is nothing but an application of the spectral theorem. One can find some

precursors of these powerful ideas, see for instance [Harris 1952; Ledermann

and Reuter 1954]. Inasmuch as this is such a deep and general result, it holds

in many setups, such as a nearest neighbours random walk on the N th-roots of

unity. In general this representation of P
n allows one to relate properties of the

Markov chain, such as recurrence or other limiting behaviour, to properties of

the orthogonality measure.
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In the few cases when one can get one’s hands on the orthogonality mea-

sure and the polynomials themselves this gives fairly explicit answers to various

questions.

The two main drawbacks to the applicability of this representation (to be

recalled below) are:

a) typically one cannot get either the polynomials or the measure explicitly.

b) the method is restricted to “nearest neighbour” transition probability chains

that give rise to tridiagonal matrices and thus to orthogonal polynomials.

The challenge that we pose in this paper is very simple: to try to extend the class

of Markov processes whose study can benefit from a similar association.

There is an important collection of papers that study in detail the cases where

the entries in P depends linearly, quadratically or even rationally on the index

n. We make no attempt to review these results, but we just mention that the

linear case involves (associated) Laguerre and Meixner polynomials, and the

other cases involve associated dual Hahn polynomials. For a very small sample

of important sources dealing with this connection see [Chihara 1978; van Doorn

2003; Ismail et al. 1990].

The plan for this paper is as follows. In Section 2, we review briefly the

approach of S. Karlin and J. McGregor. In Sections 3, 4, and 5, we consider

a few examples of physically important Markov chains that happen to feature

rather well known families of orthogonal polynomials. In Sections 6–10 we pro-

pose a way of extending this representation to the case of certain Markov chains

where the one-step transition probability matrix is not necessarily tridiagonal.

For concreteness we restrict ourselves to the case of pentadiagonal matrices or

more generally block tridiagonal matrices. This is illustrated with some exam-

ples. A number of open problems are mentioned along the way; a few more

are listed in Section 11. The material in Sections 2–5 is well known, while the

proposal developed in Sections 3–10 appears to be new.

After this paper was completed we noticed that [Karlin and McGregor 1959]

contains an explicit expression for the spectral matrix corresponding to the ex-

ample that we treat in Section 10. The same example, as well as the connection

with matrix valued orthogonal polynomials is discussed in [Dette et al. 2006].

See also [Grünbaum and de la Iglesia 2007] for a fruitful interaction with group

representation theory.

2. The Karlin–McGregor representation

If we have

Pi;j D PrfX.n C 1/D j j X.n/D ig
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for the 1-step transition probability of our Markov chain, and we put pi DPi;iC1,

qiC1 D PiC1;i , and ri D Pi;i we get for the matrix P, in the case of a birth and

death process, the expression

P D

0

B

B

@

r0 p0 0 0

q1 r1 p1 0

0 q2 r2 p2

: : :
: : :

: : :

1

C

C

A

We will assume that pj > 0, qjC1 > 0 and rj � 0 for j � 0. We also assume

pj C rj C qj D 1 for j � 1 and by putting p0 C r0 � 1 we allow for the state

j D 0 to be an absorbing state (with probability 1 � p0 � r0). Some of these

conditions can be relaxed.

If we introduce the polynomials Qj .x/ through the conditions Q�1.0/D 0,

Q0.x/D 1 and, using the notation

Q.x/D

0

@

Q0.x/

Q1.x/
:::

1

A ;

we insist on the recursion relation

PQ.x/D xQ.x/;

we can prove the existence of a unique measure  .dx/ supported in Œ�1; 1� such

that

�j

Z 1

�1

Qi.x/Qj .x/ .dx/D ıij ;

and obtain the Karlin–McGregor representation formula

.Pn/ij D �j

Z 1

�1

xnQi.x/Qj .x/ .dx/:

Many general results can be obtained from this representation formula, some of

which will be given for certain examples in the next three sections.

Here we just remark that the existence of

lim
n!1

.Pn/ij

is equivalent to  .dx/ having no mass at x D �1. If this is the case this limit

is positive exactly when  .dx/ has some mass at x D 1.

If one notices that Qn.x/ is nothing but the determinant of the .nC1/�.nC1/

upper-left corner of the matrix xI � P, divided by the factor

p0p1; : : : ;pn�1;
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and one defines the polynomials qn.x/ by solving the same three-term recursion

relation satisfied by the polynomials Qn.x/, but with the indices shifted by one,

and the initial conditions q0.x/D 1, q1.x/D .x �r1/=p1, it becomes clear that

the .0; 0/ entry of the matrix

.xI � P/�1

should be given, except by the constant p0, by the limit of the ratio

qn�1.x/=Qn.x/:

On the other hand the same spectral theorem alluded to above establishes an

intimate relation between

lim
n!1

qn�1.x/=Qn.x/

and
Z 1

�1

d .�/

x �� :

We will see in some of the examples a probabilistic interpretation for the

expression above in terms of generating functions.

The same connection with orthogonal polynomials holds in the case of a

birth and death process with continuous time, and this has been extensively

described in the literature. The discrete time situation discussed above is enough

to illustrate the power of this method.

3. The Ehrenfest urn model

Consider the case of a Markov chain in the finite state space 0; 1; 2; : : : ; 2N ,

where the matrix P given by
0

B

B

B

B

B

B

B

B

B

B

@

0 1
1

2N
0 2N �1

2N
2

2N
0 2N �2

2N
: : : 0

: : :
: : :

: : :
: : :

: : : 0 1
2N

2N
2N

0

1

C

C

C

C

C

C

C

C

C

C

A

:

This situation arises in a model introduced by P. and T. Ehrenfest [1907], in an

effort to illustrate the issue that irreversibility and recurrence can coexist. The

background here is, of course, the famous H -theorem of L. Boltzmann.

For a more detailed discussion of the model see [Feller 1967; Kac 1947]. This

model has also been considered in dealing with a quantum mechanical version
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of a discrete harmonic oscillator by Schrödinger himself; see [Schrödinger and

Kohlrausch 1926].

In this case the corresponding orthogonal polynomials (on a finite set) can

be given explicitly. Consider the so called Krawtchouk polynomials, given by

means of the (truncated) Gauss series

2
QF1

�

a; b

c
I z

�

D
2N
X

0

.a/n.b/n

n!.c/n
zn

with

.a/n � a.a C 1/ : : : .a C n � 1/; .a/0 D 1:

The polynomials are given by

Ki.x/D 2
QF1

�

�i;�x

�2N
I 2

�

x D 0; 1; : : : ; 2N I i D 0; 1; : : : ; 2N

Observe that

K0.x/� 1;Ki.2N /D .�1/i :

The orthogonality measure is read off from

2N
X

xD0

Ki.x/Kj .x/

�

2N
x

�

22N
D .�1/i i !

.�2N /i
ıij � ��1

i ıij 0 � i; j � 2N:

These polynomials satisfy the second order difference equation

1
2
.2N � i/KiC1.x/� 1

2
2NKi.x/C 1

2
iKi�1.x/D �xKi.x/;

and this has the consequence that

0

B

B

B

B

B

B

B

B

B

B

@

0 1
1

2N
0 2N �1

2N
2

2N
0 2N �2

2N
: : : 0

: : :
: : :

: : :
: : :

: : : 0 1
2N

2N
2N

0

1

C

C

C

C

C

C

C

C

C

C

A

0

B

B

@

K0.x/

K1.x/
:::

K2N .x/

1

C

C

A

D
�

1 � x

N

�

0

B

B

@

K0.x/

K1.x/
:::

K2N .x/

1

C

C

A
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any time that x is one of 0; 1; : : : ; 2N . This means that the eigenvalues of the

matrix P above are given by the values of 1 � .x=N / at these values of x, that

is,

1; 1 � 1

N
; : : : ;�1;

and that the corresponding eigenvectors are the values of

ŒK0.x/;K1.x/; : : : ;K2N .x/�
T

at these values of x.

Since the matrix P above is the one step transition probability matrix for our

urn model we conclude that

.Pn/ij D �j

2N
X

xD0

�

1 � x

N

�n

Ki.x/Kj .x/

�

2N
x

�

22N
:

We can use these expressions to rederive some results given in [Kac 1947].

We have

.Pn/00 D
2N
X

xD0

�

1 � x

N

�n
�

2N
x

�

22N

and the “generating function” for these probabilities, defined by

U.z/�
1
X

nD0

zn.Pn/00

becomes

U.z/D
2N
X

xD0

N

N.1 � z/C xz

�

2N
x

�

22N
:

In particular U.1/ D 1 and then the familiar “renewal equation” (see [Feller

1967]) given by

U.z/D F.z/U.z/C 1;

where F.z/ is the generating function for the probabilities fn of returning from

state 0 to state 0 for the first time in n steps

F.z/D
1
X

nD0

znfn

gives

F.z/D 1 � 1

U.z/

Therefore we have F.1/D 1, indicating that one returns to state 0 with proba-

bility one in finite time.
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These results allow us to compute the expected time to return to state 0. This

expected value is given by F 0.1/, and we have

F 0.z/D U 0.z/

U 2.z/
:

Since

U 0.z/D
2N
X

xD0

N.N � x/

.N.1 � z/C xz/2

�

2N
x

�

22N

we get F 0.1/ D 22N . The same method shows that any state i D 0; : : : ; 2N is

also recurrent and that the expected time to return to it is given by

22N

�

2N

i

� :

The moral of this story is clear: if i D 0 or 2N , or if i is close to these values,

meaning that we start from a state where most balls are in one urn, it will take on

average a huge amount of time to get back to this state. On the other hand if i D
N , that is, we are starting from a very balanced state, then we will (on average)

return to this state fairly soon. Thus we see how the issues of irreversibility and

recurrence are rather subtle.

In a very precise sense these polynomials are discrete analogs of those of

Hermite in the case of the real line. For interesting material regarding this section

the reader should consult [Askey 2005].

4. A Chebyshev-type example

The example below illustrates nicely how certain recurrence properties of the

process are related to the presence of point masses in the orthogonality measure.

This is seen by comparing the two integrals at the end of the section.

Consider the matrix

P D

0

B

B

@

0 1 0

q 0 p

0 q 0 p
: : :

: : :
: : :

1

C

C

A

with 0 � p � 1 and q D 1 � p. We look for polynomials Qj .x/ such that

Q�1.x/D 0; Q0.x/D 1
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and if Q.x/ denotes the vector

Q.x/�

0

B

B

@

Q0.x/

Q1.x/

Q2.x/
:::

1

C

C

A

we ask that we should have

PQ.x/D xQ.x/:

The matrix P can be conjugated into a symmetric one and in this fashion one

can find the explicit expression for these polynomials.

We have

Qj .x/D
�

q

p

�j=2 �

.2 � 2p/Tj

�

x

2
p

pq

�

C .2p � 1/Uj

�

x

2
p

pq

��

where Tj and Uj are the Chebyshev polynomials of the first and second kind.

If p � 1=2 we have

�

p

1�p

�nZ
p

4pq

�
p

4pq

Qn.x/Qm.x/

p

4pq�x2

1 � x2
dx D ınm

�

2.1 � p/� if n D 0,

2p.1 � p/� if n � 1,

while if p � 1=2 we get a new phenomenon, namely the presence of point

masses in the spectral measure

�

p

1�p

�n �Z
p

4pq

�
p

4pq

Qn.x/Qm.x/

p

4pq � x2

1 � x2
dx

C.2 � 4p/�ŒQn.1/Qm.1/C Qn.�1/Qm.�1/�

�

D ınm

�

2.1 � p/� if n D 0,

2p.1 � p/� if n � 1.

From a probabilistic point of view these results are very natural.

5. The Hahn polynomials, Laplace and Bernoulli

As has been pointed out before, a limitation of this method is given by the sad

fact that given the matrix P very seldom can one write down the corresponding

polynomials and their orthogonality measure. In general there is no reason why

physically interesting Markov chains will give rise to situations where these

mathematical objects can be found explicitly.

The example below shows that one can get lucky: there is a very old model of

the exchange of heat between two bodies going back to Laplace and Bernoulli,
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see [Feller 1967, p. 378]. It turns out that in this case the corresponding orthog-

onal polynomials can be determined explicitly.

The Bernoulli–Laplace model for the exchange of heat between two bodies

consists of two urns, labeled 1 and 2. Initially there are W white balls in urn 1

and B black balls in urn 2. The transition mechanism is as follows: a ball is

picked from each urn and these two balls are switched. It is natural to expect

that eventually both urns will have a nice mixture of white and black balls.

The state of the system at any time is described byw, defined to be the number

of white balls in urn 1. It is clear that we have, for w D 0; 1; : : : ;W

Pw;wC1 D W �w
W

W �w
B

; Pw;w�1 D w

W

B � W Cw

B
;

Pw;w D w

W

W �w
B

C W �w
W

B � W Cw

B
:

Notice that

Pw;w�1 C Pw;w C Pw;wC1 D 1:

Now introduce the dual Hahn polynomials by means of

Rn.�.x//D 3
QF2

�

�n;�x;x � W � B � 1

�W;�W

ˇ

ˇ

ˇ

ˇ

1

�

n D 0; : : : ;W I x D 0; : : : ;W:

These polynomials depend in general on one more parameter.

Notice that these are polynomials of degree n in

�.x/� x.x � W � B � 1/:

One has

Pw;w�1Rw�1 C Pw;wRw C Pw;wC1RwC1 D
�

1 � x.B C W � x C 1/

BW

�

Rw:

This means that for each value of x D 0; : : : ;W the vector

0

B

B

@

R0.�.x//

R1.�.x//
:::

RW .�.x//

1

C

C

A

is an eigenvector of the matrix P with eigenvalue 1 � x.BCW �xC1/

BW
. The

relevant orthogonality relation is given by

�j

W
X

xD0

Ri.�.x//Rj .�.x//�.x/D ıij
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with

�.x/D w!.�w/x.�w/x.2x � W � B � 1/

.�1/xC1x!.�B/x.x � W � B � 1/wC1

; �j D .�w/j
j !

.�B/w�j

.w� j /!
:

The Karlin–McGregor representation gives

.Pn/ij D �j

W
X

xD0

Ri.�.x//Rj .�.x//e
n.x/�.x/

with e.x/D 1 � x.BCW �xC1/

BW
.

These results can be used, once again, to get some quantitative results on this

process.

Interestingly enough, these polynomials were considered in great detail by

S. Karlin and J. McGregor [1961] and used by these authors in the context of a

model in genetics describing fluctuations of gene frequency under the influence

of mutation and selection. The reader will find useful remarks in [Diaconis and

Shahshahani 1987].

6. The classical orthogonal polynomials and the bispectral problem

The examples discussed above illustrate the following point: quite often the

orthogonal polynomials that are associated with important Markov chains be-

long to the small class of polynomials usually referred to as classical. By this

one means that they satisfy not only three term recursion relations but that they

are also the common eigenfunctions of some fixed (usually second order) dif-

ferential operator. The search for polynomials of this kind goes back at least

to [Bochner 1929]. In fact this issue is even older; see [Routh 1884] and also

[Ismail 2005] for a more complete discussion.

In the context where both variables are continuous, this problem has been

raised in [Duistermaat and Grünbaum 1986]. For a view of some related subjects

see [Harnad and Kasman 1998]. The reader will find useful material in [Askey

and Wilson 1985; Andrews et al. 1999; Ismail 2005].

7. Matrix-valued orthogonal polynomials

Here we recall a notion due to M. G. Krein [1949; 1971]. Given a self ad-

joint positive definite matrix-valued smooth weight function W .x/ with finite

moments, we can consider the skew symmetric bilinear form defined for any

pair of matrix-valued polynomial functions P .x/ and Q.x/ by the numerical

matrix

.P;Q/D .P;Q/W D
Z

R

P .x/W .x/Q�.x/dx;
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where Q�.x/ denotes the conjugate transpose of Q.x/. By the usual construc-

tion this leads to the existence of a sequence of matrix-valued orthogonal poly-

nomials with nonsingular leading coefficient.

Given an orthogonal sequence fPn.x/gn�0 one gets by the usual argument a

three term recursion relation

xPn.x/D AnPn�1.x/C BnPn.x/C CnPnC1.x/; (7-1)

where An, Bn and Cn are matrices and the last one is nonsingular.

We now turn our attention to an important class of orthogonal polynomials

which we will call classical matrix-valued orthogonal polynomials. Very much

as in [Duran 1997; Grünbaum et al. 2003; Grünbaum et al. 2005] we say that the

weight function is classical if there exists a second order ordinary differential

operator D with matrix-valued polynomial coefficients Aj .x/ of degree less or

equal to j of the form

D D A2.x/
d2

dx2
C A1.x/

d

dx
C A0.x/; (7-2)

such that for an orthogonal sequence fPng,we have

DP �
n D P �

n�n; (7-3)

where�n is a real-valued matrix. This form of the eigenvalue equation (7-3) ap-

pears naturally in [Grünbaum et al. 2002] and differs only superficially with the

form used in [Duran 1997], where one uses right handed differential operators.

During the last few years much activity has centered around an effort to

produce families of matrix-valued orthogonal polynomials that would satisfy

differential equations as those above. One of the examples that resulted from

this search, see [Grünbaum 2003], will be particularly useful later on.

8. Pentadiagonal matrices and matrix-valued orthogonal

polynomials

Given a pentadiagonal scalar matrix it is often useful to think of it either in its

original unblocked form or as being made, let us say, of 2�2 blocks. These two

ways of seeing a matrix, and the fact that matrix operations like multiplication

can by performed “by blocks”, has proved very important in the development

of fast algorithms.

In the case of a birth and death process it is useful to think of a graph like

0 1 2 3
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Suppose that we are dealing with a more complicated Markov chain in the

same probability space, where the elementary transitions can go beyond “nearest

neighbours”. In such a case the graph may look as follows:

0 1 2 3

The matrix P going with the graph above is now pentadiagonal. By thinking

of it in the manner mentioned above we get a block tridiagonal matrix. As an

extra bonus, its off-diagonal blocks are triangular.

The graph

0
2 4 6

1
3 5 7

clearly corresponds to a general block tridiagonal matrix, with blocks of size

2 � 2.

If Pi;j denotes the .i;j /-block of P we can generate a sequence of 2 � 2

matrix-valued polynomials Qi.t/ by imposing the three-term recursion of Sec-

tion 8. Using the notation of Section 2, we would have

PQ.x/D xQ.x/;

where the entries of the column vector Q.x/ are now 2 � 2 matrices.

Proceeding as in the scalar case, this relation can be iterated to give

P
nQ.x/D xnQ.x/;

and if we assume the existence of a weight matrix W .x/ as in Section 7, with

the property

.Qj ;Qj /ıi;j D
Z

R

Qi.x/W .x/Q�
j .x/dx;
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it is then clear that one can get an expression for the .i; j / entry of the block

matrix P
n that would look exactly as in the scalar case, namely

.Pn/ij .Qj ;Qj /D
Z

xnQi.x/W .x/Q�
j .x/dx:

Just as in the scalar case, this expression becomes useful when we can get our

hands on the matrix-valued polynomials Qi.x/ and the orthogonality measure

W .x/. Notice that we have not discussed conditions on the matrix P to give rise

to such a measure. For this issue the reader can consult [Durán and Polo 2002;

Duran 1999] and the references in these papers.

The spectral theory of a scalar double-infinite tridiagonal matrix leads natu-

rally to a 2�2 semi-infinite matrix. This has been looked at in terms of random

walks in [Pruitt 1963]. In [Ismail et al. 1990] this work is elaborated further to

get a formula that could be massaged to look like the right-hand side of the one

above. See also the last section in [Karlin and McGregor 1959].

9. An explicit example

Consider the matrix-valued polynomials given by the three-term recursion

relation

An˚n�1.x/C Bn˚n.x/C Cn˚nC1.x/D t˚n.x/; n � 0;

with

˚�1.x/D 0; ˚0.t/D I;

and where the entries in An, Bn, Cn are given by

A11
n WD n.˛Cn/.ˇC2˛C2nC3/

.ˇC˛C2nC1/.ˇC˛C2nC2/.ˇC2˛C2nC1/
;

A12
n WD 2n.ˇC1/

.ˇC2nC1/.ˇC˛C2nC2/.ˇC2˛C2nC1/
; A21

n WD 0;

A22
n WD n.˛CnC1/.ˇC2nC3/

.ˇC2nC1/.ˇC˛C2nC2/.ˇC˛C2nC3/
;

C 11
n WD .ˇCnC2/.ˇC2nC1/.ˇC˛CnC2/

.ˇC2nC3/.ˇC˛C2nC2/.ˇC˛C2nC3/
;

C 21
n WD 2.ˇC1/.ˇCnC2/

.ˇC2nC3/.ˇC˛C2nC3/.ˇC2˛C2nC5/
; C 12

n WD 0;

C 22
n WD .ˇCnC2/.ˇC˛CnC3/.ˇC2˛C2nC3/

.ˇC˛C2nC3/.ˇC˛C2nC4/.ˇC2˛C2nC5/
;



254 F. ALBERTO GRÜNBAUM

B11
n WD 1C n.ˇCnC1/.ˇC2n�1/

.ˇC2nC1/.ˇC˛C2nC1/
� .nC1/.ˇCnC2/.ˇC2nC1/

.ˇC2nC3/.ˇC˛C2nC3/

� 2.ˇC1/2

.ˇC2nC1/.ˇC2nC3/.ˇC2˛C2nC3/
;

B12
n WD 2.ˇC1/.˛CˇCnC2/

.ˇC2nC3/.ˇC˛C2nC2/.ˇC2˛C2nC3/
;

B21
n WD 2.˛CnC1/.ˇC1/

.ˇC2nC1/.ˇC˛C2nC3/.ˇC2˛C2nC3/
;

B22
n WD 1C n.ˇCnC1/.ˇC2nC3/

.ˇC2nC1/.ˇC˛C2nC2/
� .nC1/.ˇCnC2/.ˇC2nC5/

.ˇC2nC3/.ˇC˛C2nC4/

C 2.ˇC1/2

.ˇC2nC1/.ˇC2nC3/.ˇC2˛C2nC3/
:

Notice that the matrices An and Cn are upper and lower triangular respectively.

If the matrix 	0.x/ is given by

	0.x/D
 

1 1

1
.ˇC2˛C3/x

ˇC1
� 2.˛C1/

ˇC1

!

one can see that the polynomials ˚n.x/ satisfy the orthogonality relation

Z 1

0

˚i.x/W .x/˚�
j .x/dx D 0 if i ¤ j ;

where

W .x/D 	0.x/

�

.1 � x/ˇx˛C1 0

0 .1 � x/ˇx˛

�

	�
0 .x/:

The polynomials ˚n.x/ are classical in the sense that they are eigenfunctions

of a fixed second order differential operator. More precisely, we have

F˚�
n D ˚�

n�n;

where�n D diag
�

�n2�.˛CˇC2/nC˛C1C 1
2
.ˇC1/; �n2�.˛CˇC3/n

�

and

F D x.1�x/
�

d

dx

�2

C
 .˛C1/.ˇC2˛C5/

ˇC2˛C3
�.˛CˇC3/x 2˛C2

2˛CˇC3
Cx

ˇC1

ˇC2˛C3

.˛C2/ˇC2˛2C5˛C4

ˇC2˛C3
�.˛CˇC4/x

!

d

dx

C
�

˛C1C ˇC1
2

0

0 0

�

I:
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As mentioned earlier this is the reason why this example has surfaced re-

cently; see [Grünbaum 2003]. An explicit expression for the polynomials then-

selves is given in [Tirao 2003, Corollary 3].

Now we observe that the entries of the corresponding pentadigonal matrix are

all nonnegative, and that the sum of the entries on any given row are all equal to

1. This allows for an immediate probabilistic interpretation of the pentadiagonal

matrix as the one step transition probability matrix for a Markov chain whose

state space could be visualized in the graph

0
2 4 6

1
3 5 7

I find it remarkable that this example, which was produced for an entirely

different purpose, should have this extra property. Finding an appropriate com-

binatorial mechanism, maybe in terms of urns, that goes along with this example

remains an interesting challenge.

Two final observations dealing with these state spaces that can be analyzed

using matrix-valued orthogonal polynomials. If we were using matrix-valued

polynomials of size N we would have as state space a semiinfinite network

consisting of N (instead of two) parallel collection of nonnegative integers with

connections going from each of the N states on each vertical rung to every one

in the same rung and the two neighbouring ones. The examples in [Grünbaum

et al. 2002] give instances of this situation with a rather local connection pattern.

In the case of N D 2 one could be tempted to paraphrase a well known paper

and say that “it has not escaped our notice that” some of these models could be

used to study transport phenomena along a DNA segment.

10. Another example

Here we consider a different example of matrix-valued orthogonal polynomi-

als whose block tridiagonal matrix can be seen as a scalar pentadiagonal matrix

with nonnegative elements. In this case the sum of the elements in the rows of

this scalar matrix is not identically one, but this poses no problem in terms of a

Karlin–McGregor-type representation formula for the entries of the powers P
n.
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This example has the important property that the orthogonality weight matrix

W .x/, as well as the polynomials themselves are explicitly known. This is again

a classical situation; see [Castro and Grünbaum 2006].

Consider the block tridiagonal matrix

0

B

B

@

B0 I

A1 B1 I

0 A2 B2 I
: : :

: : :
: : :

1

C

C

A

with 2 � 2 blocks given by B0 D 1
2
I , Bn D 0 if n � 1, and An D 1

4
I if n � 1.

In this case one can compute explicitly the matrix-valued polynomials Pn given

by

AnPn�1.x/C BnPn.x/C PnC1.x/D xPn.x/; P�1.x/D 0; P0.x/D I:

One gets

Pn.x/D 1

2n

�

Un.x/ �Un�1.x/

�Un�1.x/ Un.x/

�

where Un.x/ is the n-th Chebyshev polynomial of the second kind.

The orthogonality measure is read off from the identity

4i

�

Z 1

�1

Pi.x/
1p

1 � x2

�

1 x

x 1

�

Pj .x/dx D ıij I:

We get, for n D 0; 1; 2; : : :

4i

�

Z 1

�1

xnPi.x/
1p

1 � x2

�

1 x

x 1

�

Pj .x/dx D .Pn/ij ;

where, as above, .Pn/ij stands for the i; j block of the matrix P
n.

0 2 4 6

1 3 5 7

In this way one can compute the entries of the powers P
n, with P

n thought

of as a pentadiagonal matrix, namely
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P D

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1
2

1 0 0 0

1
2

0 0 1 0 0
: : :

1
4

0 0 0 1 0
: : :

0 1
4

0 0 0 1
: : :

0 1
4

0 0 0
: : :

0 1
4

0 0
: : :

: : :
: : :

: : :
: : :

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

This example goes along with the graph on the previous page.

11. A few more challenges

We have already pointed out a few challenges raised by our attempt to extend

the Karlin–McGregor representation beyond its original setup. Here we list a

few more open problems. The reader will undoubtedly come up with more.

Is there a natural version of the models introduced by Bernoulli–Laplace and

by P. and T. Ehrenfest whose solution features matrix-valued polynomials?

Is it possible to modify the simplest Chebyshev-type examples in [Duran

1999] to accommodate cases where some of the blocks in the tridiagonal matrix

give either absorption or reflection boundary conditions?

One could consider the emerging class of polynomials of several variables and

find here interesting instances where the state space is higher-dimensional. For a

systematic study of polynomials in several variables one should consult [Dunkl

and Xu 2001] as well as the monograph [Macdonald 2003], on Macdonald poly-

nomials of various kinds. A look at the pioneering work of Tom Koornwinder

(see [Koornwinder 1975], for instance) is always a very good idea.

� � � �
After this paper was finished I came up with two independent sources of

multivariable polynomials of the type alluded to in the previous paragraph. One

is the series of papers by Hoare and Rahman [1979; 1984; 1988; � 2007]. The

other deals with the papers [Milch 1968; Iliev and Xu 2007; Geronimo and Iliev

2006].

In queueing theory one finds the notion of quasi-birth-and-death processes;

see [Latouche and Ramaswami 1999; Neuts 1989]. Within those that are non-

homogeneous one could find examples where the general approach advocated

here might be useful.
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