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1. Introduction

At the Clay Mathematics Institute/Mathematical Sciences Research Institute

Workshop on “Recent Progress in Dynamics” in September–October 2004 the

speakers and participants were asked to state open problems in their field of re-

search, and much of this problem list resulted from these contributions. Thanks

are due, therefore, to the Clay Mathematics Institute and the the Mathematical

Sciences Research Institute for generously supporting and hosting this work-

shop, and to the speakers, who graciously responded to the suggestion that open

problems be stated whenever possible, and who in many cases kindly corrected

or expanded the renditions here of the problems that they had posed. It is my

hope that this list will contribute to the impact that the workshop has already

had. It was helpful to this endeavor and is a service to the community that

most lectures from the workshop can be viewed as streaming video at http://

www.msri.org/calendar/workshops/WorkshopInfo/267/show workshop.

In this list, almost all sections are based on an original version written by

myself about the problems as presented by the proposer in a talk during the

workshop. The proposer is identified by the attribution “(presented by. . . )” in

the section heading. Where the proposer undertook significant modification of

this original version, the section became attributed to the proposer (without

“presented by”). Section 8 and Section 13 were contributed by their authors

without any preliminary draft by myself and were only slightly edited by me,

and Section 11 is based in good part on the questions raised by Keith Burns

in his talk but was written collaboratively. Finally, the collection of problems I

describe in Section 20 was not as such presented at the workshop, but includes

problems familiar to many participants.

2. Smooth realization of measure-preserving maps (Anatole Katok)

QUESTION 2.1. Given an ergodic measure-preserving transformation T of a

Lebesgue space X with probability measure �, under which conditions is there Changed “transformations” to

“maps” to allow table of

contents to fit on one pagea diffeomorphism f of a compact manifold M that preserves a smooth volume

� for which .f; �/ is measurably isomorphic to .T; �/? In particular, is there

any T with finite �-entropy for which there is no such f ?

Put differently, is finiteness of entropy (which, as shown first by Kushnirenko,

holds for diffeomorphisms of manifolds with respect to any invariant Borel prob-

ability measure, see e.g., [82, Corollary 3.2.10]) the only restriction imposed on

smooth models of measure-preserving transformations?

A potentially useful method is that of Anosov and Katok [2] (see also [34]

for a modern exposition) which provides nonstandard smooth realizations of

certain dynamical systems. An important pertinent result is due to Pesin: For
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a smooth dynamical system on a surface with positive entropy, weak mixing

implies Bernoulli [120]. Thus there are restrictions on smooth realizations on

particular types of manifolds.

It is expected that there are indeed restrictions on realizability other than

finiteness of entropy, so long as one considers smooth measures. (Lind and

Thouvenot [98] showed that every finite-entropy measure-preserving transfor-

mation can be realized as an automorphism of the 2-torus with respect to a

suitable invariant Borel probability measure.) Here the picture may be different

for infinite versus finite smoothness. In order to establish the existence of such

restrictions one needs to construct some suitable invariants. Again, on one hand

one may look at specific manifolds or dimensions, such as in Pesin’s aforemen-

tioned result for maps with positive entropy. For zero entropy an interesting

observation is Herman’s “Last Geometric Theorem” [33]:

THEOREM 2.2. An area-preserving C 1 diffeomorphism f of the disk that has

Diophantine rotation number on the boundary has a collection of invariant cir-

cles accumulating on the boundary.

The Anosov–Katok construction provides examples of nonstandard realization

of rotations with Liouvillian rotation numbers. In particular, given any Liouvil-

lian rotation number �, Fayad, Saprykina and Windsor ([36], using the methods

of [35]) constructed an area-preserving C 1 diffeomorphism of the disc that acts

as the rotation by � on the boundary and is measurably isomorphic to it.

It should be mentioned here in passing that no nonstandard smooth realiza-

tions of Diophantine rotations are known:

QUESTION 2.3. Given an ergodic Diophantine rotation, is there an ergodic

volume-preserving diffeomorphism on a manifold of dimension greater than 1

that is measurably conjugate to the rotation?

Herman’s Theorem 2.2 suggests that this would be very hard to achieve on a

disk.

There are several systems where existing methods might help decide whether

a nonstandard smooth realization exists, such as Gaussian systems, some interval

exchanges, and maybe the horocycle flow on the modular surface.

3. Coexistence of KAM circles and positive entropy in

area-preserving twist maps (presented by Anatole Katok)

Consider the standard (twist) map

f�.x; y/ WD .x C y; y C � sin 2�.x C y//

of the cylinder (or annulus) C WD S1 � R, which preserves area.
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QUESTION 3.1. Is the measure-theoretic entropy harea.f�/ positive (with re-

spect to area as the invariant Borel probability measure)

(1) for small � > 0?

(2) for some � > 0 if the problem is considered instead on T
2 D S1 � S1 (to

provide an invariant Borel probability measure)?

Positive entropy implies the existence of ergodic components of positive area

by a theorem of Pesin [120]. It is generally believed that the answers should be

positive.

As to the first part of this question, the KAM theorem is clearly a pertinent

issue: For small � > 0 a large portion of the area of the cylinder is the union

of invariant circles. Nevertheless, the complement consists of regions of insta-

bility that give rise to positive topological entropy due to heteroclinic tangles

associated with hyperbolic periodic points. (In higher dimension the invariant

tori don’t even separate these regions of complicated dynamics.) The horseshoes

due to these tangles have zero measure, however, and everything one can prove

using estimates of hyperbolicity type is necessarily confined to sets of measure

zero. To establish positive measure-theoretic entropy, by contrast, requires con-

trol on a set of positive measure. In particular, one must ensure that the invariant

circles of all scales do not fill a set of full measure. This set is easily seen to be

closed, and it has a Cantor structure. Unfortunately the boundary circles are not

among those obtained by the KAM theorem (this was apparently first observed

by Herman), and they are generally believed to be nonsmooth, which suggests

that proving this to be the boundary of the hyperbolic domain will be difficult

indeed; no imaginable technique can be expected to serve the purpose.

This illustrates a fundamental problem: Just as Kolmogorov discovered the

essential tools for describing complicated dynamics, the KAM theorem estab-

lished, as illustrated in this essential example, that the applicability of these tools

even to mechanical problems faces fundamental limitations.

As to the second part of the question, it is known that near � D 0:98 � 2�

the last KAM circles disappear, so one might hope for the problem to become

tractable. However the elliptic periodic points don’t disappear at that stage.

There is a plausible scheme to make all elliptic points disappear for certain

large parameter values which circumvents the global constraints of index theory

by creating orientation-reversed hyperbolic points and is inspired by Jakobson’s

parameter-exclusion method for 1-dimensional maps[70]. This is aimed at find-

ing parameters for which useful estimates can be carried out.

A “realistic” variant of this problem might be to consider random pertur-

bations of this system. This is not devoid of difficulties, but might be more

tractable.
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4. Orbit growth in polygonal billiards (Anatole Katok)

Consider the billiard system in a triangle or, more generally, a polygon P �
R

2. This is an area-preserving dynamical system. The challenge is to understand

the global complexity of such a system. For example, let S.T / be the number

of orbits of length at most T that begin and end in vertices.

PROBLEM 4.1. Find upper and lower bounds for S.T /.

QUESTION 4.2. Is there a periodic orbit for every choice of P?

This is open even for most obtuse triangles; R. Schwartz has shown however that

if the maximal angle in a triangle is less than 100ı then periodic orbits always

exist [129].

PROBLEM 4.3. Find conditions for ergodicity of the billiard flow with respect

to Liouville measure (area). In particular, is the billiard flow ergodic for almost

every P?

Boshernitzan and Katok observed that based on the work of Kerckhoff–Masur–

Smillie [88], a Baire category argument produces a dense Gı of ergodic poly-

gons. Vorobets [134] improved this by giving an explicit sufficient condition for

ergodicity in terms of the speed of simultaneous approximation of all angles mod

� by rationals. Existence of even a single ergodic example with Diophantine

angles remains an open and probably very hard question

Katok [80] showed that T �1 log S.T / ! 0, which is far from effective. For

rational polygons Masur [105] showed that there are positive constants C1 and

C2 such that C1T 2 � S.T / � C2T 2. For some examples, (e.g., those leading to

Veech surfaces [67]) existence of quadratic multiplicative asymptotics has been

shown and even the constant calculated.

Any effective subexponential estimate (such as e�T 3=4

, say) for arbitrary

polygons would be a major advance.

CONJECTURE 4.4. limT !1 S.T /=T 2C" D 0 for every polygon and every

" > 0, but S.T /=T 2 is often irregular and unbounded.

It should be said that understanding orbit growth in measure-theoretic terms with

respect to the Liouville measure is not a difficult matter; one can calculate slow

entropy and gets a quadratic growth rate. Indeed, Mañé observed that the number

of connections of length up to T between two randomly chosen boundary points

is on average quadratic in T , i.e., statistically one sees quadratic orbit growth.

Accordingly, any deviation from quadratic orbit growth would be connected to

different invariant measures.

The basic problem is the lack of structure here, except for rational polygons

where one can represent the problem in terms of a Riemann surface with a



278 BORIS HASSELBLATT

quadratic differential and then bring tools of Teichmüller theory to bear. For

irrational polygons one could try to associate a Riemann surface of infinite genus

in an analogous fashion, but this sacrifices recurrence. There are some border-

line cases where one can use recurrence in dynamical systems that preserve an

infinite measure.

The basic problem related to this circle of questions is that in these parabolic

systems dynamical complexity arises from a combination of stretching and cut-

ting. The stretching is well understood for polygonal billiards, and produces

quadratic growth (geometrically a shear), but usually produces no periodic or-

bits; the interesting phenomena arise from cutting, which is poorly understood

beyond the fact that growth is subexponential.

5. Flat surfaces and polygonal billiards (presented by Anton Zorich)

This topic is closely related with the previous one. In fact, by unfolding,

rational billiards produce flat surfaces of a special kind. Powerful methods based

on the study of the Teichmüller geodesic flow on various strata of quadratic

differentials usually are not directly applicable to billiards.

QUESTION 5.1. Is the geodesic flow on a generic flat sphere with 3 singularities

ergodic?

QUESTION 5.2. Is there a closed regular geodesic?

Two copies of a triangle with boundaries identified gives such a space, so this

problem is related to polygonal billiards. For some rational triangles the initial

direction is preserved and thus provides a first integral.

QUESTION 5.3. Is there a precise quadratic asymptotic for the growth of closed

geodesics on every genus 2 flat surface?

There is much recent progress (such as the classification by Calta and McMullen

of Veech surfaces in H.2/ – genus 2 with a single conical singularity [20; 106])

to put this question into reach.

6. Symbolic extensions (Michael Boyle and Sheldon Newhouse)

Briefly, the effort to understand possible symbolic dynamics for a general

topological dynamical system leads to the Downarowicz theory of “entropy

structure”, a master entropy invariant which provides a refined and precise struc-

ture for describing the emergence of chaos on refining scales. This leads to prob-

lems of the compatibility of entropy structure with varying degrees of smooth-

ness.
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In the remainder of this section all homeomorphisms are assumed to have

finite topological entropy and to be defined on compact metrizable spaces. If g

is the restriction of some full shift on a finite alphabet to a closed shift-invariant

subsystem Y , then .Y; g/ is said to be a subshift.

DEFINITION 6.1. Given a homeomorphism f of a compact metrizable space X

with finite topological entropy, a symbolic extension of .X; f / is a continuous

surjection ' W Y ! X such that f ı ' D ' ı g and .Y; g/ is a subshift.

Given ' as above, we may also refer to the subshift .Y; g/ as a symbolic ex-

tension of .X; f /. A coding of a hyperbolic dynamical system by a topological

Markov shift provides the classical example. In general, the subshift .Y; g/ is

required to be a subsystem of some full shift on a finite set of symbols, but it

need not be a Markov shift and its topological entropy (though finite) need not

equal that of f .

DEFINITION 6.2. The topological symbolic extension entropy of f is

hsex.f / WD inffhtop.g/g;
where the inf is over all symbolic extensions of f . (If there is no symbolic

extension of .X; f /, then hsex.f / D 1.) The topological residual entropy of f

is hres.f / WD hsex.f / � htop.f /.

If htop.f / D 0, then hsex.f / D 0; otherwise, the residual and topological en-

tropies are independent, as follows.

THEOREM 6.3 ([14; 27]). If 0 < ˛ < 1 and 0 � ˇ � 1 then there is a

homeomorphism f with htop.f / D ˛ and hres.f / D ˇ.

Let Mf be the space of f -invariant Borel probabilities, and let h denote the

entropy function on Mf , h.�/ D h.�; f /. The key to a good entropy theory for

symbolic extensions [12] is to study the extensions in terms of Mf (as begun in

[27]).

DEFINITION 6.4. Let ' W .Y; S/ ! .X; f / be a symbolic extension of .X; f /.

The extension entropy function of ' is the function

h
'
ext W Mf ! Œ0; C1/

� ‘ supfh.�; S/ W � 2 Mg; '� D �g :

For a given � 2 Mf and a given symbolic extension ', the number h
'
ext.�/

measures the information in the symbolic system used to encode the trajectories

in the support of �. Define the symbolic extension entropy function of f ,

hf
sex W Mf ! Œ0; 1/

� ‘ inf
'

h
'
ext.�/;
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where the inf is over all symbolic extensions ' of .X; f /. (If there is no symbolic

extension of .X; f /, define h
f
sex WD 1.) The function h

f
sex is capturing for all

� in Mf the lower bound on the information required in any finite encoding of

the system (i.e., any symbolic extension of .X; f /) to describe the trajectories

supported by �. This function is a highly refined quantitative reflection of the

emergence of chaos (entropy) in the system .X; f /, as it reflects “where” the

chaos arises (on the supports of which measures) and also “how” (as the scale

of resolution on which the system is examined refines to zero). There is a more

thorough elaboration of this intuition in [28]; in any case, the final justification

of the claim is the full theory of entropy structure [12; 28].

To make this precise we follow the path of [27; 12; 28] and study an al-

lowed sequence of functions hn W Mf ! Œ0; 1/ which increase to h. An allowed

sequence determines the entropy structure of .X; f /. There are many choices

of allowed sequence for .hn/, studied in [28]; here is one concrete and crucial

(though not completely general) example, which reflects the intuition of “refin-

ing scales”. Suppose X admits a refining sequence of finite partitions Pn, with

diameters of partition elements going to zero uniformly in n, and such that the

boundary of P has � measure zero, for all � in Mf , for all n, and for all P

in Pn. (Such partitions exist for example if X is finite dimensional with zero-

dimensional periodic point set [93] or if .X; f / has an infinite minimal factor

[101; 99].) Set hn.�/ D hn.�; f; Pn/. Then .hn/ defines the entropy structure.

In [12], one general construction of the entropy structure is given, and the

collection of all the functions h
'
ext is given a useful functional analytic charac-

terization in terms of the entropy structure. Together with [29], this reduced

many problems involving symbolic extensions to problems of pure functional

analysis on a metrizable Choquet simplex. For example, it became possible [12]

to show the following

� There is a homeomorphism f with hres.f / < 1, but with no symbolic ex-

tension .Y; g/ such that htop.g/ D htop.f / C hres.f /.

� The function h
f
sex is upper semicontinuous and its maximum need not be

achieved at any ergodic measure.

� The topological symbolic extension entropy of f is the maximum value

achieved by its symbolic extension entropy function.

Another outcome was an inductive characterization of the function h
f
sex from

the given sequence hn. Define the tail sequence �n WD h � hn, which decreases

to zero. For ordinals ˛; ˇ, define recursively

� u0 � 0
� u˛C1 D limk.Cu˛ C �k/
� uˇ = the u.s.c. envelope of supfu˛ W ˛ < ˇg, if ˇ is a limit ordinal.
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With these definitions, there is the following theorem.

THEOREM 6.5 [12; 28]. u˛ D u˛C1 ” u˛ Chf D h
f
sex, and such an ˛ exists

among countable ordinals (even if hsex � 1).

The convergence above can be transfinite [12], and this indicates the subtlety of

the emergence of complexity on ever smaller scales. However the characteriza-

tion is also of practical use for constructing examples.

Downarowicz unified the whole theory with an appropriate notion of equiv-

alence. Following [28], declare two nondecreasing sequences of nonnegative

functions .hn/ and .h0
n/ to be uniformly equivalent if for every integer n and

" > 0 there exists N such that hN > h0
n � " and h0

N
> hn � ". Now, let .hn/

be a sequence defining the entropy structure in [12] (given by a complicated

general construction from [12]). Let .h0
n/ be another nondecreasing sequence of

nonnegative functions on Mf . Then by definition, .h0
n/ also defines the entropy

structure if and only if it is uniformly equivalent to the reference sequence .hn/.

Thus the entropy structure for a system .X; f / is a certain uniform equivalence

class of sequences of functions on Mf . The many approaches to defining en-

tropy lead to many candidate sequences .hn/, and Downarowicz examined them

[28]. With few exceptions, the approaches yield sequences in the same uniform

equivalence class as the reference sequence (and most of these sequences are

considerably more simple to define then the reference sequence). A sequence

uniformly equivalent to the reference sequence determines all the same entropy

invariants (e.g., the topological entropy, the entropy function on Mf , h
f
sex, and

the transfinite order of accumulation in Theorem 6.5), by application of the same

functional analytic characterizations as apply to derive the invariants from the

reference sequence. Because so many sequences lead to the same encompassing

collection of entropy invariants, it makes sense to refer to the entire equivalence

class of these sequences as the entropy structure of the system.

Viewing the entropy structure as fundamental, one asks which structures can

occur. At the level of topological dynamics there is a complete answer, due to

Downarowicz and Serafin.

THEOREM 6.6 [29]. The following are equivalent.

(1) .gn/ is a nondecreasing sequence of functions on a metrizable Choquet sim-

plex C , beginning with g0 � 0 and converging to a bounded function g, and

with gnC1 � gn upper semicontinuous for all n.

(2) There is a homeomorphism f of a compact metrizable space, with entropy

structure given by a sequence .hn/, such that there exists an affine homeo-

morphism from Mf to C which takes .hn/ to a sequence uniformly equivalent

to .gn/.
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Given .gn/ above, Downarowicz and Serafin actually construct a model f on the

Cantor set such that the affine homeomorphism takes .hn/ to .gn/. Moreover,

f can be made minimal.

More generally one asks what entropy structures are compatible with what

degrees of smoothness.

QUESTION 6.7. Let X be a compact Riemannian manifold and 1 � r � 1.

What entropy structures are possible for C r diffeomorphisms on X ?

Precisely, Question 6.7 asks the following: given .gn/ a nondecreasing sequence

of nonnegative upper semicontinuous functions on a metrizable Choquet sim-

plex C , and converging to a bounded function g, does there exist a C r dif-

feomorphism f on X , with entropy structure given by a sequence .hn/, such

that there exists an affine homeomorphism from Mf to C which takes .hn/ to a

sequence uniformly equivalent to .gn/?

Question 6.7 is more a program for the decades than one problem. We move

to particular (still very difficult) problems within this program.

First, we isolate the one good distinguished class in the entropy structure the-

ory: this is the Misiurewicz class of asymptotically h-expansive systems [109].

It turns out that .X; f / is asymptotically h-expansive if and only if its entropy

structure is given by a sequence .hn/ which converges to h uniformly [28], if

and only if it has a principal symbolic extension in the sense of Ledrappier (the

factor map preserves the entropy of every invariant measure) [14; 12]. Buzzi

showed a C 1 system .X; f / is asymptotically h-expansive [19].

QUESTION 6.8. Which asymptotically h-expansive entropy structures occur for

some C 1 diffeomorphism on some (or a given) compact manifold X ?

Note that the Newhouse conjecture (Conjecture 7.1) implies severe constraints

to realization if X is a surface.

At the 1991 Yale conference for Roy Adler, Boyle presented the first exam-

ples of systems with finite entropy but with no symbolic extension (these were

constructed in response to a 1988 question of Joe Auslander). This provoked a

question from A. Katok.

QUESTION 6.9 (KATOK, 1991). Are there smooth finite entropy examples with

no symbolic extension?

We have seen that there are no bad C 1 examples. For lesser smoothness, Dow-

narowicz and Newhouse showed that the situation is quite different.

THEOREM 6.10 [30]. A generic area-preserving C 1 diffeomorphism of a sur-

face is either Anosov or has no symbolic extension. If 1 < r < 1 and dim.M / >

1 then there are residual subsets R of open sets in Diffr .M / such that hres.f / >

0 — and hence f has no principal symbolic extension — for every f 2 R.
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The first result implies that a generic area-preserving C 1 surface diffeomor-

phism that is not Anosov is not topologically conjugate to any C 1 diffeomor-

phism; this includes all diffeomorphisms on surfaces other than T
2. The difficult

proof of [30] merges the detailed entropy theory of symbolic extensions with

genericity arguments for persistent homoclinic tangencies. Concrete examples

of C r maps 1 � r < 1 with positive residual entropy, based on old examples

of Misiurewicz [107; 108], are given in [13]. The most important open problem

currently is the following.

QUESTION 6.11. Suppose f is a C r diffeomorphism of a compact Riemannian

manifold, with 1 < r < 1. Is it possible for f to have infinite residual entropy?

The arguments of [30] led Downarowicz and Newhouse to the following more

specific version of this problem.

QUESTION 6.12. Let M be a compact manifold, f W M ! M a C r map with

r > 1. Is it necessarily true that

hsex.f / � htop.f / C dim M log Lip.f /

r � 1
?

The right-hand side here is effectively an iterated Yomdin-type defect. Yomdin

proved that the defect in upper semicontinuity given by local volume growth is

dim M log Lip.f /=r . In the constructions one tends to carry out in this field,

one iterates the procedure that gives this estimate and divides again by r each

time. The right-hand side above is the sum of the resulting geometric series. For

r D 1 and r D 1 this right-hand side agrees with the known results: C 1-maps

may not have a symbolic extension at all, and C 1 maps have a principal sym-

bolic extension. The question is related to the sense that maps of intermediate

regularity should have symbolic extensions, and the entropies of these should

not be too much larger than that of a map and by a margin that is less for maps

with higher regularity.

7. Measures of maximal entropy (presented by Sheldon Newhouse)

CONJECTURE 7.1 (NEWHOUSE). Let M be a compact surface and f WM !M

a C 1 diffeomorphism with htop.f / > 0. Then there are at most finitely many

measures of maximal entropy.

Evidence for this conjecture can be found in many places. Franz Hofbauer es-

sentially proved the analogous fact for piecewise monotone maps of the interval.

There are a countable number of homoclinic closures, and all ergodic mea-

sures of sufficiently high entropy are supported on these.



284 BORIS HASSELBLATT

The product of an Anosov diffeomorphism of T
2 with the identity on the

circle shows that in higher dimension such a claim can only hold with some

additional hypotheses.

8. Properties of the measure-theoretic entropy of

Sinai–Ruelle–Bowen measures of hyperbolic attractors (contributed

by Miaohua Jiang)

Let Diff1C˛.M / be the collection of all C 1C˛-diffeomorphisms on a com-

pact smooth Riemannian manifold M . Assume that a map f0 2 Diff1C˛.M / is

transitive and has a hyperbolic attractor � as its nonwandering set. By structural

stability, any g 2 Diff1C˛.M / in a sufficiently small C 1-neighborhood of f0 is

topologically conjugate to f0 on the attractor and its nonwandering set is also

a hyperbolic attractor. We denote this neighborhood of f0 by U C 1

" .f0/. Let

U.f0/ be the collection of those diffeomorphisms in Diff1C˛.M / that can be

connected with f0 by a finite chain of such neighborhoods, i.e.,

U.f0/ D
˚

g 9n 2 N 8i D 1; 2; : : : ; n 9 fi 2 Diff1C˛.M /; "i > 0 W

g 2 U C 1

"n
.fn/ and U C 1

"i�1
.fi�1/ \ U C 1

"i
.fi/ 6D ∅ for i D 1; 2; : : : ; n

	

:

The set U.f0/ is an open set of Diff1C˛.M /. Any map f in U.f0/ possesses

a hyperbolic attractor and there exists an SRB measure �f for f . Any two

maps in U.f0/ are conjugate by a Hölder continuous map that is not necessarily

close to the identity. Each map in U.f0/ also has the same topological entropy.

However, the measure-theoretic entropy h�f
.f / of f 2 U.f0/ with respect to its

SRB measure �f can vary. It was shown by David Ruelle that the dependence

of �f on the map f is differentiable when the maps are C 4.

QUESTION 8.1. Is inff 2U.f0/ h�f
.f / D 0? (Added in proof: Miaohua Jiang,

Huyi Hu and Yunping Jiang have answered the question in the affirmative.)

QUESTION 8.2. Does this functional have a local minimum?

For expanding maps on the circle, the infimum being zero was confirmed by

Mark Pollicott. The problems were raised during conversations between Miao-

hua Jiang and Dmitry Dolgopyat.

9. Sinai–Ruelle–Bowen measures and natural measures

(presented by Michał Misiurewicz)

DEFINITION 9.1. Let X be a compact metric space, f W X ! X a continuous

map, M the space of all probability measures on X and f� WM ! M, .f�.�//' WD
�.' ıf /, where �.'/ WD

R

X ' d� for ' W X ! R. Given a “reference” measure
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m on X for which f�.m/ � m and An.�/ WD
Pn�1

kD0 f k
� .�/=n, a Sinai–Ruelle–

Bowen measure for f is a measure mf such that there is an open U � X with

m.U / > 0 such that limn!1 An.ıx/ D mf for m-a.e. x 2 U [135; 136]. A

natural measure is a measure mf for which there is an open set U with m.U />0

such that limn!1 An.�/ D mf for every � 2 M with �.U / D 1 and � � m.

THEOREM 9.2. A Sinai–Ruelle–Bowen measure is natural.

PROOF. Integrate An.ıx/ (which tends to mf as n ! 1) over x with respect

to m. �

The converse does not hold.

THEOREM 9.3 [110; 111; 71]. If g is an expanding algebraic endomorphism or

an algebraic Anosov automorphism of a torus T
d then there exists f W T

d ! T
d

that is topologically conjugate to g and such that

(1) f�.m/ � m for m D Lebesgue measure,

(2) limn!1 An.m/ D mf ,

(3) mf has maximal entropy,

(4) fAn.ıx/ j n 2 Ng is dense in the space of f -invariant Borel probability

measures for m-a.e. x 2 T
d .

This particular situation is impossible for smooth (even C 1) f , which motivates

QUESTION 9.4. With Lebesgue measure as the reference measure, are there

smooth dynamical systems for which the ergodic natural measure is not a Sinai–

Ruelle–Bowen measure?

There is an example of piecewise continuous, piecewise smooth interval map for

which the natural measure is the average of two delta-measures at fixed points

and an SRB measure does not exist [10, page 391].

One could say that in these examples the conjugacy sends Lebesgue measure

to one that is completely unrelated to Lebesgue measure.

10. Billiards (Domokos Szasz)

Consider a dispersing billiard on the two-dimensional torus with a finite

horizon (i.e., assume that the length of orbit segments between impacts with

scatterers is bounded). The Lorentz process is the Z
2-cover of this billiard. (In

other words, it is a billiard on R
2 with periodically arranged convex scatterers.)

The phase space of the billiard can, of course, be embedded isomorphically into

the phase space of the Lorentz process, into its cell 0, say. Assume that the

initial phase point of the Lorentz process is selected in cell 0 according to the

Liouville measure.
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It is known that, for the billiard dynamics, correlations of Hölder functions

decay exponentially fast (cf. [136]). As a consequence, for Hölder functions

the central limit theorem holds, implying that for the corresponding Lorentz

process the typical displacement of orbits increases as the square root of the

number of collisions. However, for periodic trajectories of the billiard the dis-

placement is either bounded or is ballistic (i.e., it grows linearly with the number

of collisions). According to a construction of [16] (for more details and further

references see [132]) there do exist ballistic orbits.

QUESTION 10.1. How large is the set of ballistic orbits? Could one give a

lower bound for its Hausdorff dimension?

This is a geometric question because it is not a matter of studying typical behav-

ior. When one aims at constructing ballistic orbits different from those arising

from periodic ones the problem is that there are “shadows” of the scatterers,

which makes this situation different from geodesic flows in negative curvature

because it introduces an analog of positive curvature, and there is no good geo-

metric picture here.

11. Stable ergodicity (with Keith Burns)

DEFINITION 11.1. An embedding f is said to be partially hyperbolic on � if

there exists a Riemannian metric for which there are continuous positive func-

tions �i ; �i ; i D 1; 2; 3 on M such that

0 < �1 � �1 < �2 � �2 < �3 � �3 with �1 < 1 < �3

and an invariant splitting

TxM D Es.x/ ˚ Ec.x/ ˚ Eu.x/; dxfE� .x/ D E� .f .x//; � D s; c; u

into pairwise orthogonal subspaces Es.x/, Ec.x/ and Eu.x/ such that

�1 � kbdxf ↾ Es.x/ck � kdxf ↾ Es.x/k � �1;

�2 � kbdxf ↾ Ec.x/ck � kdxf ↾ Ec.x/k � �2;

�3 � kbdxf ↾ Eu.x/ck � kdxf ↾ Eu.x/k � �3;

where kbAck WD minfkAvk j kvk D 1g. In this case we set Ecs WD Ec ˚ Es and

Ecu WD Ec ˚ Eu.

REMARK. Each subbundle E� for � D u; s; c; cu; cs is Hölder continuous.

Denote the set of C 2 partially hyperbolic diffeomorphisms of a compact mani-

fold M by PHD2.M / and the set of volume-preserving such by PHD2
vol.M /.

CONJECTURE 11.2 (PUGH–SHUB). The set of diffeomorphisms that are vol-

ume-ergodic contains a C 2-dense and C 1-open subset of PHD2
vol.M /.
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Since the usual method available for establishing ergodicity from hyperbolicity

is the Hopf argument, it is natural to consider us-paths, that is, paths obtained

by concatenating finitely many segments each of which lies entirely in a stable

or an unstable leaf. The property of being joined by a us-path is obviously an

equivalence relation on points of M . If there is just one equivalence class, in

other words if any two points are joined by a us-path, we say that the diffeomor-

phism has the accessibility property. One also wants to consider this property

modulo sets of measure 0, which leads to the essential accessibility property,

which says that a measurable set which is a union of equivalence classes must

have zero or full measure.

This suggests approaching the above conjecture via the two following ones:

CONJECTURE 11.3. PHD2
vol.M / and PHD2.M / contain subsets consisting

of diffeomorphisms with the accessibility property that are both C 2-dense and

C 1-open.

CONJECTURE 11.4. Essential accessibility implies ergodicity in PHD2
vol.M /.

Pertinent known results are:

THEOREM 11.5 [26]. Conjecture 11.3 is true if C 2 dense is weakened to C 1

dense.

THEOREM 11.6 [114; 65; 17]. Conjecture 11.3 is true for diffeomorphisms with

1-dimensional center.

Removing the assumption of 1-dimensional center bundle will require substan-

tially new ideas.

Results towards Conjecture 11.4 are the classical ones by Hopf [66], Anosov

and Anosov–Sinai [1; 3] as well as those by Grayson, Pugh and Shub [52;

123], Pugh and Shub [124; 125] and the most refined version due to Burns and

Wilkinson [18].

DEFINITION 11.7. We say that f is center-bunched if �1 < �2=�2 and ��1
3

<

�2=�2.

This holds automatically whenever the center bundle is 1-dimensional.

THEOREM 11.8 [18]. An (essentially) accessible, center-bunched, partially hy-

perbolic diffeomorphism is ergodic (and, in fact, has the K-property).

With this in mind one can rephrase Conjecture 11.4 as follows:

QUESTION 11.9. Can one dispense with the center-bunching hypothesis in The-

orem 11.8?

This would require a substantially new insight. The present techniques crucially

require center bunching, even though it has been weakened significantly from

its earliest formulations.
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Maybe a different approach is needed:

QUESTION 11.10. Can one show that accessibility implies ergodicity of the

stable and unstable foliations in the sense that sets saturated by stable leaves

and sets saturated by unstable leaves must have either zero or full measure?

It is not known whether a diffeomorphism that satisfies the hypotheses of The-

orem 11.8 must be Bernoulli.

QUESTION 11.11. Are systems as in Theorem 11.8 Bernoulli?

The answer is expected to be negative, but the known examples of K-systems

that are not Bernoulli are not of this type. It may be possible that a study of early

smooth examples by Katok may be instructive. They are not partially hyperbolic

but might be sufficiently “soft” to be useful here.

12. Mixing in Anosov flows (Michael Field)

Let � be a basic set for the Axiom A flow ˚ and P denote the periodic

spectrum of ˚ ↾ � (set of prime periods of periodic orbits). Bowen showed

that P is an invariant of mixing. The analyticity and extension properties of the

�-function �˚ of ˚ are (obviously) determined by P (for the definition of �˚

we assume the measure of maximal entropy on �). In view of the close relation

between exponential mixing of ˚ and extension properties of �˚ [122], we ask

QUESTION 12.1. Is the periodic spectrum an invariant of exponential mixing?

(For conditions on P related to rapid mixing, see [41, Theorem 1.7].)

Let x be a homoclinic point for the periodic orbit � . In [41] a definition

is given of ‘good asymptotics’ for the pair .�; x/. Without going into detail,

the definition involves precise asymptotic estimates for a sequence of periodic

orbits which converge to the ˚-orbit of x. Typically, good asymptotics is an

open condition in the C 2-topology. If there exists .�; x/ with good asymptotics

then ˚ is (rapidly) mixing [41].

DEFINITION 12.2. We say ˚ has very good asymptotics if every pair .�; x/ has

good asymptotics in the sense of [41].

This is a generic condition on Axiom A flows.

QUESTION 12.3. Does very good asymptotics imply exponential mixing?

A weaker (but perhaps more tractable) version of this question is

QUESTION 12.4. Does very good asymptotics imply analytic extension of the

�-function?
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A flow ˚ is C r -stably mixing if there exists a C r -open neighborhood of ˚

consisting of mixing flows. It was shown in [41] that if r � 2 then a C r -Axiom

A flow can be C r -approximated by a C 2-stably mixing Axiom A flow (in fact,

by a C 2-stably rapid mixing flow). If the flow is Anosov or an attractor one may

approximate by a C 1-stably mixing flow.

QUESTION 12.5. If the dimension of the basic set is at least two, can one always

approximate by a C 1-stably mixing flow?

(This is really a question about the local geometry of the basic set. For example,

it suffices to know that W uu.x/\� is locally path-connected for all x 2 �. This

condition is automatically satisfied for attractors.)

For results and background related to the following question see [40].

PROBLEM 12.6. Suppose the dimension of the basic set is one (suspension of

a subshift of finite type). Show that if ˚ is C 1-stably mixing, then ˚ cannot be

C r , r > 1.

Of course, it is interesting here to find examples where C 1C˛-stable mixing of

˚ implies that ˚ cannot be more regular than C 1C˛ .

Although the results in [41] show that every Anosov flow can be approxi-

mated by a C 1-stably mixing Anosov flow, there remains the

CONJECTURE 12.7 (PLANTE [121]). For transitive Anosov flows, mixing is

equivalent to stable mixing.

As Plante showed, the conjecture amounts to showing that if the strong foliations

are integrable then they cannot have dense leaves.

13. The structure of hyperbolic sets (contributed by Todd Fisher)

As stated in Section 16 below, there are a number of fundamental questions

about the structure of Anosov diffeomorphisms. It is then not surprising that

there are a number of problems concerning the structure of general hyperbolic

sets.

A question posed by Bonatti concerns the topology of hyperbolic attractors.

On surfaces a hyperbolic attractor can be either the entire manifold (Anosov

case) or a 1-dimensional lamination (“Plykin attractors”).

On 3-dimensional manifolds there are many kinds of hyperbolic attractors:

Let A be a hyperbolic attractor of a diffeomorphism f on a compact 3-manifold

M . The following cases are known to exist.

(1) If the unstable manifold of the points x 2 A are bidimensional, then A is

either the torus T 3 (Anosov case), or a bidimensional lamination.
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(2) If the unstable manifolds of the points x 2 A are 1-dimensional, then the

attractor can be

(i) a 1-dimensional lamination which is transversely Cantor (“Williams at-

tractors”) or

(ii) an invariant topological 2-torus T
2, and the restriction of f to this torus

is conjugate to an Anosov diffeomorphism (however, the torus T
2 can be

fractal with Hausdorff dimension strictly bigger than 2).

QUESTION 13.1. Is there some other possibility? For example, is it possible to

get an attractor such that the transversal structure of the unstable lamination is

a Sierpinski carpet?

THEOREM 13.2 [42]. If M is a compact surface and � is a nontrivial mixing

hyperbolic attractor for a diffeomorphism f of M , and � is hyperbolic for a dif-

feomorphism g of M , then � is either a nontrivial mixing hyperbolic attractor

or a nontrivial mixing hyperbolic repeller for g.

It is also shown in [42] by counterexample that this does not hold in higher

dimensions for general attractors. However, if we add some assumptions on the

attractor or weaken the conclusion we have the following problems.

QUESTION 13.3. Suppose M is a compact smooth boundaryless manifold of

dimension n and � is a mixing hyperbolic attractor for f with dim.E
u/ D n�1

and hyperbolic for a diffeomorphism g. Does this imply that � is a mixing

hyperbolic attractor or repeller for g?

QUESTION 13.4. Suppose � is a locally maximal hyperbolic set for a diffeo-

morphism f and hyperbolic for a diffeomorphism g. Does this imply that � is

locally maximal for g? or that � is contained in a locally maximal hyperbolic

set for g?

Related to Question 13.4 we note that in [43] it is shown that on any manifold, of

dimension greater than one, there is an open set of diffeomorphisms containing

a hyperbolic set that is not contained in a locally maximal one. Furthermore, it

is shown if the dimension of the manifold is at least four that there is an open set

of diffeomorphisms containing a transitive hyperbolic set that is not contained

in a locally maximal one.

QUESTION 13.5. Suppose M is a compact surface and � � M is a transitive

hyperolic set for a diffemorphism f of M . If � is transitive, then is � contained

in a locally maximal hyperbolic set?

Inspired by Hilbert’s famous address in 1900, Arnold requested various math-

ematicians to provide great problems for the twenty-first century. Smale gave

his list in [130]. Smale’s Problem 12 deals with the centralizer of a “typical”
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diffeomorphism. For f 2 Diffr .M / (the set of C r diffeomorphisms from M to

M ) the centralizer of f is

C.f / D fg 2 Diffr .M / fg D gf g:

Let r � 1, M be a smooth, connected, compact, boundaryless manifold, and

T D ff 2 Diffr .M / j C.f / is trivialg:

Smale asks whether T is dense in Diffr .M /. Smale also asks if there is a subset

of T that is open and dense in Diffr .M /. Smale states: “I find this problem

interesting in that it gives some focus in the dark realm beyond hyperbolicity

where even the problems are hard to pose clearly.” [130]

Even though Smale states that the problem of studying the centralizer gives

focus on nonhyperbolic behavior, unfortunately even the hyperbolic case, in

general, remains open. However, a number of people have partial results to

Smale’s question for Axiom A diffeomorphisms.

Palis and Yoccoz [115] have shown that there is an open and dense set of C 1

Axiom A diffeomorphisms with the strong transversality property and contain-

ing a periodic sink that have a trivial centralizer. Togawa [133] has shown that

on any manifold there is a C 1 residual set among C 1 Axiom A diffeomorphisms

with a trivial centralizer.

QUESTION 13.6. For any manifold and any r � 1 is there an open and dense

set U contained in the set of C r Axiom A diffeomorphisms such that any f 2 U

has a trivial centralizer.

14. The dynamics of geodesic flows (presented by Gerhard Knieper)

CONJECTURE 14.1. For any compact manifold the geodesic flow of a generic

Riemannian metric has positive topological entropy.

This holds for surfaces. Specifically, for tori this is achieved using methods

of Hedlund, Birkhoff and others to construct a horseshoe, and for higher genus

this is a consequence of the exponential growth forced by entropy. Consequently

only the sphere requires substantial work. For the sphere Contreras and Pater-

nain [21] showed this in the C 2-topology (for metrics) using dominated split-

ting and Knieper and Weiss [92] proved this in the C 1 topology using global

Poincaré sections (pushed from the well-known case of positive curvature using

work of Hofer and Wysocki in symplectic topology) and the theory of prime ends

as applied by Mather. A consequence (via a theorem of Katok) is that generically

there is a horseshoe and hence exponential growth of closed geodesics.

QUESTION 14.2. Can one make similar statements for Liouville entropy?
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QUESTION 14.3. Is there a metric of positive curvature whose geodesic flow

has positive Liouville entropy?

The underlying question is whether there is a mechanism for the generation of

hyperbolicity on a large set from positive curvature.

If a manifold of nonpositive curvature has rank 1 (i.e., every geodesic is hy-

perbolic), then the unit tangent bundle splits into two sets that are invariant under

the geodesic flow, the regular set, which is open and dense, and the singular set.

QUESTION 14.4. Does the singular set have zero Liouville measure?

An affirmative answer would imply ergodicity of the geodesic flow. For analytic

metrics on surfaces the singular set is a finite union of closed geodesics. In

higher dimensions there are examples where the singular set carries positive

topological entropy.

Irreducible nonpositively curved manifolds of higher rank are locally sym-

metric spaces by the rank rigidity theorem. In this case closed geodesics are

equidistributed. For " > 0 let P".M / be a maximal set of "-separated closed

geodesics and P".t/ WD fc 2 P".M / `.c/ � tg. By a result of Spatzier there

is an " > 0 such that limt!1.1=t/ log card P".t/ D htop.'t /. This implies that

closed geodesics are equidistributed with respect to the measure of maximal

entropy.

QUESTION 14.5. Can one replace “"-separated” by “nonhomotopic”?

This is likely but unknown.

15. Averaging (Yuri Kifer)

The basic idea in averaging is to start from an “ideal” (unperturbed) system

dX.t/

dt
D 0; X.0/ D 0;

dY .t/

dt
D b.x; Y .t//; Y .0/ D y;

which gives rise to the flow 't
0

W R
d � M ! R

d � M , .x; y/ ‘ .x; F t
x.y//.

Integrable Hamiltonian systems are of this type. One then perturbs the system

by adding a slow motion in the first coordinate:

dX ".t/

dt
D "B.X ".t/; Y ".t//; X ".0/ D x;

dY ".t/

dt
D b.X ".t/; Y ".t//; Y ".0/ D y:
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We write X " D X "
x;y and Y " D Y "

x;y . This results in a flow

't
".x; y/ D .X "

x;y.t/; Y "
x;y.t//;

with X representing the slow motion. The question is whether on a time scale

of t=" the slow motion can be approximated by solving the averaged equation

where B is replaced by NB which is obtained from the former by averaging it

along the fast motion (see [89] and [90]).

X ".t/

dt
D "B.X ".t// (15–1)

In discrete time the “ideal” unperturbed system is of the form

'0.x; y/ D .x; Fx.y//;

with x 2 R
d , Fx W M ! M . The perturbed system is

'".x; y/ D .x C "	.x; y/; Fx.y//;

and we can bring this into a form analogous to the one for continuous time by

writing it as difference equations:

X ".n C 1/ D X ".n/ C "	.X ".n/; Y ".n//;

Y ".n C 1/ D FX ".n/.Y
".n//:

It is natural to rescale time to t=", and a basic averaging result (Artstein and

Vigodner [4]) is that (in a sense of differential inclusion) any limit point of

fX ".t="/ j " > 0; t 2 Œ0; T �g

is a solution of
dZ0.t/

dt
D B�z

.Z0.t//

with Z0.0/ D x, where �z is Fz-invariant and B�.x/ WD
R

B.x; y/ d�.y/.

Heuristically one instead uses the following averaging principle. Suppose the

limit B.x/ WD limt!1

R t
0 B.x; F s

x.y// ds=t exists for “most” .x; y/ and “al-

most” does not depend on y. Then try to approximate X ".t/ in some sense

over time intervals of order 1=" by the averaged motion X given by (15–1) with

X ".0/ D x. (This goes back to Clairaut, Lagrange, Laplace, Fatou, Krylov–

Bogolyubov, Anosov, Arnold, Neishtadt, Kasuga and others, and there are also

stochastic versions.) One then would like to know whether

lim
"!0

sup
0�t�T ="

jX ".t/ � X ".t/j D 0;

and in which sense this happens. Next one can inquire about the error

X ".t/ � X ".t/:
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New results assume that the fast motion is chaotic, typically the second factor

is assumed to be hyperbolic. One can then hope for approximation in measure,

and there are theorems to that effect in 3 main cases: The fast motion is indepen-

dent of the slow one (this is the easy case, and one gets a.e.-convergence), when

the fast motion preserves a smooth measure that is ergodic for a.e. x (this is

due to Anosov and covers the Hamiltonian situation), and much more recently,

when the fast motion is an Axiom-A flow (depending C 2 on x as a parameter)

in a neighborhood of an attractor endowed with Sinai–Ruelle–Bowen measure.

One may in the latter case ask whether there is a.e.-convergence rather than in

measure. For instance, this is not true in general in the case of perturbations of

integrable Hamiltonian systems. In the latter case we may have no convergence

for any fixed initial condition from a large open set (see Neishtadt’s example

in [90]). This is related to the question of whether there are resonances and

whether these affect convergence and how. To make this concrete, consider the

discrete-time system

X ".n C 1/ D X ".n/ C " sin 2�Y ".n/;

Y ".n C 1/ D 2Y ".n/ C X ".n/ .mod 1/:

QUESTION 15.1. Is it the case that

lim
"!0

sup
0�n�T ="

jX ".n/ � X ".0/j D 0

for Lebesgue-almost every .x; y/? (Added in proof: Kifer and Bakhtin now

seem to have a negative answer to this.)

It is known by a large-deviations argument (see [90]) that given ı >0 the measure

of the set of .x; y/ for which sup0�n�T =" jX ".n/�X ".0/j > ı is at most e�C="

for some C > 0.

When one considers the rescaled averaged motion Z.t/ D X ".t="/ (aver-

aged with respect to Sinai–Ruelle–Bowen measure) an adiabatic invariant is an

invariant function, i.e., a function H such that H.Z.t// D H.Z.0//.

CONJECTURE 15.2. On .M; vol/, H.X ".t="2// converges weakly to a diffu-

sion, assuming that the fast motion is hyperbolic.

It may be simpler to start with expanding fast motions.

16. Classifying Anosov diffeomorphisms and actions (presented by

Anatole Katok and Ralf Spatzier)

The classical question on which these questions are based is whether one

can classify all Anosov diffeomorphisms. This has been done up to topological
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conjugacy on tori and nilmanifolds and for codimension-1 Anosov diffeomor-

phisms [48; 102; 113]. The central ingredient is the fundamental observation

by Franks that if an Anosov diffeomorphism on a torus acts on the fundamental

group in the same way as a hyperbolic automorphism then there is a conjugacy.

Manning proved that any Anosov map of the torus is indeed of this type and

extended the result to nilmanifolds.

QUESTION 16.1. Is every Anosov diffeomorphism of a compact manifold M

topologically conjugate to a finite factor of an automorphism of a nilmanifold

N=� ?

If there are indeed other examples, then there is currently a lack of imagination

regarding the possibilities for Anosov diffeomorphisms. In the framework of

the proofs mentioned above the central assumption is that the universal cover is

R
n and the map is globally a product, but there is no a priori reason that this

should be so. Indeed, for Anosov flows the situation is quite different, and there

are many unconventional examples of these, beginning with one due to Franks

and Williams that is not transitive [49].

In higher rank there are plausible mechanisms to rule out topologically exotic

discrete Anosov actions.

Perturbation of periodic points shows that one cannot expect better than topo-

logical classification of Anosov diffeomorphisms, and an example by Farrell

and Jones suggest a different reason: There is an Anosov diffeomorphism on an

exotic torus.

One may ask about characterizations of algebraic Anosov actions up to C 1

conjugacy.

THEOREM 16.2 [8]. An Anosov diffeomorphism with C 1 Anosov splitting that

preserves an affine connection (e.g., is symplectic) is C 1 conjugate to an alge-

braic one.

CONJECTURE 16.3. Instead of preservation of an affine connection this can be

done assuming preservation of some sensible higher-order geometric structure,

e.g., a Gromov-rigid structure.

QUESTION 16.4. Does preservation of an affine connection alone suffice?

QUESTION 16.5. Does smooth splitting alone suffice?

This might be possible. A natural approach would be to construct invariant

structures on the stable and unstable foliations and glue these together to a

global invariant structure. The problem is that in some of the standard nilpotent

examples the natural structure is not of the type one gets this way.

A different and more recent result is the following:
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THEOREM 16.6 [76; 32]. A uniformly quasiconformal Anosov diffeomorphism

is C 1 conjugate to an algebraic one.

CONJECTURE 16.7 (KATOK). An Anosov diffeomorphism whose measure of

maximal entropy is smooth is smoothly conjugate to an algebraic one.

Anosov flows are much more flexible, there are many examples that make a clas-

sification seem unlikely [49; 59]. There are some characterizations of algebraic

flows. These provide some results similar to the above, as well as analogous

problems.

The situation is rather different for algebraic actions so long as they are irre-

ducible (e.g., not products of Ansov diffeomorphisms). These actions are usually

hard to perturb. Katok and Spatzier showed that such actions with semisimple

linear part are rigid [85], and Damjanovic and Katok pushed this to partially

hyperbolic actions on tori [23].

CONJECTURE 16.8. Any C 1 Anosov R
k- (or Z

k-) action for k � 2 on a

compact manifold without rank 1 factors is algebraic.

No counterexamples are known even with lower regularity than C 1.

We next quote a pertinent result by Federico Rodrı́guez Hertz:

THEOREM 16.9 [64]. A Z
2 action on T

3 with at least one Anosov element and

whose induced action on homology has only real eigenvalues (one less than 1

and 2 bigger than 1) is C 1 conjugate to an algebraic one.

In fact, more generally, let � be a subgroup of GL.N; Z/, the group of N � N

matrices with integer entries and determinant ˙1, and say that the standard

action of � on T
N is globally rigid if any Anosov action of � on T

N which

induces the standard action in homology is smoothly conjugate to it.

THEOREM 16.10 [64]. Let A 2 GL.N; Z/, be a matrix whose characteristic

polynomial is irreducible over Z. Assume also that the centralizer Z.A/ of A

in GL.N; Z/ has rank at least 2. Then the associated action of any finite index

subgroup of Z.A/ on T
N is globally rigid.

The assumption on the rank of the centralizer is hardly restrictive. Due to the

Dirichlet unit theorem, in the above case, Z.A/ is a finite extension of Z
rCc�1

where r is the number of real eigenvalues and c is the number of pairs of complex

eigenvalues. So, r C2c D N , and Z.A/ has rank 1 only if N D 2 or if N D 3 and

A has a complex eigenvalue or if N D 4 and A has only complex eigenvalues.

In [64] Hertz also states:

QUESTION 16.11. Consider N � 3, A 2 GL.N; Z/ such that Z.A/ is “big

enough”. Under which assumptions is the standard action of every finite-index

subgroup � on T
N globally rigid?
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Another rigidity result is due to Kalinin and Spatzier:

THEOREM 16.12 [77]. If M is a compact manifold with a Cartan R
k-action

such that k � 3, there is a dense set of Anosov elements and every 1-parameter

subgroup is topologically transitive (hence there are no rank-1 factors) then this

action is C 1 conjugate to an algebraic one, indeed a homogeneous one (i.e.,

the left action of R
k embedded in a group G on G=� for a cocompact discrete

subgroup � ).

(Homogeneous Anosov actions of this type are not classified because it is not

known how to classify suspensions of Anosov Z
k-actions on nilmanifolds.)

QUESTION 16.13. Does the Kalinin–Spatzier result hold for k D 2?

QUESTION 16.14. Does the Kalinin–Spatzier result hold assuming only the

existence of an Anosov element?

QUESTION 16.15. Does the Kalinin–Spatzier result hold without the transitivity

assumption (and maybe even without excluding rank-1 factors)?

17. Invariant measures for hyperbolic actions of higher-rank

abelian groups (Anatole Katok)

The basic example is Furstenberg’s “�2 � 3”-example of the N
2-action on

S1 generated by Ei W x ‘ ix .mod 1/ for i D 1; 2. For a single of these

transformations there are plenty of invariant measures, but for fEi i 2 Ng the

only jointly invariant measures are easily seen to be Lebesgue measure and the

Dirac mass at 0. The same holds if one takes a polynomial P .�/ with integer

coefficients and considers fEP.n/ n2 Ng. Furstenberg asked whether Lebesgue

measure is the only nonatomic invariant Borel probability measure for E2 and

E3.

The second example is M DSL.n; R/=� for n�3 and a lattice � �SL.n; R/.

The Weyl chamber flow is the action of the set D of positive diagonal elements

on M by left translation. (D is isomorphic to R
n�1).

PROBLEM 17.1. Find all invariant measures for these two examples.

Rudolph [127] showed in 1990 that a measure invariant under both E2 and

E3 for which one of E2 and E3 has positive entropy is Lebesgue measure.

Geometric methods which form the basis of most of the work up to now were

introduced in [87]. In 2003 Einsiedler, Katok and Lindenstrauss [31] proved

the analogous result for the Weyl chamber flow (assuming positive entropy for

one element of the action). See[100] for a survey of the this rapidly developing

subject at a recent (but not present) date.
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Fundamentally the issues for the case of positive entropy are reasonably well

understood although (possibly formidable) technical problems remain. How-

ever, even simple questions remain in the general case. Here is an example.

QUESTION 17.2. Given an Anosov diffeomorphism and a generic ergodic in-

variant measure (i.e., neither Lebesgue measure nor an atomic one), is there

a diffeomorphism that preserves this measure and that is not a power of the

Anosov diffeomorphism itself?

Indeed, the zero-entropy case is entirely open, and experts differ on the expected

outcome. One can take a geometric or Fourier-analytic approach. The difficulty

with the latter one is that even though one has a natural dual available, measures

don’t behave well with respect to passing to the dual. At the level of invariant

distributions there is little difference between rank 1 and higher rank whereas

the wealth of invariant measures is quite different between these two situations.

The geometric approach produced the results for positive entropy, but in the

zero-entropy situation conditional measures on stable and unstable leaves are

atomic.

Thus, we either lack the imagination to come up with novel invariant mea-

sures or the structure to rule these out.

As to the reason for concentrating on abelian actions, this simply provides

the first test case for understanding hyperbolic actions in this respect. Recently,

substantial progress was achieved beyond the algebraic or uniformly hyperbolic

cases [75; 84]. The paradigm here is that positive entropy hyperbolic invariant

measures are forced to be absolutely continuous if the rank of the action is

sufficiently high, e.g., for Z
k actions on k C1-dimensional manifolds for k � 2.

For unipotent actions, by contrast, the Ratner rigidity theory is fairly compre-

hensive, but here the paradigm is in essence unique ergodicity, which is quite

different from the hyperbolic situation.

18. Rigidity of higher-rank abelian actions (presented by

Danijela Damjanovic)

Consider actions of A D Z
k or A D R

k on a compact manifold, where k

is at least 2. One class of such actions consists of Z
k -actions on T

N by toral

automorphisms; we say that these are genuinely of higher rank if there is a

subgroup isomorphic to Z
2 that acts by ergodic automorphisms. Another class

consists of the action by the diagonal AD R
n�1 on M DSL.n; R/=� , or actions

by a generic hyperplane R
d for 2 � d < n � 1. This is a partially hyperbolic

action whose neutral direction is the neutral direction for the full Cartan. For

the first of these cases Katok and Damjanovic have proved rigidity [24], and this

raises the following
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QUESTION 18.1. Can the KAM-methods of Damjanovic and Katok be used to

establish rigidity in actions of the second type?

The second situation provides much more geometric structure than the first one,

and this can be put to use. Methods of Katok and Spatzier [86] reduce the

problem to studying perturbations in the neutral direction, each of which is given

by a cocycle over the perturbed action. Therefore the same objective can be

achieved by answering the following:

QUESTION 18.2. Can one show cocycle rigidity for the perturbed actions?

Katok and Kononenko [83] have established Hölder cocyle stability for partially

hyperbolic diffeomorphisms with the accessibility property that could be put

to use here. Progress has been achieved recently by first introducing a new

method for proving cocycle rigidity [23] which uses results and methods from

algebraic K-theory and then developing this method further so that it applies

to cocycle over perturbations and hence produces local rigidity (up to small

standard perturbations within the full Cartan subgroup) for the actions of the

second kind [25].

19. Local rigidity of actions (presented by David Fisher)

For more background, references, more information on the questions raised in

this section as well as other interesting questions in this area, the reader should

refer to the survey by Fisher in this volume.

DEFINITION 19.1. A homomorphism i W� !D from a finitely generated group

� to a topological group D is said to be locally rigid if any i 0 sufficiently close

to i in the compact-open topology is conjugate to i by a small element of D.

This is the case for the inclusion of an irreducible cocompact lattice in a semisim-

ple Lie group with no compact or 3-dimensional factors (Calabi–Vesentini, Sel-

berg, Weil).

A basic question posed by Zimmer around 1985 is whether one can do any-

thing of interest if the topological group is the diffeomorphism group of a com-

pact manifold and � is a lattice in a group G that has no rank-1 factors (for

example, G D SL.n; R/, G D SL.n; Z/ for n � 3). (Katok and collabarators

have studied � D Z
d for d � 2 with this in view.) Benveniste showed that every

isometric action of a cocompact group is locally rigid in Diff1.M /, and shortly

thereafter Margulis and Fisher showed that any isometric action of a group �

is locally rigid if the group has proprty (T) of Kazhdan, i.e., H 1.�; �/ D 0 for

every unitary representation � .

A theorem of Kazhdan asserts that there are cocompact lattices in SU.1; n/

that admit nontrivial homomorphisms to Z, and as an easy consequence any
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action of these with connected centralizer has deformations. These deformations

are not very interesting, so one can ask.

QUESTION 19.2. Are these the only deformations?

There are cocompact lattices in SO.1; n/ with embeddings in SO.nC1/, where

the resulting action on Sn has an infinite-dimensional deformation space. The

known deformations do not preserve volume:

QUESTION 19.3. Are there volume-preserving deformations in this situation?

If � is an irreducible lattice in a semisimple Lie group G that has no compact

factors and is contained in a Lie group H with a cocompact lattice � then �

acts on H=�. In many cases these actions are not locally rigid, such as for

lattices in SU.1; n/ and in SO.1; n/.

CONJECTURE 19.4. An action of a lattice � is locally rigid if there is a map

from G onto a group G1 that is locally isomorphic to either SO.1; n/ or SU.1; n/

and acts on a space X in such a way that there is a factorization of H� to X

that intertwines the actions of � on H=� and X (the latter induced by � � G1.

This is even open for Anosov actions. A simple linear example of these would

be the natural action of SL.2; Z

p
2/ on T

4 obtained by the linear action on R
4

of the 2 Galois-conjugate embeddings, which have an invariant lattice. In the

case of Anosov actions this should be an approachable question. Crossing the

preceding example with the identity on a circle should be much harder.

20. Smooth and geometric rigidity

CONJECTURE 20.1. A compact negatively curved Riemannian manifold with

C 1Czygmund horospheric foliations is locally symmetric.

It is believed that smooth rigidity of systems with smooth invariant foliations

should hold with low regularity. Yet this remains an open issue. There is some

evidence that this is a hard question. For example, investigations of the Anosov

obstruction to C 2 foliations [61] made clear that its vanishing does not have

immediate helpful consequences. And the basic bootstrap [60] does not start at

C 2.

The invariant subbundles Eu and Es , called the unstable and stable bundles,

are always Hölder continuous. For Eu this means that there exist 0 < ˛ � 1 and

C; ı > 0 such that dG.Eu.p/; Eu.q// � CdM .p; q/˛ whenever dM .p; q/ � ı,

where dG is an appropriate metric on subbundles of TM . We say that Eu is

C ˛ or ˛-Hölder; in case ˛ D 1 we say Eu is C Lip or Lipschitz continuous. A

continuous function f W U ! R on an open set U � R is said to be Zygmund-

regular if there is K > 0 such that jf .x C h/ C f .x � h/ � 2f .x/j � Kjhj for
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all x 2 U and sufficiently small h. To specify a value of K we may refer to a

function as being K-Zygmund. The function is said to be “little Zygmund” or

C zygmund if jf .x C h/ C f .x � h/ � 2f .x/j D o.jhj/. Zygmund regularity

implies modulus of continuity O.jx log jxjj/ and hence H -Hölder continuity

for all H < 1 [139, Theorem (3�4)]. It follows from Lipschitz continuity and

hence from differentiability. Being “little Zygmund” implies having modulus of

continuity o.jx log jxjj/. For r 2 N denote by C r;! the space of maps whose r -th

derivatives have modulus of continuity !. For r > 0 let C r D C brc;O.xr �br c/.

For the dependence of the leaves on the base point several slightly different

definitions are possible. The canonical definition is via the highest possible

regularity of lamination charts. One may also look into the transverse regularity

of k-jets. Alternatively, one can examine the holonomy semigroup, i.e., for pairs

of nearby smooth transversals to the lamination one considers the locally defined

map between them that is obtained by “following the leaves”. By transversality

this is well-defined, and for smooth transversals one can discuss the regularity of

these maps, which turns out to be largely independent of the transversals chosen.

We adopt this notion here and refer to it as the regularity of holonomies or

(transverse) regularity of the lamination. There is little difference between these

definitions in our context. Following the discussion in [126] we can summarize

the relation as follows:

THEOREM 20.2 ([126, Theorem 6.1]). If r 2 R [ f1g, r … N r f1g then a

foliation with uniformly C r leaves and holonomies has C r foliation charts.

However, if r 2 N r f1g, a foliation with uniformly C r leaves and holonomies

need not have C r foliation charts. The problem are mixed partials. Without

assuming uniform regularity the above statements can fail drastically: There is

a foliation with uniformly C 1 leaves and with (nonuniformly) C 1 holonomies

that does not have a C 1 foliation chart [126, Figure 9]. In our context the

regularity is always uniform, so the above result implies that one can define reg-

ularity equally well via holonomies or foliation charts. The essential ingredient

for Theorem 20.2 is

THEOREM 20.3 ([74]). Let M be a C 1 manifold, Fu, F s continuous trans-

verse foliations with uniformly smooth leaves, n 2 N0, ˛ > 0, f W M ! R

uniformly C nC˛ on leaves of Fu and F s . Then f is C nC˛.

This leads to the following observation.

THEOREM 20.4. If r 2 R [ f1g, r … N r f1g and the stable and unstable

foliations have uniformly C r holonomies, then there are C r bifoliation charts,

i.e., charts that straighten both foliations simultaneously.
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PROOF. By hypothesis every point p has a neighborhood U on which the inverse

Œx; y�‘ .x; y/2W u
" .p/�W s

" .p/ of the local product structure map is uniformly

C r in either entry. By Theorem 20.3 it is C r . �

There is a connection between the regularity of the subbundles and that of the

lamination: For any r 2 N[f1g and ˛ 2 Œ0; 1/ or “˛ D Lip” a foliation tangent

to a C rC˛ subbundle is itself C rC˛ [126, Table 1]. (The reverse implication

holds only for r D 1 because leaves tangent to a C r subbundle are C rC1.)

The invariant subbundles are always Hölder continuous. It should be noted,

however, that for ˛ <1 the ˛-Hölder condition on subbundles does not imply any

regularity of the foliations. Indeed, without a Lipschitz condition even a one-

dimensional subbundle may not be uniquely integrable, so already continuity of

the foliation cannot be obtained this way. On the other hand, there turns out to

be a converse connection:

THEOREM 20.5 [63]. If the holonomies are ˛-Hölder and individual leaves are

C 1 then the subbundles are ˇ-Hölder for every ˇ < ˛.

There are variants of this for leaves of finite smoothness and almost-everywhere

Hölder conditions. Furthermore, whenever bunching-type information gives a

particular degree of regularity for the subbundles, one can usually get the same

regularity for the holonomies, and vice versa.

CONJECTURE 20.6. If both invariant foliations of an Anosov system are C 2

then they are both C 1.

Bolder variants of this would replace C 2 by C 1CLip, C 1CBV, C 1Czygmund (“little

Zygmund”) or C 1Co.xj log xj/, but the C 2 version would be spectacular enough,

even in the symplectic case.

Note that such rigidity results can only be expected assuming high regularity

of both foliations simultaneously because [62] gives a sufficient condition for

one foliation to be C 2 that holds for an open set of dynamical systems.

To prove such results it may be necessary to restrict to the geometric context,

where there are extra ingredients that might help. The leaves are spheres, and

they are “tied together” by the sphere at infinity (ideal boundary) of the universal

cover. An important result by Hamenstädt [58] should help substantially as well:

THEOREM 20.7. If the horospheric foliations are C 2 then the topological and

Liouville entropies of the geodesic flow coincide.

If the Katok entropy conjecture were known this would finish the problem.

Thus, the following problem remains: By exploiting geometric information

show that if the horospheric foliations are C 2 and the topological and Liouville

entropies of the geodesic flow coincide then the horospheric foliations are C 1
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(or C k for sufficiently large k to invoke the bootstrap [60]). This leads to a

geometric counterpart of Conjecture 20.6.

CONJECTURE 20.8. A compact negatively curved Riemannian manifold with

C 2 horospheric foliations is locally symmetric.

By [7; 9] this follows from Conjecture 20.6. A related proposal is the follow-

ing: Give an alternate proof of the Hamenstädt result by showing that if the

horospheric foliations are C 2 then the Jacobian cocycle is cohomologous to a

constant (which implies coincidence of Bowen–Margulis measure and Liouville

measure, i.e., coincidence of topological and Liouville entropy). The reason that

this route is interesting to explore is that it provides a motivation to return to the

Anosov cocycle and investigate whether it is at all connected with the Jacobian

cocycle in subtle ways.

As noted above, smoothness of invariant structures associated with a hy-

perbolic dynamical system is necessary for smooth conjugacy to an algebraic

model. There are several important instances where such conditions are suffi-

cient.

Smoothness of the invariant foliations of a hyperbolic dynamical system has

turned out to be sufficient for smooth conjugacy to an algebraic model in the

symplectic case. For geodesic flows even more can be said. Open questions

concern the precise amount of smoothness needed and possible conclusions in

the absence of symplecticity.

Smoothness of the invariant foliations. The most basic result in this direction

is implicit: The proof by Avez [5] that an area-preserving Anosov diffeomor-

phism of T
2 is topologically conjugate to an automorphism actually gives a

conjugacy as smooth as the invariant foliations. The definitive result in this

setting is worth giving here, because it is suggestive of the work yet to be done

in higher dimension.

THEOREM 20.9 [68]. Let f be a C 1 area-preserving Anosov diffeomorphism

of T
2. Then the invariant subbundles are differentiable and their first derivatives

satisfy the Zygmund condition [139, Section II.3, (3�1)] and hence have modulus

of continuity O.xj log xj/ [139, Theorem (3�4)]. There is a cocycle, the Anosov

cocycle, which is a coboundary if and only if these derivatives have modulus

of continuity o.xj log xj/ or, equivalently, satisfy a “little Zygmund” condition.

In this case, or if the derivatives have bounded variation [54], the invariant

foliations are C 1 and f is C 1 conjugate to an automorphism.

Note the sharp divide between the general and the smoothly rigid situation. In-

deed, the constant defining O.xj log xj/ is nonzero a.e., except when the Anosov

cocycle is trivial. Therefore this is the finest possible dichotomy.
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To obtain C 1 foliations it is actually shown first that triviality of the Anosov

cocycle implies C 3 subbundles, and a separate argument then yields C 1 folia-

tions.

Following Guysinsky one can explain the Anosov cocycle using local normal

forms. For a smooth area-preserving Anosov diffeomorphism on T
2 deLatte

[94] showed that one can find local smooth coordinate systems around each

point that depend continuously (actually C 1) on the point and bring the diffeo-

morphism f into the Moser normal form [112]

f .x; y/ D
�

��1
p x='p.xy/

�py'p.xy/

�

;

where .x; y/ are in local coordinates around a point p and the expression on

the right is in coordinates around f .p/. The terms involving 'p that depend on

the product xy correspond to the natural resonance �p��1
p D 1 that arises from

area-preservation (actually from the family of resonances �p D �nC1
p ��n

p ). The

function 'p is as smooth as f , and 'p.0/D1. Now we suppress the (continuous)

dependence of � and ' on p. Note that for a point .0; y/ we have

Df D
�

��1xy.1='/0.xy/ C ��1='.xy/ ��1x2.1='/0.xy/

�y2'0.xy/ �xy'0.xy/ C �'.xy/

�

D
�

��1 0

�y2'0.0/ �

�

:

In these local coordinates the unstable direction at a point .0; y/ on the stable

leaf of p is spanned by a vector .1; a.y//. Since this subbundle is invariant

under Df and since f .0; y/ D .0; �y/, the coordinate representation of Df

from above gives a.�y/ D �2y2'0.0/ C �2a.y/. If the unstable subbundle is

C 2 then differentating this relation twice with respect to x at 0 gives �2a00.0/ D
2�2'0.0/ C �2a00.0/, i.e., '0.0/ D 0. This means that the Anosov obstruction is

'0.0/, where ' arises from the nonstationary Moser-deLatte normal form. (Thus

this is also the obstruction to C 1 linearization.)

Hurder and Katok verify that A.p/ WD '0
p.0/ is a cocycle and show that it is

nonzero a.e. unless it is null-cohomologous. (Guysinsky’s result that C 1CBV )
C 1 follows because bounded variation implies differentiability almost every-

where.)

The work by Hurder and Katok is actually carried out for the weak subbun-

dles of volume-preserving Anosov flows on three-manifolds. In this situation

analogous issues arise relative to the strong subbundles. These can be worked

out with closely related techniques:

THEOREM 20.10 [46]. Let M be a 3-manifold, ' W R �M ! M a C k volume-

preserving Anosov flow. Then Eu ˚ Es is Zygmund-regular, and there is an
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obstruction to higher regularity that can be described geometrically as the cur-

vature of the image of a transversal under a return map. This obstruction defines

the cohomology class of a cocycle, and the following are equivalent:

(1) The longitudinal KAM-cocycle is a coboundary.

(2) Eu ˚ Es is “little Zygmund”.

(3) Eu ˚ Es is Lipschitz.

(4) Eu ˚ Es 2 C k�1.

(5) ' is a suspension or contact flow.

PROBLEM 20.11. Extend this result to higher dimension.

The complications in higher dimension are due in large part to the simple fact

that when the invariant foliations are not one-dimensional there may be differ-

ent contraction and expansion rates at any given point. Therefore a first step

in working on this problem would be to assume uniform quasiconformality in

stable and unstable directions. This has strong structural implications in itself,

though (Theorem 16.6, [32; 76; 128]).

Different contraction and expansion rates are responsible already for the fact

that in higher dimension the transverse regularity is usually lower than in the

two-dimensional case. Note that the results there never assert higher regular-

ity for both foliations than in the two-dimensional area-preserving case. If the

obstruction vanishes that was used to show optimality of those results, then the

regularity “jumps” up a little, and a further obstruction, associated with different

contraction and expansion rates, may prohibit regularity C 1CO.xj log xj/. Only

when all those finitely many obstructions vanish can we have C 1CO.xj log xj/.

These obstructions are best described in normal form [55], as is the Anosov

cocycle.

To give a sample we show that a “1-2-resonance” produces an obstruction

to C 1 foliations. To work with the simplest possible situation consider a 3-

dimensional Anosov diffeomorphism f with fixed point p such that the eigen-

values 0 < � < � < 1 < � < 1 of Dfp satisfy � D ��. (This is a vari-

ant of the 1-2-resonance �1 D �2
2

for a symplectic system.) Up to higher-

order terms that might arise from higher resonances the normal form of f at

p is f .x; y; z/ D .�x; �y C axz; �z/. Representing Eu along the z-axis by

.1; v1.z/; v2.z/ gives

Df.0;0;z/.1; v1.z/; v2.z// D .�; az C �v1.z/; �v2.z//;

which rescales to .1; az=� C �v1.z/=�; �v2.z/=�/. Invariance of Eu therefore

yields

v1.�z/ D az=� C �v1.z/=�:
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Differentiating twice with respect to z gives �v0
1
.0/ D a=�C.�=�/v0

1
.0/, which

implies a D 0 since �D �=�. Thus the resonance term a in the normal form is an

obstruction to C 1 Anosov splitting. (One can verify this without using normal

forms, but the calculation is somewhat longer.) By the way, the work of Kanai

mentioned in the next subsection made a rather stringent curvature pinching

assumption to rule out a number of low resonances. The refinements by Feres

and Katok that led to an almost complete proof of Theorem 20.17 centered

on a careful study of the resonances that might arise without such pinching

assumptions. This was delicate work because the issue are not only resonances

at periodic points, but “almost resonances” between Lyapunov exponents. The

papers [39; 37] contain an impressive development of these ideas.

While there is an analog of the Anosov cocycle in higher dimension, its van-

ishing is known to be necessary only for C 2 foliations [61] and is not known to

lead to higher regularity of the invariant foliations. Thus it has not yielded any

effective application, and the central portion of the above approach falls apart.

The bootstrap to C 1 subbundles works in full generality, even without area-

preservation, although it usually starts at regularity higher than C 3 (see [60; 47]).

In other words, once the invariant foliations have a sufficiently high degree of

regularity, they are always C 1.

Smooth rigidity. The main issue in higher dimension is to conclude from

smoothness of the invariant foliations that there is a smooth conjugacy to an

algebraic model, and to identify the right algebraic model in the first place.

A result that appeared after systematic development of the continuous time

situation (see also [7, Theorem 3]) will serve to illustrate this:

THEOREM 20.12 ([8]). Let M be a C 1 manifold with an C 1 affine connection

r, f W M ! M a topologically transitive Anosov diffeomorphism preserving r
with Eu; Es 2C 1. Then f is C 1 conjugate to an automorphism of an infranil-

manifold. The invariant connection hypothesis can be replaced by invariance of

a smooth symplectic form.

Note the absence of a topological hypothesis. (There is a finite-smoothness

sharpening of this result [38] that does not use the powerful theorem of Gromov

central to the proof by Benoist and Labourie.)

Now we turn to the continuous time case, where these developments are most

significant.

The history begins with the work of Ghys [51], who classified volume-pre-

serving Anosov flows on 3-manifolds with smooth invariant foliations into three

types: suspensions of hyperbolic automorphisms of the torus, geodesic flows on

surfaces of constant negative curvature (up to finite coverings), and a new type

of flow that differs from the old ones by a special time change. If the flow
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is known to be geodesic then the smooth conjugacy to the constant curvature

geodesic flow preserves topological and measure-theoretic entropies, and hence

by entropy rigidity (see page 310 and [79]) the original metric is constantly

curved. The work towards classification of flows with smooth invariant folia-

tions has followed this model closely. Before describing this, let us mention

in passing the secondary issue of reducing the regularity at which the classifi-

cation becomes possible. In the situation of Ghys one can use an analysis of

3-dimensional volume-preserving Anosov flows and a result entirely analogous

to Theorem 20.9 [68] to conclude:

THEOREM 20.13 [51; 68]. A negatively curved metric on a compact surface is

hyperbolic if its horocycle foliations are C 1Co.xj log xj/.

In higher dimension the seminal work is due to Kanai [78]. He was the first to

implement the following strategy: If one assumes that the invariant foliations are

smooth then one can study Lie bracket relations between the stable and unstable

subbundles. The interaction between these and the dynamics can be used to

build an invariant connection (named after him now [91]) and to show that it is

flat, which in turn is used to build a Lie algebra structure that is identifiable as

a standard model.

He obtained the following result:

THEOREM 20.14 [78]. The geodesic flow of a strictly 9/4-pinched negatively

curved Riemannian metric on a compact manifold is smoothly conjugate to the

geodesic flow of a hyperbolic manifold if the invariant foliations are C 1.

Two groups picked up this lead, with the primary aim of removing the pinching

hypothesis, which in particular rules out nonconstantly curved locally symmetric

spaces as models. It also emerged that the main import of the assumptions is

dynamical rather than geometric, and that therefore one should look for theorems

about flows more general than geodesic ones.

Feres and Katok [39; 37] built on Kanai’s idea by refining his arguments with

intricate analyses of resonance cases for Lyapunov exponents to cover most of

the ground in terms of the admissible algebraic models.

THEOREM 20.15 [37]. Consider a compact Riemannian manifold M of neg-

ative sectional curvature. Suppose the horospheric foliations are smooth. If

the metric is 1/4-pinched or M has odd dimension then the geodesic flow is

smoothly conjugate to that of a hyperbolic manifold. If the dimension is 2

.mod 4/ then the geodesic flow is smoothly conjugate to that of a quotient of

complex hyperbolic space.

Some of the results proved along the way to this conclusion did not assume that

the flow under consideration is geodesic. The refinements over Kanai’s work
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were, in the case of the first hypothesis, a more delicate argument for vanishing

of the curvature of the Kanai connection. Under the second hypothesis Feres

shows that if the Kanai connection is not flat then the invariant subbundles split

further (resonance considerations enter here), and a connection associated with

this further splitting must be locally homogeneous.

Roughly simultaneously the complete result about smooth conjugacy was

obtained by Benoist, Foulon and Labourie [7]. Not only does it include all

geodesic flows, but it requires only a contact structure, which turned out to

require substantial additional work. This makes it a proper counterpart of the

three-dimensional result of Ghys:

THEOREM 20.16 [7]. Suppose ˚ is a contact Anosov flow on a compact man-

ifold of dimension greater than 3, with C 1 Anosov splitting. Then there is

an essentially unique time change and a finite cover on which the flow is C 1

conjugate to the geodesic flow of a negatively curved manifold.

What enables the authors to give a monolithic proof (as opposed to covering the

various classes of symmetric spaces one by one) is a rigidity result by Gromov

[53; 6; 138]. This is the place where substantial regularity is needed, and on

an m-dimensional manifold one can replace C 1 in hypothesis and conclusion

by C k with k � m2 C m C 2. This theorem is invoked in the first major step

of the proof, to produce a homogeneous structure: The diffeomorphisms of the

universal cover that respect the splitting and the flow form a Lie group that acts

transitively. (Gromov’s theorem produces this structure on an open dense set,

and the Kanai connection is used to extend it.) Step two determines the structure

of this group and its Lie algebra, and step three develops the dynamics of the

group and relates it to the expected algebraic model.

The Feres–Katok approach needs a slightly different minimal regularity. In

fact, if one adds the a posteriori redundant assumption of (nonstrict) 1
4

-pinching

(or merely strict 4
25

-pinching) then C 5 horospheric foliations always force rigid-

ity [60].

We note an amplified version for the case of geodesic flows in which the con-

jugacy conclusion for geodesic flows is replaced by isometry of the metrics due

to a more recent rigidity result by Besson, Courtois and Gallot, Theorem 20.29.

THEOREM 20.17. If the horospheric foliations of a negatively curved compact

Riemannian manifold are C 1 then the metric is locally symmetric (up to isom-

etry).

The above result subsumes several classification steps. First of all, one obtains

an orbit equivalence, which implies coincidence of the Lyapunov cocycles (peri-

odic data). But furthermore, the original result in [7] directly arrives at a smooth

conjugacy, which means that periods of periodic orbits are preserved as well.
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This is an extra collection of moduli for the continuous time case. Finally, in

the case of geodesic flows, there is, in addition, the Besson–Courtois–Gallot

Theorem 20.29, which gives the isometry.

While the regularity of the invariant subbundles is usually substantially lower

than in the two-dimensional case, it is widely believed that the minimal regu-

larity for such smooth rigidity results should be C 2 or even C 1CLip, i.e., quite

close to that in Theorem 20.9. Indeed, these foliations are hardly ever C 1CLip:

THEOREM 20.18. For an open dense set of symplectic Anosov systems the

regularity predicted by computing Bu only from periodic points is not exceeded

(i.e., if the rates compare badly at a single periodic point then the regularity

is correspondingly low — at that periodic point) [62]. An open dense set of

Riemannian metrics do not have C 1CLip horospheric foliations [62].

Furthermore, for any " > 0 there is an open set of symplectic Anosov dif-

feomorphisms for which the subbundles and holonomies are C " at most on a

(Lebesgue) null set [63].

If the invariant subbundles are C 2 then the Liouville measure coincides with

the Bowen–Margulis measure of maximal entropy [58; 91]. (For Finsler met-

rics this is false [117].) According to the Katok Entropy Rigidity Conjecture

(page 310), this should imply that the manifold is locally symmetric. Optimists

might suspect that rigidity already appears from C 1Co.xj log xj/ or C 1Czygmund

on, but there is no evidence to that effect (save for Theorem 20.18).

Another result of Ursula Hamenstädt is worth remarking on here. It says that

for contact Anosov flows with C 1 invariant foliations fixing the time param-

etrization fixes all other moduli of smooth conjugacy.

THEOREM 20.19 [57]. If two conjugate (not just orbit equivalent) Anosov flows

both have C 1 Anosov splitting and preserve a C 2 contact form then the conju-

gacy is C 2.

The C 1 assumption on the splitting is not vacuous, but not stringent either,

being satisfied by an open set of systems. Note that the conjugacy preserves

both Lebesgue and Bowen–Margulis measure. If one keeps in mind that smooth

conjugacy has been established mainly with one side being algebraic, this result

is striking in its generality.

Inasmuch as they refer to flows, the hypotheses of the preceding rigidity re-

sults do not distinguish between the regularity of the strong versus weak invari-

ant foliations. The reason is that for geodesic flows strong and weak foliations

have the same regularity due to the invariant contact structure: The strong sub-

bundles are obtained from the weak ones by intersecting with the kernel of the

smooth canonical contact form.
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Plante [121] showed that the strong foliations may persistently fail to be C 1,

namely when the asymptotic cycle of volume measure is nonzero. Even though

the latter is not the case for (noncontact) perturbations of geodesic flows, these

flows may still fail to have C 1 strong foliations (see [116; 11], where the contact

form is “twisted” by an extra “magnetic force term”, which does not produce a

nontrivial asymptotic cycle).

Entropy rigidity. A different rigidity conjecture was put forward by Katok in

a paper that proved it for surfaces [79].

The result that prompted the conjecture is

THEOREM 20.20 [79]. For the geodesic flow of a unit-area Riemannian metric

without focal points on a surface of negative Euler characteristic E the Liouville

and topological entropies lie on either side of
p

�2�E, with equality (on either

side) only for constantly curved metrics.

CONJECTURE 20.21 [79, p. 347]. Liouville measure has maximal entropy only

for locally symmetric metrics, i.e., only in these cases do the topological and

Liouville entropies agree.

This says that equivalence of Bowen–Margulis and Lebesgue measure only oc-

curs for locally symmetric spaces. This conjecture has engendered an enormous

amount of activity and remains unresolved. The exact nature of the results in

[79] suggests some variants of this conjecture, however, that have been adressed

more successfully.

THEOREM 20.22 [44]. The conjecture holds locally along one-parameter per-

turbations of constantly curved metrics, but in dimension 3 it is no longer the

case that a hyperbolic metric (with unit volume) maximizes Liouville entropy.

The Katok entropy rigidity conjecture cannot take quite so neat a form as it does

for surfaces. Foulon notes that for flows in dimension three it extends beyond

the realm of geodesic flows:

THEOREM 20.23 [45]. A smooth contact Anosov flow on a three-manifold

whose topological and Liouville entropies coincide is, up to finite covers, con-

jugate to the geodesic flow of a constantly curved compact surface.

CONJECTURE 20.24 (FOULON). Three-dimensional C 1 Anosov flows for

which Bowen–Margulis and Lebesgue measure are equivalent must be C 1 con-

jugate to either a suspension of a toral automorphism or the geodesic flow of a

compact hyperbolic surface.

That a metric is locally symmetric has been proved under a stronger but sug-

gestive hypothesis [97]. Consider the universal cover M of the manifold in

question and for each x 2 M define a measure �x on the sphere at infinity by
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projecting the Lebesgue measure on the sphere SxM along geodesics starting at

x (Lebesgue or visibility measure). Use a construction of the (Bowen–)Margulis

measure [104] to define measures �x on the sphere at infinity [56].

THEOREM 20.25. If there is a constant a such that �x D a�x for all x then M

is symmetric.

PROOF. By [96; 137] it is asymptotically harmonic, and by [47] and Theo-

rem 20.29 below it is symmetric. �

In fact, one can also define a harmonic measure �x at infinity for every x 2 M

by using Brownian motion.

THEOREM 20.26 [95; 81]. In the case of surfaces the harmonic measure class

coincides with the Lebesgue class only when the curvature is constant.

CONJECTURE 20.27 (THE “SULLIVAN CONJECTURE”, [131, p. 724]). In

higher dimension the coincidence of the harmonic and visibility measure classes

happens only for locally symmetric spaces.

THEOREM 20.28. If any two of these three measures here defined are propor-

tional for every x then M is symmetric.

PROOF. This again follows from [96; 137; 47; 9]. �

The goal can be restated as the requirement to relax the hypothesis from pro-

portionality to mutual absolute continuity [97].

Coming from rather a different direction, Besson, Courtois and Gallot found

themselves addressing a related issue by showing that topological entropy is

minimized only by locally symmetric metrics. Strictly speaking, their result con-

cerns the volume growth entropy h of a compact Riemannian manifold, which

is the exponential growth rate of the volume of a ball in the universal cover as

a function of the radius. This is a lower bound for the topological entropy of

the geodesic flow with equality if the sectional curvature is nonpositive [103]

(in fact, when there are no conjugate points [50]).

THEOREM 20.29 ([9]). Let X; Y be compact oriented connected n-dimensio-

nal manifolds, f W Y ! X continuous of nonzero degree. If g0 is a nega-

tively curved locally symmetric metric on X then every metric g on Y satis-

fies hn.Y; g/ Vol.Y; g/ � j deg.f /jhn.X; g0/ Vol.X; g0/ and for n � 3 equality

occurs iff .Y; g/ is locally symmetric (of the same type as .X; g0/) and f is

homotopic to a homothetic covering .Y; g/ ! .X; g0/. In particular, locally

symmetric spaces minimize entropy when the volume is prescribed.

A version of this result holds for nonpositively curved locally symmetric spaces

of rank 1, and one may ask whether their method extends to higher rank.
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A complementary result, about leaving the realm of geodesic flows, is con-

tained in the work [118] of the brothers Paternain: “Twisting” any Anosov geo-

desic flow (by adding a “magnetic” term to the Hamiltonian) strictly decreases

topological entropy.

21. Quantitative symplectic geometry (Helmut Hofer)

Denote by Symp2n the category of 2n-dimensional symplectic manifolds

with embeddings serving as the morphisms. This carries the action of .0; 1/

by rescaling: ˛�.M; !/ D .M; ˛!/. Consider a subcategory C that is invariant

under this action and Œ0; 1� with the standard ordering (on which one has the

same action). We do not require it to be a full subcategory.

DEFINITION 21.1. A (generalized) symplectic capacity for C is an equivariant

functor c W C ! Œ0; 1� with the property that c..M; !// > 0 if M ¤ ∅. For

1 � d � n a d-capacity is a capacity such that 0 < c.B2d � R
2n�2d / < 1 and

c.B2d�2 � R
2n�2dC2/ D 1, where Bd denotes the open unit ball in R

d .

An example of a n-capacity is

c.M; !/ WD
�

Z

M

!n
�1=n

:

Let B2n.a/ denote the ball of radius .a=�/1=2 and define Z2n.a/ D B2.a/ �
R

2n�2 We put B2d D B2d .1/ and similarly Z2d D Z2d .1/. Gromov’s non-

squeezing result implies the existence of 1-capacities. If B2n.a/ symplectically

embeds into Z2n.b/ then a � b. Therefore one can take

cB2n.M; !/ WD supfa j .B2n; a!/ symplectically embeds into .M; !/g
or

cZ2n

.M; !/ WD inffa j .M; !/ symplectically embeds into .Z2n; a!/g:
There are many 1-capacities one can construct from Floer theory, Gromov–

Witten theory, symplectic field theory or contact homology, and many questions

in symplectic geometry can be answered by constructing such a functor. No

example of a d-capacity for 1 < d < n is known. Therefore it is important to

ask

QUESTION 21.2. Are there d-capacities for d other than 1 and n in dimension

2n, where n � 3?

This is a fundamental question about the nature of symplectic geometry. Clearly

the n-capacities are volume-related invariants and 1-capacities are invariants of

a 2-dimensional kind related to 2-dimensional cross-sections. The essence of

Question 21.2 is captured by the next question concerned with dimension six.
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QUESTION 21.3. Is there an " > 0 such that for every r > 0 there is a symplectic

embedding of B2."/ � B4.r/ into B4.1/ � R
2?

If the answer is “no” it means that in dimension six a 2-capacity exists, and in

this case it is very likely that a proof has to be based on some “new symplectic

technology”.

The next question is exploring the problem if in some sense the technology to

deal with symplectic geometry in dimension four is complete. Given a positive

quadratic form Q define EQ WD fQ < 1g � R
2n to be the associated ellipsoid.

Then there is a unique a 2 ˙ WDfa 2 .0; 1/n j a1 � a2 � : : : � ang such that E is

by a linear symplectic map the same as the ellipsoid E.a/WDfx D .z1; : : : ; zn/ 2
R

2n j
P

jzi j2=ai < 1g.

On ˙ define a “linear” partial ordering �l by a �l bW () there exists a

linear symplectic map T such that T .E.a// � E.b/. By some linear algebra

this order structure is the same as requiring ai �bi for all i . Define a “nonlinear”

partial ordering �nl by a �nl bW () there is a symplectic embedding of E.a/

into E.b/. It is a nontrivial result (due to Ekeland and Hofer) that on the set of

points “between” .1; : : : ; 1/ and .2; : : : ; 2/ these two orderings are the same, but

this fails on any larger set (Lalonde and McDuff for n D 2, Schlenk in general).

Consider capacities on ellipsoids and for a 2 ˙ order the numbers fjai j j 2
N; i D 1; : : : ; ng by size with multiplicities and denote this sequence by ck.a/

(If a D .1; 5/ we get 1 2 3 4 5 5 6 7 8 9 10 10. . . .). These are capacities for each

k (and are due to Ekeland and Hofer).

QUESTION 21.4. Is a �nl b in R
4 equivalent to ck.a/ � ck.b/ for all k and

a1a2 � b1b2 (this is the volume constraint)?

If the answer is indeed “yes” a proof can be expected to be very hard. Particular

cases of this question are:

QUESTION 21.5. Is .1; 8/ �nl .3; 3/? Is .1; 4/ �nl .2; 2/?

Schlenk can symplectically embed

E.1; 8/ ! E.3:612; 3:612/ and E.1; 4/ ! E.2:692; 2:692/:

Observe that E.1; 4/ and E.2; 2/ have the same volume, so an embedding will

be very tight.

In general, consider a symplectic category C and denote the collection of

capacities on it by S . Then one can generate new ones. Consider a function

f W Œ0; 1�n ! Œ0; 1� with f .1; : : : ; 1/ > 0 that is positively 1-homogeneous

(f .ta/ D tf .a/) and monotone (if ai � bi then f .a/ � f .b/). Then, given

capacities c1; : : : ; cn 2 S we get a new capacity f .c1; : : : ; cn/. Also, if ck ! c

as k ! 1 and c.B2n/ > 0 then c is a capacity as well. The following is

essentially a rephrasing of Question 21.4.
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QUESTION 21.6. Do the ck defined above together with .
R

!2/1=2 generate S

in this way?

22. Hilbert’s sixteenth problem (presented by Yulij Ilyashenko)

QUESTION 22.1 (HILBERT’S 16TH PROBLEM). What can be said about the

number and location of the limit cycles of a polynomial ordinary differential

equation in the plane?

This has been among the most persistent in Hilbert’s list, and therefore even

simplified versions make for substantial problems:

QUESTION 22.2 (HILBERT’S 16TH PROBLEM FOR QUADRATIC POLYNOMI-

ALS). What can be said about the number and location of the limit cycles of an

ordinary differential equation in the plane whose right-hand side is a quadratic

polynomial vector field?

This question remains unresolved as well. There are partial results by Ilyashenko

and Llibre of the following type. For a Zariski-open set of quadratic vector fields

one can define a numerical characteristic of each vector field and then bound the

number of limit cycles in terms of this parameter.

Numerous related problems may be found in the survey [69]

23. Foliations (presented by Steven Hurder)

Consider a compact manifold M with a foliation F .

QUESTION 23.1. Can a leaf L in a minimal set Z � M of the foliation be

deformed? Or can the minimal set be deformed?

Reeb showed that if there is a compact leaf with trivial holonomy (i.e., only the

identity) then it has a foliated neighborhood that is a product, i.e., the situation is

far from rigid. On the other hand, results by Stowe show that if there is enough

cohomology data then one cannot move the leaf.

QUESTION 23.2. If Z is a minimal set in M , are all leaves in Z diffeomorphic

up to covers?

Duminy proved in 1982 that if the foliation is C 2 with codimension 1 leaves

and Z is exceptional (i.e., neither M nor a single leaf) then all leaves in Z have

Cantor ends.
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24. “Fat” self-similar sets (Mark Pollicott)

A similarity on R
d is a map T W R

d ! R
d for which kT .x; y/�T .u; v/k D

rk.x; y/ � .u; v/k, where 0 < r < 1 and k � k is the Euclidean norm. Given

similarities T1; : : : ; Tn W R
d ! R

d a set � is said to be self-similar if � D
Sn

iD1 Ti.�/. One may ask how “big” such sets can be, for example, how close

to d the Hausdorff dimension can be, whether they can have positive Lebesgue

measure or open interior.

In the case that d D 2, there are examples of self-similar sets with empty

interior and positive Lebesgue measure (this is due to Csörnyei, Jordan, Polli-

cott, Preiss and Solomyak [22] and answers a question of Peres and Solomyak

[119]). The construction uses 10 contractions (all by a factor of 3), but there

is some latitude in how the similarities are chosen, and a different construction

accomplishes the same result using 6 similarities.

QUESTION 24.1. Can one find examples using fewer similarities?

It is interesting to note that there are apparently no analogous results when d D1.

QUESTION 24.2. Are the examples of self similar sets with positive measure but

empty interior in R?

Easier results are obtained from Sierpinski triangles. If 1=2 < � < 1 the simi-

larities
T0.x; y/ D .�x; �y/ C .0; 0/

T1.x; y/ D .�x; �y/ C .1=2; 0/

T2.x; y/ D .�x; �y/ C .0; 1=2/

produce “fat” Sierpinski triangles �� (the case � D 1=2 gives the standard Sier-

pinski triangle).

It is easy to check that when 0 < � < 1=2 one obtains a Cantor set with

dimH.��/ D � log 3=log �.

THEOREM 24.3 (JORDAN [72]).

dimH.��/ D � log 3

log �
for a.e. � 2 Œ1=2; .4=3/1=3�.

There is a dense set D � Œ1=2; 1=
p

3� such that dimH.��/ < �log 3=log � for

� 2 D. One of the most interesting remaining questions is the following.

QUESTION 24.4. How large is the exceptional set D? Is it uncountable? Does

it have nonzero Hausdorff dimension?

The next result was proved in [73] by Jordan and Pollicott, and in [15] by Broom-

head, Montaldi and Sidorov. Let m be the d-dimensional Lebesgue measure.
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THEOREM 24.5. m.��/ > 0 for a.e. � 2 Œ0:585 : : : ; 0:647 : : :� and int.��/ ¤ ∅

for � > :647 : : : .

This suggests two natural questions.

QUESTION 24.6. What is the largest value of � such that �� has empty inte-

rior?

Sidorov conjectures that the correct value is the reciprocal of the golden ratio.

QUESTION 24.7. Is there any � 2 Œ0:585 : : : ; 0:647 : : :� for which int.��/ D ∅

and m.��/ > 0?
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methods in dynamics, II, Astérisque 287 (2003), xvii, 33–60.

[27] T. Downarowicz: Entropy of a symbolic extension of a totally disconnected dy-

namical system, Ergodic Theory Dynam. Systems 21 (2001), 1051–1070.



318 BORIS HASSELBLATT

[28] T. Downarowicz: Entropy Structure, J. Anal. Math. 96 (2005), 57–116.

[29] T. Downarowicz and J. Serafin: Possible entropy functions, Israel J. Math. 135

(2003), 221–251.

[30] T. Downarowicz and S. Newhouse: Symbolic extensions in smooth dynamical

systems, Invent. Math. 160 (2005), no. 3, 453–499.

[31] Manfred Einsiedler, Elon Lindenstrauss, and Anatole Katok: Invariant measures

and the set of exceptions to Littlewood’s conjecture, Ann. of Math. (2) 164 (2006),

no. 2, 513–560.

[32] Yong Fang: Smooth rigidity of uniformly quasiconformal Anosov flows. Ergodic

Theory Dynam. Systems 24 (2004), no. 6, 1937–1959.
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