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ABSTRACT. We give a brief survey on the entropy of holomorphic self maps

f of compact Kähler manifolds and rational dominating self maps f of smooth

projective varieties. We emphasize the connection between the entropy and the

spectral radii of the induced action of f on the homology of the compact man-

ifold. The main conjecture for the rational maps states that modulo birational

isomorphism all various notions of entropy and the spectral radii are equal.

1. Introduction

The subject of the dynamics of a map f W X ! X has been studied by hun-

dreds, or perhaps thousands, of mathematicians, physicists and other scientists

in the last 150 years. One way to classify the complexity of the map f is to

assign to it a number h.f / 2 Œ0; 1�, which called the entropy of f . The entropy

of f should be an invariant with respect to certain automorphisms of X . The

complexity of the dynamics of f should be reflected by h.f /: the larger h.f /

the more complex is its dynamics.

The subject of this short survey paper is mostly concerned with the entropy

of a holomorphic f W X ! X , where X is a compact Kähler manifold, and

the entropy of a rational map of f W Y 99K Y , where Y is a smooth projective

variety. In the holomorphic case the author [12; 13; 14] showed that entropy of

f is equal to the logarithm of the spectral radius of the finite dimensional f� on

the total homology group H�.X / over R.
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Most of the paper is devoted to the rational map f W Y 99K Y which can be

assumed dominating. In this case we have some partial results and inequalities.

We recall three possible definition of the entropy hB.f /; h.f /; hF .f / which

are related as follows: hB.f / � h.f / D hF .f /. The analog of the dynamical

homological spectral radius are given by �dyn.f�/, elov.f / and eH .f /, where the

three quantities can be viewed as the volume growth. It is known that hF .f / �

lov.f /�H.f /. H.f / is a birational invariant. I.e. let OY be a smooth projective

variety such that there exists � W Y 99K
OY which is a birational map. Then f W

Y 99K Y can be lifted to dominating Of WD �f ��1 W OY 99K
OY , and H.f / D H. Of /.

However hF .f / does not have to be equal to hF . Of /. The main conjecture of

this paper are the equalities

hB. Of / D h. Of / D hF . Of / D lov. Of / D H. Of / D �dyn. Of�/; (1–1)

for some Of birationally equivalent to f . For polynomial automorphisms of C
2,

which are birational maps of P
2, the results of the papers [16; 36; 8] prove the

above conjecture for Of D f . Some other examples where this conjecture holds

are given in [21; 22].

The pioneering inequality of Gromov hF .f / � lov.f / [20] uses basic results

in entropy theory, Riemannian geometry and complex manifolds. Author’s re-

sults are using basic results in entropy theory, algebraic geometry and the results

of Gromov, Yomdin [38] and Newhouse [31]. From the beginning of 90’s the

notion of currents were introduced in the study of the dynamics of holomorphic

and rational maps in several complex variables. See the survey paper [35]. In

fact the inequality lov.f / � H.f / proved in [8; 9; 10] and [23], as well as most

of the results in are derived [21; 22], are using the theory of currents.

The author believes that in dealing with the notion of the entropy solely, one

can cleverly substitute the theory of currents with the right notions of algebraic

geometry. All the section of this paper except the last one are not using currents.

It seems to the author that to prove the conjecture (1–1) one needs to prove a

correct analog of Yomdin’s inequality [38].

We now survey briefly the contents of this paper. ~ 2 deals with the entropy

of f W X ! X , where first X is a compact metric space and f is continuous,

and second X is compact Kähler and f is holomorphic. ~ 3 is devoted to the

study of three definitions of entropy of a continuous map f W X ! X , where

X is an arbitrary subset of a compact metric space Y . In ~ 4 we discuss rational

dominating maps f W Y 99K Y , where Y is a smooth projective variety. ~ 5

discusses various notions and results on the entropy of rational dominating maps.

In ~ 6 we discuss briefly the recent results, in particular the inequality lov.f / �

H.f / which uses currents.
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It is impossible to mention all the relevant existing literature, and I apologize

to authors of papers not mentioned. It is my pleasure to thank S. Cantat, V.

Guedj, J. Propp, N. Sibony and C.-M. Viallet for pointing out related papers.

2. Entropy of continuous and holomorphic maps

The first rigorous definition of the entropy was introduced by Kolmogorov

[27]. It assumes that X is a probability space .X; B; �/, where f preserves the

probability measure �. It is denoted by h�.f /, and is usually referred under the

following names: metric entropy, Kolmogorov–Sinai entropy, or measure en-

tropy. h�.f / is an invariant under measure preserving invertible automorphism

A W X ! X : h�.f / D h�.A ı f ı A�1/.

Assume that X is a compact metric space and f W X ! X a continuous map.

Then Adler, Konheim and McAndrew defined the topological entropy h.f / [1].

h.f / has a maximal characterization in terms of measure entropies f . Let B

be the Borel sigma algebra generated by open set in X . Denote by ˘.X / the

compact space of probability measures on .X; B/. Let ˘.f / � ˘.X / be the

compact set of all f -invariant probability measures. (Krylov–Bogolyubov the-

orem implies that ˘.f / ¤ ∅.) Then the variational principle due to Goodwyn,

Dinaburg and Goodman [18; 7; 17] states h.f / D max�2˘.f / h�.f /. Hence

h.f / depends only to the topology induced by the metric on X . In particular,

h.f / is invariant under any homeomorphism A W X ! X .

The next step is to consider the case where X is a compact smooth manifold

and f W X ! X is a differentiable map, say f 2 Cr .X /, where r is usually

at least 1. The most remarkable subclasses of f are strongly hyperbolic maps,

and in particular axiom A diffeomorphisms [34]. The dynamics of an Axiom A

diffeomorphism on the nonwandering set can be coded as a subshift of a finite

type (SOFT), hence its entropy is given by the exponential growth of the periodic

points of f , i.e., h.f / D lim supk!1
log Fixf k

k
, where Fixf k the number of

periodic points of f of period k.

It is well known in topology that Fixf k can be estimated below by the Lef-

schetz number of f k . Let H�.X / denote the total homology group of X over

R, i.e.,

H�.X / D

dimR X
M

iD0

Hi.X /;

the direct sum of the homology groups of X of all dimensions with coefficients

in R. Then f induces the linear operator f� W H.X / ! H.X /, where f�;i W

Hi.X / ! Hi.X /; i D 0; : : : ; dimR X . The Lefschetz number of f k is defined
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as

�.f k/ WD

dimR X
X

iD0

.�1/iTracef k
�;i :

Intuitively, �.f k/ is the algebraic sum of k-periodic points of f , counted with

their multiplicities.

Denote by �.f�/ and �.f�;i/ the spectral radius of f� and f�;i respectively.

Recall that

�.f�;i/ D lim sup
k!1

jTracef k
�;i j

1=k

and �.f�/ D maxiD0;:::;dimR X �.f�;i/. Hence

lim sup
k!1

log j�.f k/j

k
� log �.f�/:

The arguments in [34] yield that for any f in the subset H of an Axiom A

diffeomorphism, (H is defined in [34]), one has the inequality jTracef k
�;i j �

Fixf k for each D 1; : : : ; dimR X . (H is C 0 dense in Diffr .X / [34, Thm 3.1].)

Hence for any f 2 H one has the inequality [34, Prop 3.3]

h.f / � log �.f�/: (2–1)

It was conjectured in [34] that the above inequality holds for any differentiable

f .

Let deg f be the topological degree of f W X ! X . Then

j deg f j D �.f�;dimR X /:

Hence �.f�/ � j deg f j. It was shown by Misiurewicz and Przytycki [30] that if

f 2C1.X / then h.f /�j deg f j. However this inequality may fail if f 2C0.X /.

The entropy conjecture (2–1) for a smooth f , i.e., f 2 C1.X /, was proved by

Yomdin [38]. Conversely, Newhouse [31] showed that for f 2 C1C".X / the

volume growth of smooth submanifolds of f is an upper bound for h.f /. See

also a related upper bound in [32].

This paper is devoted to study the entropy of f where X is a complex Kähler

manifold and f is either holomorphic map, or X is a projective variety and f is a

rational map dominating map. We first discuss the case where f is holomorphic.

Let P be the complex projective space. Then f W P ! P is holomorphic if and

only if f jC is a rational map. Hence deg f is the cardinality of the set f �1.z/

for all but a finite number of z 2 C. So deg f D �.f�/ in this case. Lyubich [28]

showed that h.f / D log deg f . Gromov in preprint dated 1977, which appeared

as [20], showed that if f W P
d ! P

d is holomorphic then h.f / D log deg f . It

is well known in this case �.f�/ D deg f .
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In [12] the author showed that if X is a complex projective variety and

f W X ! X is holomorphic, then h.f / D log �.f�/. Note that one can view

f� a linear operator on H�.X; Z/, i.e., the total homology group with integer

coefficients. Hence f� can be represented by matrix with integer coefficients.

In particular, �.f�/ is an algebraic integer, i.e., the entropy is the logarithm of

an algebraic integer. (This fact was observed in [3] for certain rational maps.)

In [14] the author extended this result to a compact Kähler manifold.

Examples of the dynamics of biholomorphic maps f W X ! X , where X is a

compact K3 surface which is Kähler but not necessary a projective variety, are

given in [6; 29]. See also [9] for higher dimensional examples. In summary, the

entropy of a holomorphic self map f of a compact Kähler manifold is deter-

mined by the spectral radius of the induced action of f on the total homology

of X .

3. Definitions of entropy

In this paper Y will be always a compact matrix space with the metric

dist.�; �/ W Y � Y ! RC:

Let X � Y be a nonempty set, and assume that f W X ! X is a continuous map

with respect the topology induced by the metric dist on X . For x; y 2 X and

n 2 N let

distn.x; y/ D max
kD0;:::;n�1

dist.f k.x/; f k.y//:

So dist1.x; y/Ddist.x; y/ and the sequence distn.x; y/; n2N is nondecreasing.

Hence for each n 2 N distn is a distance on X . Furthermore, each metric distn
induces the same topology X as the metric dist. For " > 0 a set S � X is called

.n; "/ separated if distn.x; y/ � " for any x; y 2 S; x ¤ y. For any set K � X

denote by N.n; "; K/ 2 N [ f1g the maximal cardinality of .n; "/ separated

set S � K. Clearly, N.n1; "; K/ � N.n2; "; K/ if n1 � n2, N.n; "1; K/ �

N.n; "2; K/ if 0 < "1 � "2, and N.n; "; K1/ � N.n; "; K2/ if K1 � K2.

We now discuss a few possible definitions of the entropy of f . Let K � X .

Then

h.f; K/ WD lim
"&0

lim sup
n!1

log N.n; "; K/

n
: (3–1)

We call h.f; K/ the topological entropy of f jK. (Note that h.f; K/ D 1 if

N.n; "; K/ D 1 for some n 2 N and " > 0.) Equivalently, h.f; K/ can be

viewed as the exponential growth of the maximal number of .n; "/ separated

sets (in n).

Clearly h.f; K1/ � h.f; K2/ if X � K1 � K2. Then h.f / WD h.f; X / is the

topological entropy of f .
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Bowen’s definition of the entropy of f , denoted here as hB.f /, is given as

follows [37, ~ 7.2]. Let K � X be a compact set. Then K is a compact set with

respect to distn. Hence N.n; "; K/ 2 N. Then hB.f; X / is the supremum of

h.f; K/ for all compact subsets K of X . I.e.

hB.f; X / D sup
K⋐X

h.f; K/:

When no ambiguity arises we let hB.f / WD hB.f; X /. Clearly, if X is compact

then hB.f / D h.f /. (It is known that h.f / 2 Œ0; 1� for a compact X ; see [37].)

Since N.n; "; K/ � N.n; "; X / for any K � X it follows that h.f / � hB.f /.

The following example, pointed out to me by Jim Propp, shows that it is possible

that h.f / > hB.f /. Let Y WD fz 2 C; jzj � 1g; X WD fz 2 C; jzj < 1g be the

closed and the open unit disk respectively in the complex plane. Let 2 � p 2 N

and assume that f .z/ WD zp . It is well known that h.f; Y / D log p. It is

straightforward to show that h.f; X / D h.f; Y /. Let K � X be a compact

set. Let D.0; r/ be the closed disk or radius r < 1, centered at 0, such that K �

D.0; r/. Since f .D.0; r//�D.0; r/ it follows that hB.f; X /�h.f; D.0; r//D

0.

Our last definition of the entropy of h, denoted by hF .f; X /, or simply hF .f /

is based on the notion of the orbit space. Let Y WD Y N be the space of the

sequences y D .yi/i2N , where each yi 2 Y . We introduce a metric on Y:

d.fxig; fyig/ WD

1
X

iD1

dist.xi ; yi/

2i�1
; fxigi2N ; fyigi2N 2 Y:

Then Y is a compact metric space, whose diameter is twice the diameter of Y .

The shift transformation � W Y ! Y is given by �.fyigi2N/ D fyiC1gi2N . Then

d.�.x/; �.y// � 2d.x; y/, that is, � is a Lipschitz map. Given x 2 X then the

f -orbit of x, or simply the orbit of x, is the point orb x WD ff i�1.x/gi2N 2

Y. Denote by orb X � Y, the orbit space, the set of all f -orbits. Note that

�.orb x/ D orb f .x/. Hence �.orb X / � orb X . � jorb X , the restriction of � to

the orbit space, is “equivalent” to the map f W X ! X . I.e. let ! W X ! orb X be

given by !.x/ WD orb x. Clearly ! is a homeomorphism. Let X be the closure

of orb X with respect to the metric d defined above. Since Y is compact, X is

compact. Clearly �.X/ � X. Then the following diagram is commutative:

X
f

����! X

!

?

?

y

!

?

?

y

X
�

����! X
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Following [12, ~ 4] we define hF .f; X / to be equal to the topological entropy

of � jX:

hF .f; X / WD h.� jX/ D h.�; X/:

When no ambiguity arises we let hF .f / WD hF .f; X /. Since the closure of

orb X is X, it is not difficult to show that hF .f / D h.�; orb X /.

Observe first that if X is a compact subset of Y then hF .f / is the topological

entropy h.f / of f . Indeed, since f is continuous and X is compact X D orb X .

Since ! is a homeomorphism, the variational principle implies that h.f / D

hF .f /.

We observe next that h.f / � hF .f /. Let

dn.x; y/ WD max
kD0;:::;n�1

d.�k.x/; �k.y//:

Then distn.x; y/ � dn.orb x; orb y/. Hence N.n; "; X / � N.n; "; X/. Hence

h.f / � hF .f /. The arguments of the proof [22, Lemma 1.1] show that h.f / D

hF .f /. (In [22] hBow
top .f / is our h.f /, and hGr

top.f / is the topological entropy

with respect to the metric

d0.fxig; fyig/ WD sup
i2N

dist.xi ; yi/

2i
:

Since d and d0 induce the Tychonoff topology on Y N it follows that hGr
top.f / D

hF .f /.)

Our discussion of various topological entropies for f W X ! X is very close

to the discussion in [25]. The notion of the entropy hF .f / can be naturally

extended to the definition of the entropy of a semigroup acting on X [15]. See

[5] for other definition of the entropy of a free semigroup and [11] for an analog

of Misiurewicz–Przytycki theorem [30].

4. Rational maps

In this section we use notions and results from algebraic geometry most of

which can be found in [19]. Let z D .z0; z1; : : : ; zn/, sometimes denotes as

.z0 W z1 W : : : W zn/, be the homogeneous coordinates the n-dimensional complex

projective space P
n. Recall that a map f W P

n
99K P

n is called a rational map if

there exists nC1 nonzero coprime homogeneous polynomials f0.z/; : : : ; fn.z/

of degree d 2 N such that z ‘ fh.z/ WD .f0.z/; : : : ; fn.z//. Equivalently f

lifts to a homogeneous map fh W C
nC1 ! C

nC1. The set of singular points of

f , denoted by Sing f � P
n, sometimes called the indeterminacy locus of f , is

given by the system f0.z/ D : : : D fn.z/ D 0. Sing f is closed subvariety of P
n

of codimension 2 at least. The map f is holomorphic if and only if Sing f D ∅,

i.e., the above system of polynomial equations has only the solution z D 0.
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Let Y be an irreducible algebraic variety. It is well known that Y can be

embedded as an irreducible subvariety of P
n. For simplicity of notation we will

assume that Y is an irreducible variety of P
n. So Y can be viewed as a homo-

geneous irreducible variety Yh � C
nC1, given as the zero set of homogeneous

polynomials p1.z/ D : : : D pm.z/ D 0. y 2 Y is called smooth if Y is a complex

compact manifold in the neighborhood of y. A nonsmooth y 2 Y is called a

singular point. The set of singular points of Y , denoted by Sing Y , is a strict

subvariety of Y . Y is called smooth if Sing Y D ∅. Otherwise Y is called

singular.

Let f W Y 99K Y be a rational map. Then one can extend f to f W P
n

99K

P
n such that Sing f \ Y is a strict subvariety of Y and f j.Y nSing f / D

f j.Y nSing f /. f is not unique, but the f can be viewed as f jY . Sing f � Y is

the set of the points where f is not holomorphic. Sing f is strict projective vari-

ety of X , (Sing f � Sing f \Y ), and each irreducible component of Sing f is at

least of codimension 2. The assumption f W Y 99KY means that w WD fh.z/ 2 Yh

for each z 2 Yh. It is known that Y1 WD Cl fh.Yh/, the closure of fh.Yh/, is a

homogeneous irreducible subvariety of Y . Furthermore either Y1 D Y .D Y0/,

in this case f is called a dominating map, or dim Y1 < dim Y0. In the second

case the dynamics of f0 WD f is reduced to the dynamics of the rational map

f1 W Y1 99K Y1. Continuing in the same manner we deduce that there exists a

finite number of strictly descending irreducible subvarieties Y0 WD Y % : : : % Yk

such that fk W Yk 99K Yk is a rational dominating map. (Note that Yk may be

a singular variety.) Thus one needs only to study the dynamics of a rational

dominating map f W Y 99K Y , where Y may be a singular variety.

The next notion is the resolution of singularities of Y and f . An irreducible

projective variety Z birationally equivalent to Y if the exists a birational map

� WZ 99KY . Z is called a blow up of Y if there exists a birational map � WZ ! Y

such � is holomorphic. Y is called a blow down of Z. Hironaka’s result claims

that any irreducible singular variety Y has a smooth blow up Z. Let f W Y 99K Y

be a rational dominating map. Let Y be a birationally equivalent to Z. Then f

lifts to a rationally dominating map Of W Z 99K Z. Hence to study the dynamics

of f one can assume that f W Y 99K Y is rational dominating map and Y is

smooth. Hironaka’s theorem implies that there exists a smooth blow up Z of Y

such that f lifts to a holomorphic map Qf W Z ! Y . Then one has the induced

dual linear maps on the homologies and the cohomologies of Y and Z:

Qf� W H�.Z/ ! H�.Y /; Qf � W H�.Y / ! H�.Z/:

We view the homologies H�.Y /; H�.Z/ as homologies with coefficients in R,

and hence the cohomologies H�.Y /; H�.Z/, which are dual to H�.Y /; H�.Z/,

as de Rham cohomologies of differential forms. (It is possible to consider
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these homologies and cohomologies with coefficients in Z [12].) Recall that

the Poincaré duality isomorphism �Y W H�.Y / ! H�.Y /, which maps a k-cycle

to closed dim Y � k form. (��
Y

D �Y .) Then one defines f � W H�.Y / ! H�.Y /

and its dual f� W H�.Y / ! H�.Y / as

f � WD �Y ����1
Z

Qf �; f� WD Qf���1
Z ���Y :

It can be shown that f�; f � do not depend on the resolution of f , i.e., on Z.

Let �.f�/ D �.f �/ be the spectral radii of f�; f � respectively. (As noted above

f�; f � can be represented by matrix with integer entries. Hence �.f�/ is an

algebraic integer.) Then the dynamical spectral radius of f� is defined as

�dyn.f�/ D lim sup
m!1

.�..f m/�//1=m: (4–1)

(Note that �dyn.f�/ is a limit of algebraic integers, so it may not be an algebraic

integer.)

Assume that f W Y ! Y is holomorphic. Then f�; f� are the standard linear

maps on homology and cohomology of Y . So .f m/� D .f�/m; .f m/� D .f �/m

and �dyn.f�/ D �.f�/. It was shown by the author that log �.f�/ D h.f / [12].

This equality followed from the observation that h.f / is the volume growth

induced by f . View Y as a submanifold of P
n, is endowed the induced Fubini–

Study Riemannian metric and with the induced Kähler .1; 1/ closed form �. Let

V � Y be any irreducible variety of complex dimension dim V � 1. Then the

volume of V is given by the Wirtinger formula

vol.V / D
1

.dim V /!

Z

V

�dim V .V /:

Let Lk � P
n be a linear space of codimension k. (L0 WD P

n.) Assume that

Lk is in general position. Then Lk \ V is a variety of dimension dim V � k.

For k < dim V the variety Lk \ V is irreducible. For k D dim V the variety

Lk \ V consists of a fixed number of points, independent of a generic Lk ,

which is called the degree of V , and denoted by deg V . It is well known that

deg V D vol.V /. The homology class of Lk \ V , denoted by ŒLk \ V �, is

independent of Lk . Since vol.Lk \ V / can be expressed in terms of the cup

product hŒLk \ V �; Œ�dim V �k �i, or equivalently as deg Lk \ V , this volume is

an integer, which is independent of the choice of a generic Lk . Thus the j -th

volume growth, of the subvariety Ldim Y �j \ Y of dimension j , induced by f

is given by

ǰ WD lim sup
m!1

logh.f m/�ŒLdim Y �j \ Y �; Œ�j �i

m
; j D 1; : : : ; dim Y;

H.f / WD max
jD1;:::;dim Y

ǰ : (4–2)
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(See [12, (2)] and [13, (2.8)].) From the equality �.f�/ D limm!1 kf m
� k1=m,

for any norm k � k on H�.Y /, it follows that H.f / � �.f�/. Newhouse’s re-

sult [31] claims that h.f / � H.f /. Combining this inequality with Yomdin’s

inequality [38] h.f / � log �.f�/ we deduced in [12]:

H.f / D log �.f / D h.f /; (4–3)

which is a logarithm of an algebraic integer.

Let K � H�.Y / be the cone generated by the homology classes ŒV � corre-

sponding to all irreducible projective varieties V � Y . Note that f�.K/ � K.

Let H�;a.Y / WD K � K � H�.Y / be the subspace generated by the homology

classes of projective varieties in Y . Then f� W H�;a.Y / ! H�;a.Y / and de-

note f�;a WD f�jH�;a.Y /. Using the theory of nonnegative operators on finite

dimensional cones K, e.g. [4], it follows that H.f / D log �.f�;a/.

Assume again that f W Y 99K Y is rational dominant. Then f�.K/ � K so

f� W H�;a.Y / ! H�;a.Y / and denote f�;a WD f�jH�;a�.Y /. Hence we can define

H.f /, the volume growth induced by f , as in (4–2) [12; 13]. Similar quantities

were considered in [33; 3]. It is plausible to assume that H.f / D log �dyn.f�/

and we conjecture a more general set of equalities in the next section.

It was shown in [12] that the results of Friedland and Milnor [16] imply the

inequalities

.f m/�;a � .f�;a/m for all m 2 N; (4–4)

for certain polynomial biholomorphisms of C
2, (which are birational maps of

P
2.)

It is claimed in [12, p. 367] that if (4–4) holds, the sequence .�..f m/�;a//1=m,

m2N converges. (This is probably wrong. One can show that under the assump-

tion (4–4) for all rational dominant maps f W Y 99K Y one has �..f q/�;a/p �

�..f pq/�;a/ for any p; q 2 N.) It was also claimed in [12, Lemma 3] that (4–4)

holds in general. Unfortunately this result is false, and a counterexample is

given in [23, Remark 1.4]. Note that if f W Y ! Y holomorphic then equality

in (4–4) holds. Hence all the results of [12] hold for holomorphic maps.

5. Entropy of rational maps

Let f W Y 99K Y be a rational dominating map. (We will assume that f is

not holomorphic unless stated otherwise.) In order to define the entropy of f

we need to find the largest subset X � Y nSing f such that f W X ! X . Let Xk

is the collection of all x 2 Y such that f j .x/ 2 Y nSing f for j D 0; 1; : : : ; k.

Then Xk is open and Zk WD Y nYk is a strict subvariety of Y . Clearly Xk �

XkC1; Yk � YkC1 for k 2 N. Then X WD \1
kD1

Xk is Gı set. Let � be the closed
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.1; 1/-Kähler form on Y . Then �dim Y is a canonical volume form on Y . Hence

�dim Y .X / D �dim Y .Y /, i.e., X has the full volume.

Since Y is a compact Riemannian manifold, Y is a compact metric space.

Thus we can define the three entropies h.f /; hB.f /; hF .f / in ~ 3. So

hB.f / � h.f / D hF .f /:

Assume that f W C
n ! C

n is a polynomial dominating map. Then f lifts to a

rational dominating map f WP
n
99KP n, which may be holomorphic. Hence X �

C
n. Assume that f is a proper map of C

n. Recall that one point compactification

of C
n, denoted by C

n [ f1g, is homeomorphic to the 2n sphere S2n. Then f

lifts to a continuous map fs W S2n ! S2n. Thus we can define the entropy h.fs/.

It is not hard to show that h.fs/ � hF .f /.

Let orb X � Y N be the orbit space of f , and let X be its closure. X is closely

related to the graph construction discussed in [20; 12; 13; 14; 15] and elsewhere.

Denote by � .f / � Y 2 the closure of the set f.x; f .x//; x 2 Y nSing X g in Y 2.

Then � .f / is an irreducible variety of dimension dim Y in Y 2. Note that the

projection of � on the first or second factor of Y in Y 2 is Y . Without a loss of

generality we may assume that � .f / is smooth.

Otherwise let � W Z ! Y be a blow up of Y such that f W Y 99K Y lifts to

a holomorphic map Qf W Z ! Y . Let �1.f / WD f.z; Qf .z// W z 2 Zg � Z � Y .

Then �1.f / is smooth variety of dimension dim Y . Note that O� W Z2 ! Z � Y

given by .z; w/ ‘ .z; �.w// is a blow up of Z � Y . Lift Qf to Of W Z 99K Z.

Then � . Of / � Z2 is a blow up �1.f /, hence � . Of / is smooth.

Let � � Y 2 be a closed irreducible smooth variety of dimension dim Y such

that the projection of � on the first or second component is Y . Define

Y k.� / WD f.x1; : : : ; xk/ 2 Y k ; .xi ; xiC1/ 2 � for i D 1; : : : ; k � 1g;

Y N.� / WD f.x1; : : : ; xk ; : : :/ 2 Y N ; .xi ; xiC1/ 2 � for i 2 Ng:

(here k D 2; : : : ). Note that Y k.� / is an irreducible variety of dimension dim Y

in Y k for k D 2; : : : . Note that Y N.� / is a � invariant compact subset of

Y N , i.e., �.Y N.� // � Y N.� /. Let h.� / D h.� jY N.� //. Y , viewed as a

submanifold of P
n, is endowed the induced Fubini–Study Riemannian metric

and with the Kähler .1; 1/ form �. Then Y k has the corresponding induced

product Riemannian metric, and Y k is Kähler, with the .1; 1/ form �k . Let

vol.Y k.� // D �dim Y
k

.Y k.� // be volume of the variety Y k.� /. Then the vol-

ume growth of � is given by

lov.� / WD lim sup
k!1

log vol.Y k.� //

k
: (5–1)
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The fundamental inequality due to Gromov [20]

h.� / � lov.� /: (5–2)

Since the paper of Gromov was not available to the general public until the

appearance of [20], the author reproduced Gromov’s proof of (5–2) in [13;

14]. Using the above inequality Gromov showed that h.f / � log deg f for

any holomorphic f W P
n ! P

n.

Let f W Y 99K Y be rational dominating. Then X D Y N.� .f //. Hence

hF .f / D h.� .f //: (5–3)

If � .f / is smooth then Gromov’s inequality yields that

hF .f / � lov.f / WD lov.� .f //: (5–4)

CONJECTURE 5.1. Let Y be a smooth projective variety and f W Y 99K Y be a

rational dominating map. Then there exists a smooth projective variety OY and a

birational map � W Y 99K
OY , such that the lifting Of W OY 99K

OY satisfies (1–1).

We now review briefly certain notions, results and conjectures in [14, S3]. Let

� � Y 2 be as above, and denote by �i.� / ! Y the projection of � on the i-th

component of Y in Y � Y for i D 1; 2. Since dim � D dim Y and �1.� / D

�2.� / D Y , then deg �i is finite and ��1
i .y/ consists of exactly deg �i distinct

points for a generic y 2Y for i D1; 2. One can define a linear map �� WH�.Y /!

H�.Y / given by �� W ��
1

��1
�

��
2

�Y . (This is an analogous definition of f�, where

f W Y 99K Y is dominating.) One can show that ��.H�;a.Y // � H�;a.Y /. Let

��;a WD ��jH�;a.Y /.

� � Y 2 is called a proper if each �i is finite to one. Assume that � is proper.

Then

log �.��;a/ � lov.� /: (5–5)

It is conjectured that for a proper �

log �.��;a/ D lov.� / D h.� /: (5–6)

Note that if f W Y ! Y is dominating and holomorphic then � .f / is proper,

��;a D f�jH�;a.Y / and the above conjecture holds.

We close this section with observations and remarks which are not in [14].

Assume that f WY 99KY be a rational dominating and Z WD � .f / �Y 2 smooth.

Then �1 W � .f / ! Y is a blow up of Y , and �2 W � ! Y can be identified with
Qf W Z ! Y . It is straightforward to show that f� D � .f /�.

It seems to the author that the arguments given in [14, Proof Thm 3.5] imply

that (5–5) holds for any smooth variety � � Y 2 of dimension dim Y such that

�1.Y /D�2.Y /DY . Suppose that this result is true. Let f WY 99KY be rational

and dominating. Assume that � .f / � Y 2 is smooth. Then (5–5) would imply
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that lov.f / � log �.f�/. Applying the same inequality to .f k/� and combining

it with (5–4) one would able to deduce:

hF .f / � lov.f / � log �dyn.f�/: (5–7)

6. Currents

Many recent advances in complex dynamics in several complex variables

were achieved using the notion of a current. See for example the survey article

[35]. Recall that on an m-dimensional manifold M a current of degree m�p �0

is a linear functional on all smooth p-differential forms D
p.M / with a compact

support, where p is a nonnegative integer.

Let f W Y 99K Y be a meromorphic dominating self map of a compact Kähler

manifold of complex dimension dim Y , with the .1; 1/ Kähler form �. Let f ��

be a pullback of �. Then f �� is a current on Y nSing f . Define the p-dynamic

degree of f by

�p.f / WD lim sup
k!1

� Z

Y nSing f k

.f k/��p ^ �dim Y �p

�1=k

; p D 1; : : : ; dim Y:

It is shown in [8] that the dynamical degrees are invariant with respect to a

bimeromorphic map � W Y 99K Z, where Z is a compact Kähler manifold. (See

also [23] for the case where Y; Z are projective varieties.) Moreover

lov.f / � max
pD1;:::;dim Y

log �p.f /: (6–1)

Assume that Y is a projective variety. It can be shown that the dynamic degree

�p.f / is equal to eˇdim Y �p for p D 1; : : : ; dim Y , which are defined in (4–2),

where ˇ0 WD ˇdim Y . Hence

H.f / D max
pD1;:::;dim Y

log �p.f /; (6–2)

where H.f / is defined in (4–2). Thus H.f / can be viewed as the algebraic

entropy of f [3]. [24, Lemma 4.3] computes H.f / for a large class of auto-

morphisms of C
k , and see also [10; 23]. Combine (5–4) with (6–1) and (6–2) to

deduce the inequality hF .f /�H.f /, which was conjectured in [13, Conjecture

2.9].

Consider the following example f W C
2 ! C

2; .z; w/ ‘ .z2; w C 1/ [22,

Example 1.4]. Since f is proper we have fs W S4 ! S4. Clearly S4 is the

domain of attraction of the fixed point fs.1/ D 1. Hence h.fs/ D 0. Lift

f to f W P
2

99K P
2. Then f has a singular point a WD .0; 1; 0/ and any other

point at the line at infinity .1; w; 0/ is mapped to a fixed point b WD .1; 0; 0/.

So X D P
2nfag, and � .f / D f.z; f .z// W z 2 P

2nfagg [ f.a; .z W w W 0// W
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.z W w/ 2 Pg, which is equal to the blow up of P
2 at a. On .P

2/N.� .f //

� has two fixed points: .a; a; : : :/; .b; b; : : :/. The set X0 WD ..x; f .x/; : : : ; / W

x 2 A0 WD f.z; w; 1/; jzj � 1gg is in the domain of the attraction of .a; a; : : :/.

The set .P
2/N.� .f //n.X0 [ f.a; a; : : :/g is in the domain of the attraction of

.b; b; : : :/. Hence h.f / D 0. Observe that Of W .P � P/ ! .P � P/, given as

..z W s/; .w W t// ‘ ..z2 W s2/; .w C t W t//, is the lift of f to .P � P/. Of is

holomorphic and h. Of / D H. Of / D log 2. Since P � P is birational to P
2 it

follows that H.f / D log 2 > hF .f / D 0. In particular hF .f / is not a birational

invariant [22]. Note that Conjecture 5.1 is valid for this example. Additional

examples in [21; 22] support the Conjecture 5.1.

Assume now that f W C
2 ! C

2 is a polynomial automorphism, hence f is

proper. It is shown in [16] that h.fs/ D h.f; K/ for some compact subset of C
2.

Furthermore the results of [16] and [36] imply that h.f; K/ D H.f /. One easily

deduce that H.f / D �dyn.f�/. Clearly hB.f / � h.f; K/. Then the inequalities

hF .f / � lov.f / � H.f / yield Conjecture 5.1. See [2; 9; 26] for additional

results on entropy of certain rational maps.

The inequality (6–1) and its suggested variant (5–7) can be viewed as New-

house type upper bounds [31] which shows that the volume growth bounds from

above the entropy of a rational dominating map. In order to prove Conjecture

5.1 one needs to prove a suitable Yomdin type lower bound for the entropy of f .
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Sup. 38 (2005), 407–426.

[22] V. Guedj, Entropie topologique des applications méromorphes, Ergodic Theory
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