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ABSTRACT. This survey aims to cover the motivation for and history of the

study of local rigidity of group actions. There is a particularly detailed dis-

cussion of recent results, including outlines of some proofs. The article ends

with a large number of conjectures and open questions and aims to point to

interesting directions for future research.

1. Prologue

Let � be a finitely generated group, D a topological group, and � W �!D a

homomorphism. We wish to study the space of deformations or perturbations of

� . Certain trivial perturbations are always possible as soon as D is not discrete,

namely we can take d�d�1 where d is a small element of D. This motivates

the following definition:

DEFINITION 1.1. Given a homomorphism � W �!D, we say � is locally rigid

if any other homomorphism � 0 which is close to � is conjugate to � by a small

element of D.

We topologize Hom.�;D/ with the compact open topology which means that

two homomorphisms are close if and only if they are close on a generating

set for � . If D is path connected, then we can define deformation rigidity

instead, meaning that any continuous path of representations �t starting at � is

conjugate to the trivial path �t D � by a continuous path dt in D with d0 being
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the identity in D. If D is an algebraic group over R or C, it is possible to prove

that deformation rigidity and local rigidity are equivalent since Hom.�;D/ is

an algebraic variety and the action of D by conjugation is algebraic; see [Mu],

for example. For D infinite dimensional and path-connected, this equivalence

is no longer clear.

The study of local rigidity of lattices in semisimple Lie groups is probably the

beginning of the general study of rigidity in geometry and dynamics, a subject

that is by now far too large for a single survey. See [Sp1] for the last attempt at

a comprehensive survey and [Sp2] for a more narrowly focused updating of that

survey. Here we abuse language slightly by saying a subgroup is locally rigid if

the defining embedding is locally rigid as a homomorphism. See subsection 3.1

for a brief history of local rigidity of lattices and some discussion of subsequent

developments that are of particular interest in the study of rigidity of group

actions.

In this article we will focus on a survey of local rigidity when D D Diff1.M /

or occasionally D D Diffk.M / for some finite k. Here we often refer to a

homomorphism � W�! Diff1.M / as an action, since it can clearly be thought

of as C 1 action � W � �M !M . We will consistently use the same letter

� to denote either the action or the homomorphism to Diff1.M /. The title

of this article refers to this interpretation of � as defining a group action. In

this context, one considers rigidity of actions of connected groups as well as

of discrete groups. In cases where � has any topology, we will always only

study continuous actions, i.e. ones for which the defining homomorphism � is

a continuous map.

One can, in this context, develop more refined notions of local rigidity, since

the topology on Diff1.M / is an inverse limit topology. This means that two

C 1 diffeomorphisms of M are close precisely when they are C k close for some

large value of k. The most exhaustive definition of local rigidity is probably the

following:

DEFINITION 1.2. Let � be a discrete group and � W �! Diffk.M / a homo-

morphism where k is either a positive integer or 1. We say that � is C k;l;i;j ;m

locally rigid if any � 0 W �! Diffl.M / which is close to � in the C i topology is

conjugate to � by a C j diffeomorphism � which is C m small. Here l; i; j ;m

are all either nonnegative integers or 1 and the only a priori constraint are

i� min.k; l/ and m�j . When j D 0, we will call the action stable or struc-

turally stable. When j > 0, we will call the action locally rigid or simply rigid.

We will avoid using this cumbersome notation when at all possible. There

is a classical, dynamical notion of structural stability which is equivalent to

C 1;1;1;0;0 local rigidity. I.e. a C 1 action � of a group � is structurally stable if

any C 1 close C 1 action of � is conjugate to � by a small homeomorphism. For
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actions of Z this notion arose in hyperbolic dynamics in the work of Anosov

and Smale [An; Sm]. From a dynamical point of view structural stability is

important since it allows one to control dynamical properties of an open set of

actions in Diff1.M /. Local rigidity can be viewed as a strengthening of this

property in that it shows that an open set of actions is exhausted by smooth

conjugates of a single action.

Though actions of Z and free groups on k generators are often structurally

stable, they are never locally rigid, and it is an interesting question as to how

“large” a group needs to be in order to have actions which are locally rigid.

Many of the original questions and theorems concerning local rigidity were for

lattices in higher rank semisimple Lie groups, where here higher rank means that

all simple factors have real rank at least 2. (See subsection 2.1 for a definition

of rank.) Fairly early in the theory it became clear that local rigidity often held,

and was in fact easier to prove, for certain actions of higher rank abelian groups,

i.e. Zk for k�2, see [KL1]. In addition, local rigidity results have been proven

for actions of a wider variety of groups, including

(1) certain non-volume-preserving actions of lattices in SO.1; n/ in [Kan1]

(2) all isometric actions of groups with property .T / in [FM2],

(3) certain affine actions of lattices in SP .1; n/ in [Hi].

There is extremely interesting related work of Ghys, older than the work just

mentioned, which shows that the space of deformations of certain actions of

surface groups on the circle is finite dimensional [Gh1; Gh2; Gh3]. Ghys also

proved some very early results on local and global rigidity of very particular

actions of connected solvable groups, see [GhS; Gh1] and subsection 4.2.

The study of local rigidity of group actions has had three primary historical

motivations, one from the theory of lattices in Lie groups, one from dynami-

cal systems theory and a third from the theory of foliations. (This statement

is perhaps a bit coarse, and there is heavy overlap between these motivations,

particularly the second and the third.) The first is the general study of rigidity of

actions of large groups, as discussed in [Z3; Z4], see [La; FK] for more up to date

surveys. This area is motivated by the study of rigidity of lattices in semisimple

Lie groups, particularly by Margulis’ superrigidity theorem and it’s nonlinear

generalization by Zimmer to a cocycle superrigidity theorem, see subsection

3.1 and [Z4] for more discussion. This motivation also stems from an analogy

between semisimple Lie groups and diffeomorphism groups. When M is a

compact manifold, not only is Diff1.M / an infinite dimensional Lie group, but

its connected component is simple. Simplicity of the connected component of

Diff1.M / was proven by Thurston using results of Epstein and Herman [Th2;

Ep; Hr]. Herman had used Epstein’s work to see that the connected component

of Diff1.Tn/ is simple and Thurston’s proof of the general case uses this. See
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also further work on the topic by Banyaga and Mather [Ba1; Mt1; Mt2; Mt3],

as well as Banyaga’s book [Ba2].

The dynamical motivation for studying rigidity of group actions comes from

the study of structural stability of diffeomorphisms and flows in hyperbolic dy-

namics, see the introduction of [KS2]. This area provides many of the basic

techniques by which results in the area have been proven, particularly early in the

history of the field. Philosophically, hyperbolic diffeomorphisms are structurally

stable, group actions generated by structurally stable diffeomorphisms are quite

often structurally stable, and the presence of a large group action frequently

allows one to improve the regularity of the conjugacy. See subsection 3.2 for a

brief history of relevant results on structural stability and subsections 4.1, 4.2,

and 5.1 for some applications of these ideas.

The third motivation for studying rigidity of group actions comes from the

theory of foliations. Many techniques and ideas in this area are also related

to work on hyperbolic dynamics, and many of the foliations of interest are

dynamical foliations of hyperbolic dynamical systems. A primary impetus in

this area is the theory of codimension one foliations, and so many of the ideas

here were first developed either for groups acting on the circle or for actions of

connected groups on manifolds only one dimension larger then the acting group.

See particularly [GhS; Gh1] for the early history of these developments.

Some remarks on biases and omissions. Like any survey of this kind, this

work is informed by it’s authors biases and experiences. The most obvious of

these is that my point of view is primarily motivated by the study of rigidity

properties of semisimple Lie groups and their lattices, rather than primarily mo-

tivated by hyperbolic dynamics or foliation theory. This informs the biases of

this article and a very different article would result from different biases.

There are two large omissions in this article. The first omission is that it is

primarily occupied with local rigidity of discrete group actions. When similar

results are known for actions of Lie groups, they are mentioned, though fre-

quently only special cases are stated. This is partially because results in this

context are often complicated by the need to consider time changes, and I did

not want to dwell on that issue here. The second omission is that little to no care

is taken to state optimal results relating the various constants in C k;l;i;j ;m local

rigidity. Dwelling on issues of regularity seemed likely to obscure the main line

of the developments, so many results are stated without any explicit mention of

regularity. Usually this is done only when the action can be shown to be locally

rigid in Diff1.M / in the sense of Definition 1.1. This implicitly omits both the

degree of regularity to which the perturbed and unperturbed actions are close and

the degree of regularity with which the size of the conjugacy is small. In other

words local rigidity is C 1;1;i;1;m local rigidity for some unspecified i and m,
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and I always fail to specify i and m even when they are known. Occasionally

a result is stated that only produces a finite regularity conjugacy, with this issue

only remarked on following the statement of the result. It seems quite likely that

most results of this kind can be improved to produce C 1 conjugacies using the

techniques of [FM2; FM3], see discussion at the end of Section 5.1.

Lastly we remark that the study of local rigidity of group actions is often

closely intertwined with the study of global rigidity of group actions. The mean-

ing of the phrase global rigidity is not entirely precise, but it is typically used

to cover settings in which one can classify all group actions satisfying certain

hypotheses on a certain manifold or class of manifolds. The study of global

rigidity is too broad and interesting to summarize briefly, but some examples

are mentioned below when they are closely related to work on local rigidity.

See [FK; La] for recent surveys concerning both local and global rigidity.

2. A brief digression: some examples of groups and actions

In this section we briefly describe some of the groups that will play important

roles in the results discussed here. The reader already familiar with semisimple

Lie groups and their lattices may want to skip to the second subsection where

we give descriptions of group actions.

2.1. Semisimple groups and their lattices. By a simple Lie group, we mean

a connected Lie group all of whose normal subgroups are discrete, though we

make the additional convention that R and S1 are not simple. By a semisimple

Lie group we mean the quotient of a product of simple Lie groups by some sub-

group of the product of their centers. Note that with our conventions, the center

of a simple Lie group is discrete and is in fact the maximal normal subgroup.

There is an elaborate structure theory of semisimple Lie groups and the groups

are completely classified, see [He] or [Kn] for details. Here we merely describe

some examples, all of which are matrix groups. All connected semisimple Lie

groups are discrete central extensions of matrix groups, so the reader will lose

very little by always thinking of matrix groups.

(1) The groups SL.n;R/;SL.n;C/ and SL.n;H/ of n by n matrices of deter-

minant one over the real numbers, the complex numbers or the quaternions.

(2) The group SP .2n;R/ of 2n by 2n matrices of determinant one which pre-

serve a real symplectic form on R2n.

(3) The groups SO.p; q/;SU.p; q/ and SP .p; q/ of matrices which preserve

inner products of signature .p; q/ where the inner product is real linear on

RpCq , hermitian on CpCq or quaternionic hermitian on HpCq respectively.

Let G be a semisimple Lie group which is a subgroup of GL.n;R/. We say that

G has real rank k if G has a k dimensional abelian subgroup which is conjugate
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to a subgroup of the real diagonal matrices and no k C 1 dimensional abelian

subgroups with the same property. The groups in .1/ have rank n�1, the groups

in .2/ have rank n and the groups in .3/ have rank min.p; q/.

Since this article focuses primarily on finitely generated groups, we are more

interested in discrete subgroups of Lie groups than in the Lie groups themselves.

A discrete subgroup � in a Lie group G is called a lattice if G=� has finite

Haar measure. The lattice is called cocompact or uniform if G=� is compact

and nonuniform or simply not cocompact otherwise. If G D G1�� � ��Gn is a

product then we say a lattice � < G is irreducible if it’s projection to each

Gi is dense. More generally we make the same definition for an almost direct

product, by which we mean a direct product G modulo some subgroup of the

center Z.G/. Lattices in semisimple Lie groups can always be constructed by

arithmetic methods, see [Bo] and also [Mr] for more discussion. In fact, one of

the most important results in the theory of semisimple Lie groups is that if G is

a semisimple Lie group without compact factors, then all irreducible lattices in

G are arithmetic unless G is locally isomorphic to SO.1; n/ or SU.1; n/. For

G of real rank at least two, this is Margulis’ arithmeticity theorem, which he

deduced from his superrigidity theorems [Ma2; Ma3; Ma4]. For nonuniform

lattices, Margulis had an earlier proof which does not use the superrigidity the-

orems, see [Ma1; Ma2]. This earlier proof depends on the study of dynamics of

unipotent elements on the space G=� , and particularly on what is now known as

the “nondivergence of unipotent flows”. Special cases of the superrigidity theo-

rems were then proven for Sp.1; n/ and F�20
4

by Corlette and Gromov–Schoen,

which sufficed to imply the statement on arithmeticity given above [Co2; GS].

As we will be almost exclusively concerned with arithmetic lattices, we do not

give examples of nonarithmetic lattices here, but refer the reader to [Ma4] and

[Mr] for more discussion. A formal definition of arithmeticity, at least when G

is algebraic is:

DEFINITION 2.1. Let G be a semisimple algebraic Lie group and � < G a

lattice. Then � is arithmetic if there exists a semisimple algebraic Lie group H

defined over Q such that

(1) there is a homomorphism � W H 0!G with compact kernel,

(2) there is a rational structure on H such that the projection of the integer points

of H to G are commensurable to � , i.e. �.H.Z//\� is of finite index in

both H.Z/ and � .

We now give some examples of arithmetic lattices. The simplest is to take the

integer points in a simple (or semisimple) group G which is a matrix group,

e.g. SL.n;Z/ or Sp.n;Z/. This exact construction always yields lattices, but

also always yields nonuniform lattices. In fact the lattices one can construct in
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this way have very special properties because they will contain many unipotent

matrices. If a lattice is cocompact, it will necessarily contain no unipotent ma-

trices. The standard trick for understanding the structure of lattices in G which

become integral points after passing to a compact extension is called change of

base. For much more discussion see [Ma4; Mr; Z2]. We give one example to

illustrate the process. Let G D SO.m; n/ which we view as the set of matrices

in SL.n C m;R/ which preserve the inner product

hv;wi D
�

�
p

2

m
X

iD1

viwi

�

C
� nCm

X

iDmC1

viwi

�

where vi and wi are the i th components of v and w. This form, and therefore

G, are defined over the field Q.
p

2/ which has a Galois conjugation � defined

by �.
p

2/ D �
p

2. If we looks at the points � D G.ZŒ
p

2�/, we can define

an embedding of � in SO.m; n/�SO.m C n/ by taking  to .; �. //. It is

straightforward to check that this embedding is discrete. In fact, this embeds �

in H D SO.m; n/�SO.mCn/ as integral points for the rational structure on H

where the rational points are exactly the points .m; �.m//where m2G.Q.
p

2//.

This makes � a lattice in H and it is easy to see that � projects to a lattice in

G, since G is cocompact in H . What is somewhat harder to verify is that � is

cocompact in H , for which we refer the reader to the list of references above.

Similar constructions are possible with SU.m; n/ or SP .m; n/ in place of

SO.m; n/ and also with more simple factors and fields with more Galois auto-

morphisms. There are also a number of other constructions of arithmetic lattices

using division algebras. See [Mr] for a comprehensive treatment.

We end this section by defining a key property of many semisimple groups

and their lattices. This is property .T / of Kazhdan, and was introduced by

Kazhdan in [Ka1] in order to prove that nonuniform lattices in higher rank

semisimple Lie groups are finitely generated and have finite abelianization. It

has played a fundamental role in many subsequent developments. We do not

give Kazhdan’s original definition, but one which was shown to be equivalent

by work of Delorme and Guichardet [De; Gu].

DEFINITION 2.2. A group � has property .T / of Kazhdan if H 1.�; �/ D 0

for every continuous unitary representation � of � on a Hilbert space. This

is equivalent to saying that any continuous isometric action of � on a Hilbert

space has a fixed point.

REMARKS. (1) Kazhdan’s definition is that the trivial representation is isolated

in the unitary dual of � .

(2) If a continuous group G has property .T / so does any lattice in G. This

result was proved in [Ka1].
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(3) Any semisimple Lie group has property .T / if and only if it has no simple

factors locally isomorphic to SO.1; n/ or SU.1; n/. For a discussion of this

fact and attributions, see [HV]. For groups with all simple factors of real rank

at least three, this is proven in [Ka1].

(4) No noncompact amenable group, and in particular no noncompact abelian

group, has property .T /. An easy averaging argument shows that all compact

groups have property .T /.

Groups with property .T / play an important role in many areas of mathematics

and computer science.

2.2. Some actions of groups and lattices. Here we define and give examples of

the general classes of actions for which local rigidity results have been proven.

Let H be a Lie group and L<H a closed subgroup. Then a diffeomorphism f

of H=L is called affine if there is a diffeomorphism Qf of H such that f .Œh�/D
Qf .h/ where Qf D Aı�h with A an automorphism of H with A.L/D L and �h is

left translation by some h in H . Two obvious classes of affine diffeomorphisms

are left translations on any homogeneous space and either linear automorphisms

of tori or more generally automorphisms of nilmanifolds. A group action is

called affine if every element of the group acts by an affine diffeomorphism. It is

easy to check that the full group of affine diffeomorphisms Aff.H=L/ is a finite

dimensional Lie group and an affine action of a group D is a homomorphism

� W D! Aff.H=L/. The structure of Aff.H=L/ is surprisingly complicated in

general, it is a quotient of a subgroup of the group Aut.H /nH where Aut.H /

is a the group of automorphisms of H . For a more detailed discussion of this

relationship, see [FM1, Section 6]. While it is not always the case that any

affine action of a group D on H=L can be described by a homomorphism � W
D! Aut.H /nH , this is true for two important special cases:

(1) D is a connected semisimple Lie group and L is a cocompact lattice in H ,

(2) D is a lattice in a semisimple Lie group G where G has no compact factors

and no simple factors locally isomorphic to SO.1; n/ or SU.1; n/, and L is

a cocompact lattice in H .

These facts are [FM1, Theorem 6.4 and 6.5] where affine actions as in .1/ and

.2/ above are classified.

The most obvious examples of affine actions of large groups are of the fol-

lowing forms, which are frequently referred to as standard actions:

(1) Actions of groups by automorphisms of nilmanifolds. I.e. let N be a simply

connected nilpotent group, �<N a lattice (which is necessarily cocompact)

and assume a finitely generated group � acts by automorphisms of N pre-

serving �. The most obvious examples of this are when N D Rn, � D Zn

and � < SL.n;Z/, in which case we have a linear action of � on Tn.
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(2) Actions by left translations. I.e. let H be a Lie group and � < H a co-

compact lattice and � < H some subgroup. Then � acts on H=� by left

translations. Note that in this case � need not be discrete.

(3) Actions by isometries. Here K is a compact group which acts by isometries

on some compact manifold M and � <K is a subgroup. Note that here �

is either discrete or a discrete extension of a compact group.

We now briefly define a few more general classes of actions, for which local

rigidity results are either known or conjectured. We first fix some notations.

Let A and D be topological groups, and B < A a closed subgroup. Let � W
D�A=B!A=B be a continuous affine action.

DEFINITION 2.3. (1) Let A;B;D and � be as above. Let C be a compact

group of affine diffeomorphisms of A=B that commute with the D action.

We call the action of D on C nA=B a generalized affine action.

(2) Let A, B, D and � be as in 1 above. Let M be a compact Riemannian

manifold and � W D�A=B! Isom.M / a C 1 cocycle. We call the resulting

skew product D action on A=B�M a quasiaffine action. If C and D are

as in 2, and ˛ W D�C nA=B! Isom.M / is a C 1 cocycle, then we call the

resulting skew product D action on C nA=B�M a generalized quasiaffine

action.

For many of the actions we consider here, there will be a foliation of particular

importance. If � is an action of a group D on a manifold N , and � preserves a

foliation F and a Riemannian metric along the leaves of F, we call F a central

foliation for �. For quasiaffine and generalized quasiaffine actions on manifolds

of the form C nA=B�M the foliation by leaves of the fŒa�g�M is always a

central foliation. There are also actions with more complicated central foliations.

For example if H is a Lie group, � < H is discrete and a subgroup G < H

acts on H=� by left translations, then the foliation of H=� by orbits of the

centralizer ZH .G/ of G in H is a central foliation. It is relatively easy to

construct examples where this foliation has dense leaves. Another example of

an action which has a foliation with dense leaves is to embed the ZŒ
p

2� points

of SO.m; n/ into SL.2.m C n/;Z/ as described in the preceding subsection

and then let this group act on T2.mCn/ linearly. It is easy to see in this case that

the maximal central foliation for the action is a foliation by densely embedded

leaves none of which are compact.

We end this section by describing briefly the standard construction of an in-

duced or suspended action. This notion can be seen as a generalization of the

construction of a flow under a function or as an analogue of the more algebraic

notion of inducing a representation. Given a group H , a (usually closed) sub-

group L, and an action � of L on a space X , we can form the space .H�X /=L
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where L acts on H�X by h � .l;x/ D .lh�1; �.h/x/. This space now has a

natural H action by left multiplication on the first coordinate. Many properties

of the L action on X can be studied more easily in terms of properties of the

H action on .H�X /=L. This construction is particularly useful when L is a

lattice in H .

3. Prehistory

3.1. Local and global rigidity of homomorphisms into finite dimensional

groups. The earliest work on local rigidity in the context of Definition 1.1 was

contained in series of works by Calabi–Vesentini, Selberg, Calabi and Weil,

which resulted in the following:

THEOREM 3.1. Let G be a semisimple Lie group and assume that G is not

locally isomorphic to SL.2;R/. Let � <G be an irreducible cocompact lattice,

then the defining embedding of � in G is locally rigid.

REMARKS. (1) If G D SL.2;R/ the theorem is false and there is a large, well

studied space of deformation of � in G, known as the Teichmüller space.

(2) There is an analogue of this theorem for lattices that are not cocompact.

This result was proven later and has a more complicated history which we

omit here. In this case it is also necessary to exclude G locally isomorphic

to SL.2;C/.

This theorem was originally proven in special cases by Calabi, Calabi–Vesentini

and Selberg. In particular, Selberg gives a proof for cocompact lattices in

SL.n;R/ for n � 3 in [S], Calabi–Vesentini give a proof when the associated

symmetric space X D G=K is Kähler in [CV] and Calabi gives a proof for

G D SO.1; n/ where n�3 in [C]. Shortly afterwards, Weil gave a complete

proof of Theorem 3.1 in [We1; We2].

In all of the original proofs, the first step was to show that any perturbation

of � was discrete and therefore a cocompact lattice. This is shown in special

cases in [C; CV; S] and proven in a somewhat broader context than Theorem

3.1 in [W1].

The different proofs of cases of Theorem 3.1 are also interesting in that there

are two fundamentally different sets of techniques employed and this dichotomy

continues to play a role in the history of rigidity. Selberg’s proof essentially

combines algebraic facts with a study of the dynamics of iterates of matrices.

He makes systematic use of the existence of singular directions, or Weyl cham-

ber walls, in maximal diagonalizable subgroups of SL.n;R/. Exploiting these

singular directions is essential to much later work on rigidity, both of lattices

in higher rank groups and of actions of abelian groups. It seems possible to

generalize Selberg’s proof to the case of G an R-split semisimple Lie group with
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rank at least 2. Selberg’s proof, which depended on asymptotics at infinity of

iterates of matrices, inspired Mostow’s explicit use of boundaries in his proof of

strong rigidity [Mo2]. Mostow’s work in turn provided inspiration for the use of

boundaries in later work of Margulis, Zimmer and others on rigidity properties

of higher rank groups.

The proofs of Calabi, Calabi–Vesentini and Weil involve studying variations

of geometric structures on the associated locally symmetric space. The tech-

niques are analytic and use a variational argument to show that all variations of

the geometric structure are trivial. This work is a precursor to much work in

geometric analysis studying variations of geometric structures and also informs

later work on proving rigidity/vanishing of harmonic forms and maps. The di-

chotomy between approaches based on algebra/dynamics and approaches that

are in the spirit of geometric analysis continues through much of the history of

rigidity and the history of local rigidity of group actions in particular.

Shortly after completing this work, Weil discovered a new criterion for local

rigidity [We3]. In the context of Theorem 3.1, this allows one to avoid the step

of showing that a perturbation of � remains discrete. In addition, this result

opened the way for understanding local rigidity of more general representations

of discrete groups.

THEOREM 3.2. Let � be a finitely generated group, G a Lie group and � W
�!G a homomorphism. Then � is locally rigid if H 1.�; g/D 0. Here g is the

Lie algebra of G and � acts on g by AdGı� .

Weil’s proof of this result uses only the implicit function theorem and elementary

properties of the Lie group exponential map. The same theorem is true if G is

an algebraic group over any local field of characteristic zero. In [We3], Weil

remarks that if � < G is a cocompact lattice and G satisfies the hypothesis of

Theorem 3.1, then the vanishing of H 1.�; g/ can be deduced from the compu-

tations in [We2]. The vanishing of H 1.�; g/ is proven explicitly by Matsushima

and Murakami in [MM].

Motivated by Weil’s work and other work of Matsushima, conditions for

vanishing of H 1.�; g/ were then studied by many authors. See particularly

[MM] and [Rg1]. The results in these papers imply local rigidity of many linear

representations of lattices.

To close this section, I will briefly discuss some subsequent developments

concerning rigidity of lattices in Lie groups that motivated the study of both

local and global rigidity of group actions.

The first remarkable result in this direction is Mostow’s rigidity theorem, see

[Mo1] and references there. Given G as in Theorem 3.1, and two irreducible

cocompact lattices �1 and �2 in G, Mostow proves that any isomorphism from

�1 to �2 extends to an isomorphism of G with itself. Combined with the prin-
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cipal theorem of [We1] which shows that a perturbation of a lattice is again a

lattice, this gives a remarkable and different proof of Theorem 3.1, and Mostow

was motivated by the desire for a “more geometric understanding” of Theorem

3.1 [Mo1]. Mostow’s theorem is in fact a good deal stronger, and controls not

only homomorphisms �!G near the defining homomorphism, but any ho-

momorphism into any other simple Lie group G0 where the image is lattice.

As mentioned above, Mostow’s approach was partially inspired by Selberg’s

proof of certain cases of Theorem 3.1, [Mo2]. A key step in Mostow’s proof

is the construction of a continuous map between the geometric boundaries of

the symmetric spaces associated to G and G0. Boundary maps continue to play

a key role in many developments in rigidity theory. A new proof of Mostow

rigidity, at least for Gi of real rank one, was provided by Besson, Courtois and

Gallot. Their approach is quite different and has had many other applications

concerning rigidity in geometry and dynamics; see [BCG; CF], for example.

The next remarkable result in this direction is Margulis’ superrigidity theo-

rem. Margulis proved this theorem as a tool to prove arithmeticity of irreducible

uniform lattices in groups of real rank at least 2. For irreducible lattices in

semisimple Lie groups of real rank at least 2, the superrigidity theorems clas-

sifies all finite dimensional linear representations. Margulis’ theorem holds for

irreducible lattices in semisimple Lie groups of real rank at least two. Given

a lattice � < G where G is simply connected, one precise statement of some

of Margulis results is to say that any linear representation � of � almost ex-

tends to a linear representation of G. By this we mean that there is a linear

representation Q� of G and a bounded image representation N� of � such that

�. / D Q�. / N�. / for all  in G. Margulis’ theorems also give an essentially

complete description of the representations N� , up to some issues concerning

finite image representations. The proof here is partially inspired by Mostow’s

work: a key step is the construction of a measurable “boundary map”. However

the methods for producing the boundary map in this case are very dynamical.

Margulis’ original proof used Oseledec Multiplicative Ergodic Theorem. Later

proofs were given by both Furstenberg and Margulis using the theory of group

boundaries as developed by Furstenberg from his study of random walks on

groups [Fu1; Fu2]. Furstenberg’s probabilistic version of boundary theory has

had a profound influence on many subsequent developments in rigidity theory.

For more discussion of Margulis’ superrigidity theorem, see [Ma2; Ma3; Ma4].

A main impetus for studying rigidity of group actions on manifolds came

from Zimmer’s theorem on superrigidity for cocycles. This theorem and it’s

proof were strongly motivated by Margulis’ work. In fact, Margulis’ theorem

is Zimmer’s theorem for a certain cocycle ˛ W G�G=�!� and the proof of

Zimmer’s theorem is quite similar to the proof of Margulis’. In order to avoid



LOCAL RIGIDITY OF GROUP ACTIONS 57

technicalities, we describe only a special case of this result. Let M be a compact

manifold, H a matrix group and P DM �H . Now let a group � act on M and P

continuously, so that the projection from P to M is equivariant. Further assume

that the action on M is measure preserving and ergodic. If � is a lattice in a

simply connected, semisimple Lie group G all of whose simple factors have real

rank at least two then there is a measurable map s W M !H , a representation

� W G!H , a compact subgroup K < H which commutes with �.G/ and a

measurable map � �M !K such that

 �s.m/D k.m;  /�. /s. �m/: (3–1)

It is easy to check from this equation that the map K satisfies a certain equation

that makes it into a cocycle over the action of � . One should view s as providing

coordinates on P in which the � action is almost a product. For more discussion

of this theorem the reader should see any of [Fe1; Fe2; FM1; Fu3; Z2]. (The

version stated here is only proven in [FM1], previous proofs all yielded some-

what more complicated statements.) As a sample application, let M D Tn and

let P be the frame bundle of M , i.e. the space of frames in the tangent bundle

of M . Since Tn is parallelizable, we have P D Tn�GL.n;Rn/. The cocycle

superrigidity theorem then says that “up to compact noise”, the derivative of any

measure preserving � action on Tn looks measurably like a constant linear map.

In fact, the cocycle superrigidity theorems apply more generally to continuous

actions on any principal bundle P over M with fiber H , an algebraic group,

and in this context produces a measurable section s W M !P satisfying equation

.3–1/. So in fact, cocycle superrigidity implies that for any action preserving

a finite measure on any manifold the derivative cocycle looks measurably like

a constant cocycle, up to compact noise. That cocycle superrigidity provides

information about actions of groups on manifolds through the derivative cocy-

cle was first observed in [Fu3]. Zimmer originally proved cocycle superrigidity

in order to study orbit equivalence of group actions. For a recent survey of

subsequent developments concerning orbit equivalence rigidity and other forms

of superrigidity for cocycles, see [Sl2].

3.2. Stability in hyperbolic dynamics. A diffeomorphism f of a manifold

X is said to be Anosov if there exists a continuous f invariant splitting of the

tangent bundle TX D Eu
f

˚Es
f

and constants a> 1 and C;C 0 > 0 such that for

every x2X ,

(1) kDf n.vu/k�Cankvuk for all vu2Eu
f
.x/ and,

(2) kDf n.vs/k�C 0a�nkvsk for all vs2Es
f
.x/.

We note that the constants C and C 0 depend on the choice of metric, and that a

metric can always be chosen so that C D C 0 D 1. There is an analogous notion
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for a flow ft , where TX D T O˚Eu
ft

˚Es
ft

where T O is the tangent space to

the flow direction and vectors in Eu
ft

(resp. Es
ft

) are uniformly expanded (resp.

uniformly contracted) by the flow. This notion was introduced by Anosov and

named after Anosov by Smale, who popularized the notion in the United States

[An; Sm]. One of the earliest results in the subject is Anosov’s proof that Anosov

diffeomorphisms are structurally stable, or, in our language C 1;1;1;0;0 locally

rigid. There is an analogous result for flows, though this requires that one intro-

duce a notion of time change that we will not consider here. Since Anosov also

showed that C 2 Anosov flows and diffeomorphisms are ergodic, structural sta-

bility implies that the existence of an open set of “chaotic” dynamical systems.

The notion of an Anosov diffeomorphism has had many interesting gener-

alizations, for example: Axiom A diffeomorphisms, nonuniformly hyperbolic

diffeomorphisms, and diffeomorphisms admitting a dominated splitting. The

notion that has been most useful in the study of local rigidity is the notion of a

partially hyperbolic diffeomorphism as introduced by Hirsch, Pugh and Shub.

Under strong enough hypotheses, these diffeomorphisms have a weaker stability

property similar to structural stability. More or less, the diffeomorphisms are

hyperbolic relative to some foliation, and any nearby action is hyperbolic to

some nearby foliation. To describe more precisely the class of diffeomorphisms

we consider and the stability property they enjoy, we require some definitions.

The use of the word foliation varies with context. Here a foliation by C k

leaves will be a continuous foliation whose leaves are C k injectively immersed

submanifolds that vary continuously in the C k topology in the transverse direc-

tion. To specify transverse regularity we will say that a foliation is transversely

C r . A foliation by C k leaves which is tranversely C k is called simply a C k

foliation. (Note our language does not agree with that in the reference [HPS].)

Given an automorphism f of a vector bundle E!X and constants a> b�1,

we say f is .a; b/-partially hyperbolic or simply partially hyperbolic if there

is a metric on E, a constant and C �1 and a continuous f invariant, nontrivial

splitting E D Eu
f

˚Ec
f

˚Es
f

such that for every x in X :

(1) kf n.vu/k�Cankvuk for all vu2Eu
f
.x/,

(2) kf n.vs/k�C �1a�nkvsk for all vs2Es
f
.x/ and

(3) C �1b�nkv0k< kf n.v0/k�C bnkv0k for all v02Ec
f
.x/ and all integers n.

A C 1 diffeomorphism f of a manifold X is .a; b/-partially hyperbolic if the

derivative action Df is .a; b/-partially hyperbolic on TX . We remark that for

any partially hyperbolic diffeomorphism, there always exists an adapted metric

for which C D 1. Note that Ec
f

is called the central distribution of f , Eu
f

is

called the unstable distribution of f and Es
f

the stable distribution of f .
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Integrability of various distributions for partially hyperbolic dynamical sys-

tems is the subject of much research. The stable and unstable distributions are

always tangent to invariant foliations which we call the stable and unstable foli-

ations and denote by W
s
f

and W
u
f

. If the central distribution is tangent to an f

invariant foliation, we call that foliation a central foliation and denote it by W
c
f

.

If there is a unique foliation tangent to the central distribution we call the central

distribution uniquely integrable. For smooth distributions unique integrability is

a consequence of integrability, but the central distribution is usually not smooth.

If the central distribution of an .a; b/-partially hyperbolic diffeomorphism f is

tangent to an invariant foliation W
c
f

, then we say f is r -normally hyperbolic

to W
c
f

for any r such that a > br . This is a special case of the definition of

r -normally hyperbolic given in [HPS].

Before stating a version of one of the main results of [HPS], we need one

more definition. Given a group G, a manifold X , two foliations F and F0 of X ,

and two actions � and �0 of G on X , such that � preserves F and �0 preserves F0,

following [HPS] we call � and �0 leaf conjugate if there is a homeomorphism h

of X such that:

(1) h.F/D F0 and

(2) for every leaf L of F and every g2G, we have h.�.g/L/D �0.g/h.L/.

The map h is then referred to as a leaf conjugacy between .X;F; �/ and

.X;F0; �0/. This essentially means that the actions are conjugate modulo the

central foliations.

We state a special case of some the results of Hirsch–Pugh–Shub on pertur-

bations of partially hyperbolic actions of Z, see [HPS]. There are also analogous

definitions and results for flows. As these are less important in the study of local

rigidity, we do not discuss them here.

THEOREM 3.3. Let f be an .a; b/-partially hyperbolic C k diffeomorphism of a

compact manifold M which is k-normally hyperbolic to a C k central foliation

W
c
f

. Then for any ı > 0, if f 0 is a C k diffeomorphism of M which is sufficiently

C 1 close to f we have the following:

(1) f 0 is .a0; b0/-partially hyperbolic, where ja � a0j < ı and jb � b0j < ı, and

the splitting TM D Eu
f 0

˚Ec
f 0

˚Es
f 0

for f 0 is C 0 close to the splitting for f ;

(2) there exist f 0 invariant foliations by C k leaves W
c
f 0

tangent to Ec
f 0

, which

is close in the natural topology on foliations by C k leaves to W
c
f

,

(3) there exists a (nonunique) homeomorphism h of M with h.Wc
f
/D W

c
f 0

, and

h is C k along leaves of W
c
f

, furthermore h can be chosen to be C 0 small and

C k small along leaves of W
c
f
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(4) the homeomorphism h is a leaf conjugacy between the actions .M;Wc
f
; f /

and .M;Wc
f 0
; f 0/.

Conclusion .1/ is easy and probably older than [HPS]. One motivation for The-

orem 3.3 is to study stability of dynamical properties of partially hyperbolic

diffeomorphisms. See the survey, [BPSW], for more discussion of that and

related issues.

4. History

In this section, we describe the history of the subject roughly to the year

2000. More recent developments will be discussed below. Here we do not treat

the subject entirely chronologically, but break the discussion into four subjects:

first, the study of local rigidity of volume preserving actions, second the study of

local rigidity of certain non-volume-preserving actions called boundary actions,

third the existence of (many) deformations of (many) actions of groups that are

typically quite rigid, and lastly a brief discussion of infinitesimal rigidity. This

is somewhat ahistorical as the first results on smooth conjugacy of perturbations

of group actions appear in [Gh1], which we describe in subsection 4.2. While

those results are not precisely local rigidity results, they are clearly related and

the techniques involved inform some later approaches to local rigidity.

4.1. Volume preserving actions. In this subsection, we discuss local rigidity of

volume preserving actions. The acting groups will usually be lattices in higher

rank semisimple Lie groups or higher rank free abelian groups. Many of the

results discussed here were motivated by conjectures of Zimmer in [Z4; Z5].

The first result we mention, due to Zimmer, does not prove local rigidity, but

did motivate much later work on the subject.

THEOREM 4.1. Let � be a group with property .T / of Kazhdan and let � be a

Riemannian isometric action of � on a compact manifold M . Further assume

the action is ergodic. Then any C k action �0 which is C k close to �, volume

preserving and ergodic, preserves a C k�3 Riemannian metric.

REMARKS. (1) Zimmer first proved this theorem in [Z1], but only for � a

lattice in a semisimple group, all of whose simple factors have real rank at

least two, and only producing a C 0 invariant metric for �0. In [Z2], he gave

the proof of the regularity stated here and in [Z4] he extended the theorem to

all Kazhdan groups.

(2) In this theorem if �0 is C 1, the invariant metric for �0 can also be chosen

C 1.

The first major result that actually produced a conjugacy between the perturbed

and unperturbed actions was due to Hurder, [H1]. Again, this result is not quite a
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local rigidity theorem, but only a deformation rigidity theorem. Hurder’s work

is the first place where hyperbolic dynamics is used in the theory, and is the

beginning of a long development in which hyperbolic dynamics play a key role.

THEOREM 4.2. The standard action of any finite index subgroup of SL.n;Z/

on the n dimensional torus is deformation rigid when n�3.

Hurder actually proves a much more general result. His theorem proves de-

formation rigidity of any group � acting on the n dimensional torus by linear

transformations provided:

(1) the set of periodic points for the � action is dense, and

(2) the first cohomology of any finite index subgroup of � in any n dimensional

representation vanishes, and

(3) the action contains “enough” Anosov elements.

Here we intentionally leave the meaning of .3/ vague, as the precise notion

needed by Hurder is quite involved. To produce a continuous path of continuous

conjugacies, Hurder only need conditions .1/ and .2/ and the existence of an

Anosov diffeomorphism in the stabilizer of every periodic point for the action.

The additional Anosov elements needed in .3/ are used to improve regularity of

the conjugacy, and better techniques for this are now available. Hurder’s work

has some applications to actions of irreducible lattices in products of rank 1 Lie

groups, which we discuss below in subsection 6.2. These applications do not

appear to be accessible by later techniques.

A key element in Hurder’s argument is to use results of Stowe on persistence

of fixed points under perturbations of actions [St1; St2]. To use Stowe’s result

one requires that the cohomology in the derivative representation at the fixed

point vanishes. This is where .2/ above is used. Hurder constructs his conjugacy

by using the theorem of Anosov, mentioned above in subsection 3.2, that any

Anosov diffeomorphism is structurally stable. This produces a conjugacy h for

an Anosov element �.0/ which one then needs to see is a conjugacy for the

entire group action. Hurder uses Stowe’s results to show that h is conjugacy for

the � actions at all of the periodic points for the � action, and since periodic

points are dense it is then a conjugacy for the full actions. The precise argument

using Stowe’s theorem is quite delicate and we do not attempt to summarize it

here. This argument applies much more generally, see [H1, Theorem 2.9]. That

the conjugacy depends continuously, and in fact even smoothly, on the original

action is deduced from results on hyperbolic dynamics in [dlLMM].

The first major development after Hurder’s theorem was a theorem of Katok

and Lewis [KL1] of which we state a special case:

THEOREM 4.3. Let � < SL.n;Z/ be a finite index subgroup, n > 3. Then the

linear action of � on Tn is locally rigid.
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It is worth noting that this theorem does not cover the case of n D 3. A major

ingredient in the proof is studying conjugacies produced by hyperbolic dynamics

for certain Z actions generated by hyperbolic and partially hyperbolic diffeomor-

phisms in both the original action and the perturbation. The strategy is to find

a hyperbolic generating set and to show that the conjugacies produced by the

stability of those diffeomorphisms agree. A key ingredient idea is to show that

they agree on the set of periodic orbits. Periodic orbits are then studied via The-

orem 3.3 for elements of � with large centralizers and large central foliations.

Periodic orbits are detected as intersections of central foliations for different

elements, and this allows the authors to show that the structure of the periodic

set persists under deformations. Elements with large centralizers had previously

been exploited by Lewis for studying infinitesimal rigidity of similar actions.

The authors also exploit their methods to prove the following remarkable result:

THEOREM 4.4. Let Zn be a maximal diagonalizable (over R) subgroup of

SL.n C 1;Z/ where n�2. The linear action of Zn on TnC1 is locally rigid.

This result is the first in a long series of results showing that many actions of

higher rank abelian groups are locally rigid. See Theorems 4.6 and 5.8 below

for more instances of this remarkable behavior.

The next major development occurs in a paper of Katok, Lewis and Zimmer

where Theorem 4.3 is extended to cover the case of n D 3 as well as some more

general groups acting on tori. Though this does not seem, on the face of it, to

be a very dramatic development, an important idea is introduced in this paper.

The authors proceed by comparing the measurable data coming from cocycle

superrigidity to the continuous data provided by hyperbolic dynamics. In this

context, this essentially allows the authors to show that the map s in equation

.3–1/, described in the statement of cocycle superrigidity given in subsection

3.1, is continuous. This idea of comparing the output of cocycle superrigidity

to information provided by hyperbolic dynamics has played a major role in the

development of both local and global rigidity of group actions.

The results in the papers [H1; KL1; KLZ] are all proven for particular actions

of particular groups, and in particular are all proven for actions on tori. The

next sequence of developments was a generalization of the ideas and methods

contained in these papers to fairly general Anosov actions of higher rank lattices

on nilmanifolds. Part of this development takes place in the works [Q1; Q2;

QY]. A key difficulty in generalizing the early approaches to rigidity of groups

of toral automorphims is in adapting the methods from hyperbolic dynamics

which are used to improve the regularity of the conjugacy. In [KS1; KS2], Katok

and Spatzier developed a broadly applicable method for smoothing conjugacies

which depends on the theory of nonstationary normal forms as developed by

Guysinsky and Katok in [GK; G]. Two main consequences of this method are:
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THEOREM 4.5. Let G be a semisimple Lie group with all simple factors of real

rank at least two, � <G a lattice, N a nilpotent Lie group and�<N a lattice.

Then any affine Anosov action of � on N=� is locally rigid.

Here by Anosov action, we mean that some element of � acts on N=� as an

Anosov diffeomorphism.

THEOREM 4.6. Let N a nilpotent Lie group and � < N a lattice. Let Zd

be a group of affine transformations of N=� such that the derivative action

(on a subgroup of finite index) is simultaneously diagonalizable over R with no

eigenvalues on the unit circle (i.e. on subgroup of finite index, each element of

Zd is an Anosov diffeomorphism which has semisimple derivative). Then the Zd

action on N=� is locally rigid.

Katok and Spatzier also apply their method to show that for certain standard

Anosov Rd actions the orbit foliation is locally rigid. I.e. any nearby action

has conjugate orbit foliation. This yields interesting applications to rigidity of

boundary actions, see Theorem 4.16 below. Also, combined with other results

of the same authors on rigidity of cocycles over actions of Abelian groups, this

yields local rigidity of certain algebraic actions of Rd , [KS3; KS4]. We state a

special case of these results here:

THEOREM 4.7. Let G be an R-split semisimple Lie group of real rank at least

two. Let � < G be a cocompact lattice and let Rd < G be a maximal R-split

subgroup. Then the Rd action on G=� is locally rigid.

REMARKS. (1) Here “local rigidity” has a slightly different meaning than

above. Since the automorphism group of Rd has nontrivial connected com-

ponent, it is possible to perturb the action by taking a small automorphism of

Rd . What is proven in this theorem is that any small enough perturbation is

conjugate to one obtained in this way.

(2) Another approach to related cocycle rigidity results is developed in the paper

[KNT].

(3) The actual theorem in [KS2] is much more general.

A key ingredient in the Katok–Spatzier method is to find foliations which are

orbits of transitive, isometric, smooth group actions for both the perturbed and

unperturbed action. To show smoothness of the conjugacy, one constructs such

group actions that

(1) are intertwined by a continuous conjugacy and

(2) exist on enough foliations to span all directions in the space.

This proves that the conjugacy is “smooth along many directions” and one then

uses a variety of analytic methods to prove that the conjugacy is actually globally



64 DAVID FISHER

smooth. The fact that the transitive group exists and acts smoothly on the leaves

of some foliation for the unperturbed action is typically obvious. One then

uses the continuous conjugacy to define the group action along leaves for the

perturbed action and the fact that the resulting action is smooth along leaves is

verified using the normal form theory. The foliations along which one builds

transitive group actions are typically central foliations for certain special ele-

ments of the suspension of the action. If the original action is a Zk action by

automorphisms on some nilmanifold N=�, the suspension of the action is the

left action of Rk on the solv-manifold M D .Rk
nN /=.Zk

n�/. A typical one

parameter subgroup of Rk acts hyperbolically M , but certain special directions

in Rk , those in so-called Weyl chamber walls give rise to one parameter sub-

groups with nontrivial central direction. A key fact used in the argument is that

one can find another subgroup of Rk for which the central foliation for some

one parameter subgroup �.t/ is also a dynamically defined, contracting foliation

for the some other element a2Rk .

All results quoted so far have strong assumptions on hyperbolicity of the

action. For actions of semisimple groups and their lattices, the ultimate result

on local rigidity in hyperbolic context was proven by Margulis and Qian in

[MQ]. This result is for so-called weakly hyperbolic actions, which we define

below. This work proceeds by first using a comparison between hyperbolic

data and data from cocycle superrigidity to produce a continuous conjugacy

between C 1 close actions and then uses an adaptation of the Katok–Spatzier

smoothing method mentioned above. A key technical innovation in this work

is the choice of cocycle to which cocycle superrigidity is applied. In all work

to this point, it was applied to the derivative cocycle. Here it is applied to a

cocycle that measures the difference between the action and the perturbation.

To illustrate the idea, we give the definition of this cocycle, which we refer to

as the Margulis–Qian cocycle, in the special case of actions by left translations.

As this construction is quite general, we will let D be the acting group. Let

the D action � on H=� be defined via a homomorphism �0 W D!H . Let �0

be a perturbation of �. If D is connected it is clear that the action lifts to QH

and therefore to H . If D is discrete, this lifting still occurs, since the obstacle to

lifting is a cohomology class in H 2.D; �1.H=�//which does not change under

a small perturbation of the action. (A direct justification without reference to

group cohomology can be found in [MQ] section 2.3.) Write the lifted actions

of D on H by Q� and Q�0 respectively. We can now define a cocycle ˛ W D�H!H

by

Q�0.g/x D ˛.g;x/x

for any g in D and any x in H . It is easy to check that this is a cocycle and that it

is right� invariant, and so defines a cocycle ˛ WD�H=�!H . See [MQ] section
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2 or [FM1] section 6 for more discussion as well as for more general variants

on this definition. We remark that the use of this cocycle allowed Margulis

and Qian to prove the first local rigidity results for volume preserving actions

of lattices that have no global fixed point. The construction of this cocycle is

inspired by a cocycle used by Margulis in his first proof of superrigidity. This

is the cocycle G�G=�!� defined by the choice of a fundamental domain for

� in G. See Example 4 in subsection 6.2 for a more explicit description.

The work of Margulis and Qian applies to actions which satisfy the following

condition. This condition essentially says that the action is hyperbolic in all

possible directions, at least for some element of the acting group. It is easy to

construct weakly hyperbolic actions of lattices, in particular � acting on G=�

where G is a simple Lie group and � < G is a cocompact lattice and � is any

other lattice in G. It is important to note that for this example, no element acts as

an Anosov diffeomorphism and, with an appropriate choice of � and �, there

are no finite � orbits.

DEFINITION 4.8. An action � of a group D on a manifold M is called weakly

hyperbolic if there exist elements d1; : : :; dk and constants ai > bi�1 for i D
1; : : : ; k such that each �.di/ is .ai; bi/-partially hyperbolic in the sense of sub-

section 3.2 and we have TM D
P

Es
�.di /

. I.e. there are partially hyperbolic

elements whose stable (or unstable) directions span the tangent space at any

point.

THEOREM 4.9. Let H be a real algebraic Lie group and � < H a cocompact

lattice. Assume G is a semisimple Lie group with all simple factors of real rank

at least two and � <G is a lattice. Then any weakly hyperbolic, affine algebraic

action of � or G on H=� is locally rigid.

REMARK. This is somewhat more general than the result claimed in [MQ], as

they only work with certain special classes of affine actions, which they call

standard. This result can proven by the methods of [MQ], and a proof in pre-

cisely this generality can be read out of [FM1; FM3], simply by assuming that

the common central direction for the acting group is trivial.

The next major result was a remarkable theorem of Benveniste concerning iso-

metric actions. This is a stronger result than Theorem 4.1 because it actually

produces a conjugacy, but is weaker in that it requires much stronger assump-

tions on the acting group.

THEOREM 4.10. Let � be a cocompact lattice in a semisimple Lie group with

all simple factors of real rank at least two. Let � be an isometric � action on a

compact manifold M . Then � is locally rigid.
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The proof of this theorem is inspired by the work of Calabi, Vesentini and Weil

in the original proofs of Theorem 3.1 and is based on showing that certain defor-

mations of foliated geometric structures are trivial. The argument is much more

difficult than the classical case and uses Hamilton’s implicit function theorem.

This is the first occasion on which analytic methods like KAM theory or hard

implicit function theorems appear in work on local rigidity of group actions.

More recently these kinds of methods have been applied more systematically,

see subsection 5.2.

The theorems described so far concern actions that are either isometric or

weakly hyperbolic. There are many affine actions which satisfy neither of these

dynamical hypotheses, but are genuinely partially hyperbolic. Local rigidity

results for actions of this kind first arise in work of Nitica and Torok. We state

special cases of two of their theorems:

THEOREM 4.11. Let � <SL.n;Z/ be a finite index subgroup with n�3. Let �1

be the standard � action on Tn and let � be the diagonal � action on Tn�Tm

defined by �1 on the first factor and the trivial action on the second factor. The

action � is deformation rigid.

THEOREM 4.12. Let �; �1; � be as above and further assume that m D 1. The

action � is locally rigid.

REMARKS. (1) Nitica and Torok prove more general theorems in which both

� and �1 can be more general. The exact hypotheses required are different

in the two theorems.

(2) We are being somewhat ahistorical here, Theorem 4.11 predates the work

of Margulis and Qian.

(3) The conjugacy produced in the papers [NT1; NT2; T] is never C 1, but only

C k for some choice of k. The choice of k is essentially free and determines

the size of perturbations or deformations that can be considered. It should be

possible to produce a C 1 conjugacy by combining the arguments in these

papers with arguments in [FM2; FM3], see the end of subsection 5.1 for some

discussion.

The work of Nitica and Torok is quite complex, using several different ideas.

The most novel is to study rigidity of cocycles over hyperbolic dynamical sys-

tems taking values in diffeomorphism groups. The dynamical system is either

the action �1 in Theorem 4.11 or 4.12 or it’s restriction to any sufficiently generic

subgroup containing an Anosov diffeomorphism of Tn, and the target group is

the group of diffeomorphisms of Tm. This part of the work is inspired by a

classical theorem of Livsic and the proof his modelled on his proof. To reduce

the rigidity question to the cocycle question is quite difficult and depends on an

adaptation of the work of [HPS] discussed in subsection 3.2 as well as use of
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results of Stowe [St1; St2]. Regrettably, the technology seems to limit the ap-

plicability of the ideas to diagonal actions �1� Id on products M �N where the

action on M has many periodic points and the action on N is trivial. Theorem

4.12 also depends on the acting group having property .T / of Kazhdan. The

method of proof of Theorem 4.11 has additional applications, see particularly

subsection 6.2 below.

To close this section, we remark that local rigidity is often considerably easier

in the analytic setting. Not much work has been done in this direction, but there

is an interesting note of Zeghib [Zg]. A sample result is the following:

THEOREM 4.13. Let � < SL.n;Z/ be a subgroup of finite index and let � be

the standard action of � on Tn. Then any analytic action close enough to � is

analytically conjugate to �. Furthermore, if M is a compact analytic manifold

on which � acts trivially and we let Q� be the diagonal action of � on Tn�M ,

then Q� is also locally rigid in the analytic category.

Zeghib also proves a number of other interesting results for both volume pre-

serving and non-volume-preserving actions and it is clear that his method has

applications not stated in his note. The key point for all of his arguments is a

theorem of Ghys and Cairns that says that one can linearize an analytic action of

a higher rank lattice in a neighborhood of a fixed point. Zeghib proves his results

by using results of Stowe [St1; St2] to find fixed points for the perturbed action

and then studying the largest possible set to which the linearization around this

point can be extended. We end this section by stating the theorem of Cairns and

Ghys from [CGh] which Zeghib uses.

THEOREM 4.14. Let G be a semisimple Lie group of real rank at least two

with no compact factors and finite center and let � < G be a lattice. Then

every analytic action of � with a fixed point p is analytically linearizable in a

neighborhood of p.

REMARKS. (1) By analytically linearizable in a neighborhood of p, we mean

that there exists a neighborhood U of p and an analytic diffeomorphism � of

U into the ambient manifold M such that the action of � , conjugated by �

is the restriction of a linear action to �.U /.

(2) In the same paper, Ghys and Cairns give an example of a C 1 action of

SL.3;Z/ on R8 fixing the origin, which is not C 0 linearizable in any neigh-

borhood of the origin. So the assumption of analyticity in the theorem is

necessary.

4.2. Actions on boundaries. In this subsection we discuss rigidity results for

groups acting on homogeneous spaces known as “boundaries”. In contrast to the

last section, the actions we describe here never preserve a volume form, or even
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a Borel measure. We will not discuss here all the geometric, function theoretic

or probabalistic reasons why these spaces are termed boundaries, but merely

describe examples. For us, if G is a semisimple Lie group, then a boundary of

G is a space of the form G=P where P is a connected Lie subgroup of G such

that the quotient G=P is compact. The groups P having this property are often

called parabolic subgroups. The space G=P is also considered a boundary for

any lattice � < G. For more precise motivation for this terminology, see [Fu1;

Fu2; Mo1; Ma4].

The simplest example of a boundary is for the group SL.2;R/ in which case

the only choice of P resulting in a nontrivial boundary is the group of upper

(or lower) triangular matrices. The resulting quotient is naturally diffeomorphic

to the circle and SL.2;R/ acts on this circle by the action on rays through the

origin in R2. We can restrict this SL.2;R/ action to any lattice � in SL.2;R/.

The following remarkable theorem was first proved by Ghys in [Gh1]:

THEOREM 4.15. Let � < SL.2;R/ be a cocompact lattice and let � be the

action of � on S1 described above. If �0 is any perturbation of �, then �0

is smoothly conjugate to an action defined by another embedding � 0 of � in

SL.2;R/ close to the original embedding. In particular � 0.� / is a cocompact

lattice in SL.2;R/.

Ghys gives two proofs of this fact, one in [Gh1] and another different one in

[Gh2]. A third and also different proof is in later work of Kononenko and

Yue [KY]. Ghys’ first proof derives from a remarkable global rigidity result for

actions on certain three dimensional manifolds by the affine group of the line,

while his second derives from rigidity results concerning certain Anosov flows

on three dimensional manifolds. We remark that the fact that �0 is continuously

conjugate to an action defined by a nearby embedding into SL.2;R/was known

and so Theorem 4.15 can be viewed as a regularity theorem though this is not

how the proof proceeds.

Both of Ghys’ proofs pass through a statement concerning local rigidity of

foliations. This uses the following variant on the construction of the induced

action. Let � be a cocompact lattice in SL.2;R/, and let � be the � action

on S1 defined by the action of SL.2;R/ there. There is also a � action on

the hyperbolic plane H2. We form the manifold .H2�S1/=��, where � acts

diagonally. This manifold is diffeomorphic to the unit tangent bundle of H2=�

which is also diffeomorphic to SL.2;R/=� , and the foliation by planes of the

form H2�fpointg is the weak stable foliation for the geodesic flow and also

the orbit foliation for the action of the affine group. Given a C r perturbation �0

of the � action on S1, we can form the corresponding bundle .H2�S1/�0=��0 ,

and the foliation by planes of the form H2�fpointg is C r close to analogous

foliation in .H2�S1/��. To show that � and �0 are conjugate, it suffices to find a
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diffeomorphism of .H2�S1/=�� conjugating the two foliations. Both of Ghys’

proofs proceed by constructing such a conjugacy of foliations. This reduction to

studying local rigidity of foliations has further applications in slightly different

settings, see Theorems 4.16 and 4.17 below.

In later work, Ghys proved a remarkable result which characterized an en-

tire connected component of the space of actions of � on S1. Let X be the

component of Hom.�;Diff.S1// containing the actions described in Theorem

4.15. In [Gh3], Ghys showed that this component consisted entirely of actions

conjugate to actions defined by embeddings � 0 of � into SL.2;R/where � 0.� /

is a cocompact lattice. This result builds on earlier work of Ghys where a similar

result was proven concerning Hom.�;Homeo.S1//. A key ingredient is the use

of the Euler class of the action, viewed as a bounded cocycle.

As mentioned above, Ghys’ method of reducing local rigidity of an action to

local rigidity of a foliation has had two more applications. The first of these is

due to Katok and Spatzier [KS2].

THEOREM 4.16. Let G be a semisimple Lie group with no compact factors and

real rank at least two. Let � < G be a cocompact lattice and B D G=P a

boundary for � . Then the � action on G=P is locally rigid.

The proof of this result uses an argument similar to Ghys’ to reduce to a need to

study regularity of foliations for perturbations of the action of certain connected

abelian subgroups of G on G=� . The result used in the proof here is the same

as the one used in the proof of Theorem 4.7. For � a lattice but not cocompact,

some partial results are obtained by Yaskolko in his Ph.D. thesis [Yk].

Following a similar outline, Kanai proved the following:

THEOREM 4.17. Let G D SO.n; 1/ and � < G be a cocompact lattice. Then

the action of � on the boundary G=P is locally rigid.

Partial results in this direction were proven earlier by Chengbo Yue. Yue also

proves partial results in the case where SO.1; n/ is replaced by any rank 1 non-

compact simple Lie group.

In somewhat earlier work, Kanai had also proven a special case of Theorem

4.16. More precisely:

THEOREM 4.18. Let � < SL.n;R/ be a cocompact lattice where n�21 and

let � be the � action on Sn�1 by acting on the space of rays in Rn. Then � is

locally rigid.

Kanai’s proof proceeds in two steps. In the first step, he uses Thomas’ notion

of a projective connection to reduce the question to one concerning vanishing

of certain cohomology groups. In the second step, he uses stochastic calculus

to prove a vanishing theorem for the relevant cohomology groups. The first
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step is rather special, and is what restricts Kanai’s attention to spheres, rather

than other boundaries, which are Grassmanians. The method in the second step

seems a good deal more general and should have further applications, perhaps

in the context of Theorem 5.12 below. While the approach here is similar in

spirit to the work of Benveniste in [Be1], it should be noted that Kanai does not

use a hard implicit function theorem.

We end this subsection by recalling a construction due to Stuck, which shows

that much less rigidity should be expected from actions which do not preserve

volume [Sk]. Let G be a semisimple Lie group and P <G a minimal parabolic.

Then there always exists a homomorphism � W P!R. Given any manifold M

and any action s of R on M , we can then form the induced G action �s on

.G�M /=P where P acts on G on the left and on M by �ıs. Varying the

action s varies the action �s . It is easy to see that if �s and �s0 are two such

actions, then they are conjugate as G actions if and only if s and s0 are conjugate.

If one picks an irreducible lattice � in G�G, project � to G and restricts the

actions to � , then it is also easy to see that the restriction of �s and �s0 to �

are conjugate if and only if s and s0 are conjugate. The author does not know a

proof that this is also true if one simply takes a lattice � in G, but believes that

this is also true and may even be known.

4.3. “Flexible” actions of rigid groups. In this subsection, I discuss a sequence

of results concerning flexible actions of large groups. More or less, the sequence

of examples provides counterexamples to most naive conjectures of the form

“all of actions of some lattice � are locally rigid.” There are some groups, for

example compact groups and finite groups, all of whose smooth actions are

locally rigid. It seems likely that there should be infinite discrete groups with

this property as well, but the constructions in this subsection show that one must

look beyond lattices in Lie groups for examples.

Essentially all of the examples given here derive from the simple construction

of “blowing up” a point or a closed orbit, which was introduced to this subject

in [KL2]. The further developments after that result are all further elaborations

on one basic construction. The idea is to use the “blow up” construction to

introduce distinguished closed invariant sets which can be varied in some man-

ner to produce deformations of the action. The “blow up” construction is a

classical tool from algebraic geometry which takes a manifold N and a point

p and constructs from it a new manifold N 0 by replacing p by the space of

directions at p. Let RP l be the l dimensional projective space. To blow up a

point, we take the product of N �RP dim.N / and then find a submanifold where

the projection to N is a diffeomorphism off of p and the fiber of the projection

over p is RP dim.N /. For detailed discussion of this construction we refer the

reader to any reasonable book on algebraic geometry.
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The easiest example to consider is to take the action of SL.n;Z/, or any sub-

group � <SL.n;Z/ on the torus Tn and blow up the fixed point, in this case the

equivalence class of the origin in Rn. Call the resulting manifold M . Provided

� is large enough, e.g. Zariski dense in SL.n;R/, this action of � does not

preserve the measure defined by any volume form on M . A clever construction

introduced in [KL2] shows that one can alter the standard blowing up procedure

in order to produce a one parameter family of SL.n;Z/ actions on M , only one

of which preserves a volume form. This immediately shows that this action on

M admits perturbations, since it cannot be conjugate to the nearby, non-volume-

preserving actions. Essentially, one constructs different differentiable structures

on M which are diffeomorphic but not equivariantly diffeomorphic.

After noticing this construction, one can proceed to build more complicated

examples by passing to a subgroup of finite index, and then blowing up several

fixed points. One can also glue together the “blown up” fixed points to obtain

an action on a manifold with more complicated topology. See [KL2; FW] for

discussion of the topological complications one can introduce.

In [Be2] it is observed that a similar construction can be used for the action

of a simple group G by left translations on a homogeneous space H=� where

H is a Lie group containing G and � < H is a cocompact lattice. Here we

use a slightly more involved construction from algebraic geometry, and “blow

up” the directions normal to a closed submanifold. I.e. we replace some closed

submanifold N in H=� by the projectived normal bundle to N . In all cases

we consider here, this normal bundle is trivial and so is just N �RP l where

l D dim.H /� dim.N /.

Benveniste used his construction to produce more interesting perturbations

of actions of higher rank simple Lie group G or a lattice � in G. In particular,

he produced volume preserving actions which admit volume preserving pertur-

bations. He does this by choosing G <H such that not only are there closed G

orbits but so that the centralizer Z D ZH .G/ of G in H has no-trivial connected

component. If we take a closed G orbit N , then any translate zN for z in Z is

also closed and so we have a continuum of closed G orbits. Benveniste shows

that if we choose two closed orbits N and zN to blow up and glue, and then vary

z in a small open set, the resulting actions can only be conjugate for a countable

set of choices of z.

This construction is further elaborated in [F1]. Benveniste’s construction is

not optimal in several senses, nor is his proof of rigidity. In [F1], I give a

modification of the construction that produces nonconjugate actions for every

choice of z in a small enough neighborhood. By blowing up and gluing more

pairs of closed orbits, this allows me to produce actions where the space of

deformations contains a submanifold of arbitrarily high, finite dimension. Fur-
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ther, Benveniste’s proof that the deformation are nontrivial is quite involved

and applies only to higher rank groups. In [F1], I give a different proof of

nontriviality of the deformations, using consequences of Ratner’s theorem to

due Witte and Shah [R; Sh; W2]. This shows that the construction produces

nontrivial perturbations for any semisimple G and any lattice � in G.

In [BF] we show that none of these actions preserve any rigid geometric

structure in the sense of Gromov. It is possible that any action of a higher rank

lattice which preserves a rigid geometric structure is locally rigid. It is also

possible that any such action is generalized quasiaffine.

4.4. Infinitesimal rigidity. In [Z4], Zimmer introduced a notion of infinites-

imal rigidity motivated by Weil’s Theorem 3.2 and the analogy between finite

dimensional Lie algebras and vector fields. Let � be a smooth action of a group

� on a manifold M , then � is infinitesimally rigid if H 1.�;Vect1.M // D 0.

Here the � action on Vect1.M / is given by the derivative of �. The notion

of infinitesimal rigidity was introduced with the hope that one could prove an

analogue of Weil’s Theorem 3.2 and then results concerning infinitesimal rigid-

ity would imply results concerning local rigidity. Many infinitesimal rigidity

results were then proven, see [H2; Ko; L; LZ; Q3; Z6]. For some more results

on infinitesimal rigidity, see Theorems 5.10 and 5.11. Also see subsection 5.2

for a discussion of known results on the relation between infinitesimal and local

rigidity.

5. Recent developments

In this section we discuss the most recent dramatic developments in the field.

The first subsection discusses work of the author and Margulis on rigidity of

actions of higher rank groups and lattices. Our main result is that if H is the

real points of an algebraic group defined over R and � < H is a cocompact

lattice, then any affine action of G or � on H=� is locally rigid. This work is

quite involved and spans a sequence of three long papers [FM1; FM2; FM3].

One of the main goals of subsection 5.1 is to provide something of a “reader’s

guide” to those papers.

The second subsection discusses some recent developments involving more

geometric and analytic approaches to local rigidity. Till this point, the study of

local rigidity of group actions has been dominated by algebraic ideas and hyper-

bolic dynamics with the exception of [Ka1] and [Be2]. The results described in

subsection 5.2 represent (the beginning of) a dramatic development in analytic

and geometric techniques. The first of these is the work of Damjanovich and

Katok on local rigidity of certain partially hyperbolic affine actions of abelian

groups on tori using a KAM approach [DK1; DK2]. The second is the author’s
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proof of a criterion for local rigidity of groups actions modelled on Weil’s Theo-

rem 3.2 and proven using Hamilton’s implicit function theorem [F2]. This result

currently has an unfortunate “side condition” on second cohomology that makes

it difficult to apply.

The final subsection concerns a few other very recent results and develop-

ments that the author feels point towards the future development of the field.

5.1. The work of Margulis and the author. Let G be a (connected) semisimple

Lie group with all simple factors of real rank at least two, and � <G is a lattice.

The main result of the papers [FM1; FM2; FM3] is:

THEOREM 5.1. Let � be a volume preserving quasiaffine action of G or � on a

compact manifold X . Then the action locally rigid.

REMARKS. (1) This result subsumes essentially all of the theorems in subsec-

tion 4.1, excepting those concerning actions of abelian groups.

(2) In [FM3] we also achieve some remarkable results for perturbations of very

low regularity. In particular, we prove that any perturbation which is a C 3

close C 3 action is conjugate back to the original action by a C 2 diffeomor-

phism.

(3) The statement here is slightly different than that in [FM3]. Here X D
H=L�M with L cocompact, while there X D H=��M with� discrete and

cocompact. An essentially algebraic argument using results in [W1], shows

that possibly after changing H and M , these hypotheses are equivalent.

Another main result of the research resulting in Theorem 5.1 is the following:

THEOREM 5.2. Let � be a discrete group with property .T /. Let X be a com-

pact smooth manifold, and let � be a smooth action of � on X by Riemannian

isometries. Then � is locally rigid.

REMARKS. (1) A key step in the proof of Theorem 5.1 is a foliated version of

Theorem 5.2.

(2) As in Theorem 5.1, there is a finite regularity version of Theorem 5.2 and

it’s foliated generalization, we refer the reader to [FM2] for details.

The remainder of this subsection will consist of a sketch of the proof of Theorem

5.1. The intention is essentially to provide a reader’s guide to the three papers

[FM1; FM2; FM3]. Throughout the remainder of this subsection, to simplify

notation, we will discuss only the case of affine � actions on H=� with � a

cocompact lattice. The proof for connected groups and quasiaffine action on

X D H=��M is similar. To further simplify the discussion, we assume that �0

is a C 1 perturbation of �.
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Step 1: An invariant “central” foliation for the perturbed action and leaf

conjugacy. To begin the discussion and the proof, we need some knowledge of

the structure of the affine actions considered. By [FM1, Theorem 6.4], there is

a finite index subgroup � 0 <� such that the action of � 0 on H=� is given by a

homomorphism � W � 0! Aut.H /nH . We simplify the discussion by assuming

� D � 0 throughout. Using Margulis superrigidity theorems, which are also

used in the proof of [FM1, Theorem 6.4], it is relatively easy to understand

the maximal central foliation F for �: there is a subgroup Z < H whose orbit

foliation is exactly the central foliation. For example, if G < H acts on H=�

by left translations and � is restriction of that action to � , then Z D ZH .G/.

For details on what Z is more generally, see [FM1].

Given a perturbation �0 of �, we begin by finding a �0 invariant foliation F0

and a leaf conjugacy � from .H=�; �;F/ to .H=�; �0;F0/. To do this, we apply

a result concerning local rigidity of cocycles over actions of higher rank groups

and lattices to the Margulis–Qian cocycle defined by the perturbation. As the

statements of the local rigidity results for cocycles are somewhat technical, we

refer the reader to [FM1, Theorems 1.1 and 5.1]. Those Theorems are proven in

Section 5 of that paper using results in Section 4 concerning orbits in represen-

tation varieties as well as the cocycle superrigidity theorems. The construction

of the leaf conjugacy is completed in [FM3, Section 2.2] using [FM1, Theorem

1.8]. We remark that we actually construct ��1 rather than �. The paper [FM1]

also contains a proof of superrigidity for cocycles that results in many technical

improvements to that result.

Step 2: Smoothness of the central foliation, reduction to a foliated pertur-

bation. The next step in the proof is to show that F0 is a foliation by smooth

leaves. In fact, it is only possible to show at this point that it is a foliation by C k

leaves for some k depending on � and �0 and particularly on the C 1 size of the

perturbation. This is done using the work of Hirsch, Pugh and Shub described

in subsection 3.2. If the central foliation for � is the central foliation for �. /

for some single element  in � , this amounts to showing that the foliation F0

constructed in step one is the same foliation as the central foliation for �0. /

constructed in the proof of Theorem 3.3. To prove this, one needs to analyze

the proof of Theorem 3.3. More generally, we show, in [FM3, Section 3.2] that

there is a finite collection of elements 1; : : : ; k in � such that each leaf of

the foliation F is a transverse intersection of central leaves of �.1/; : : : ; �.k/.

One then needs to combine an analysis of the proof of Theorem 3.3 with some

arguments concerning persistence of transversality under certain kinds of per-

turbations. This argument is carried out in [FM3, Section 3.3].

Once we know that F0 is C k , it is easy to see that the leaf conjugacy � is C k

and C k small along leaves of F though all derivatives are only continuous in the
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transverse direction. Conjugating the action �0 by �, we obtain a new action �00

on H=� which preserves F. This action is only continuous, but it is C 0 close

to � and C k and C k close to � along leaves of F. In [FM2; FM3] we refer to

perturbations of this type as foliated perturbations.

Step 3: Conjugacy along the central foliation. The next step is to apply a

foliated generalization of Theorem 5.2 to the actions � and �00. The exact result

we apply is [FM2, Theorem 2.11] which produces a semiconjugacy  between

� and �0. This result is somewhat involved to state and the regularity of  is

hard to describe. The map  is C k�1�" along the leaves of F at almost all points

in H=�, for " depending on the size of the perturbation, but only transversely

measurable. In addition, the map  satisfies a certain Sobolev estimate, that

implies that it is C k�1�" small in a small ball in F at most points, and that the

C k�1�" norm is only large on very small sets. Rather than try to make this

precise here, we include a sketch of the proof of Theorem 5.2. Before doing so

we remark that the map 'D�ı is a semiconjugacy from between the � action

� and the � action �0. The last step in the argument is to improve the regularity

of ' which we will discuss following the sketch of the proof of Theorem 5.2

We recall two definitions and another theorem from [FM2].

DEFINITION 5.3. Let "�0 and Z and Y be metric spaces. Then a map h WZ!Y

is an "-almost isometry if

.1 � "/dZ .x;y/�dY .h.x/; h.y//�.1 C "/dZ .x;y/

for all x;y2Z.

The reader should note that an "-almost isometry is a bilipschitz map. We prefer

this notation and vocabulary since it emphasizes the relationship to isometries.

DEFINITION 5.4. Given a group � acting on a metric space X , a compact

subset S of � and a point x2X . The number supk2S d.x; k�x/ is called the

S-displacement of x and is denoted dispS .x/.

THEOREM 5.5. Let � be a locally compact, � -compact group with property

.T / and S a compact generating set. There exist positive constants " and D,

depending only on � and S , such that for any continuous action of � on a

Hilbert space H where S acts by "-almost isometries there is a fixed point x;

furthermore for any y in X , the distance from y to the fixed set is not more than

D dispS .y/.

We now sketch the proof of Theorem 5.2 for Theorem 5.5. Given a compact

Riemannian manifold X , there is a canonical construction of a Sobolev inner

product on C k.X / such that the Sobolev inner product is invariant under isome-

tries of the Riemannian metric, see [FM2, Section 4]. We call the completion
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of C k.X / with respect to the metric induced by the Sobolev structure L2;k.X /.

Given an isometric � action � on a manifold M there may be no nonconstant

� invariant functions in L2;k.X /. However, if we pass to the diagonal � action

on X �X , then any function of the distance to the diagonal is � invariant and,

if C k , is in L2;k.X �X /.

We choose a smooth function f of the distance to the diagonal in X �X

which has a unique global minimum at x on fxg�X for each x, and such that

any function C 2 close to f also has a unique minimum on each fxg�X . This

is guaranteed by a condition on the Hessian and the function is obtained from

d.x;y/2 by renormalizing and smoothing the function away from the diagonal.

This implies f is invariant under the diagonal � action defined by �. Let �0 be

another action C k close to �. We define a � action on X �X by acting on the

first factor by � and on the second factor by �0. For the resulting action N�0 of

� on L2;k.X �X / and every 2S , we show that N�0.k/ is an "-almost isometry

and that the S-displacement of f is a small number ı, where both " and ı can be

made arbitrarily small by choosing �0 close enough to �. Theorem 5.5 produces

a N�0 invariant function f 0 close to f in the L2;k topology. Then f 0 is C k�dim.X /

close to f by the Sobolev embedding theorems and if k � dim.X /�2, then f

has a unique minimum on each fiber fxg�X which is close to .x;x/. We verify

that the set of minima is a C k�dim.X /�1 submanifold and, in fact, the graph of

a conjugacy between the � actions on X defined by � and �0.

Note that this argument yields worse regularity than we discussed in the foli-

ated context or than is stated in Theorem 5.2. There are considerable difficulties

involved in achieving lower loss of regularity or in producing a C 1 conjugacy

and we do not dwell on these here, but refer the reader to [FM2] and also to

some discussion in the next step.

Step 4: Regularity of the conjugacy. We improve the regularity of ' in three

stages. First we show it is a homeomorphism in [FM3, Section 5.2]. The key to

this argument is proving that there is a finite collection 1; : : :; k of elements

of � such that ' takes stable foliations for �.i/ to stable foliations for �0.i/.

If ' were continuous, this is both easy and classical. In our context, we require

a density point argument to prove this, which is given in [FM3, Section 5.1].

Once we have that stable foliations go to stable foliations, we use this to show

that ' is actually uniformly continuous along central foliations and then patch

together continuity along various foliations. (In [FM3, Section 5.3], we show

how to remove the assumption, made above, that the � action lifts from H=�

to H . This cannot be done until we have produced a continuous conjugacy.)

The next stage is to show that ' is a finite regularity diffeomorphism. To show

this, we show that ' is smooth (with estimates) along certain foliations which

span the tangent space. This step is essentially an implementation of the method



LOCAL RIGIDITY OF GROUP ACTIONS 77

of Katok and Spatzier described in subsection 4.1. A few technical difficulties

occur as we need to keep careful track of estimates in the method for use at later

steps and because we need to identify ergodic components of the measure for

certain elements in the unperturbed action. After applying the Katok–Spatzier

method, we have that ' is smooth along many contracting directions and smooth

along the central foliation, and then use a fairly standard argument involving

elliptic operators to show that it is actually smooth, and even C k0

small, for

k 0 D k � 1 � "� 1
2

dim.H /. It would be interesting to see if one could lose less

regularity at this step, for example by a method like Journé’s. A key difficulty

in adapting the method of [Jn] is that we only have a Sobolev estimate along

central leaves and not a uniform one.

The last stage of the argument is to show that ' is smooth. There are two

parts to this argument. The first is to show that if � and �0 are C k close, we can

actually show that ' is C l for some l�k. The main difficulty here is obtaining

better regularity in the foliated version of Theorem 5.2. This requires the use of

estimates on convexity of derivatives and estimates on compositions of diffeo-

morphisms, as well as an iterative method of constructing the semiconjugacy

 , for this we refer the reader to [FM2, Sections 6 and 7.3]. Once we know

we can produce a conjugacy of greater regularity, we can then approximate '

in the C l topology by a C 1 map and smoothly conjugate �0 to a very small

C l perturbation of �. The point is to iterate this procedure while obtaining

estimates on the size of the conjugacy produced at each step. We then show that

the iteration converges to produce a smooth conjugacy. We give here a general

theorem whose proof follows from arguments in [FM2; FM3].

It is convenient to fix right invariant metrics dl on the connected compo-

nents of Diffl.X / with the additional property that if ' is in the connected

component of Diff1.X /, then dl .'; Id/�dlC1.'; Id/. To fix dl , it suffices to

define inner products h ; il on Vectl.X / which satisfy hV;V il�hV;V ilC1 for

V 2 Vect1.X /. As remarked in [FM2, Section 6], after fixing a Riemannian

metric g on X , it is straightforward to introduce such metrics using the methods

of [FM2, Section 4].

DEFINITION 5.6. Let � be a group, M a compact manifold and assume � W
�! Diff1.M /. We say � is strongly C k;l;n locally rigid if for every ">0 there

exists ı > 0 such that if �0 is an action of � on M with dk.�
0.g/�.g/�1; Id/< ı

for all g2K then there exists a C l conjugacy ' between � and �0 such that

dk�n.'; Id/ < ".

We are mainly interested in the case where l > k.

THEOREM 5.7. Let � be a group, M a compact manifold and assume � W
�! Diff1.M /. Assume that there are constants n > 0 and k0�0 and that for
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every k > k0 there exists an l > k such that � is strongly C k;l;n locally rigid.

Then � is C 1 locally rigid.

The proof of Theorem 5.7 follows [FM3, Corollary 7.2], though the result is not

stated in this generality there.

5.2. KAM, implicit function theorems: work of Damjanovich–Katok and

the author. In this subsection, we discuss some new results that use more

geometric/analytic methods to approach questions of local rigidity. These meth-

ods are entirely independent of methods using hyperbolic dynamics and appear

likely to be robustly applicable.

We begin with a theorem of Katok and Damjanovich concerning abelian

groups of toral automorphisms. Here we consider actions � W Zn! Diff1.Tm/

where �.Zn/ lies in GL.m;Z/ acting on Tm by linear automorphisms or more

generally where �.Zn/ acts affinely on Tm. An affine factor � 0 of � is an-

other affine action � 0 W Zn!Tl and there is an affine map � W Tn!Tl such that

�ı�.v/D � 0.v/ı� for every v2Zn. We say a factor � 0 has rank one if � 0.Zn/

has a finite index cyclic subgroup.

THEOREM 5.8. Let � W Zn! Aff.Tm/ have no rank one factors. Then � is

locally rigid.

This theorem is proven by a KAM method. One should note that all the theorems

on actions of abelian groups by toral automorphisms stated in subsection 4.1 are

special cases of this theorem. (This is not quite literally true. Those theorems

apply to perturbations that are only C 1 close, while the result currently under

discussion only applies to actions that are close to very high order.) It is also

worthwhile to note that Theorem 5.8 can be proven using no techniques of hy-

perbolic dynamics.

We now briefly describe the KAM method. Let � be a finitely generated

group and � W �!Diff1.M / a homomorphism. To apply a KAM-type argu-

ment, define L W Diff1.M /k� Diff1.M /! Diff1.M /k by taking

L.�1; : : : ; �k ; f /D .�.1/ıf ı�1ıf �1; : : : ; �.1/ıf ı�1ıf �1/

where � W �! Diff1.M / is a homomorphism. If � 0 is another � action on M

then L.� 0.1/; : : : ; �
0.k/; f /D .Id; : : : ; Id/ implies f is a conjugacy between

� and � 0, so the problem of finding a conjugacy is the same as finding a dif-

feomorphism f which solves L.� 0.1/; : : : ; �
0.k/; f / D .Id; : : : ; Id/ subject

to the constraint that � 0 is a � action.

The KAM method proceeds by taking the derivative DL of L at .�; f / and

solving the resulting linear equation instead subject to a linear constraint that is

the derivative of the condition that � 0 is a � action. This produces an “approxi-

mate solution” to the nonlinear problem and one proceeds by an iteration. If the
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original perturbation is of size " then the perturbation obtained after one step in

the iteration is of size "2 at least to whatever order one can control the size of the

solution of DL. This allows one to show that the iteration converges even under

conditions where there is some dramatic “loss of regularity”, i.e. when solutions

of DL are only small to much lower order than the initial data. A standard

technique used to combat this loss of regularity is to alter the equation given by

DL by inserting smoothing operators. That one can solve the linearized equation

modified by smoothing operators in place of the original linearized equation and

still expect to prove convergence of the iterative procedure depends heavily on

the quadratic convergence just described. The main difficulty in applying this

outline is obtaining so-called tame estimates on inverses of linearized operators.

For a definition of a tame estimate, see following Theorem 5.12.

The KAM method is often presented as a method for proving hard implicit

function theorems. The paradigmatic theorem of this kind is due to Hamilton

[Ha1; Ha2], and is used by the author in the proof of the following theorem.

For a brief discussion of the relation between this work and that of Katok and

Damjanovich, see the end of this subsection.

THEOREM 5.9. Let � be a finitely presented group, .M;g/ a compact Rie-

mannian manifold and � W �! Isom.M;g/� Diff1.M / a homomorphism. If

H 1.�;Vect1.M //D 0 and H 2.�;Vect1.M // is Hausdorff in the tame topol-

ogy, the homomorphism � is locally rigid as a homomorphism into Diff1.M /.

I believe the condition on H 2.�;Vect1.M // should hold automatically under

the other hypotheses of the theorem. If this is true, then one has a new proof of

Theorem 5.2 using a result in [LZ]. There are some other infinitesimal rigidity

results that would then yield more novel applications. For example:

THEOREM 5.10. Let � be an irreducible lattice in a semisimple Lie group G

with real rank at least two. Then for any Riemannian isometric action of � on

a compact manifold H 1.�;Vect1.M //D 0.

Theorem 5.10 naturally applies in greater generality, in particular to irreducible

S-arithmetic lattices and to irreducible lattices in products of more general lo-

cally compact groups.

To give another result on infinitesimal rigidity, we require a definition. For

certain cocompact arithmetic lattices � in a simple group G, the arithmetic

structure of � comes from a realization of � as the integer points in G�K where

K is a compact Lie group. In this case it always true that the projection to G is a

lattice and the projection to K is dense. We say a� action is arithmetic isometric

if it is defined by projecting � to K, letting K act by C 1 diffeomorphisms on

a compact manifold M and restricting the K action to � .
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THEOREM 5.11. For certain congruence lattices � <SU.1; n/, any arithmetic

isometric action of � has H 1.�;Vect1.M //D 0.

For a description of which lattices this applies to, we refer the reader to [F2].

The theorem depends on deep results of Clozel [Cl].

Theorem 5.9 actually follows from the following, more general result.

THEOREM 5.12. Let � be a finitely presented group, M a compact manifold,

and � W �! Diff1.M / a homomorphism. If H 1.�;Vect1.M // D 0 and the

sequence

C 0.�;Vect1.M //
d1

// C 1.�;Vect1.M //
d2

// C 2.�;Vect1.M //

admits a tame splitting then the homomorphism � is locally rigid. I.e. � is

locally rigid provided there exist tame linear maps

V1 W C 1.�;Vect1.M //!C 0.�;Vect1.M //

and

V2 W C 2.�;Vect1.M //!C 1.�;Vect1.M //

such that d1ıV1 C V2ıd2 is the identity on C 1.�;Vect1.M //.

Here C i.�;Vect1/ is the group of i-cochains with values in Vect1.M / and

di are the standard coboundary maps where we have identified the cohomology

of � with the cohomology of a K.�; 1/ space with one vertex, one edge for

each generator in our presentation of � and one 2 cell for each relator in our

presentation of � . A map L is called tame if there is an estimate of the type

kLvkk�CkkvkkCr for a fixed choice of r . Here the k�kl can be taken to be the

C l norm on cochains with values in Vect1.M /. This notion clearly formalizes

the notion of being able to solve an equation with some loss of regularity.

The proof of Theorem 5.12 proceeds by reducing the question to Hamilton’s

implicit function theorem for short exact sequences and is similar in outline to

Weil’s proof of Theorem 3.2.

Fix a finitely presented group � and a presentation of � . This is a finite col-

lection S of generators 1; : : :; k and finite collection R of relators w1; : : :; wr

where each wi is a finite word in the j and their inverses. More formally, we

can view each wi as a word in an alphabet on k letters. Let � W �! Diff1.M /

be a homomorphism, which we can identify with a point in Diff1.M /k by

taking the images of the generators. We have a complex:

Diff1.M /
P

// Diff1.M /k
Q

// Diff1.M /
r (5–1)

Where P is defined by taking  to . �.1/ 
�1; : : :;  �.k/ 

�1/ and Q is

defined by viewing each wi as a word in k letters and taking . 1; : : :;  k/ to
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.w1. 1; : : :;  k/; : : :; wr . 1; : : :;  k//. To this point this is simply Weil’s proof

where Diff1.M / is replacing a finite dimensional Lie group H . Letting Id be

the identity map on M , it follows that P .Id/ D � and Q.�/ D .Id; : : :; Id/.

Also note that Q�1.IdM ; : : :; IdM / is exactly the space of � actions. Note

that P and Q are Diff1.M / equivariant where Diff1.M / acts on itself by left

translations and on Diff1.M /k and Diff1.M /r by conjugation. Combining

this equivariance with Hamilton’s implicit function theorem, I show that local

rigidity is equivalent to producing a tame splitting of the sequence

Vect1.M /
DPId

// Vect1.M /k
DQ�

// Vect1.M /r (5–2)

To complete the proof of Theorem 5.12 requires that one compute DPId and

DQ� in order to relate the sequence in equation .5–2/ to the cohomology se-

quence in Theorem 5.12.

We remark here that the information needed to split the sequence in Theorem

5.12 is quite similar to the information one would need to apply a KAM method.

This is not particularly surprising as Hamilton’s implicit function theorem is a

formalization of the KAM method. In particular, to prove Theorem 5.8, one can

apply Theorem 5.12 using estimates and constructions from [DK2, Section 3]

to produce the required tame splitting. This avoids the use of the explicit KAM

argument in [DK2, Section 4].

Finally, we remark that there is a theorem of Fleming that is an analogue of

Theorems 5.9 and 5.12 in the setting of finite, or finite Sobolev, regularity [Fl].

This is proven using an infinite dimensional variant of Stowe’s fixed point theo-

rems, though it has recently been reproven by An and Neeb using a new implicit

function theorem [AN]. With either proof, this result also has a similar condition

on second cohomology. We remark here that due to the nature of the respective

topologies on spaces of vector fields, the condition on second cohomology in

the work of Fleming or An–Neeb is considerably stronger than what is needed

in Theorems 5.9 and 5.12. As an illustration, no version of Theorem 5.8 can be

proven using these results. This is because a cohomological equation can have

solutions with tame estimates, i.e. with some loss of regularity, without having

solutions with an estimate at any fixed regularity.

5.3. Further results. In this subsection, we describe a few more recent de-

velopments related to the results discussed so far. These results are either very

recent or somewhat removed from the main stream of research.

The first result we discuss concerns actions of lattices in Sp.1; n/ or F�20
4

and is due to T. J. Hitchman. We state here only a special case of his results. For

this result, we assume that � is an arithmetic subgroup of Sp.1; n/ or F�20
4

in

the standard Q structures on those groups. This means that � is a finite index
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subgroup of the integer points in the standard matrix representation of these

groups. This means that in the defining representation of Sp.1; n/ or F�20
4

on

Rm the action of � preserves the integer lattice Zm and therefore defines an

action � of � on Tm.

THEOREM 5.13. The action � defined in the last paragraph is deformation

rigid.

The proof proceeds in two steps. Building a path of C 0 conjugacies follows

more or less as in [H1], see subsection 4.1 above. The main novelty in [Hi] is

the proof that these conjugacies are in fact smooth. Theorem 5.13 is a special

case of the results obtained in [Hi].

Another recent development should lead to a common generalization of The-

orems 5.8 and 4.7. For example, one can consider actions of an abelian subgroup

Rk of the full diagonal group Rn�1 in SL.n;R/ on SL.n;R/=� where � is a

cocompact lattice. In this context, Damjanovich and Katok are developing a

more geometric approach in contrast to the analytic method of [DK1; DK2]. In

[DK3], under a natural nondegeneracy condition on the subgroup Rk < Rn�1,

the authors prove the cocycle rigidity result required to generalize Theorem 4.7

to the natural result for the Rk action. Here there are “additional trivial pertur-

bations” of the action arising from Hom.Rk ;Rn�1/. A rigidity theorem in this

context is work in progress, see [DK3] for some discussion.

To close this section, we mention two other recent works. The first is a paper

by Burslem and Wilkinson which investigates local and global rigidity questions

for actions of certain solvable groups on the circle. Particularly striking is their

construction of group actions which admit C r perturbations but no C rC1 pertur-

bations for every integer r . The second is a paper by M. Einsiedler and T. Fisher

in which the method of proof of Theorem 4.6 is extended to affine actions of Zd

where the matrices generating the group action have nontrivial Jordan blocks.

For perturbations of the group action which are close to very high order, this

result follows from Theorem 5.8, but in [EF] the result only requires that the

perturbation be C 1 close to the original action.

6. Directions for future research and conjectures

In this section, I mention a few conjectures and point a few directions for

future research. These are particularly informed by my taste.

6.1. Actions of groups with property .T /. Lattices in SP .1; n/ and F�20
4

share many of the rigidity properties of higher rank lattices. In light of Theorems

5.1, 5.2 and 5.13, it seems natural to conjecture:
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CONJECTURE 6.1. Let G be a semisimple Lie group with no compact factors

and no simple factors isomorphic to SO.1; n/ or SU.1; n/, and let � < G be

a lattice. Then any volume preserving generalized quasiaffine action of G or �

on a compact manifold is locally rigid.

Note that for G with no rank one factors and quasiaffine actions, this is just

Theorem 5.1. To apply the methods of [FM1; FM2; FM3] in the setting of

Conjecture 6.1 there are essentially three difficulties:

(1) If the action is generalized quasiaffine and not quasiaffine, then one cannot

use the construction of the Margulis–Qian cocycle described above. This is

easiest to see for a generalized affine action � on some KnH=�. The action

� lifts to H=�, but a perturbation �0 need not. If K is finite, this difficulty can

be overcome by passing to a subgroup of finite index � 0 <� and arguments

in [FM3] can be used prove rigidity of � from rigidity of � 0. If K is compact

and connected, this is a genuine and surprisingly intractable difficulty.

(2) Proving a version of Zimmer’s cocycle superrigidity for groups as in the

assumptions of the conjecture. Partial results in this direction were obtained

by Corlette–Zimmer and Korevaar–Schoen, but their results all require hy-

potheses that are obviously restrictive or simply difficult to verify. Very re-

cently, the author and Hitchman have proven a complete version of cocycle

superrigidity, at least for so-called L2-cocycles. In light of our work, this

difficulty is already overcome.

(3) Replace the method of Katok–Spatzier in the proof that the conjugacy is

actually smooth. The proof of Theorem 5.13 gives some progress in this di-

rection, but there are significant technical difficulties to overcome in applying

Hitchman’s methods at this level of generality. There is some progress on this

question by Gorodnik, Hitchman and Spatzier.

The author and Hitchman have another approach to Conjecture 6.1 based on

Theorem 5.12, some estimates proven in [FH1], and using heat flow and those

estimates to produce a tame splitting of the short exact sequence in Theorem

5.12. It is not yet clear how generally applicable this method will be.

The following question is also interesting in this context:

QUESTION 6.2. Let G and � be as in Conjecture 6.1. Let � be a non-volume-

preserving affine action of � on a compact manifold M . When is � locally

rigid?

By the work of Stuck discussed at the end of Section 4.2, it is clear that local

rigidity will not hold in full generality here. In particular for the product of the

action of � on the boundary G=P with the trivial action of � on any manifold,

there is already strong evidence against local rigidity. We give two particularly
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interesting special cases where we expect local rigidity to occur. The first is to

take a lattice � in SP .1; n/ and ask if the � action on the boundary SP .1; n/=P

is locally rigid. This is analogous to Theorems 4.16 and 4.18. Another direction

worth pursuing is to see if the action of say Sl.n;Z/ on RP nCk is locally rigid

for n�3 and any k�0. For cocompact lattices instead of SL.n;Z/ and k D
�1 it is Theorem 4.16. One can ask a wide variety of similar questions for

both compact and noncocompact lattices acting on homogeneous spaces that are

“larger than” any natural boundary for the group as long as one avoids settings

in which Stuck’s examples can occur. We remark that in some instances, partial

results for analytic perturbations can be obtained by Zeghib’s method [Zg].

We remark here that the action of SL.n;Z/ on Tn is not locally rigid in

Homeo.Tn/ by a construction of Weinberger. It would be interesting to under-

stand local rigidity in low regularity for other actions.

6.2. Actions of irreducible lattices in products. In this subsection, we for-

mulate a general conjecture concerning local rigidity of actions of irreducible

lattices in products. We begin by making a few remarks on other rigidity prop-

erties of irreducible lattices and by describing a few examples where rigidity

might hold, as well as some examples where it does not.

Rigidity properties of irreducible lattices have traditionally been studied to-

gether with rigidity of lattices in simple groups, and irreducible lattices enjoy

many of the same rigidity properties. We list a few here to motivate our con-

jectures on rigidity of actions of these lattices. The properties we list also rule

out certain trivial constructions of perturbations and deformations of actions. In

the following, � is an irreducible lattice in G D .
Qk

iD1 Gi/=Z where each Gi

is a noncompact semisimple Lie group and Z is a subgroup of the center of
Qk

iD1 Gi . Many of these results hold more generally, see below.

Properties of irreducible lattices:

(1) There are no nontrivial homomorphisms �!Z (and therefore no nontrivial

homomorphisms to any abelian or nonabelian free group).

(2) All linear representations of � are classified. In particular, given any repre-

sentation � of � into GL.V /, where V is a finite dimensional vector space,

then H 1.�;V /D 0.

(3) All normal subgroups of � are either finite or finite index.

The first property, for � cocompact, was originally proven by Bernstein and

Kazhdan [BK]. Some special cases of this result were proven earlier by Mat-

sushima and Shimura [MS]. All other properties are originally due to Margulis,

see [Ma4] and historical references there. The original proofs all go through

with only minor adaptations if some of the Gi are replaced with the k-points of

a k-algebraic group over some other local field k. These properties have been
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shown to hold for appropriate classes of lattices in even more general products of

locally compact groups by Bader, Monod and Shalom, [Sm; Md1; Md2; BSh].

Example 1: Let � D SL.2;ZŒ
p

2�/. We embed � in SL.2;R/�SL.2;R/ by

taking  to .; �. // where � is the Galois automorphism of Q.
p

2/ taking
p

2

to �
p

2. This embedding defines an action of� on T4 where T4 DR4=Z4 where

we identity Z4 with the image in R4 of ZŒ
p

2�2 via the embedding v!.v; �.v//.

We first note that the list of properties given above imply one can prove defor-

mation rigidity of this action using Hurder’s argument from [H1] to produce a

continuous conjugacy and using the method of Katok–Spatzier [KS1; KS2] to

show that the conjugacy is smooth. Anatole Katok has suggested one might be

able to show local rigidity of this action by using the methods in [KL1]. This

example is just the first in a large class of Anosov actions of irreducible lattices,

all of which should be locally rigid. We leave the general construction to the

interested reader.

Example 2: We take the action of � D SL.2;ZŒ
p

2� and let � act on T5 D
T4�T1 by a diagonal action where the action on T4 is as defined in Example

1 and the action on T1 is trivial. Once again, this is merely the first example

of a large class of partially hyperbolic actions of irreducible lattices. In this

instance, the central foliation for the � action consists of compact tori. For this

type of example, many of the argument of [NT1; NT2; T] carry over, but the

fact that � does not have property .T / prevents one from using those outlines

to prove local rigidity. On the other hand, the methods of [NT1] can be adapted

to prove deformation rigidity again replacing their argument for smoothness of

the conjugacy by the Katok–Spatzier method. We remark that it is also possible

to give many examples of actions of irreducible lattices in products where the

central foliation is by dense leaves, and the methods of Nitica and Torok cannot

be applied. See discussion below for the obstructions to applying the methods

of [FM1; FM2; FM3].

Example 3: We now give an example of a family of actions which extend to an

action of G D G1�G2. Let H be a simple Lie group with G <H , for example,

H D SL.4;R/ or H D Sp.4;R/ and �<H a cocompact lattice. Then both G

and � act by left translations on H=�.

Example 4:We end with a family of examples for which there exists a large

family of deformations. Let � be as above and let � < SL.2;R/ D G1 be an

irreducible lattice. Then � acts by left translations on M D SL.2;R/=�. Call

this action N�. I do not currently know whether it is possible to deform this action,

but one can use this action to build actions with perturbations on a slightly larger

manifold. Let � act trivially on any manifold N and take the diagonal action

� on M �N . It is well-known that there exists a nontrivial homomorphism

� W�!Z. There is also a standard construction of a cocycle ˛ W G1�G1=�!�
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over the G1 action on G1=�. The cocycle is defined by taking a fundamental

domain X for � in G1, identifying G1=� with X and letting ˛.g;x/ be the

element of � such that gx˛.g;x/�1, as an element of G1, is in X . Taking any

vector field V on N and let s" be the Z action on N defined by having 1 act by

flowing to time " along V . We then define a � action on M �N by taking

�". /.m; n/D . N�. /m; s".�.˛.g;m//.n//:

We leave it to the interested reader to show that the actions �" are not conjugate

to � for essentially any choice of V .

The key point in example 4, which is not present in the first three examples,

is that the action factors through a projection of � into a simple factor of G.

Motivated by the examples so far, by the results in Theorem 5.10, and by analogy

with results on actions of higher rank abelian groups, we make the following

definition and conjecture:

DEFINITION 6.3. Let G D G1�� � ��Gk be a semisimple Lie group where all

the Gi are noncompact. Let � <G be an irreducible lattice. Let � be an affine

action of � on some H=� where H is a Lie group and �<H is a cocompact

lattice. Then we say � has rank one factors if there exists

(1) an action N� of � on a some space X which is a factor of �

(2) and a rank one factor Gi of G

such that N� is the restriction of a Gi action. I.e. � acts on X by projecting �

to Gi and restricting a Gi action.

CONJECTURE 6.4. Let G; �;H; � and � be as in Definition 6.3. Then if � has

no rank one factors � is locally rigid.

REMARK. It is a consequence of Ratner’s measure rigidity theorem, see [R;

Sh; W2], that any rank one factor of an affine action for these groups is in fact

affine. This implies that any rank one factor is a left translation action on some

H 0=�0. So a special case of the conjecture is that any affine � action on a torus

or nilmanifold is locally rigid.

There is a variant of Conjecture 6.4 for G actions. We recall that a measure

preserving action of G D G1�� � ��Gk action is irreducible if each Gi acts er-

godically. We extend this notion to nonergodic G actions by saying that the

action is weakly irreducible if every ergodic component of the volume measure

for the action of any Gi is an ergodic component of the volume measure for the

action of G.

CONJECTURE 6.5. Let G;H; � be as in Definition 6.3 and let G <H , so that

we have a left translation action � of G on H=�. Then if � is weakly irreducible,

� is locally rigid.
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The relation of the two conjectures follows from the following easy lemma.

LEMMA 6.6. Let G; �;H; � and � be as in Definition 6.3, then the � ac-

tion on H=� has no rank one factors if and only if the induced G action on

.G�H=�/=� is weakly irreducible.

To prove the lemma requires both some algebraic untangling of induced actions

and a use of Margulis’ superrigidity theorem to describe affine actions of G and

� along the lines of [FM1, Theorems 6.4 and 6.5]. We leave this as an exercise

for the interested reader. It is fairly easy to check the lemma for any particular

affine � action.

We end this subsection by pointing out the difficulty in approaching this con-

jecture by means of the methods of [FM1; FM2; FM3]. A central difficulty

is that the lattices in question do not have property .T / and so the foliated

generalization of Theorem 5.2 does not apply. However, even in the case of

weakly hyperbolic actions, there are significant difficulties. To begin the ar-

gument, one would like to apply cocycle superrigidity to the Margulis–Qian

cocycle. To do this requires the existence of an invariant measure which is

usually established using property .T / by an argument of Seydoux [Sy]. In this

setting, where property .T / does not hold, one might try instead to use the work

of Nevo and Zimmer, [NZ1; NZ2; NZ3], but there are nontrivial difficulties

here as well. One cannot apply their theorems without first showing that the

perturbed action satisfies some irreducibility assumption. Even if one were to

obtain an invariant measure, the precise form of cocycle superrigidity required is

not known for products of rank one groups or their irreducible lattices. And the

strongest possible forms of cocycle superrigidity in this context again require a

kind of irreducibility of the perturbed action. So to proceed by this method one

would need to show that perturbations of the actions in Conjecture 6.4 and 6.5

still satisfied some irreducibility conditions. This seems quite difficult. It may

also be possible to approach these questions by using Theorem 5.12, but even

proving that the relevant cohomology groups vanish seems subtle.

6.3. Other questions and conjectures. We end this article by discussing some

other questions and conjectures.

In the context of Theorem 5.11 it is interesting to ask if isometric actions of

lattices in SU.1; n/ are locally rigid. For some choices of lattice, the answer is

trivially no. Namely some cocompact lattices in SU.1; n/ have homomorphisms

� to Z [Ka2; BW], and so have arithmetic actions with deformations provided

the centralizer Z of K in Diff1.M / is nontrivial. Having centralizer allows

one to deform the action along the image of the homomorphism �ı�t W F!Z

where �t W Z!Z is any one parameter family of homomorphisms. It seems

reasonable to conjecture:
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CONJECTURE 6.7. Let � be an arithmetic isometric action of a lattice in

SU.1; n/. Then any sufficiently small perturbation of � is of the form described

in the previous paragraph.

This conjecture is in a certain sense an infinite dimensional analogue of work

of Goldman–Millson and Corlette [Co1; GM]. Another conjecture concerning

complex hyperbolic lattices, for which work of Yue provides significant evi-

dence [Yu], is:

CONJECTURE 6.8. Is the action of any lattice in SU.1; n/ on the boundary of

complex hyperbolic space locally rigid?

There are also many interesting questions concerning the failure of local rigidity

for lattices in SO.1; n/. The only rigidity theorem we know of in this context is

Kanai’s, Theorem 4.17, and it would be interesting to extend Kanai’s theorem

to nonuniform lattices. In [F1; F3] various deformations of lattices in SO.1; n/

are constructing for affine and isometric actions. These constructions both adapt

the bending construction of Johnson and Millson, [JM]. It seems likely that

in some cases one should be able to prove results concerning the structure of

the representation space and, in particular, to show that it is “singular” in an

appropriate sense. See [F3] for more discussion.

Two other paradigmatic examples of large groups are the outer automorphism

group of the free group, Out.Fn/, and the mapping class group of a surface

S , MC G.S/. These groups do not admit many natural actions on compact

manifolds, but there are some natural interesting actions quite analogous to those

we have already discussed. For MC G.S/, the question we raise here is already

raised in [La]. The actions we consider are “nonlinear” analogues of the standard

actions of SL.n;Z/ on Tn and SP .2n;Z/ on T2n. The spaces acted upon are

moduli spaces of representations of either the free group or the fundamental

group of a surface S , where the representations take values in compact groups.

More precisely, we have an action of Out.Fn/ on Hom.Fn;K/=K and an action

of MC G.S/ on Hom.�.S/;K/=K where K is a compact group. It is natural to

ask whether these actions are locally rigid, though the meaning of the question is

somewhat obscured by the fact that the representation varieties are not smooth.

For K D S1, one obtains actions on manifolds, and in fact tori, and one might

begin by considering that case.

We end with a question motivated by the recent work of Damjanovic and

Katok. We only give a special case here. Let G be a real split, simple Lie group

of real rank at least two. Let � <G�G be an irreducible lattice. Let K <G be

a maximal compact subgroup and view K as a subgroup of G�G by viewing it

as a subgroup of the second factor. The quotient Kn.G�G/=� has a natural G
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action on the left on the first factor. We can restrict this action to the action of

a maximal split torus A in G. Note that A is isomorphic to Rd for some d�2.

QUESTION 6.9. Is the action of Rd described in the paragraph above locally

rigid?
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[Gh3] Ghys, Étienne. Rigidité différentiable des groupes fuchsiens. [Differentiable

rigidity of Fuchsian groups]. Publ. Math. IHES 78 (1993), 163–185.

[GM] Goldman, W. M.; Millson, J. J. Local rigidity of discrete groups acting on

complex hyperbolic space. Invent. Math. 88 (1987), No. 3, 495–520.

[GS] Gromov, Mikhail; Schoen, Richard. Harmonic maps into singular spaces and p-

adic superrigidity for lattices in groups of rank one. Publ. Math. IHES 76 (1992),

165–246.

[Gu] Guichardet, Alain. Sur la cohomologie des groupes topologiques, II. Bull. Sci.

Math. (2) 96 (1972), 305–332.

[G] Guysinsky, M. The theory of nonstationary normal forms. Ergodic Theory Dynam.

Systems 22 (2002), No. 3, 845–862.

[GK] Guysinsky, M.; Katok, A. Normal forms and invariant geometric structures on

transverse contracting foliations. Math. Res. Lett. 5 (1998), 149–163.

[HV] de la Harpe, P.; Valette, A. La propriete (T) de Kazhdan pour les groupes

localement compacts. Asterisque, No. 175. Soc. Math. de France, Paris, 1989.

[Ha1] Hamilton, Richard S. The inverse function theorem of Nash and Moser. Bull.

Amer. Math. Soc. 7 (1982), No. 1, 65–222.

[Ha2] Hamilton, Richard S. Deformation of complex structures on manifolds with

boundary, I: The stable case. J. Differential Geom. 12 (1977), No. 1, 1–45.

[He] Helgason, Sigurdur. Differential geometry, Lie groups, and symmetric spaces.

Corrected reprint of the 1978 original. Grad. Stud. Math., No. 34. American Mathe-

matical Society, Providence, RI, 2001.
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C 1, isotopes à l’identité, du tore de dimension n. C. R. Acad. Sci. Paris Sér. A-B

273 (1971), A232–A234.

[HPS] Hirsch, M. W.; Pugh, C. C.; Shub, M. Invariant Manifolds. Lecture Notes in

Math., No. 583. Springer, New York, 1977.

[Hi] Hitchman, T. J. Rigidity theorems for large dynamical systems with hyperbolic

behavior. Ph. D. Thesis, University of Michigan, 2003.

[H1] Hurder, Steven. Rigidity for Anosov actions of higher rank lattices. Ann. of Math.

(2) 135 (1992), No. 2, 361–410.

[H2] Hurder, Steven. Infinitesimal rigidity for hyperbolic actions. J. Differential Geom.

41 (1995), No. 3, 515–527.

[JM] Johnson, Dennis; Millson, John J. Deformation spaces associated to compact

hyperbolic manifolds. Discrete groups in geometry and analysis (New Haven, CT,

1984), 48–106. Progr. Math., No. 67. Birkhäuser, Boston, 1987.
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