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Solenoid functions for hyperbolic sets on
surfaces

ALBERTO A. PINTO AND DAVID A. RAND

ABSTRACT. We describe a construction of a moduli space of solenoid func-

tions for the C 1C-conjugacy classes of hyperbolic dynamical systems f on

surfaces with hyperbolic basic sets �f . We explain that if the holonomies

are sufficiently smooth then the diffeomorphism f is rigid in the sense that it

is C 1C conjugate to a hyperbolic affine model. We present a moduli space

of measure solenoid functions for all Lipschitz conjugacy classes of C 1C-

hyperbolic dynamical systems f which have a invariant measure that is ab-

solutely continuous with respect to Hausdorff measure. We extend Livšic and

Sinai’s eigenvalue formula for Anosov diffeomorphisms which preserve an ab-

solutely continuous measure to hyperbolic basic sets on surfaces which possess

an invariant measure absolutely continuous with respect to Hausdorff measure.
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1. Introduction

We say that .f;�/ is a C 1C hyperbolic diffeomorphism if it has the following

properties:

(i) f WM !M is a C 1C˛ diffeomorphism of a compact surface M with respect

to a C 1C˛ structure Cf on M , for some ˛ > 0.
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(ii) � is a hyperbolic invariant subset of M such that f j� is topologically

transitive and � has a local product structure.

We allow both the case where �D M and the case where � is a proper subset

of M . If �D M then f is Anosov and M is a torus [16; 33]. Examples where

� is a proper subset of M include the Smale horseshoes and the codimension

one attractors such as the Plykin and derived-Anosov attractors.

THEOREM 1.1 (EXPLOSION OF SMOOTHNESS). Let f and g be any two C 1C

hyperbolic diffeomorphisms with basic sets �f and �g, respectively. If f and

g are topologically conjugate and the conjugacy has a derivative at a point with

nonzero determinant, then f and g are C 1C conjugate.

See definitions of topological and C 1C conjugacies in Section 2.3. A weaker

version of this theorem was first proved by D. Sullivan [47] and E. de Faria

[8] for expanding circle maps. Theorem 1.1 follows from [13] using the results

presented in [1] and in [13] which apply to Markov maps on train tracks and to

nonuniformly hyperbolic diffeomorphisms.

For every C 1C hyperbolic diffeomorphism f we denote by ıf;s the Hausdorff

dimension of the stable-local leaves of f intersected with �, and we denote by

ıf;u the Hausdorff dimension of the unstable-local leaves of f intersected with

�. Let P be the set of all periodic points of � under f . For every x 2 P,

let us denote by �f;s.x/ and �f;u.x/ the stable and unstable eigenvalues of the

periodic orbit containing x. A. Livšic and Ya. Sinai [25] proved that an Anosov

diffeomorphism f admits an f -invariant measure that is absolutely continuous

with respect to the Lebesgue measure on M if, and only if, �f;s.x/�f;u.x/D 1

for every periodic point x 2 P. In Theorem 1.1 of [42], it is proved the following

extension of Livšic and Sinai’s Theorem to C 1C hyperbolic diffeomorphisms

with hyperbolic sets on surfaces such as Smale horseshoes and codimension one

attractors.

THEOREM 1.2 (LIVŠIC AND SINAI’S EXTENDED FORMULA). A C 1C hy-

perbolic diffeomorphism f admits an f -invariant measure that is absolutely

continuous with respect to the Hausdorff measure on � if, and only if, for every

periodic point x 2 P,

�f;s.x/
ıf;s�f;u.x/

ıf;u D 1 :

By the flexibility of a given topological model of hyperbolic dynamics we mean

the extent of different smooth realizations of this model. Thus a typical result

provides a moduli space to parameterise these realizations. To be effective it is

important that these moduli spaces should be easily characterised. For example,

for C 2 Anosov diffeomorphisms of the torus that preserve a smooth invariant

measure, the eigenvalue spectrum is a complete invariant of smooth conjugacies
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as shown by De la Llave, Marco and Moriyon [26; 27; 30; 31]. However, for

hyperbolic systems on surface other than Anosov systems the eigenvalue spectra

are only a complete invariant of Lipschitz conjugacy (see [42]). In [39], the

notions of a HR-structure and of a solenoid function are used to construct the

moduli space.

Consider affine structures on the stable and unstable lamination in �. These

are defined in terms of a pair of ratio functions r s and ru (see Section 3.1).

If r s and ru are Hölder continuous and invariant under f then we call the as-

sociated structure a HR-structure (HR for Hölder-ratios). Theorem 5.1 in [39]

gives a one-to-one correspondence between HR-structures and C 1C conjugacy

classes of f j� (see Theorem 3.1). The main step in the proof of this and related

results is to show that, given a HR-structure, there is a canonical construction

of a representative in the corresponding conjugacy class. By Theorem 5.3 in

[39], this representative has the following maximum smoothness property: the

holonomies for the representative are as smooth as those of any diffeomorphism

that is C 1C conjugate to it. In particular, if there is an affine diffeomorphism

with this HR-structure, then this representative is the affine diffeomorphism. In

Section 3.9, we present the definition of stable and unstable solenoid functions

and we introduce the set PS.f / of all pairs of solenoid functions. To each HR-

structure one can associate a pair .� s; �u/ of solenoid functions corresponding

to the stable and unstable laminations of �, where the solenoid functions � s

and �u are the restrictions of the ratio functions r s and ru, respectively, to a set

determined by a Markov partition of f . Theorem 6.1 in [39] says that there is

a one-to-one correspondence between Hölder solenoid function pairs and HR-

structures (see Theorem 3.4). Since these solenoid function pairs form a nice

space with a simply characterised completion they provide a good moduli space.

For example, in the classical case of Smale horseshoes the moduli space is the

set of all pairs of positive Hölder continuous functions with domain f0; 1gN.

Let T.f;�/ be the set of all C 1C hyperbolic diffeomorphisms .g; �g/ such

that .g; �g/ and .f;�/ are topologically conjugate (See definitions of topolog-

ical and C 1C conjugacies in Section 2.3).

THEOREM 1.3 (FLEXIBILITY). The natural map c W T.f;�/! PS.f / which

associates a pair of solenoid functions to each C 1C conjugacy class is a bijec-

tion.

The solenoid functions were first introduced in [36; 39] inspired by the scaling

functions introduced by M. Feigenbaum [10; 11] and D. Sullivan [48]. The

completion of the image of c is the set of pairs of continuous solenoid functions

which is a closed subset of a Banach space. They correspond to f -invariant

affine structures on the stable and unstable laminations for which the holonomies

are uniformly asymptotically affine (uaa) as defined in [47].
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In [41], the moduli space of solenoid functions is used to study the existence

of rigidity for diffeomorphisms on surfaces. In dynamics, rigidity occurs when

simple topological and analytical conditions on the model system imply that

there is no flexibility and so a unique smooth realization. One can paraphrase

this by saying that the moduli space for such systems is a singleton. For example,

a famous result of this type due to Arnol’d, Herman and Yoccoz [3; 20; 51] is

that a sufficiently smooth diffeomorphism of the circle with an irrational rotation

number satisfying the usual Diophantine condition is C 1C conjugate to a rigid

rotation. The rigidity depends upon both the analytical hypothesis concerning

the smoothness and the topological condition given by the rotation number and

if either are relaxed then it fails. The analytical part of the rigidity hypotheses

for hyperbolic surface dynamics will be a condition on the smoothness of the

holonomies along stable and unstable manifolds.

THEOREM 1.4 (RIGIDITY). If f is a C r diffeomorphism with a hyperbolic

basic set � and the holonomies of f are C r with uniformly bounded C r norm

and with r �1 greater than the Hausdorff dimension along the stable and unsta-

ble leaves intersected with � then f is C 1C conjugated to a hyperbolic affine

model.

See the definition of a hyperbolic affine model in Section 4.2. Theorem 4.1

contains a slightly stronger version of Theorem 1.4 using the notion of a HD�

complete set of holonomies. Both theorems are proved in [41]. In these theorems

we allow both the case where �D M (so that f is Anosov and M Š T
2 [16;

33]) and the case where� is a proper subset. In the case of the Smale horseshoe

f , as presented in Figure 8, the hyperbolic affine maps Of topologically conju-

gate to f , up to affine conjugacy, form a two-dimension set homeomorphic to

R
C �R

C. In the case of hyperbolic attractors with HDs < 1, there are no affine

maps as proved in [14]. Hence, Theorem 1.4 implies that the stable holonomies

can never be smoother than C 1C˛ with ˛ greater than the Hausdorff dimension

along the stable leaves intersected with � (see [14]). This result is linked with

J. Harrison’s conjecture of the nonexistence of C 1C˛ diffeomorphisms of the

circle with ˛>HD, where HD is the Hausdorff dimension of its nonwandering

domain. A weaker version of this conjecture was proved by A. Norton [35]

using box dimension instead of Hausdorff dimension. In the case of Anosov

diffeomorphisms of the torus, the hyperbolic affine model is a hyperbolic toral

automorphism and is unique up to affine conjugacy [15; 16; 29; 33]. In general,

the topological conjugacy between such a diffeomorphism and the correspond-

ing hyperbolic affine model is only Hölder continuous and need not be any

smoother. This is the case if there is a periodic orbit of f whose eigenvalues

differ from those of the hyperbolic affine model. For Anosov diffeomorphisms

f of the torus there are the following results, all of the form that if a C k f has
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C r foliations then f is C s-rigid, i.e. f is C s-conjugate to the corresponding

hyperbolic affine model:

(i) Area-preserving Anosov maps f with r D 1 are C 1-rigid (Avez [4]).

(ii) C k area-preserving Anosov maps f with r D 1Co.t j log t j/ are C k�3-rigid

(Hurder and Katok [22]).

(iii) C 1 area-preserving Anosov maps f with r � 2 are C r -rigid (Flaminio and

Katok [17]).

(iv) C k Anosov maps f (k � 2) with r � 1CLipshitz are C k -rigid (Ghys [18]).

The moduli space of solenoid functions is used in [42] to construct classes

of smooth hyperbolic diffeomorphisms with an invariant measure � absolutely

continuous with respect to the Hausdorff measure. It is interesting to note that

when we consider the C 1C hyperbolic diffeomorphisms realising a particular

topological model then the stable and unstable ratio functions are indendent in

the following sense. If r s is a stable ratio function for some hyperbolic dif-

feomorphism and ru is the unstable ratio function for some other hyperbolic

diffeomorphism then there is a hyperbolic diffeomorphism that has the pair

.r s; ru/ as its HR structure. The same is no longer true if we ask the C 1C

hyperbolic realizations to have an invariant measure � absolutely continuous

with respect to the Hausdorff measure. For � 2 fs;ug, let us denote by �0 the

element of fs;ug which is not �.

THEOREM 1.5 (MEASURE RIGIDITY FOR ANOSOV DIFFEOMORPHISMS). For

� 2 fs;ug, given an �-solenoid function �� there is a unique �0-solenoid function

such that the C 1C Anosov diffeomorphisms determined by the pair .�s; �u/ sat-

isfy the property of having an invariant measure � absolutely continuous with

respect to Lebesgue measure of their hyperbolic sets.

In the case of Smale horseshoes, the �0-solenoid function is not anymore unique

but belongs to a well-characterized set which is the ı-solenoid equivalence class

of the Gibbs measure determined by the �-solenoid function (see Section 5.6).

THEOREM 1.6 (MEASURE FLEXIBILITY FOR SMALE HORSESHOES). For

� 2 fs;ug, given an �-solenoid function �� there is an infinite dimensional space

of solenoid functions ��0 (but not all) such that the C 1C hyperbolic Smale horse-

shoes determined by the pairs .�s; �u/ have the property of having an invariant

measure � absolutely continuous with respect to the Hausdorff measure of their

hyperbolic sets.

Codimension one attractors partly inherit the properties of Anosov diffeomor-

phisms and partly those of Smale horseshoes because locally they are a product

of lines with Cantor sets embedded in lines.
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THEOREM 1.7. (i) (MEASURE FLEXIBILITY FOR CODIMENSION ONE AT-

TRACTORS) Given an u-solenoid function �u there is an infinite dimensional

space of s-solenoid functions �s (but not all) such that the C 1C hyperbolic

codimension one attractors determined by the pairs .�s; �u/ have the prop-

erty of having an invariant measure � absolutely continuous with respect to

the Hausdorff measure of their hyperbolic sets.

(ii) (MEASURE RIGIDITY FOR CODIMENSION ONE ATTRACTORS) Given an

s-solenoid function �s there is a unique u-solenoid function �u such that the

C 1C hyperbolic codimension one attractors determined by the pair .�s; �u/

have the property of having an invariant measure � absolutely continuous

with respect to the Hausdorff measure of their hyperbolic sets.

Theorem 5.9 contains a stronger version of Theorems 1.5, 1.6 and 1.7, and it is

proved in Lemmas 8.17 and 8.18 in [42].

Since .f;�/ is a C 1C hyperbolic diffeomorphism it admits a Markov parti-

tion R D fR1; : : : ;Rkg. This implies the existence of a two-sided subshift of

finite type � in the symbol space f1; : : : ; kgZ , and an inclusion i W�!� such

that (a) f ı i D i ı � and (b) i.�j / D Rj for every j D 1; : : : ; k. For every

g 2 T.f;�/, the inclusion ig D hf;g ı i W� !�g is such that g ı ig D ig ı � .

We call such a map ig W� !�g a marking of .g; �g/.

DEFINITION 1.1. If .g; �g/2 T.f;�/ is a C 1C hyperbolic diffeomorphism as

above and � is a Gibbs measure on � then we say that .g; �g; �/ is a Hausdorff

realisation if .ig/�� is absolutely continuous with respect to the Hausdorff mea-

sure on �g. If this is the case then we will often just say that � is a Hausdorff

realisation for .g; �g/.

We note that the Hausdorff measure on �g exists and is unique, and if a Haus-

dorff realisation exists then it is unique. However, a Hausdorff realisation need

not exist.

DEFINITION 1.2. Let Tf;�.ıs; ıu/ be the set of all C 1C hyperbolic diffeomor-

phisms .g; �g/ in T.f;�/ such that (i) ıg;s D ıs and ıg;u D ıu; (ii) there is a

g-invariant measure �g on �g which is absolutely continuous with respect to

the Hausdorff measure on �g. We denote by Œ�� � Tf;�.ıs; ıu/ the subset of

all C 1C-realisations of a Gibbs measure � in Tf;�.ıs; ıu/.

De la Llave, Marco and Moriyon [26; 27; 30; 31] have shown that the set of

stable and unstable eigenvalues of all periodic points is a complete invariant of

the C 1C conjugacy classes of Anosov diffeomorphisms. We extend their result

to the sets Œ��� Tf;�.ıs; ıu/.

THEOREM 1.8 (EIGENVALUE SPECTRA). (i) Any two elements of the set Œ���
Tf;�.ıs; ıu/ have the same set of stable and unstable eigenvalues and these
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sets are a complete invariant of Œ�� in the sense that if g1;g2 2 Tf;�.ıs; ıu/

have the same eigenvalues if, and only if, they are in the same subset Œ��.

(ii) The map � ! Œ�� � Tf;�.ıs; ıu/ gives a 1 � 1 correspondence between

C 1C-Hausdorff realisable Gibbs measures � and Lipschitz conjugacy classes

in Tf;�.ıs; ıu/.

Theorem 1.8 is proved in [42], where it is also proved that the set of stable and

unstable eigenvalues of all periodic orbits of a C 1C hyperbolic diffeomorphism

g 2 T.f;�/ is a complete invariant of each Lipschitz conjugacy class. Further-

more, for Anosov diffeomorphisms every Lipschitz conjugacy class is a C 1C

conjugacy class.

REMARK 1.9. We have restricted our discussion to Gibbs measures because it

follows from Theorem 1.8 that, if g 2 Tf;�.ıs; ıu/ has a g-invariant measure

�g which is absolutely continuous with respect to the Hausdorff measure then

�g is a C 1C-Hausdorff realisation of a Gibbs measure � so that �g D .ig/��.

If f is a Smale horseshoe then every Gibbs measure � is C 1C-Hausdorff re-

alisable by a hyperbolic diffeomorphism contained in Tf;�.ıs; ıu/ (see [42]).

However, this is not the case for Anosov diffeomorphisms and codimension

one attractors. E. Cawley [6] characterised all C 1C-Hausdorff realisable Gibbs

measures as Anosov diffeomorphisms using cohomology classes on the torus.

In [42], it is used measure solenoid functions to classify all C 1C-Hausdorff

realisable Gibbs measures, in an integrated way, of all C 1C hyperbolic diffeo-

morphisms on surfaces. In Section 5.3, the stable and unstable measure solenoid

functions are easily built from the Gibbs measures, and, in Section 5.6, we define

the infinite dimensional metric space SOL
�.

THEOREM 1.10 (MEASURE SOLENOID FUNCTIONS). Let f be an Anosov

diffeomorphism or a codimension one attractor. The following statements are

equivalent:

(i) The Gibbs measure � is C 1C-Hausdorff realisable by a hyperbolic diffeo-

morphism contained in Tf;�.ıs; ıu/.

(ii) The �-measure solenoid function ��;� W msols ! R
C has a nonvanishing

Hölder continuous extension to the closure of msols belonging to SOL
�.

We present a more detailed version of this theorem in Theorems 5.5 and 5.8.

These theorems are proved in [42].

By Theorems 1.8 and 1.10, for � equal to s and u, we obtain that the map

� ! ��;� gives a one-to-one correspondence between the sets Œ�� contained in

Tf;�.ıs; ıu/ and the space of measure solenoid functions �g;� whose continuous

extension is contained in SOL
�.
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COROLLARY 1.11 (MODULI SPACE). The set SOL
� is a moduli space parame-

terizing all Lipschitz conjugacy classes Œ�� of C 1C hyperbolic diffeomorphisms

contained in Tf;�.ıs; ıu/.

2. Hyperbolic diffeomorphisms

In this section, we present some basic facts on hyperbolic dynamics, that we

include for clarity of the exposition.

2.1. Stable and unstable superscripts. Throughout the paper we will use the

following notation: we use � to denote an element of the set fs;ug of the stable

and unstable superscripts and �0 to denote the element of fs;ug that is not �.

In the main discussion we will often refer to objects which are qualified by �

such as, for example, an �-leaf: This means a leaf which is a leaf of the stable

lamination if �D s, or a leaf of the unstable lamination if �D u. In general the

meaning should be quite clear.

We define the map f� D f if �D u or f� D f �1 if �D s.

2.2. Leaf segments. Let d be a metric on M . For �2 fs;ug, if x 2� we denote

the local �-manifolds through x by

W �.x; "/D
˚

y 2 M W d.f �n
� .x/; f �n

� .y//� "; for all n � 0
	

:

By the Stable Manifold Theorem (see [21]), these sets are respectively contained

in the stable and unstable immersed manifolds

W �.x/D
[

n�0

f n
�

�

W �
�

f �n
� .x/; "0

��

which are the image of a C 1C
 immersion ��;x W R ! M . An open (resp.

closed) full �-leaf segment I is defined as a subset of W �.x/ of the form ��;x.I1/

where I1 is an open (resp. closed) subinterval (nonempty) in R. An open (resp.

closed) �-leaf segment is the intersection with � of an open (resp. closed) full

�-leaf segment such that the intersection contains at least two distinct points.

If the intersection is exactly two points we call this closed �-leaf segment an

�-leaf gap. A full �-leaf segment is either an open or closed full �-leaf segment.

An �-leaf segment is either an open or closed �-leaf segment. The endpoints

of a full �-leaf segment are the points ��;x.u/ and ��;x.v/ where u and v are

the endpoints of I1. The endpoints of an �-leaf segment I are the points of

the minimal closed full �-leaf segment containing I . The interior of an �-leaf

segment I is the complement of its boundary. In particular, an �-leaf segment I

has empty interior if, and only if, it is an �-leaf gap. A map c W I ! R is an �-leaf

chart of an �-leaf segment I if has an extension cE W IE ! R to a full �-leaf
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segment IE with the following properties: I � IE and cE is a homeomorphism

onto its image.

2.3. Topological and smooth conjugacies. Let .f;�/ be a C 1C hyperbolic

diffeomorphism. Somewhat unusually we also desire to highlight the C 1C struc-

ture on M in which f is a diffeomorphism. By a C 1C structure on M we mean

a maximal set of charts with open domains in M such that the union of their

domains cover M and whenever U is an open subset contained in the domains

of any two of these charts i and j then the overlap map j B i�1 W i.U /! j .U /

is C 1C˛ , where ˛ > 0 depends on i , j and U . We note that by compactness

of M , given such a C 1C structure on M , there is an atlas consisting of a finite

set of these charts which cover M and for which the overlap maps are C 1C˛

compatible and uniformly bounded in the C 1C˛ norm, where ˛ > 0 just de-

pends upon the atlas. We denote by Cf the C 1C structure on M in which f

is a diffeomorphism. Usually one is not concerned with this as, given two such

structures, there is a homeomorphism of M sending one onto the other and thus,

from this point of view, all such structures can be identified. For our discussion

it will be important to maintain the identity of the different smooth structures

on M .

We say that a map h W�f !�g is a topological conjugacy between two C 1C

hyperbolic diffeomorphisms .f;�f / and .g; �g/ if there is a homeomorphism

h W�f !�g with the following properties:

(i) g ı h.x/D h ıf .x/ for every x 2�f .

(ii) The pull-back of the �-leaf segments of g by h are �-leaf segments of f .

We say that a topological conjugacy h W�f !�g is a Lipschitz conjugacy if h

has a bi-Lipschitz homeomorphic extension to an open neighborhood of �f in

the surface M (with respect to the C 1C structures Cf and Cg, respectively).

Similarly, we say that a topological conjugacy h W�f !�g is a C 1C conju-

gacy if h has a C 1C˛ diffeomorphic extension to an open neighborhood of �f
in the surface M , for some ˛ > 0.

Our approach is to fix a C 1C hyperbolic diffeomorphism .f;�/ and consider

C 1C hyperbolic diffeomorphism .g1; �g1
/ topologically conjugate to .f;�/.

The topological conjugacy h W�!�g1
between f and g1 extends to a home-

omorphism H defined on a neighborhood of �. Then, we obtain the new C 1C-

realization .g2; �g2
/ of f defined as follows: (i) the map g2 D H �1 ı g1 ı H ;

(ii) the basic set is �g2
D H �1j�g1

; (iii) the C 1C structure Cg2
is given by

the pull-back .H /� Cg1
of the C 1C structure Cg1

. From (i) and (ii), we get

that �g2
D � and g2j�D f . From (iii), we get that g2 is C 1C conjugated to

g1. Hence, to study the conjugacy classes of C 1C hyperbolic diffeomorphisms

.f;�/ of f , we can just consider the C 1C hyperbolic diffeomorphisms .g; �g/
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with �g D � and gj�g D f j�, which we will do from now on for simplicity

of our exposition.

2.4. Rectangles. Since � is a hyperbolic invariant set of a diffeomorphism

f W M ! M , for 0 < " < "0 there is ı D ı."/ > 0 such that, for all points

w; z 2� with d.w; z/ < ı, W u.w; "/ and W s.z; "/ intersect in a unique point

that we denote by Œw; z�. Since we assume that the hyperbolic set has a local

product structure, we have that Œw; z�2�. Furthermore, the following properties

are satisfied: (i) Œw; z� varies continuously with w; z 2 �; (ii) the bracket map

is continuous on a ı-uniform neighborhood of the diagonal in ���; and (iii)

whenever both sides are defined f .Œw; z�/D Œf .w/; f .z/�. Note that the bracket

map does not really depend on ı provided it is sufficiently small.

Let us underline that it is a standing hypothesis that all the hyperbolic sets

considered here have such a local product structure.

A rectangle R is a subset of � which is (i) closed under the bracket i.e.

x;y 2 R ÷ Œx;y� 2 R, and (ii) proper i.e. is the closure of its interior in �.

This definition imposes that a rectangle has always to be proper which is more

restrictive than the usual one which only insists on the closure condition.

If `s and `u are respectively stable and unstable leaf segments intersecting

in a single point then we denote by Œ`s; `u� the set consisting of all points of

the form Œw; z� with w 2 `s and z 2 `u. We note that if the stable and unsta-

ble leaf segments ` and `0 are closed then the set Œ`; `0� is a rectangle. Con-

versely in this 2-dimensional situations, any rectangle R has a product struc-

ture in the following sense: for each x 2 R there are closed stable and unsta-

ble leaf segments of �, `s.x;R/ � W s.x/ and `u.x;R/ � W u.x/ such that

R D Œ`s.x;R/; `u.x;R/�. The leaf segments `s.x;R/ and `u.x;R/ are called

stable and unstable spanning leaf segments for R (see Figure 1). For � 2 fs;ug,

we denote by @`�.x;R/ the set consisting of the endpoints of `�.x;R/, and

we denote by int `�.x;R/ the set `�.x;R/ n @`�.x;R/. The interior of R is

given by int R D Œint `s.x;R/; int `u.x;R/�, and the boundary of R is given by

@R D Œ@`s.x;R/; `u.x;R/�[ Œ`s.x;R/; @`u.x;R/�.

J = ℓ
s
(z,R)I = ℓ

s
(x,R)

w, z[ ]

x

w

z

R

Figure 1. A rectangle.
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2.5. Markov partitions. By a Markov partition of f we understand a collection

R D fR1; : : : ;Rkg of rectangles such that (i) � �
Sk

iD1 Ri ; (ii) Ri \ Rj D
@Ri \ @Rj for all i and j ; (iii) if x 2

’

Ri and f x 2
’

Rj then

(a) f .`s.x;Ri//� `s.f x;Rj / and f �1.`u.f x;Rj //� `u.x;Ri/

(b) f .`u.x;Ri//\Rj D `u.f x;Rj / and f �1.`s.f x;Rj //\Ri D `s.x;Ri/.

The last condition means that f .Ri/ goes across Rj just once. In fact, it follows

from condition (a) providing the rectangles Rj are chosen sufficiently small

(see [28]). The rectangles making up the Markov partition are called Markov

rectangles.

We note that there is a Markov partition R of f with the following disjoint-

ness property (see [5; 34; 46]):

(i) if 0< ıf;s < 1 and 0< ıf;u < 1 then the stable and unstable leaf boundaries

of any two Markov rectangles do not intersect.

(ii) if 0 < ıf;� < 1 and ıf;�0 D 1 then the �0-leaf boundaries of any two Markov

rectangles do not intersect except, possibly, at their endpoints.

If ıf;s D ıf;u D 1, the disjointness property does not apply and so we consider

that it is trivially satisfied for every Markov partition. For simplicity of our

exposition, we will just consider Markov partitions satisfying the disjointness

property.

2.6. Leaf n-cylinders and leaf n-gaps. For �D s or u, an �-leaf primary cylinder

of a Markov rectangle R is a spanning �-leaf segment of R. For n � 1, an �-leaf

n-cylinder of R is an �-leaf segment I such that

(i) f n
� I is an �-leaf primary cylinder of a Markov rectangle M ;

(ii) f n
�

�

`�
0

.x;R/
�

� M for every x 2 I .

For n � 2, an �-leaf n-gap G of R is an �-leaf gap fx;yg in a Markov rectangle

R such that n is the smallest integer such that both leaves f n�1
� `�

0

.x;R/ and

f n�1
� `�

0

.y;R/ are contained in �0-boundaries of Markov rectangles; An �-leaf

primary gap G is the image f�G
0 by f� of an �-leaf 2-gap G0.

We note that an �-leaf segment I of a Markov rectangle R can be simul-

taneously an n1-cylinder, .n1 C 1/-cylinder, : : :, n2-cylinder of R if f n1.I/,

f n1C1.I/, : : :, f n2.I/ are all spanning �-leaf segments. Furthermore, if I is an

�-leaf segment contained in the common boundary of two Markov rectangles Ri

and Rj then I can be an n1-cylinder of Ri and an n2-cylinder of Rj with n1

distinct of n2. If G D fx;yg is an �-gap of R contained in the interior of R then

there is a unique n such that G is an n-gap. However, if G D fx;yg is contained

in the common boundary of two Markov rectangles Ri and Rj then G can be

an n1-gap of Ri and an n2-gap of Rj with n1 distinct of n2. Since the number
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y

JI

h(w) = [w,y]w

Figure 2. A basic stable holonomy from I to J .

of Markov rectangles R1; : : : ;Rk is finite, there is C � 1 such that, in all the

above cases for cylinders and gaps we have jn2 � n1j � C .

We say that a leaf segment K is the i-th mother of an n-cylinder or an n-gap

J of R if J � K and K is a leaf .n � i/-cylinder of R. We denote K by miJ .

By the properties of a Markov partition, the smallest full �-leaf OK containing

a leaf n-cylinder K of a Markov rectangle R is equal to the union of all smallest

full �-leaves containing either a leaf .nCj /-cylinder or a leaf .nC i/-gap of R,

with i 2 f1; : : : ; j g, contained in K.

2.7. Metric on �. We say that a rectangle R is an .ns; nu/-rectangle if there

is x 2 R such that, for � D s and u, the spanning leaf segments `�.x;R/ are

either an �-leaf n�-cylinder or the union of two such cylinders with a common

endpoint.

The reason for allowing the possibility of the spanning leaf segments being

inside two touching cylinders is to allow us to regard geometrically very small

rectangles intersecting a common boundary of two Markov rectangles to be

small in the sense of having ns and nu large.

If x;y 2 � and x ¤ y then d�.x;y/ D 2�n where n is the biggest integer

such that both x and y are contained in an .ns; nu/-rectangle with ns � n and

nu � n. Similarly if I and J are �-leaf segments then d�.I;J / D 2�n�0 where

n� D 1 and n�0 is the biggest integer such that both I and J are contained in an

.ns; nu/-rectangle.

2.8. Basic holonomies. Suppose that x and y are two points inside any rectan-

gle R of �. Let `.x;R/ and `.y;R/ be two stable leaf segments respectively

containing x and y and inside R. Then we define � W `.x;R/ ! `.y;R/ by

�.w/D Œw;y�. Such maps are called the basic stable holonomies (see Figure 2).

They generate the pseudo-group of all stable holonomies. Similarly we define

the basic unstable holonomies.

By Theorem 2.1 in [40], the holonomy � W `�.x;R/! `�.y;R/ has a C 1C˛

extension to the leaves containing `�.x;R/ and `�.y;R/, for some ˛ > 0.
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2.9. Foliated lamination atlas. In this section when we refer to a C r object r is

allowed to take the values kC˛ where k is a positive integer and 0<˛� 1. Two

�-leaf charts i and j are C r compatible if whenever U is an open subset of an

�-leaf segment contained in the domains of i and j then j B i�1 W i.U /! j .U /

extends to a C r diffeomorphism of the real line. Such maps are called chart

overlap maps. A bounded C r �-lamination atlas A
� is a set of such charts which

(a) cover �, (b) are pairwise C r compatible, and (c) the chart overlap maps are

uniformly bounded in the C r norm.

Let A
� be a bounded C 1C˛ �-lamination atlas, with 0 < ˛ � 1. If i W I ! R

is a chart in A
� defined on the leaf segment I and K is a leaf segment in I then

we define jKji to be the length of the minimal closed interval containing i.K/.

Since the atlas is bounded, if j W J ! R is another chart in A
� defined on the

leaf segment J which contains K then the ratio between the lengths jKji and

jKjj is universally bounded away from 0 and 1. If K0 � I \J is another such

segment then we can define the ratio ri.K W K0/ D jKji=jK
0ji . Although this

ratio depends upon i , the ratio is exponentially determined in the sense that if

T is the smallest segment containing both K and K0 then

rj
�

K W K0
�

2
�

1 ˙ O
�

jT j˛i
��

ri

�

K W K0
�

:

This follows from the C 1C˛ smoothness of the overlap maps and Taylor’s The-

orem.

A C r lamination atlas A
� has bounded geometry (i) if f is a C r diffeomor-

phism with C r norm uniformly bounded in this atlas; (ii) if for all pairs I1; I2 of

�-leaf n-cylinders or �-leaf n-gaps with a common point, we have that ri.I1 W I2/

is uniformly bounded away from 0 and 1 with the bounds being independent

of i , I1, I2 and n; and (iii) for all endpoints x and y of an �-leaf n-cylinder or

�-leaf n-gap I , we have that jI ji � O
�

.d�.x;y//
ˇ
�

and d�.x;y/� O
�

jI jˇi
�

, for

some 0< ˇ < 1, independent of i , I and n.

A C r bounded lamination atlas A
� is C r foliated (i) if A

� has bounded ge-

ometry; and (ii) if the basic holonomies are C r and have a C r norm uniformly

bounded in this atlas, except possibly for the dependence upon the rectangles

defining the basic holonomy. A bounded lamination atlas A
� is C 1Cfoliated if

A
� is C r foliated for some r > 1.

2.10. Foliated atlas A
�.g; �/. Let g 2 T.f;�/ and � D �g be a C 1C Rie-

mannian metric in the manifold containing �. The �-lamination atlas A
�.g; �/

determined by � is the set of all maps e W I ! R where I D � \ OI with OI
a full �-leaf segment, such that e extends to an isometry between the induced

Riemannian metric on OI and the Euclidean metric on the reals. We call the

maps e 2 A
�.�/ the �-lamination charts. If I is an �-leaf segment (or a full �-leaf

segment) then by jI j� we mean the length in the Riemannian metric � of the
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minimal full �-leaf containing I . By Theorem 2.2 in [40], the lamination atlas

A
�.g; �/ is C 1Cfoliated for �D fs;ug.

3. Flexibility

In this section, we construct the stable and unstable solenoid functions, and

we show an equivalence between C 1C hyperbolic diffeomorphisms and pairs of

stable and unstable solenoid functions.

3.1. HR-Hölder ratios. A HR-structure associates an affine structure to each

stable and unstable leaf segment in such a way that these vary Hölder continu-

ously with the leaf and are invariant under f .

An affine structure on a stable or unstable leaf is equivalent to a ratio function

r.I W J / which can be thought of as prescribing the ratio of the size of two leaf

segments I and J in the same stable or unstable leaf. A ratio function r.I W J /

is positive (we recall that each leaf segment has at least two distinct points) and

continuous in the endpoints of I and J . Moreover,

r.I W J /D r.J W I/�1 and r.I1 [ I2 W K/D r.I1 W K/C r.I2 W K/ (3–1)

provided I1 and I2 intersect at most in one of their endpoints.

We say that r is an �-ratio function if (i) for all �-leaf segments K, r.I W J /

defines a ratio function on K, where I and J are �-leaf segments contained in

K; (ii) r is invariant under f , i.e. r.I W J /D r.f I W fJ / for all �-leaf segments;

and (iii) for every basic �-holonomy � W I ! J between the leaf segment I and

the leaf segment J defined with respect to a rectangle R and for every �-leaf

segment I0 � I and every �-leaf segment or gap I1 � I ,
ˇ

ˇ

ˇ

ˇ

log
r.�I0 W �I1/

r.I0 W I1/

ˇ

ˇ

ˇ

ˇ

� O
�

.d�.I;J //
"
�

(3–2)

where "2 .0; 1/ depends upon r and the constant of proportionality also depends

upon R, but not on the segments considered.

A HR-structure on � invariant by f is a pair .rs; ru/ consisting of a stable

and an unstable ratio function.

3.2. Realised ratio functions. Let .g; �/ 2 T.f;�/ and let A.g; �/ be an �-

lamination atlas which is C 1C foliated. Let jI j D jI j� for every �-leaf segment

I . By hyperbolicity of g on �, there are 0 < � < 1 and C > 0 such that for all

�-leaf segments I and all m � 0 we get jgm
�0 I j � C�mjI j. Thus, using the mean

value theorem and the fact that g� is C r , for all short leaf segments K and all

leaf segments I and J contained in it, the �-realised ratio function r�;g given by

r�;g.I W J /D lim
n!1

jgn
�0I j

jgn
�0J j
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Figure 3. The embedding e W I ! R.

is well-defined, where ˛ D minf1; r � 1g. This construction gives the HR-

structure on � determined by g, and so also invariant by f . By [39], we get the

following equivalence:

THEOREM 3.1. The map g ! .rs;g; ru;g/ determines a one-to-one correspon-

dence between C 1C conjugacy classes in T.f;�/ and HR-structures on � in-

variant by f .

3.3. Foliated atlas A.r/. Given an �-ratio function r , we define the embeddings

e W I ! R by

e.x/D r.`.�;x/; `.�;R// (3–3)

where � is an endpoint of the �-leaf segment I and R is a Markov rectangle

containing � (see Figure 3). For this definition it is not necessary that R contains

I . We denote the set of all these embeddings e by A.r/.

The embeddings e of A.r/ have overlap maps with affine extensions. There-

fore, the atlas A.r/ extends to a C 1C˛ lamination structure L.r/. By Proposition

4.2 in [40], we obtain that A.r/ is a C 1Cfoliated atlas.

Let g 2 T.f;�/ and A.g; �/ a C 1C foliated �-lamination atlas determined by

a Riemmanian metric �. Combining Proposition 2.5 and Proposition 3.5 of [39],

we get that the overlap map e1 ı e�1
2

between a chart e1 2 A.g; �/ and a chart

e2 2 A.r�;g/ has a C 1C diffeomorphic extension to the reals. Therefore, the

atlasses A.g; �/ and A.r�;g/ determine the same C 1C foliated �-lamination. In

particular, for all short leaf segments K and all leaf segments I and J contained

in it, we obtain that

r�;g.I W J /D lim
n!1

jgn
�0I j�

jgn
�0J j�

D lim
n!1

jgn
�0I jin

jgn
�0J jin

where in is any chart in A.r�;g/ containing the segment gn
�0K in its domain.

3.4. Realised solenoid functions. For �D s and u, let sol� denote the set of all

ordered pairs .I;J / of �-leaf segments with the following properties:

(i) The intersection of I and J consists of a single endpoint.

(ii) If ı�;f D 1 then I and J are primary �-leaf cylinders.
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Figure 4. The f -matching condition for �-leaf segments.

(iii) If 0 < ı�;f < 1 then f�0I is an �-leaf 2-cylinder of a Markov rectangle R

and f�0J is an �-leaf 2-gap also of the same Markov rectangle R.

(See section 2.4 for the definitions of leaf cylinders and gaps). Pairs .I;J /

where both are primary cylinders are called leaf-leaf pairs. Pairs .I;J / where

J is a gap are called leaf-gap pairs and in this case we refer to J as a primary

gap. The set sol� has a very nice topological structure. If ı�0;f D 1 then the set

sol� is isomorphic to a finite union of intervals, and if ı�0;f < 1 then the set sol�

is isomorphic to an embedded Cantor set on the real line.

We define a pseudo-metric dsol� W sol� � sol� ! R
C on the set sol� by

dsol�
�

.I;J / ;
�

I 0;J 0
��

D max
˚

d�
�

I; I 0
�

; d�
�

J;J 0
�	

:

Let g 2 T.f;�/. For �D s and u, we call the restriction of an �-ratio function

r�;g to sol� a realised solenoid function ��;g. By construction, for � D s and u,

the restriction of an �-ratio function to sol� gives an Hölder continuous function

satisfying the matching condition, the boundary condition and the cylinder-gap

condition as we pass to describe.

3.5. Hölder continuity of solenoid functions. This means that for t D .I;J /

and t 0 D .I 0;J 0/ in sol�, j��.t/� ��.t
0/j � O

�

.dsol� .t; t
0//
˛�

: The Hölder conti-

nuity of �g;� and the compactness of its domain imply that �g;� is bounded away

from zero and infinity.

3.6. Matching condition. Let .I;J / 2 sol� be a pair of primary cylinders and

suppose that we have pairs

.I0; I1/; .I1; I2/; : : : ; .In�2; In�1/ 2 sol�

of primary cylinders such that f�I D
Sk�1

jD0 Ij and f�J D
Sn�1

jDk Ij . Then

jf�I j

jf�J j
D

Pk�1
jD0 jIj j

Pn�1
jDk jIj j

D
1 C

Pk�1
jD1

Qj
iD1

jIi j=jIi�1j
Pn�1

jDk

Qj
iD1

jIi j=jIi�1j
:
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Figure 5. The boundary condition for �-leaf segments.

Hence, noting that gj�D f j�, the realised solenoid function ��;g must satisfy

the matching condition (see Figure 4) for all such leaf segments:

��;g.I W J /D
1 C

Pk�1
jD1

Qj
iD1

��;g.Ii W Ii�1/
Pn�1

jDk

Qj
iD1

��;g.Ii W Ii�1/
: (3–4)

3.7. Boundary condition. If the stable and unstable leaf segments have Haus-

dorff dimension equal to 1, then leaf segments I in the boundaries of Markov

rectangles can sometimes be written as the union of primary cylinders in more

than one way. This gives rise to the existence of a boundary condition that the

realised solenoid functions have to satisfy.

If J is another leaf segment adjacent to the leaf segment I then the value

of jI j=jJ j must be the same whichever decomposition we use. If we write

J D I0 D K0 and I as
Sm

iD1 Ii and
Sn

jD1 Kj where the Ii and Kj are primary

cylinders with Ii ¤ Kj for all i and j , then the above two ratios are

m
X

iD1

i
Y

jD1

jIj j

jIj�1j
D

jI j

jJ j
D

n
X

iD1

i
Y

jD1

jKj j

jKj�1j
:

Thus, noting that gj�D f j�, a realised solenoid function ��;g must satisfy the

following boundary condition (see Figure 5) for all such leaf segments:

m
X

iD1

i
Y

jD1

��;g
�

Ij W Ij�1

�

D

n
X

iD1

i
Y

jD1

��;g
�

Kj W Kj�1

�

: (3–5)

3.8. Cylinder-gap condition. If the �-leaf segments have Hausdorff dimension

less than one and the �0-leaf segments have Hausdorff dimension equal to 1, then

a primary cylinder I in the �-boundary of a Markov rectangle can also be written

as the union of gaps and cylinders of other Markov rectangles. This gives rise to

the existence of a cylinder-gap condition that the �-realised solenoid functions

have to satisfy.
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Before defining the cylinder-gap condition, we will introduce the scaling

function that will be useful to express the cylinder-gap condition, and also, in

Definition 3.2, the bounded equivalence classes of solenoid functions and, in

Definition 5.3, the ı-bounded solenoid equivalence classes of a Gibbs measure.

Let scl� be the set of all pairs .K;J / of �-leaf segments with the following

properties:

(i) K is a leaf n1-cylinder or an n1-gap segment for some n1 > 1;

(ii) J is a leaf n2-cylinder or an n2-gap segment for some n2 > 1;

(iii) mn1�1K and mn2�1J are the same primary cylinder.

LEMMA 3.2. Every function �� W sol� ! R
C has a canonical extension s� to scl�.

Furthermore, if �� is the restriction of a ratio function r�jsol� to sol� then

s� D r�jscl�:

The above map s� W scl�! R
C is the scaling function determined by the solenoid

function �� W sol� ! R
C. Lemma 3.2 is proved in Section 3.8 in [42].

Let .I;K/ be a leaf-gap pair such that the primary cylinder I is the �-boundary

of a Markov rectangle R1. Then the primary cylinder I intersects another

Markov rectangle R2 giving rise to the existence of a cylinder-gap condition

that the realised solenoid functions have to satisfy as we pass to explain. Take

the smallest l � 0 such that f l
�0 I [ f l

�0 K is contained in the intersection of the

boundaries of two Markov rectangles M1 and M2. Let M1 be the Markov rec-

tangle with the property that M1 \f l
�0 R1 is a rectangle with nonempty interior

(and so M2 \ f l
�0 R2 also has nonempty interior). Then, for some positive n,

there are distinct n-cylinder and gap leaf segments J1; : : : ;Jm contained in a

primary cylinder of M2 such that f l
�0 K D Jm and the smallest full �-leaf segment

containing f l
�0 I is equal to the union

Sm�1
iD1

OJi , where OJi is the smallest full �-leaf

segment containing Ji . Hence,

jf l
�0 I j

jf l
�0 Kj

D

m�1
X

iD1

jJi j

jJmj
:

Hence, noting that gj� D f j�, a realised solenoid function �g;� must satisfy

the cylinder-gap condition for all such leaf segments:

�g;�.I;K/D

m�1
X

iD1

sg;�.Ji ;Jm/;

where sg;� is the scaling function determined by the solenoid function �g;�. See

Figure 6.
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Figure 6. The cylinder-gap condition for �-leaf segments.

3.9. Solenoid functions. Now, we are ready to present the definition of an

�-solenoid function.

DEFINITION 3.1. A Hölder continuous function �� W sol� ! R
C is an �-solenoid

function if it satisfies the matching condition, the boundary condition and the

cylinder-gap condition.

We denote by PS.f / the set of pairs .�s; �u/ of stable and unstable solenoid

functions.

REMARK 3.3. Let �� W sol� ! R
C be an �-solenoid function. The matching,

the boundary and the cylinder-gap conditions are trivially satisfied except in the

following cases:

(i) The matching condition if ı�;f D 1.

(ii) The boundary condition if ıs;f D ıu;f D 1.

(iii) The cylinder-gap condition if ı�;f < 1 and ı�0;f D 1.

THEOREM 3.4. The map r� ! r�jsol� gives a one-to-one correspondence be-

tween �-ratio functions and �-solenoid functions.

PROOF. Every �-ratio function restricted to the set sol� determines an �-solenoid

function r�jsol�. Now we prove the converse. Since the solenoid functions

are continuous and their domains are compact they are bounded away from

0 and 1. By this boundedness and the f -matching condition of the solenoid

functions and by iterating the domains sols and solu of the solenoid functions

backward and forward by f , we determine the ratio functions r s and ru at very

small (and large) scales, such that f leaves the ratios invariant. Then, using the

boundedness again, we extend the ratio functions to all pairs of small adjacent

leaf segments by continuity. By the boundary condition and the cylinder-gap

condition of the solenoid functions, the ratio functions are well determined at

the boundaries of the Markov rectangles. Using the Hölder continuity of the

solenoid function, we deduce inequality (3–2). �

The set PS.f / of all pairs .�s; �u/ has a natural metric. Combining Theorem

3.1 with Theorem 3.4, we obtain that the set PS.f / forms a moduli space for

the C 1C conjugacy classes of C 1C hyperbolic diffeomorphisms g 2 T.f;�/:
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COROLLARY 3.5. The map g ! .rs;gjsols; ru;gjsolu/ determines a one-to-one

correspondence between C 1C conjugacy classes of g 2 T.f;�/ and pairs of

solenoid functions in PS.f /.

DEFINITION 3.2. We say that any two �-solenoid functions �1 W sol� ! R
C and

�2 W sol� ! R
C are in the same bounded equivalence class if the corresponding

scaling functions s1 W scl� ! R
C and s2 W scl� ! R

C satisfy the following

property: There is C > 0 such that
ˇ

ˇ log s1.J;m
iJ /� log s2.J;m

iJ /
ˇ

ˇ< C (3–6)

for every �-leaf .i C 1/-cylinder or .i C 1/-gap J .

In Lemma 8.8 in [42], it is proved that two C 1C hyperbolic diffeomorphisms

g1 and g2 are Lipschitz conjugate if, and only if, the solenoid functions �g1;�

and �g2;� are in the same bounded equivalence class for � equal to s and u.

4. Rigidity

If the holonomies are sufficiently smooth then the system is essentially affine.

To see that, rather than consider all holonomies, it is enough to consider a

C 1;HD�

complete set of holonomies.

4.1. Complete sets of holonomies. Before introducing the notion of a C 1;˛�

complete set of holonomies, we define the C 1;˛ regularities, with 0<˛� 1, for

diffeomorphisms.

DEFINITION 4.1. Let � W I � R ! J � R be a diffeomorphism. For 0< ˛ < 1,

the diffeomorphism � is C 1;˛ if, for all points x;y 2 I ,

j� 0.y/� � 0.x/j � ��;˛.jy � xj/ (4–1)

where the positive function ��;˛.t/ is o.t˛/ i.e. limt!0 ��;˛.t/=t˛ D 0.

The map � W I ! J is C 1;1 if, for all points x;y 2 I ,
ˇ

ˇ

ˇ

ˇ

log � 0.x/C log � 0.y/� 2 log � 0

�

x C y

2

�
ˇ

ˇ

ˇ

ˇ

� ��;1.jy � xj/ (4–2)

where the positive function ��;1.t/ is o.t/, i.e. limt!0 ��;1.t/=t D 0. For 0 <

˛ � 1, the functions ��;˛ are called the ˛-modulus of continuity of � .

In particular, for every ˇ > ˛ > 0, a C 1Cˇ diffeomorphism is C 1;˛ , and, for

every 
 > 0, a C 2C
 diffeomorphism is C 1;1. We note that the regularity

C 1;1 (also denoted by C 1Czygmund) of a diffeomorphism � used in this paper

is stronger than the regularity C 1CZygmund (see [32]). The importance of these

C 1;˛ smoothness classes for a diffeomorphism � W I ! J follows from the fact

that if 0 < ˛ < 1 then the map � will distort ratios of lengths of short intervals
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Figure 7. The complete set of holonomies H D fh1;h2;h3;h
�1
1
;h�1

2
;h�1

3
g

for the Anosov map g W R2 n .ZEv � Z Ew/ ! R2 n .ZEv � Z Ew/ defined by

g.x;y/D .x C y;y/ and with Markov partition M D fA;Bg.

in an interval K � I by an amount that is o.jI j˛/, and if ˛ D 1 the map �

will distort the cross-ratios of quadruples of points in an interval K � I by an

amount that is o.jI j/ (see Appendix in [41]).

Suppose that Ri and Rj are Markov rectangles, x 2 Ri and y 2 Rj . We say

that x and y are �-holonomically related if there is an �0-leaf segment `�
0

.x;y/

such that @`�
0

.x;y/Dfx;yg, and there are two distinct spanning �0-leaf segments

`�
0

.x;Ri/ and `�
0

.y;Rj / such that their union contains `�
0

.x;y/.

For every Markov rectangle Ri 2 R, let xi be a chosen point in Ri . Let

I
�D fIi D `�.xi ;Ri/ W Ri 2 Rg. A complete set of �-holonomies H

� D fhˇg with

respect to I
� consists of a minimal set of basic holonomies with the following

property: if x 2 Ii is holonomically related to y 2 Ij , where Ii ; Ij 2 I
�, then for

some ˇ either hˇ or h�1
ˇ

is the holonomy from a neighborhood of x in Ii to Ij

which sends x to y (see Figure 7). We call I
� the domain of the complete set of

�-holonomies H
�. For each Ê�-leaf segment Ii in the domain I

� of the complete

set of holonomies H
�, let OIi be a full �-leaf segment such that Ii D OIi \�, and let

ui W OIi ! R be a C r �-leaf chart of the submanifold structure of OIi given by the

Stable Manifold Theorem (for instance, we can consider the charts ui 2 A.�/

as defined in Section 2.10).

DEFINITION 4.2. A complete set of holonomies H
� is C 1;˛�

if for every ho-

lonomy hˇ W I ! J in H
�, the map uj ı hˇ ı u�1

i and its inverse have C 1;˛�

diffeomorphic extensions to R such that the modulus of continuity does not

depend upon hˇ 2 H
�.
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Figure 8. The cardinality of the complete set of holonomies H D
fh1;h2;h3; : : :g is not necessarily finite.

For many systems such as Anosov diffeomorphisms and codimension one at-

tractors there is only a finite number of holonomies in a complete set. In this

case the uniformity hypothesis in the modulus of continuity of Definition 4.2 is

redundant. However, for Smale horseshoes this is not the case (see Figure 8).

4.2. Hyperbolic affine models. A hyperbolic affine model for f on � is an

atlas A with the following properties (see Figure 9):

unstable

leaves

stable

leaves

U V

i j

affine extension

of

unstable

leaves

stable

leaves

⊂ R
2 ⊂ R

2

j−1
◦ i

Figure 9. Affine model for f .
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(i) the union of the domains of the charts of A cover an open set of M containing

�;

(ii) any two charts i W U ! R
2 and j W V ! R

2 in A have overlap maps

j ı i�1 W i.U \ V /! R
2 with affine extensions to R

2;

(iii) f is affine with respect to the charts in A;

(iv) � is a basic hyperbolic set;

(v) the images of the stable and unstable local leaves under the charts in A are

contained in horizontal and vertical lines; and

(vi) the basic holonomies have affine extensions to the stable and unstable leaves

with respect to the charts in A.

THEOREM 4.1. Let HDs and HDu be respectively the Hausdorff dimension

of the intersection with � of the stable and unstable leaves of f . If f is C r

with r �1>maxfHDs;HDug, and there is a complete set of holonomies for f

in which the stable holonomies are C 1;HDs

, and the unstable holonomies are

C 1;HDu

, then the map f on � is C 1C conjugate to a hyperbolic affine model.

Theorem 4.1 follows from Theorem 1 in [41]. In assuming that f is C r with

r �1>maxfHDs;HDug in the previous theorem, we actually only use the fact

that f is C 1;HD�

along �-leaves for � 2 fs;ug.

5. Hausdorff measures

We now introduce the notion of stable and unstable measure solenoid func-

tions. We will use the measure solenoid functions to determine which Gibbs

measures are C 1C-realisable by C 1C hyperbolic diffeomorphisms. We define

the ı-bounded solenoid equivalence classes of Gibbs measures which allow us

to construct all hyperbolic diffeomorphisms with an f -invariant measure abso-

lutely continuous with respect to the Hausdorff measure.

5.1. Gibbs measures. Let us give the definition of an infinite two-sided subshift

of finite type � D �.A/. The elements of � are all infinite two-sided words

w D : : : w�1w0w1 : : : in the symbols 1; : : : ; k such that AwiwiC1
D 1, for all

i 2 Z. Here A D
�

Aij

�

is any matrix with entries 0 and 1 such that An has

all entries positive for some n � 1. We write w
n1;n2� w0 if wj D w0

j for every

j D �n1; : : : ; n2. The metric d on � is given by d.w;w0/ D 2�n if n � 0

is the largest such that w
n;n
� w0. Together with this metric � is a compact

metric space. The two-sided shift map � W � ! � is the mapping which sends

wD : : : w�1w0w1 : : : to vD : : : v�1v0v1 : : : where vj DwjC1 for every j 2 Z.

An .n1; n2/-cylinder �w�n1
:::wn2

, where w 2 �, consists of all those words

w0 in � such that w
n1;n2� w0. Let �u be the set of all words w0w1 : : : which

extend to words : : : w0w1 : : : in �, and, similarly, let �s be the set of all words
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: : : w�1w0 which extend to words : : : w�1w0 : : : in �. Then �u W� !�u and

�s W� !�s are the natural projection given, respectively, by

�u.: : : w�1w0w1 : : :/D w0w1 : : : and �s.: : : w�1w0w1 : : :/D : : : w�1w0 :

An n-cylinder�u
w0:::wn�1

is equal to �u.�w0:::wn�1
/, and likewise an n-cylinder

�s
w�.n�1/:::w0

is equal to �s.�w�.n�1/:::w0
/. Let �u W�u !�u and �s W�s !�s

be the corresponding one-sided shifts.

DEFINITION 5.1. For � D s and u, we say that s� W �� ! R
C is an �-measure

scaling function if s� is a Hölder continuous function, and for every � 2��

X

���D�

s�.�/D 1 ;

where the sum is upon all � 2�� such that ���D �.

For � 2 fs;ug, a �-invariant measure � on � determines a unique ��-invariant

measure �� D .��/�� on ��. We note that a ��-invariant measure �� on �� has

a unique �-invariant natural extension to an invariant measure � on � such that

�.�wn1
:::wn2

/D ��.�
�
wn1

:::wn2

/.

DEFINITION 5.2. A �-invariant measure � on � is a Gibbs measure:

(i) if the function s�;u W�u ! R
C given by

s�;u.w0w1 : : :/D lim
n!1

�.�w0:::wn
/

�.�w1:::wn
/
;

is well-defined and it is an u-measure scaling function; and

(ii) if the function s�;s W�s ! R
C given by

s�;s.: : : w1w0/D lim
n!1

�.�wn:::w0
/

�.�wn:::w1
/
;

is well-defined and it is an s-measure scaling function.

The following theorem follows from Corollary 2 in [38].

THEOREM 5.1 (MODULI SPACE FOR GIBBS MEASURES). If s� W �� ! R
C is

an �-measure scaling function, for �D s or u, then there is a unique �-invariant

Gibbs measure � such that s�;� D s�.

5.2. Hausdorff realisations of Gibbs measures for Smale horseshoes. The

properties of the Markov partition RDfR1; : : : ;Rkg of f imply the existence of

a unique two-sided subshift � of finite type�D�A and a continuous surjection

i W�!� such that (a) f ı i D i ı� and (b) i.�j /D Rj for every j D 1; : : : ; k.

We call such a map i W� !� a marking of a C 1C hyperbolic diffeomorphism
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.f;�/. Since f admits more than one Markov partition, a C 1C hyperbolic

diffeomorphism .f;�/ admits always a marking which is not unique.

Recall, from the Introduction, that a Gibbs measure � on� is C 1C-Hausdorff

realisable by a hyperbolic diffeomorphism g 2 T.f;�/ if, for every chart c W
U ! R

2 in the C 1C structure Cg of g, the pushforward .c ı i/�� of � is abso-

lutely continuous (in fact, equivalent) with respect to the Hausdorff measure on

c.U \�/.

THEOREM 5.2 (SMALE HORSESHOES). Let .f;�/ be a Smale horseshoe. Ev-

ery Gibbs measure � is C 1C-Hausdorff realisable by a hyperbolic diffeomor-

phism contained in Tf;�.ıs; ıu/.

However, there are Gibbs measures that are not C 1C-Hausdorff realisable by

Anosov diffeomorphisms and codimension one attractors due to the fact that

the Markov rectangles have common boundaries.

Theorem 5.2 follows from Theorem 1.6 in [42].

5.3. Hausdorff realisations of Gibbs measures for Anosov diffeomorphisms.

We will use stable and unstable measure solenoid functions to present a clas-

sification of Gibbs measures C 1C-Hausdorff realisable by Anosov diffeomor-

phisms and codimension one attractors.

Let Msol� be the set of all pairs .I;J / with the following properties: (a) If

ı� D 1 then Msol� D sol�. (b) If ı� < 1 then f�0I and f�0J are �-leaf 2-cylinders

of a Markov rectangle R such that f�0I [f�0J is an �-leaf segment, i.e. there is

a unique �-leaf 2-gap between them. Let msol� be the set of all pairs .I;J / 2
Msol� such that the leaf segments I and J are not contained in an �-global leaf

containing an �-boundary of a Markov rectangle. By construction, the set msol�

is dense in Msol�, and for every pair .C;D/ � msol� there is a unique  2��
0

and a unique � 2 ��
0

such that i.��1
�0 . // D C and i.��1

�0 .�// D D. Hence,

we will denote the elements of msol� by . �; ��/, where  � D i.��1
�0 . // and

�� D i.��1
�0 .�//.

LEMMA 5.3. Let � be a Gibbs measure on �. The s-measure solenoid function

��;s W msols ! R
C of � given by

��;s. �; ��/D lim
n!1

�.� 0::: n
/

�.��0:::�n
/

is well-defined. The u-measure solenoid function ��;u W msolu ! R
C of � given

by

��;u. �; ��/D lim
n!1

�.� n::: 0
/

�.��n:::�0
/

is well-defined.
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Lemma 5.3 follows from Lemma 5.4 in [42].

LEMMA 5.4. Let ıf;� D 1. If an �-measure solenoid function ��;� W msol� !

R
C has a continuous extension to sol� then its extension satisfies the matching

condition.

PROOF. Let .J0;J1/ 2 sol� be a pair of primary cylinders and suppose that we

have pairs

.I0; I1/; .I1; I2/; : : : ; .In�2; In�1/ 2 sol�

of primary cylinders such that f�J0 D
Sk�1

jD0 Ij and f�J1 D
Sn�1

jDk Ij . Since the

set msol� is dense in sol� there are pairs .J l
0
;J l

1
/ 2 msol� and pairs .I l

j ; I
l
jC1

/

with the following properties:

(i) f�J
l
0

D
Sk�1

jD0 I l
j and f�J

l
1

D
Sn�1

jDk I i
j .

(ii) The pair .J l
0
;J l

1
/ converges to .J0;J1/ when i tends to infinity.

Therefore, for every j D 0; : : : ; n�2 the pair .I l
j ; I

l
jC1

/ converges to .Ij ; IjC1/

when i tends to infinity. Since � is a �-invariant measure, we get that the match-

ing condition

��;�.J
l
0 W J l

1/D
1 C

Pk�1
jD1

Qj
iD1

��;�.I
l
j W I l

i�1
/

Pn�1
jDk

Qj
iD1

��;�.I
l
j W I l

i�1
/

is satisfied for every l � 1. Since the extension of ��;� W msol� ! R
C to the set

sol� is continuous, we get that the matching condition also holds for the pairs

.J0;J1/ and .I0; I1/; : : : ; .In�2; In�1/. �

THEOREM 5.5 (ANOSOV DIFFEOMORPHISMS). Suppose that f is a C 1C

Anosov diffeomorphism of the torus �. Fix a Gibbs measure � on �. Then

the following statements are equivalent:

(i) The set �, Œ�� � Tf;�.1; 1/ is nonempty and is precisely the set of g 2

Tf;�.1; 1/ such that .g; �g; �/ is a C 1C Hausdorff realisation. In this case

�D .ig/�� is absolutely continuous with respect to Lesbegue measure.

(ii) The stable measure solenoid function ��;s W msols ! R
C has a nonvanishing

Hölder continuous extension to the closure of msols satisfying the boundary

condition.

(iii) The unstable measure solenoid function ��;u W msolu ! R
C has a nonva-

nishing Hölder continuous extension to the closure of msols satisfying the

boundary condition.

Theorem 5.5 follows from Theorem 1.4 in [42].
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Figure 10. An �-admissible pair .�;C / where �� D i.��1
�0 �/ and

C� D i.��1
� C /.

5.4. Extended measure scaling functions. To present a classification of Gibbs

measures C 1C-Hausdorff realisable by codimension one attractors, we have to

define the cylinder-cylinder condition. We will express the cylinder-cylinder

condition, in Section 5.5, using the extended measure scaling functions which

are also useful to present, in Section 5.6, the ı�-bounded solenoid equivalence

class of a Gibbs measure.

Throughout the paper, if � 2��
0

, we denote by �� the leaf primary cylinder

segment i.��1
�0 �/ � �. Similarly, if C is an n�-cylinder of �� then we denote

by C� the .1; n�/-rectangle i.��1
� C /��.

Given � 2 ��
0

and an n-cylinder C of ��, we say that the pair .�;C / is

�-admissible if the set

�:C D ��1
� C \��1

�0 �

is nonempty (see Figure 10). The set of all �-admissible pairs .�;C / is the �-

measure scaling set msc�. We construct the extended �-measure scaling function

� W msc� ! R
C as follows: If C is a 1-cylinder then we define ��.C /D 1. If C

is an n-cylinder (�u
w0:::w.n�1/

or �s
w�.n�1/:::w0

), with n � 2, then we define

��.C /D

n�1
Y

jD1

s�;�.��0�
n�j
� .�:mj�1

� C //

(see Figure 11), where (a) s�;� is the �-measure scaling function of the Gibbs

measure � and (b) m
j�1
u �u

w0:::w.n�1/
D�u

w0:::w.n�j /
and m

j�1
s �s

w�.n�1/:::w0
D

�s
w�.n�j /:::w0

(see Section 5.1).

Recall that a �-invariant measure � on � determines a unique �u-invariant

measure �u D .�u/�� on �u and a unique �s-invariant measure �s D .�s/�� on

�s . The following result follows from Theorem 1 in [38].



172 ALBERTO A. PINTO AND DAVID A. RAND

ξ
Λ

 
C

Λ  
D

Λ

 I

 f
n− j

  f
n− j

( I )

Figure 11. The .n � j C 1/-cylinder leaf segment I D �� \ D� and the

primary leaf segment f n�j .I/D i.��0�
n�j
� .�:D//, where D D m

j�1
� C .

THEOREM 5.6 (RATIO DECOMPOSITION OF A GIBBS MEASURE). Let � W
msc� ! R

C be an extended �-measure scaling function and � the corresponding

�-invariant Gibbs measure. If C is an n-cylinder of �� then

��.C /D

Z

�2M

��.C /��0.d�/;

where M D ��0 ı ��1
� C is a 1-cylinder of ��

0

. The ratios ��.C /=��.C / are

uniformly bounded away from 0 and 1.

We note that ��.C / is the measure of �:C with respect to the probability condi-

tional measure of � on �.

5.5. Hausdorff realisations of Gibbs measures for Codimension one attrac-

tors. We introduce the cylinder-cylinder condition that we will use to classify

all Gibbs measures that are C 1C-Hausdorff realizable by codimension one at-

tractors.

Similarly to the cylinder-gap condition given in Section 3.8 for a solenoid

function, we are going to construct the cylinder-cylinder condition for a given

measure solenoid function ��;�. Let ı� < 1 and ı�0 D 1. Let .I;J / 2 Msol� be

such that the �-leaf segment f�0I [ f�0J is contained in an �-boundary K of a

Markov rectangle R1. Then f�0I [f�0J intersects another Markov rectangle R2.

Take the smallest k � 0 such that f k
�0 I [f k

�0 J is contained in the intersection of

the boundaries of two Markov rectangles M1 and M2. Let M1 be the Markov

rectangle with the property that M1 \f k
�0 R1 is a rectangle with nonempty inte-

rior, and so M2 \f k
�0 R2 has also nonempty interior. Then, for some positive n,

there are distinct �-leaf n-cylinders J1; : : : ;Jm contained in a primary cylinder

L of M2 such that f k
�0 I D

Sp�1
iD1

Ji and f k
�0 J D

Sm
iDp Ji . Let � 2��

0

be such

that �� D L and, for every i D 1; : : : ;m, let Di be a cylinder of �� such that

i.�:Di/D Ji . Let � 2��
0

be such that �� D K and C1 and C2 cylinders of ��

such that i.�:C1/D f�0I and i.�:C2/D f�0J . We say that the measure solenoid

function ��;� of the Gibbs measure � satisfies the cylinder-cylinder condition
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Figure 12. The cylinder-cylinder condition for �-leaf segments.

(see Figure 12) if, for all such leaf segments,

��.C2/

��.C1/
D

Pm
iDp ��.Di/

Pp�1
iD1

��.Di/

where � is the measure scaling function determined by �.

REMARK 5.7. A function � W msol� ! R
C that has an Hölder continuous

extension to Msol� determines an extended scaling function, and so we can check

if the function � satisfies or not the cylinder-cylinder condition.

THEOREM 5.8 (CODIMENSION ONE ATTRACTORS). Suppose that f is a C 1C

surface diffeomorphism and � is a codimension one hyperbolic attractor. Fix a

Gibbs measure � on �. Then the following statements are equivalent:

(i) For all 0 < ıs < 1, Œ�� � Tf;�.ıs; 1/ is nonempty and is precisely the set

of g 2 Tf;�.ıs; 1/ such that .g; �g; �/ is a C 1C Hausdorff realisation. In

this case � D .ig/�� is absolutely continuous with respect to the Hausdorff

measure on �g.

(ii) The stable measure solenoid function ��;s W msols ! R
C has a nonvanishing

Hölder continuous extension to the closure of msols satisfying the cylinder-

cylinder condition.

(iii) The unstable measure solenoid function ��;u W msolu ! R
C has a nonvan-

ishing Hölder continuous extension to the closure of msolu.

Theorem 5.8 follows from Theorem 1.5 in [42].

5.6. The moduli space for hyperbolic realizations of Gibbs measures. Let

SOL
� be the space of all Hölder continuous functions �� W Msol� ! R

C with the

following properties:

(i) If HD� D 1 then �� is an �-solenoid function.

(ii) If HD� < 1 and HD�0 D 1 then �� satisfies the cylinder-cylinder condition.

(iii) If HD�<1 and HD�0 <1 then �� does not have to satisfy any extra property.

We recall that HD� is the Hausdorff dimension of the �-leaf segments intersected

with �.

By Theorems 5.2, 5.5 and 5.8, for � equal to s and u, we obtain that the map

� ! ��;� gives a one-to-one correspondence between the sets Œ�� contained in
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Tf;�.ıs; ıu/ and the space of measure solenoid functions �g;� whose continuous

extension is contained in SOL
�. Hence, the set SOL

� is a moduli space parame-

terizing all Lipschitz conjugacy classes Œ�� of C 1C hyperbolic diffeomorphisms

contained in Tf;�.ıs; ıu/ (see Corollary 1.11).

DEFINITION 5.3. The ı�-bounded solenoid equivalence class of a Gibbs mea-

sure � is the set of all solenoid functions �� with the following properties: There

is K D K.��/ > 0 such that for every pair .�;C / 2 msc�

ˇ

ˇı� log s�.C�\ �� W ��/� log ��.C /
ˇ

ˇ<K ;

where (i) � is the �-measure scaling function of � and (ii) s� is the scaling function

determined by ��.

Let �1;� and �2;� be two solenoid functions in the same ı�-bounded equivalence

class of a Gibbs measure �. Using that �1;� and �2;� are bounded away from

zero, we obtain that the corresponding scaling functions also satisfy inequality

(3–6) for all pairs .J;miJ /where J is an �-leaf .i C1/-gap. Hence, the solenoid

functions �1;� and �2;� are in the same bounded equivalence class (see Definition

3.2).

THEOREM 5.9. (i) There is a natural map g ! .�s.g/; �u.g// which gives a

one-to-one correspondence between C 1C conjugacy classes of C 1C hyper-

bolic diffeomorphisms g 2 Œ�� and pairs .�s.g/; �u.g// of stable and unstable

solenoid functions such that, for � equal to s and u, ��.g/ is contained in the

ı�-bounded solenoid equivalence class of �.

(ii) Given an �-solenoid function �� and 0 < ı�0 � 1, there is a unique Gibbs

measure � and a unique ı�0-bounded equivalence class of � consisting of

�0-solenoid functions ��0 such that the C 1C conjugacy class of hyperbolic

diffeomorphisms g 2 Tf;�.ıs; ıu/ determined by the pair .�s; �u/ have an

invariant measure�D .ig/�� absolutely continuous with respect to the Haus-

dorff measure.

Theorem 5.9 follows from combining Lemmas 8.17 and 8.18 in [42].
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