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The Riccati map in random Schrödinger and
random matrix theory

SANTIAGO CAMBRONERO, JOSÉ RAMÍREZ, AND BRIAN RIDER

For H. P. McKean, who taught us this trick.

ABSTRACT. We discuss the relevance of the classical Riccati substitution to

the spectral edge statistics in some fundamental models of one-dimensional

random Schrödinger and random matrix theory.

1. Introduction

The Riccati map amounts to the observation that the Schrödinger eigenvalue

problem Q D � for Q D �d2=dx2 Cq.x/ is transformed into the first order

relation

q.x/D �C p0.x/C p2.x/ (1-1)

upon setting p.x/D 0.x/= .x/. That this simple fact has deep consequences

for the problem of characterizing the spectrum of Q with a random potential

q has been known for some time. It also turns out to be important for related

efforts in random matrix theory (RMT). We will describe some of the recent

progress on both fronts.

Random operators of type Q arise in the description of disordered systems.

Their use goes back to Schmidt [1957], Lax and Phillips [1958], and Frisch and

Lloyd [1960] in connection with disordered crystals, represented by potentials

in the form of trains of signed random masses, randomly placed on the line.

Consider instead the case of white noise potential, q.x/D b0.x/ with a standard

brownian motion x ‘ b.x/, which may be viewed as a simplifying caricature
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of the above. The problem Q D � then reads d 0.x/ D  .x/ db.x/ C
� .x/ dx and is solvable for  2 C 3=2.

A first order statistic of interest is the integrated density of states N.�/ D
limL!1 L�1 � fthe number of eigenvalues � �g, in which we take Q on the

interval Œ0;L� with say Dirichlet boundary conditions. Build the sine-like solu-

tion  0.x; �/ of Q 0 D � 0 with  0.0/ D 0 and  0
0
.0/ D 1. The pair x ‘

. 0.x/;  
0
0
.x// is clearly Markovian, as is the ratio x ‘ p.x/ WD 0

0
.x/= 0.x/.

Further, the latter solves a version of (1-1) which can only be interpreted as to

say that p performs the diffusion with infinitesimal generator

G D .1=2/@2=@p2 � .�C p2/@=@p: (1-2)

This motion begins at p.0/DC1, which is an entrance barrier, hits the exit bar-

rier �1 at the first root m1 of  0.x; �/D 0, then reappears at C1 whereupon

everything starts afresh.

Now, to count the eigenvalues below a level � is to count the number of

roots of  0.x; �/ before x D L, and so the number of (independent) passages

from C1 to �1 of the p motion. If this number is n, then L approximates

sn D m1 C � � � C mn, the sum of the first n passage times, so that, by the law of

large numbers

1

N.�/
D lim

n!1
sn=n D EŒm1�D

p
2�

Z 1

0

e�.p3=6C�p/ dp
p

p
;

as may be worked out from the speed and scale associated with (1-2). This com-

putation is due to Halperin [1965]; see also [Fukushima and Nakao 1976/77].

As for the fluctuations, McKean [1994] proved, via Riccati, that

lim
L!1

P
�

L

�
.��0.L//

1=2 exp
�

�8
3
.��0.L//

3=2
�

>x
�

D
�

1 for x < 0;

e�x for x � 0;
(1-3)

where�0.L/ pertains to the operator � d2

dx2
Cb0.x/ acting on Œ0;L�with Dirich-

let, Neumann, or periodic conditions. While a step forward, (1-3) is still ther-

modynamic in nature. More desirable is to use the Riccati trick to capture local

spectral statistics in a fixed volume, and this is where the main part of our story

begins.

Cambronero and McKean [1999] took the point of view that the Riccati map

(1-1) represents a change of measure from potential, or q-path, space to the space

of p-paths, resulting in an explicit functional integral formula for the probability

density of �0 under periodic conditions (Hill’s equation). The method extends

from white noise q, to any periodic diffusion potential of brownian motion type

plus restoring drift. Section 2 describes all this. Given such integral expressions,

the next natural task is to describe the shape of the ground state eigenvalue
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density. A summary of the results thus far makes up Section 3, with an emphasis

on the differences between the white noise case, and the roughly universal nature

of the shape for nice Gaussian potentials. Section 4 is devoted to the surprising

recent discovery that a 1-d random Schrödinger operator and thus, via Riccati,

the explosion probability of a certain diffusion figure into the celebrated Tracy–

Widom laws of RMT along with their generalizations. We finish up with a

collection of open questions.

Further background. As indicated, the Riccati substitution is a basic tool

in the study of 1-d random Schrödinger, as may be gleaned from the compre-

hensive book [Carmona and Lacroix 1990]. Indeed, (1-3) is only one instance

of a ground state limit theorem. For a large class of Markovian potentials it is

understood that the spectrum is Poissonian and that the large volume limit of the

edge eigenvalues follow standard i.i.d. extremal laws; see [Molčanov 1980/81]

or [Grenkova et al. 1983]. The second reference also shows that the limit can

be joint Gaussian (and so exhibit repulsion) when the Lyapunov exponent is

degenerate at the spectral edge. In all these results the normalization depends

on the smoothness of the potential, and this is one reason that (1-3) deserves to

be set apart. Additionally, our shape results for the ground state density (Section

3) should be compared with the large body of work on the Lifschitz tails dating

back to the 70’s. Ideas connected to that work can in fact be used to obtain

tail estimates on the distribution function in the case of continuous Gaussian

potentials in a finite volume, including even multiple dimensions (exactly such

bounds turn up in recent work on the parabolic Anderson model [Gärtner et al.

2000]). Finally, there is an extensive literature on the almost sure behavior of

�0 in the more physical d > 1 setting with Poisson-bump or Gibbsian type

potentials; see [Merkl 2003; Sznitman 1998] and the many references therein.

Our point here though is to focus on the ground state density and the approach

inspired by McKean.

2. The Riccati map as a change of measure

Let Q D � 00 C q D � be Hill’s equation with standard white noise

potential q.x/ on the circle 0 � x < 1 D S1. Bring in the sine and cosine-

like solutions  0.x; �/ and  1.x; �/ satisfying  1.0/D 0;  0
0
.0/D 1;  1.0/D

1;  0
1
.0/ D 0, and also the discriminant �.�/ D 1

2
Œ 0.1; �/C  0

1
.1; �/�. The

latter is an entire function of order 1=2 and encodes the spectrum: � D ˙1

at the periodic/antiperiodic eigenvalues. In particular, if �0 D �0.q/ is the

ground state eigenvalue for Q, �.�/ decreases from the left to its value �D 1

at �D�0. Moreover, Q D� has a solution with multiplier m (a solution for

which  .x C1/D m .x/), if and only if m D�.�/˙
p

�2.�/� 1. There is a
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positive solution of this type with 0<m<1 only when ���0, in which case

there are actually two such solutions with multipliers mC and m� D 1=mC;

these fall together (mC D m� D 1) at the periodic ground state when �D�0.

The corresponding Riccati equation,

q.x/D �C p0.x/C p2; (2-1)

determines p as a diffusion on S1 solving the stochastic differential equation

dp.x/D db.x/� .�C p2.x// dx;

provided that �0.q/ � �. In fact, if such a solution p exists and � is a smooth

periodic function with
R 1

0 �
2.x/ dx D 1, then

Z 1

0

�

.�0.x//2 C q.x/�2.x/
�

dx � �;

and therefore �0 ��. Conversely, if�0 �� we have just explained that there is

a positive solution  .x/ of Q D � with multiplier:  .x C1/D m .x/ and

m � 1. It follows that p D  0= solves (2-1) and satisfies the side condition
R 1

0 p.x/ dx D log m � 0.

This defines the Riccati map. In the p ! q direction, it is one-to-one on

H D
�R 1

0 p D 0
�

, and also on H C D
�R 1

0 p � 0
�

. The set H C is mapped onto

Œ�0.q/� ��, while the mean-zero condition in p-space H coincides with m D 1

and so the event Œ�0.q/D ��.

Distribution of the ground state eigenvalue. Cambronero and McKean [1999]

used the map above between Œ�0 � �� and
�R 1

0 p � 0
�

to express the white noise

measure of the former in terms of a circular brownian motion (CBM) integral

over the latter. The CBM is formed by the standard brownian motion loop

space with p.0/D p.1/, which is then distributed according to P .p.0/2 da/D
.1=

p
2�/ da. The result is,

Q�Œ�0.q/� ��D
r

2

�

Z

H C

e� 1

2

R

1

0
.�Cp2.x//2 dx sinh

�Z 1

0

p

�

dP�.p/; (2-2)

where Q� and P� henceforth denote the white noise and CBM measures. By a

more elaborate computation, considering the Riccati map on the product space of

the potential and logarithmic multiplier log m, [Cambronero and McKean 1999]

also establishes a formula for the probability density f .�/D d
d�

Q�Œ�0 � ��. In

particular,

f .�/D 1p
2�

Z

H

e� 1

2

R

1

0
.�Cp2.x//2 dxA.p/ dP0.p/; (2-3)
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where A.p/D
R 1

0 e2
R x

0
p �

R 1
0 e�2

R x

0
p and P0 is the CBM conditioned so that

R 1
0 p D 0. Unlike CBM which has infinite total mass, P0 is a proper Gaussian

probability measure on paths.

REMARK. The distribution (2-2) may be differentiated to produce the density

in the form

f .�/D
r

2

�

Z

H C

�

�C
Z 1

0

p

�

e� 1

2

R 1

0
.�Cp2.x//2 dx sinh

�
Z 1

0

p

�

dP�.p/;

equating an integral over the half-space H C to an integral over its boundary

H . One might suppose that the present is related to (2-3) by the appropriate

function-space divergence theorem, and this in fact is verified in [Cambronero

and McKean 1999].

Formally, the Riccati map relates the white noise measure to CBM via

dQ� D exp

�

�1

2

Z 1

0

q2

�

d1q

.2�=0C/1=2
D exp

�

�1

2

Z 1

0

.�C p2/2
�

jJ j dP�;

where

dP� D exp

�

�1

2

Z 1

0

ˇ

ˇp0ˇ
ˇ

2
�

d1p

.2�0C/1=2

is the CBM in symbols, and the Jacobian J is to be determined. One may be

tempted to employ the Cameron–Martin formula and claim that

dQ� D exp

�

�1

2

Z 1

0

.�C p2/2
�

exp

�Z 1

0

p

�

dP�;

that is, jJ j D exp
�R 1

0 p
�

. But this does not apply here, the equation (2-1) being

understood with periodic, and not initial, conditions.

The next section contains a sketch of the proper Jacobian calculation and so

the verification of (2-2). This is followed by (the outline of) two proofs of the

density formula (2-3). Last, it is explained how both types of expressions may

be extended to a class of periodic diffusion potentials.

Jacobian of the Riccati map and distribution of �0. The needed Jacobian is

obtained by passing through the finite–dimensional distributions of Q� and P�.

These spaces are furnished with a discrete version of the transformation (2-1)

for which we can compute jJ j by hand. Afterward, limits may be performed to

pin down the “infinite dimensional” Jacobian.

The appropriate discrete version of Riccati’s transformation reads

qi D �C n2.ehpiC1 � 2 C e�hpi /; i D 0; : : : ; n � 1; (2-4)
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carrying R
n to R

n, where h D 1
n
; and qn D q0 and pn D p0. Notice that, for hpi

small,

qi ' �C n.piC1 � pi/C 1
2
.p2

iC1 C p2
i /

provides an approximation to (2-1). Also, one easily computes that

jJ j D 2

hn

ˇ

ˇ

ˇ

ˇ

sinh

� n�1
X

iD0

pih

�ˇ

ˇ

ˇ

ˇ

for the map (2-4). This expression vanishes only when
�
P

pih D 0
�

, and this

discrete form of Riccati is actually one-to-one on the region
�
P

pih> 0
�

onto

Œ�.n/ � ��, �.n/ being the ground state of the discrete version of Hill’s equation

with potential vector .q0; : : : ; qn�1/.

Next, bring in the discrete white noise

qi D n

Z
iC1

n

i

n

q D n.biC1 � bi/;

with bi D b
�

i

n

�

and a standard brownian motion b. � /: (2-5)

Assuming that�0.q/>�, it holds that �.n/.q/>� for all large values of n. Also,

denoting by p0 � � � pn�1 the polygonal path determine by the points p0; : : : ;pn,

and similarly for q, it may be checked that:

LEMMA 2.1. For almost every white noise path q, with �0.q/ > �, p0 � � � pn�1

converges uniformly to the solution p.x/D  0.x; �/= .x; �/of (2-1).

As a consequence, if HN denotes the set of white noise paths q for which

�.n/.q/ > � for all n � N , and max jpi j � N for all n � N , then Q�.HN /!1,

as N !1. This allows one to further restrict the discrete transform to

DN D HN \ fq W max
iD0;:::;n�1

jbiC1 � bi j � 2
p

h log n for all n � N g;

where the convergence may be controlled. (By Levy’s modulus of continuity

Q�.DN / tends to 1, so this is enough.) Now, on DN and taking � D 0 for

convenience, one has

�1

2

n�1
X

iD0

q2
i h D � 1

2h

n�1
X

iD0

.piC1 � pi/
2 � 1

8

n�1
X

iD0

.p2
iC1 C p2

i /
2h C Rn;

with a remainder Rn ! 0 boundedly. The discrete white noise measure

exp

�

�1

2

X

q2
i h

�

dq0 : : : dqn�1

.2�=h/n=2
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may then be written as

r

2

�
exp

�

�1

8

n�1
X

iD0

.p2
iC1 C p2

i /
2h C Rn

�
ˇ

ˇ

ˇ

ˇ

sinh

n�1
X

iD0

pih

ˇ

ˇ

ˇ

ˇ

d�n;

where

d�n D
p

2� exp

�

� 1

2h

n�1
X

iD0

.piC1 � pi/
2

�

dp0 : : : dpn�1

.2�h/n=2
:

Thus, for a bounded continuous function � of the path q vanishing off DN , it

holds that
Z

Œ�0�0�

�.q/ dQ�

D lim
n!1

Z

R
n

�n.q0; : : : ; qn�1/ exp

�

�1

2

n�1
X

iD0

q2
i h

�

dq0 : : : dqn�1

.2�=h/n=2

D lim
n!1

r

2

�

Z

R
n

O�n.p0; : : : ;pn�1/ d�n;

in which

d�n D exp

�

�1

8

n�1
X

iD0

.p2
iC1 C p2

i /
2h C Rn

�

sinh

� n�1
X

iD0

pih

�

d�n;

�n denotes � evaluated on the discrete q-path, and O�n.p/ WD �n.q/. Then, by

dominated convergence we have the identity

Z

Œ�0�0�

�.q/ dQ� D
r

2

�

Z

H C

O�.p/ exp

�

�1

2

Z 1

0

p4

�

sinh

�Z 1

0

p

�

dP�;

where O�.p/ is defined through the Riccati correspondence; it is sensible along

with �.q/. A standard argument will extend the picture to any bounded contin-

uous � and also to �¤ 0. To summarize:

THEOREM 2.2. If Q� is the restriction of the white noise measure to the region

Œ�0.q/� ��, and if P� is the restriction of circular brownian motion measure to

H C, then

dQ� D
r

2

�
exp

�

�1

2

Z 1

0

.�C p2/2
�

sinh

�Z 1

0

p

�

dP�:

The formula (2-2) for the distribution of �0.q/ follows immediately.
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REMARK. As an entertaining aside one learns that

lim
�!�1

Z

H C

exp

�

�1

2

Z 1

0

.�C p2/2
�

sinh

�
Z 1

0

p

�

dP� D
r

�

2
;

which is not at all obvious.

The measure induced by Q� on Œ�0 D �� and the density formula. Here is

a way to understand (2-3) not reported in [Cambronero and McKean 1999]. To

start, define Q� by
Z

Œ�0D��

�.q/ dQ� D lim
h!0

1

h

Z

�.q/�Œ���0��Ch� dQ�; (2-6)

for any bounded continuous �:

Next, being analytic, �.�/ is locally bounded in both � and jbj, and the same

is true of P�.�/D .d=d�/�.�/ and R�.�/. So, �.�/D 1C .�0 ��/ j P�.�0/jC
O.h2/ with ���� �C h. It follows that

m D�C
p

�2 � 1 D 1 C
q

2 .�0 ��/ j P�.�0/j C O.h/;

and for q D �C p0 C p2, we also conclude

Z 1

0

p D log m D
q

2 .�0 ��/ j P�.�0/j C O.h/:

Coupled with the classical fact that

�2 P�.�0/D
Z 1

0

 2.t/ dt

Z 1

0

dt

 2.t/
:

for  the periodic ground state, 2j P�.�0/j D A.p0/.1 C O.h// where p0 D
p �

R 1
0 p and

A.p0/D
Z 1

0

e�2
R

x

0
p0dx

Z 1

0

e2
R

x

0
p0dx:

Now introduce the identity
Z

H

�.p/B2.p/ dP0.p/

D lim
"#0

2

"2

Z

�.p/ sinh

�
Z 1

0

p

�

1
Œ0�

R 1

0
p�B.p�

R 1

0
p/"�

dP�.p/;

which is proved directly from the definition of P0 as the conditional P�; it holds

for bounded continuous � and a large class of B W H!R
C including B. � / D

p

A. � /. With that choice, the previous estimates can be used to effectively

replace
˚

0 �
R 1

0 p �
�

A.p �
R

p/
�1=2

"
	

with f0 ��0 � "2g. If that substitution
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is made, we understand at once that the measure Q� induced by Q� on Œ�0 D��

satisfies

dQ� D 1p
2�

exp

�

�1

2

Z 1

0

.�C p2/2
�

A.p/ dP0

under the Riccati transformation, and this is equivalent to (2-3).

Joint distribution of ( q, log m) and a second proof. Perhaps a more formulaic

route to the density formula is available by way of the joint transformation

.q; log m/$ .p; �/:

Given .p; �/with p in the CBM space, we set log mD
R 1

0 p and q D�Cp0Cp2:

Mapping back, given .q; log m/ with q in the white noise space, we take � �
�0.q/ so that �.�; q/D 1

2
.mC 1

m
/. This � is unique since P�.�; q/ < 0 for �<

�0.q/. One may then choose  to be the positive Hill’s solution with multiplier

m and set p D  0= . This .p; �/ pair is thus unique and will reproduce the

original .q; log m/, showing that the augmented Riccati map is one to one and

onto.

To compute the joint distribution of q and log m in terms of p and �, [Cam-

bronero and McKean 1999] again considers the approximating discrete (one-to-

one and onto) transformation

.p0; : : : ;pn�1; �/� .q0; : : : ; qn�1; log m/;

from R
nC1 to R

nC1, defined by

qi D �C n2.ehpiC1 � 2 C e�hpi /; log m D
n�1
X

iD0

pih; (2-7)

where h D 1

n
and pn D p0. The corresponding Jacobian is now

hn jJnj D
n�1
X

iD0

h

m'2
i

iCn
X

kDiC1

'2
kh C O.h/ for 'i D exp

� i
X

jD1

pj h

�

:

As before, the discrete white noise �d log m measure may then be reexpressed

as in

exp
�

�1

2

X

q2
i h

� dq0 : : : dqn�1

.2�=h/n=2
� d log m

D exp

�

� 1

2h

n�1
X

iD0

.piC1 � pi/
2 � 1

8

n�1
X

iD0

.p2
iC1 C p2

i /
2h

��
2

n�1
X

iD0

.p2
i C p2

iC1/h � �2

2
C Rn

�

hnjJnj
.2�h/n=2

dp0 : : : dpn�1 d�;
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where again Rn ! 0 boundedly on certain sets of large measure. Thus, on any

such set, we have

lim
n!1

hnjJnj D A.p/D
Z 1

0

dx

m'2.x/

Z xC1

x

'2.y/ dy;

for '.x/D exp.
R x

0 p/, and it is only a bit more effort to arrive at the following.

THEOREM 2.3. For any bounded �, compactly supported with respect to a D
log m, we have

Z

�.Q; a/ dQ� da D
Z

�
�

�C p0 C p2;
R

p
�

�.p; �/ dP� d�;

where

�.p; �/D 1p
2�

exp

�

�1

2

Z 1

0

.�C p2/2 �
Z 1

0

p

�

A.p/:

In brief , dQ� da D�.p; �/ dP� d�.

Now employ the relation between dQ� da and dP� d� as follows. First,

Q�Œ���0.q/� �C"�D 1

ı

Z ı

0

Z

Œ���0.q/��C"�

dQ� da

D 1

ı

Z

Œ0�
R

p�ı�

�.p; �/�
Œ���0.�Cp0Cp2/��C"�

dP� d�:

The left-hand side is independent of ı, so for ı!0 we find

Q�Œ���0.q/� �C "�D
Z

H

�.p; �/�
Œ���0.�Cp0Cp2/��C"�

dP0 d�:

Now
R 1

0 p D 0 implies �0.�C p0 C p2/D �, and therefore

"�1Q�Œ���0.q/� �C "�D
Z

H

�

"�1

Z �C"

�

�.p; �/ d�

�

dP0:

As "! 0, the left-hand side converges to f .�/D .d=d�/Q�Œ�0 � ��, and the

integrand on the right-hand side converges to �.p; �/. Moreover, there is the

needed domination to prove that

f .�/D
Z

H

�.p; �/ dP0 D 1p
2�

Z

H

e� 1

2

R

.�Cp2/2

A.p/ dP0;

as advertised.
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Ornstein–Uhlenbeck type potentials. The methods above extend from white

noise potentials to a whole class of q’s which perform a periodic diffusion. For

example, let OQ denote periodic Ornstein–Uhlenbeck (OU) measure (of mass m).

This is the rotation invariant Gaussian process on S1 arrived at by condition-

ing the OU paths so that q.0/ D q.1/ and then distributing that common point

according to the stationary measure for the full-line OU.

Similarly to white noise one gets:

THEOREM 2.4 [Cambronero and McKean 1999]. Under the transformation q D
�Cp0 Cp2, the periodic OU measure OQ, restricted to Œ�0 � ��, is transformed

into the measure dP0 d˛ according to
Z

Œ�0���

�d OQ

DC

Z

H

Z 1

I.p0/

�.�Cp0Cp2/e� 1

2
m2

R

1

0
.�Cp0Cp2/2

G.˛;p0/ d˛ dP0.p
0/; (2-8)

with C D .4=
p

2�/ sinh.m=2/, p D ˛C
R t

0 p0, I.p0/D �
R 1

0

R t
0 p0, and

G.˛;p0/D exp

� Z 1

0

.p03 � 2p2p0 C p2/ dt

�

sinh

� Z 1

0

p

�

:

In particular, the distribution is read off upon setting � � 1 in (2-8), providing

the analogue of (2-2). Further, one can move on to other potentials of type

brownian motion plus drift,

dq.x/D db.x/� m.q/ dx;

where it is assumed that m is an odd function with m.q/ > 0 for q > 0 to avoid

explosion. The periodic versions of these processes are built in the same way as

for OU; the added condition
Z 1

�1
e

1

2
.m0.q/�m2.q// dq <1 (2-9)

being required to ensure the periodic measure has finite total mass.

THEOREM 2.5 [Cambronero 1996]. Let Q� be a periodic diffusion with odd

drift m.q/ subject to m.q/ > 0 for q > 0 and (2-9). Then

Q�Œ�0 � ��

D 2C0

Z

H

Z 1

I.p0/

exp

�

� 1

2

Z 1

0

F.�C p0.x/C p2.x// dx

�

G.˛;p0/ d˛ dP0;

where F D �m0 C m2; and C �1
0

D
R

exp
�

�1
2

R 1
0 F.q/

�

dP� is a normalizing

constant.
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And, again by considering joint distributions of q and the multiplier, there is

also a formula for the density.

THEOREM 2.6 [Cambronero 1996]. The density of �0 under Q� is given by

f .�/D C0

Z

H

e� 1

2

R

F.�Cp0Cp2/
E.p0/ dP0.p

0/

where p D I.p0/C
R t

0 p0 and E.p0/D exp
�R 1

0 .p
03 � 2p2p0 C p2/

�

A.p/.

After this parade of formulae, it is probably helpful to write out the linear (OU

or m.q/D mq) case in full:

fOU .�/D
r

2

�
sinh

m

2

Z

H

e� 1

2
m2

R 1

0
.�Cp0Cp2/2

e
R 1

0
.p03�2p2p0Cp2/A.p/ dP0.p

0/: (2-10)

It is now p0 that is locally brownian. Starting with white noise, p is CBM under

the Riccati map. Starting with an additional derivative in potential space results

in an additional derivative in p-space. The added dependence in the field makes

integrals like (2-10) harder to analyze than their white noise counterparts. This

is the subject of the next section.

3. Ground state energy asymptotics

As an application of the above integral expressions we consider the shape of

the ground state energy density for various random potentials. We begin again

in the white noise case, for which detailed asymptotics are available:

THEOREM 3.1 [Cambronero et al. 2006]. Let fWN .�/ denote the density func-

tion for�0.q/, the minimal eigenvalue for Hill’s operator on the circle of perim-

eter one with white noise potential. Then

fWN .�/D
r

�

�
exp

�

�1

2
�2 � 1p

2
�1=2

�

.1 C o.1//;

as �! C 1 and,

fWN .�/D 4

3�
j�j exp

�

�8

3
j�j3=2 � 1

2
j�j1=2

�

.1 C o.1//;

as �! � 1.

The overall asymmetry has an intuitive explanation: level-repulsion holds down

the right tail, while a large negative deviation can be affected by a single excur-

sion of the potential. The 3=2-exponent in �! � 1 direction is shared by the

allied tail in the Tracy–Widom laws of RMT, but more on this later.
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The above result stems from the second version of the density:

fWN .�/D 1p
2�

Z

H

e� 1

2

R

1

0
.�Cp2/2

A.p/ dP0.p/;

where P0 is the CBM conditioned to be mean-zero. In either the �! C 1 or

�!�1 direction, the leading order, or logarithmic scale, asymptotics of fWN

are governed by those of the infimum of

I�.p/ WD 1

2

Z 1

0

�

�C p2.x/
�2

dx C 1

2

Z 1

0

�

p0.x/
�2

dx; (3-1)

over p 2 H . When �! C 1 it is plain that it is most advantageous for the

path p to sit in a vicinity of the origin, which already accounts for the appraisal

fWN .�/�e��2=2. For a more complete picture,
R 1

0 .�Cp2/2 may be expanded,

and both A.p/ and e�1=2
R 1

0
p4

are seen to be unimportant in comparison with

e��
R 1

0
p2

. That is, E0Œe
��

R 1

0
p2�1=2

R 1

0
p4

A.p/�' E0Œe
��

R 1

0
p2

�, and the compu-

tation is finished with aid of the explicit formula

Z

H

e��
R 1

0
p2

dP0.p/D
p

�=2

sinh
p

�=2
:

All this had already been noticed in [Cambronero and McKean 1999].

The behavior as �! � 1 is far less transparent. Now there is the possibility

of cancellation in the first part of the variational formula
R 1

0 .j�j � p2/2, com-

pelling the path to live near ˙
p

��. However, the mean-zero condition (p 2 H )

dictates that p must its time between these two levels, while sharp transitions

from �
p

�� to C
p

�� or back are penalized by the energy
R 1

0 p02. The heavier

left tail is the outcome of this competition.

Getting started, the Euler–Lagrange equation for any � < 0 minimizer p� of

(3-1) may be computed,

p00
� D 2p3

� � 2p2
�; (3-2)

and solved explicitly in terms of the Jacobi elliptic function sin-amp,

p�.x/D k
p

j�j � sn.
p

j�jx; k/; (3-3)

with modulus satisfying k2 ' 1 � 16e�
p

j�j=2 to fix the period at one.1 Sub-

stituting back yields I�.p�/ � 8
3
j�j3=2, and there follows the first-order large-

deviation type estimate

fWN .�/' exp
�

�8

3
j�j3=2

�

for �! � 1:

1Technical aside: the equation (3-2) reported in [Cambronero et al. 2006] includes an additive constant,

but this was later understood to vanish in [Ramı́rez and Rider 2006].
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Toward more exact asymptotics, there are various degeneracy problems that

need to be addressed. First is the obvious lack of uniqueness: any translation

pa
�
.x/ D p�.x C a/ of (3-3) also minimizes I�. Second, and more obscure, is

an asymptotic degeneracy in the direction of the low lying eigenfunctions of the

Hessian of I�.

The translational issue is dealt with by conditioning: the minimizing path

is pinned at zero at some predetermined point. Then, by a change of measure

computation, we arrive at the following Rice-type formula. With fpa
�
g the one-

parameter family of minimizers, d. � ; fpa
�
g/ the sup-norm distance to that family,

and any " > 0, we have

E0

h

e� 1

2

R

1

0
.j�j�p2/2

A.p/; d.p; fpa
�g/� "

p

j�j
i

D E0
0

h

e� 1

2

R

1

0
.j�j�p2/2

A.p/R.p/; d.p; fpa
�g/� "

p

j�j
i

P0

�Z 1

0

��
1 p D 0

�

:

Here, ��
1

is the L2.S1/-normalized derivative of p� (the derivative generating

all translations), E0
0

is now the CBM conditioned so that both
R 1

0 p D 0 and
R 1

0 �
�
1

p D 0, and R.p/ is a Radon–Nikodym factor which we will not make

explicit. On the left-hand side, note that the integral is localized about the full

family of minimizers. On the right-hand side, it is easy to see that the intersec-

tion of a small tube about fpa
�
g and the plane

h

p W
R 1

0 p��
1

D 0
i

may be replaced

with a similarly small neighborhood about p0
�

D p�. In this way the expectation

has in fact been localized about a fixed path.

Next, the obvious shift p!p C p� results in

fWN .�/'

e�I�.p�/E0
0

h

e� 1

2

R 1

0
.q�C2�/p2

S.p;p�/; kpk1 � "
p

j�j
i

P0

�Z 1

0

��
1 p D 0

�

;

where

S.p;p�/D e�2
R 1

0
p�p3� 1

2

R 1

0
p4

A.p C p�/R.p C p�/;

q�.x/D 6j�jk2sn2.
p

j�jx; k/:
One expects the Gaussian measure tied to the quadratic form

Q� D � d2

dx2
C q�.x/C 2� (3-4)

to dominate the higher order nonlinearities in S. � ;p�/ and focus the path at

p D 0. This deterministic Hill’s operator Q� is of course the Hessian of I�, and

it is no small piece of good fortune that it coincides with one of Lamé’s finite-

gap operators for which simple spectrum and corresponding eigenfunctions are
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explicitly computable [Ince 1940]. Information about the rest of the spectrum

is obtained from a beautiful formula of Hochstadt [1961] for the discriminant.

HOCHSTADT’S FORMULA. Let Q be finite-gap with 2g C1 simple eigenvalues.

Then �.�/D 2 cos .�/ with

 .�/D
p

�1

2

Z �

�0

.s ��0
1
/ � � � .s ��0

g/
p

�.s ��0/ � � � .s ��2g/
ds; (3-5)

in which �0
1
< � � �<�0

g are the points �2`�1 <�
0
`
<�2`, where�0.�/D 0. They

are determined from the simple spectrum through the requirement  .�2`/ �
 .�2`�1/D 0 for `D 1; 2; : : :g.

In the case of Q� for example we have g D 2.

Moving on, as alluded to just above we claim that, for �!�1 and all " > 0

sufficiently small:

E0
0

h

e2
R

1

0
p�p3� 1

2

R

1

0
p4

A.pCp�/R.pCp�/e
� 1

2

R

1

0
.q�.x/C2�/p2

; kpk1 � "
p

j�j
i

D A.p�/R.p�/Z.�/.1 C o.1//; (3-6)

where

Z.�/D E0
0

�

e� 1

2

R

1

0
.q�.x/C2�/p2.x/ dx

�

P0

� Z 1

0

��
1 .x/p.x/ dx D 0

�

:

This rests on the coercive properties of the measure e� 1

2

R

1

0
.q�C2�/p2

d CBM.p/

restricted to
R 1

0 p D 0 and
R 1

0 p��
1

D 0, which is to say, on the spectral gap of Q�

restricted to the same space. Here lies the second degeneracy in the problem.

This gap actually goes to zero as �! � 1, making the estimate (3-6) rather

laborious and hard to imagine without having the Q� spectrum explicitly at

hand.

Taking the last appraisal for granted, it remains to find a closed expression

for Z.�/. This plays the role of the usual (though now infinite-dimensional)

Gaussian correction in any Laplace-type analysis, and the fact is

Z.�/' C.�0; : : : �4I c0; : : : ; c4/� 1
p

�2.2j�j/� 4
: (3-7)

The prefactor C. � / is a rational function of the (explicitly known) simple spec-

trum of Q� (eigenvalues �k and corresponding norming-constants ck , k D
0; : : : ; 4). Hochstadt’s formula now comes to the rescue, expressing the discrim-

inant � back in terms of the same �0; : : : ; �4. Putting together the asymptotics

of A.p�/, R.�/, and those for Z.�/ via the above expression will complete the

proof for the left tail.
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REMARK. It is enlightening to run the Riccati correspondence in reverse, the

concentration of p about p� resulting in an optimal potential of the form

q.xI�/D �C p0
�.x/C p2

�.x/' �2j�j sech2
�
p

j�j .x � 1=2/
�

:

That is, the white noise “path” must perform a single excursion of depth O.�/

in an O.j�j�1=2/ span to produce a large negative eigenvalue.

Nice gaussian potentials. Ay this point is natural to ask: To what extent is

the white noise result universal for some class of potentials? The general case

remains a question for the future; we describe here what is known for a class of

nice stationary Gaussian potentials q.

The periodic diffusion setting is not the appropriate theater to explore ques-

tions of universality; certainly the details of the force F in Theorem 2.6 will

play out in the shape of the density. Instead we consider the case that q is a

stationary Gaussian process of periodicity one, continuous (and so, nice) such

that

EŒq.x/�D 0; EŒq.x/q.y/�D K.x � y/; (3-8)

with K satisfying the technical condition NK D
R 1

0 K.x/ dx > 0. There is of

course a point in common with the previously discussed potentials, namely

periodic OU with mass m, in which case K.z/ D 1
2m

�

emz

em�1
� e�mz

e�m�1

�

. Gen-

erally, however, the Cambronero–McKean formulas do not carry over to this

Gaussian potential framework. Because the Riccati map is nonlinear, it is not

always the case that q, under the . � ;K�1; � /Gaussian measure, and p, under the

. � ;DK�1D � / Gaussian measure, are absolutely continuous. Take for example

the situation when only a finite number of modes in the spectral expansion of q

are charged.

For these reasons we rely on a yet another formula for the density, the idea

behind which is to carry out the Riccati map on only part of the space. Denote

by P the measure of q and let OP be the measure induced on Oq D q�
R 1

0 q. Then,

this new formula for the density, established in [Ramı́rez and Rider 2006], is

fK .�/D 1p
2�

Z

H

exp
�

� 1

2 NK
.�C˚. Oq//2

�

d OP . Oq/: (3-9)

Here, ˚ is some implicitly defined nonlinear functional of the path, expressible

through the Riccati map. When available, the Cambronero–McKean formula is

certainly more powerful, being so explicit. On the other hand, (3-9) suffices to

uncover the asymptotic shape of the density.

THEOREM 3.2 [Ramı́rez and Rider 2006]. The probability density function fK

for�0.q/ corresponding to any Gaussian random potential as above is C 1 and
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satisfies

lim
�!C1

1

�2
log fK .�/D � 1

2 NK
; lim

�!�1

1

�2
log fK .�/D � 1

2K.0/
:

As in the white noise case, the computation for the right tail is relatively simple,

stemming from an optimal potential q ' � (or p ' 0). Further, the estimate for

the left tail is connected with q-paths concentrating around q.x/'�K.x/=K.0/.

That is, the covariance structure provides just enough freedom for the path to

oscillate in accordance with K itself. Very loosely speaking, this falls in line

with the white noise result where, after rescaling, the minimizing potential ap-

proaches a Dirac delta, which is the right kernel K for that process.

Lastly, we should reiterate the connection between Theorem 3.2 and well

known Lifschitz tail results. For example, Pastur [1972] proved that, with QL D
�4 C q.x/ on the cube of side-length L in R

d and q stationary Gaussian

with covariance K satisfying a Hölder estimate: lim�!�1 ��2 log N.�/ D
�1=.2K.0// where N.�/ equals the L " 1 density of states. Moreover, the

basic method employed will provide tail bounds on the distribution function of

the ground state eigenvalue for a large class of continuous q and L<1. From

here, our own result could very well be anticipated. On the other hand, we

know of no way to access the density function directly other than through the

Riccati-as-a-change-of-measure idea.

4. General Tracy–Widom laws

The study of detailed limit theorems at the spectral edge is far more highly

developed in RMT than in random Schrödinger. This is easiest to describe for the

Gaussian Unitary Ensemble (GUE). GUE is an n�n Hermitian matrix ensemble

M comprised of independent complex Gaussians: Mij D Mji � NC.0; 1=4/,

while Mii � N.0; 1=2/. Equivalently, it is drawn from the distribution with

increment dP .M / D 1
Z

e�trM 2

dM ; dM denoting Lebesgue measure on the

space of n-dimensional Hermitian matrices and Z <1 a normalizing factor.

Regarding spectral properties, GUE is integrable in so far as the full joint

density of eigenvalues �1; �2; : : : ; �n is known:

PGUE.�1; �2; : : : ; �n/D 1

Zn
e�

P

n

kD1 �2

k

Y

k<j

j�j ��k j2 (4-1)

D 1

n!
det

�

Kn.�j ; �k/
�

1�j ;k�n
:

On the second line, Kn.�; �/ is the kernel for the projection onto the span of

the first n Hermite polynomials in L2.R; e��2

/; it follows from line one by

simple row operations in the square Vandermonde component of the density. In
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fact, all finite dimensional correlations are expressed in terms of determinants

of the same kernel. As a consequence there is the explicit formula at the spectral

edge,2

P .�max � �/D det
�

I � Kn1.�;1/

�

;

the right-hand side denoting the Fredholm determinant of the integral opera-

tor associated with Kn restricted to .�;1/. The classical Plancherel–Rotach

asymptotics for Hermite polynomials and a marvelous identity from [Tracy and

Widom 1994] now provide the distributional limit as n!1:

PGUE

� 1p
2

n1=6.�max �
p

2n/� �
�

! exp

�

�
Z 1

�

.s ��/u2.s/ ds

�

DW FGUE.�/: (4-2)

Here u.s/ is the solution of u00 D suC2u3 (Painlevé II) subject to u.s/� Ai.s/

(the standard Airy function) as s ! C1.

Associated with GUE are the Gaussian Orthogonal and Symplectic Ensem-

bles (GOE and GSE) of real symmetric or self-dual quaternion Gaussian matri-

ces. These are again integrable, with joint eigenvalue densities of a similar shape

to line one of (4-1), the power two on the absolute Vandermonde interaction term

being replaced by a 1 or 4. While not determinantal in the same way, there are

again closed expressions for the largest eigenvalue distribution, and, at the same

basic scalings, limit laws due to Tracy and Widom [1996]:

FG.O=S/E.�/D
(

exp
�

�1
2

R 1
� .s ��/u2.s/ ds

�

exp
�

�1
2

R 1
� u.s/ ds

�

;

exp
�

�1
2

R 1
�0 .s ��0/u2.s/ ds

�

cosh.
R 1

�0 u.s/ ds/:
(4-3)

with �0 D 22=3� and u is the same solution of Painlevé II. For each of these

three special ensembles there are also Painlevé expressions for the limiting dis-

tribution of the scaled second and higher largest eigenvalues, see again [Tracy

and Widom 1994] and [Dieng 2005].

While striking in and of themselves, these results of Tracy–Widom have sur-

prising importance in physics, combinatorics, multivariate statistics, engineer-

ing, and applied probability. A few highlights include [Johansson 2000; Baik

et al. 1999; Johnstone 2001; Baryshnikov 2001]. From a probabilist’s perspec-

tive, the laws (4-2) and (4-3) should be regarded as important new points in the

space of distributions. In particular, one would like to understand FG.O=U=S/E

in the same way that we do the Normal or Poisson distribution, being able to

set down a few characterizing conditions. As it stands, the Tracy–Widom laws

2In RMT it is customary here to look at largest, rather than smallest, eigenvalues as is the case in random

Schrödinger.
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seem to live in the realm of integrable systems: we know of many interesting

examples in which they arise, but that is about all.

One avenue to a deeper understanding of the Tracy–Widom laws would be

some explanation of how to interpolate between them. For any ˇ > 0, consider

the following measure on n real points

Pˇ.�1; �2; : : : ; �n/D 1

Zn;ˇ

e�ˇ
P

n

kD1 �2

k

Y

k<j

j�j ��k jˇ: (4-4)

G(O/U/S)E occur for ˇD 1; 2; 4; on physical grounds ˇ plays the role of inverse

temperature in a 1-d “coulomb” gas. The limiting distribution of the largest Pˇ-

point would give us a general Tracy–Widom law. While there appears to be

no hope of integrating out a correlation for general beta, Dumitriu and Edelman

[2002] have discovered a matrix model for all ˇ>0. The fact is: with g1;g2; : : :

i.i.d. unit Gaussians and each �r an independent chi random variables of param-

eter r , the symmetric tridiagonal ensemble

H ˇ
n D 1p

2

2

6

6

6

6

6

4

p
2g1 �ˇ.n�1/

�ˇ.n�1/

p
2g2 �ˇ.n�2/

: : :
: : :

: : :

�ˇ2

p
2gn�1 �ˇ

�ˇ

p
2gn

3

7

7

7

7

7

5

(4-5)

has joint eigenvalue law with density (4-4).

The simplicity of (4-5) opens up the possibility of scaling the operator itself

rather than dealing with the eigenvalue law. Formally invoking the central limit

theorem in the form �.n�k/ˇ �
p

nˇ � .
p

ˇk=2n/ C .1=
p

2/N.0; 1/ in the

off-diagonal entries, one can readily understand the conjecture of Sutton and

Edelman [Edelman and Sutton 2007] that the rescaled matrices

� QH ˇ
n D �

p
2

p

ˇ
n1=6.H ˇ

n �
p

2ˇnI/;

should go over into

Hˇ D � d2

dx2
C x C 2

p

ˇ
b0.x/ (4-6)

in the n!1, or continuum, limit. As before, b0 indicates a white noise, and

the scaling in (4) corresponds to that for the spectral edge in the known ˇ D
1; 2; 4 cases. Thus, were it to hold, the above correspondence would entail that

the low-lying eigenvalues of Hˇ agree in distribution with the limiting largest

eigenvalues of H
ˇ
n . Recently, the second two authors and B. Virág [Ramı́rez

et al. 2006] have proved this conjecture.
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THEOREM 4.1. ([Ramı́rez et al. 2006]) Let �ˇ;1 � �ˇ;2 � � � � be the ordered

eigenvalues of the ˇ-ensemble H
ˇ
n , and�0.ˇ/��1.ˇ/�� � � the spectral points

of Hˇ in L2.RC/ with Dirichlet conditions at x D 0. Then, for any finite k, the

family
�

r

2

ˇ
n1=6.�ˇ;` �

p

2ˇn/

�

`D1;:::;k

converges in distribution as n ! 1 to f��0.ˇ/;��1.ˇ/; � � � ;��k�1.ˇ/g.

Part of this result is the fact that the Schrödinger operator Hˇ, referred to as

the Stochastic Airy operator for obvious reasons, has an almost surely finite

ground state eigenvalue �0, as well as well defined higher eigenvalues �1, and

so on. Though no longer on a finite volume, the compactifying linear restoring

force proves enough to tame the white noise at infinity. It is also remarked

that the proof of Theorem 4.1 is actually made almost surely — eigenvalue by

eigenvalue — after coupling the noise in the matrix model H
ˇ
n to the brownian

motion b.x/ in the limiting Hˇ .

Next recall that the densities fˇ of the ˇD 1; 2; 4 Tracy–Widom laws satisfy

fˇ.�/� e� 1

24
ˇj�j3

for �! � 1 and

fˇ.�/� e� 2

3
ˇ�3=2

for �! C 1. Coupled with Theorem 4.1 this sheds new light on the results

just discussed for the shape of the ground state eigenvalue density of the simple

Hill operator �d2=dx2 C b0.x/. Moving into the spectrum, white noise on S1

and white noise plus linear force on R
C certainly should give rise to different

phenomena. On the other hand, when pulling far away from the spectrum, it is

intuitive that these potentials would have roughly the same effect.

That said, the reader will anticipate what comes next. The Riccati map im-

mediately gives a second description of the limiting distribution of the largest ˇ-

ensemble eigenvalues in terms of the explosion question for the one dimensional

diffusion x ‘ p.x/

dp.x/D 2
p

ˇ
db.x/C .x ��� p2.x// dx: (4-7)

To make things precise, return to the eigenvalue problem,

d 0.x/D 2
p

ˇ
 .x/ db.x/C .x ��/ .x/ dx;

restricted to Œ0;L� subject to .L/D0 as well as .0/D0. Denote by�0.L/ the

minimal Dirichlet eigenvalue, and take  0.x; �/ the solution of the initial value

problem with  0.0/ D 0 and  0
0
.0/ D 1. As already mentioned, the event that
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�0.L/�� is the event that 0 does not vanish before x �L. This is the classical

“shooting method”. Now make the Riccati move: p.x; �/D 0
0
.x; �/= 0.x; �/

is the diffusion (4-7), and the event that  0.x; �/ has no root before x D L is

the event that the p motion, begun from p.0; �/D  0.0; �/= .0; �/D C1 at

x D 0, fails to explode down to �1 before x D L. (While it is not customary

to use the entrance/exit terminology for inhomogeneous motions, comparison

with the homogeneous case will explain why p.x; �/ may be started at C1
and leaves its domain only at �1.)

Granted Theorem 4.1, �0, the ground state eigenvalue of the full line prob-

lem, exists, and it is obvious that�0.L/ converges almost surely to that variable

as L!1. In other words,

P .�0 > �/D P . . � ; �/ never vanishes/D PC1
�

p. � ; �/ does not explode
�

:

A description of P .�k >�/ is similar for all k. The probability that the second

eigenvalue exceeds � is the PC1 probability that p explodes at most once to

�1, and so on. All this, with its implications for the limiting largest eigenvalues

in the ˇ-ensembles is summarized in the next statement.

THEOREM 4.2. ([Ramı́rez et al. 2006]) With x ‘ p.x/ D p.x; �/ the motion

(4-7), let P� denote the measure on paths induced by p begun at p.0/D � and

let m.�; ˇ/ denote the passage time of p to �1. Then,

lim
n!1

P

�
r

2

ˇ
n1=6.�ˇ;1 �

p

2ˇn/� �

�

D PC1
�

m.��; ˇ/D C1
�

;

and also

lim
n!1

P

�r

2

ˇ
n1=6.�ˇ;k �

p

2ˇn/� �

�

D
k

X

`D1

Z 1

0

� � �
Z 1

0

PC1
�

m.��; ˇ/ 2 dx1

�

PC1
�

m.��C x1; ˇ/ 2 dx2

�

� � �

� � � PC1
�

m.��C x1 C � � � C x`�1; ˇ/D C1
�

;

for any fixed k.

Even at ˇ D 1; 2; and 4, Theorems 4.1 and 4.2 provide yet another vantage

point on the Tracy–Widom laws. Not only are these laws now tied to a much

simpler mechanical model (1-d Schrödinger), the Riccati map has introduced a

Markovian structure where none appeared to exist.

5. Questions for the future

Shape of Hill’s ground state density. This is still in its infancy. In particular,

the exact regularity of the potential at which one sees a transition between the
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white noise 3=2-heavy tail (Theorem 3.1) and the Gaussian tail (Theorem 3.2)

is an interesting question.

Non-i.i.d. matrix ensembles. Little is known about the limiting scaled distribu-

tion of �max for Hermitian matrix ensembles with entries exhibiting correlations

which do not vanish in the n " 1 limit. For the sake of discussion, consider

such a non-i.i.d. Gaussian matrix M . Given Theorem 4.1, it is believable that

M has some random differential operator as its continuum limit. Further, if the

correlations in M are strong enough, one might imagine that the white noise

type potential of Stochastic Airy is replaced by a smoother Gaussian potential,

and then Theorem 3.2 would become relevant.

Sample covariance ensembles. Of importance in statistics are ensembles of the

form X T CX where X is comprised of say independent identically distributed

real or complex Gaussians and C may be assumed diagonal. If C D Id , these

are the classical null-Wishart or Laguerre ensembles at ˇ D 1 (real) and ˇ D 2

(complex), and the corresponding Tracy–Widom laws turn up at the spectral

edge. In fact, Edelman and Dumitriu also have general ˇ>0 tridiagonal versions

of these null ensembles to which the results of Section 4 apply. On the other

hand, if C is not the identity the picture is rather murky. The possibility of phase

transition away from Tracy–Widom if C is sufficiently “spiked” is proved in

[Baik et al. 2005], while [El Karoui 2007] provides some conditions on C which

will result in Tracy–Widom for �max.X
T CX /. Both results however pertain

only to the ˇ D 2 case as the rely on the special structure of the eigenvalue

density at that value of the parameter. Perhaps the strategy outlined above —

scaling directly in the operator rather than in the spectral distribution — can be

successfully employed in this direction.

Painlevé expressions. One hopes that either the random Airy operator or the

associated diffusion will lead to explicit formulas in terms of Painlevé II for

the limiting largest eigenvalue distributions at all ˇ > 0. While we appear to

be far from realizing this goal, here perhaps is a hint. By the Cameron–Martin

formula: with Fˇ.�/ the distribution function of ��0.ˇ/,

Fˇ.�/

D lim
L!1

lim
a!1

Z

p.0/Da

e� ˇ
8

R

L

0
.�Cx�p2.x// dp.x/e� ˇ

8

R

L

0
.�Cx�p2.x//2dx

� e� ˇ
2

R

L

0
.p0.x//2dx

.2�0C/1=2
dp1:

The Itô factor
Z L

0

..�C x � p2.x// dp.x/
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only contributes boundary terms, leaving the integral to concentrate on mini-

mizers of the functional

p ‘
Z L

0

�

Œ�C x � p2.x/�2 C .p0.x//2
�

dx:

The associated Euler–Lagrange equation is Painlevé II.
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