
Section 2

Perspectives on Mathematical Proficiency

Definitions are important in education, as they are in mathematics. If one is to
assess students’ mathematical proficiency, then one had better start by defining
the term. As the two essays in this section indicate, this is not as straightforward
as it might seem. To echo R. Buckminster Fuller, a fundamental question is
whether one considers mathematics be a noun or a verb. One’s view makes a
difference: what one defines mathematics to be has significant implications both
for teaching and for assessment.

One way to view mathematics (the “noun” view) is as a wonderful and re-
markably structured body of knowledge. From this perspective, the question
becomes: How should that body of knowledge be organized so that students can
best apprehend it? A second way to view mathematics is to think of it as What
Mathematicians Do, with an emphasis on the verb. Even here, there are multiple
levels of description. At the action level, for example, there are mathematical
activities such as solving problems and proving theorems. At a deeper process
level there are the activities of abstracting, generalizing, organizing, and reflect-
ing (among others), which are called into service when one solves problems and
proves theorems. In this section, R. James Milgram (in Chapter 4) and Alan H.
Schoenfeld (in Chapter 5) explore aspects of the topics justdiscussed: the nature
of mathematics and what it means to do mathematics, and implications of these
views for both instruction and assessment. These two chapters, in combination
with the three chapters in the previous section, establish the mathematical basis
vectors for the space that is explored in the rest of this volume.





Assessing Mathematical Proficiency
MSRI Publications
Volume53, 2007

Chapter 4
What is Mathematical Proficiency?

R. JAMES MILGRAM

In February of 2004 Alan Greenspan told the Senate Banking Committee that
the threat to the standard of living in the U.S. isn’t from jobs leaving for cheaper
Asian countries. Much more important is the drop in U.S. educational standards
and outcomes.

“What will ultimately determine the standard of living of this country is the
skill of the people,” Greenspan pointed out . . . . “We do something wrong,
which obviously people in Singapore, Hong Kong, Korea and Japan do far
better. Teaching in these strange, exotic places seems for some reason to
be far better than we can do it.” [Mukherjee 2004]

Current estimates by Forrester Research (Cambridge, MA) are that over the next
15 years at least 3.3 million jobs and 136 billion dollars in wages will move to
Asia.

Introduction

The first job of our education system is to teach students to read, and the
majority of students do learn this. The second thing the system must do is teach
students basic mathematics, and it is here that it fails. Before we can even think
about fixing this — something we have been trying to do withoutsuccess for
many years — we must answer two basic questions.

� What does it mean for a student to be proficient in mathematics?
� How can we measure proficiency in mathematics?

These are hard questions. The initial question is difficult because mathematics is
one of the most seriously misunderstood subjects in our entire K–12 educational
system. The second question is hard for two reasons.

The research that underlies this chapter was funded by an FIEgrant from the U.S. Department of Education.
I would like to thank Deborah Loewenberg Ball and Kristin Umland for invaluable discussions and help with
many aspects of this work.
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32 R. JAMES MILGRAM

(a) Too often test designers and textbook authors do not havea clear idea of what
mathematics is. Indeed, something on the order of 25% of the questions on
a typical state mathematics assessment are mathematicallyincorrect. (This
will be expanded on in the last section, p. 55.)

(b) Proper assessment is difficult under the best conditions, but becomes essen-
tially impossible when the people writing the tests do not adequately under-
stand the subject.

The first question — what is mathematical proficiency? — will be discussed in
what follows. Part of our theme will be to contrast practicesin this country with
those in the successful foreign countries that Alan Greenspan mentions. We will
see that U.S. practices have relatively little connection with actual mathematics,
but the programs in the high achieving foreign countries arecloser to the mark.

We can understand this surprising assertion better when we understand that
school mathematics instruction has drifted to the point where one simply cannot
recognize much of actual mathematics in the subject as it is taught in too many
of this country’s schools. In fact this drift seems to be accelerating. It is fair to
say that there has been more drift over the last twenty to thirty years than there
was during the previous eighty.

Some schools in our country teach nothing but arithmetic, some nothing but
something they call problem solving and mathematical reasoning. Both call
what they teach “mathematics.” Both are wrong. At this pointand in this
country, what is taught as mathematics is only weakly connected with actual
mathematics, and typical curricula, whether “reform” or “traditional,” tend to
be off the point. Before continuing we must clarify this assertion.

What is Mathematics?

We must have some idea of what mathematics is in order to startour dis-
cussion. Unfortunately, a serious misconception already occurs here. Some
things simply cannot be defined in ordinary language and mathematics is almost
certainly one of them. This doesn’t mean that we can’t describe the subject in
general terms. We just can’t sharply limit it with a definition.

Over the years, a number of people have tried to define mathematics as “the
study of patterns” or “the language of science,” but professional mathematicians
have avoided trying to define mathematics. As best I can recollect, the nearest
that a research mathematician came to attempting a definition in print was Roy
Adler in the mid-1960s who suggested the semi-serious “Mathematics is what
mathematicians do.”

A few years back a serious attempt at a short description of mathematics was
given privately by Norman Gottlieb at Purdue. He suggested “Mathematics is
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the study of precisely defined objects.” A number of people participating in this
discussion said, in effect, “Yes, that’s very close, but let’s not publicize it since
it would not sound very exciting to the current MTV generation, and would tend
to confirm the widely held belief that mathematics is boring and useless.”

Realistically, in describing what mathematics is, the bestwe can do is to
discuss the most important characteristics of mathematics. I suggest that these
are:

(i) Precision (precise definitions of all terms, operations, and the properties of
these operations).

(ii) Stating well-posed problems and solving them. (Well-posed problems are
problems where all the terms are precisely defined and refer to a singleuni-
versewhere mathematics can be done.)

It would be fair to say that virtually all of mathematics is problem solving in
precisely defined environments, and professional mathematicians tend to think
it strange that some trends in K–12 mathematics education isolatemathematical
reasoning and problem solvingas separate topics within mathematics instruc-
tion.

For Item 1 above, the rules of logic are usually considered tobe among the
basic operations. However, even here mathematicians explore other universes
where the “rules of logic” are different. What is crucial is that the rules and
operations being used be precisely defined and understood. Mathematics is a
WYSIWYG field. There can be no hidden assumptions —What you see is what
you get.

The Stages Upon Which Mathematics Plays

What we have talked about above is mathematics proper. However, most peo-
ple do not talk about mathematics but algebra, geometry, fractions, calculus, etc.
when they discuss mathematics, and we have not mentioned anyof these topics.
So where do numbers, geometry, algebra fit in? Mathematics typically plays
out on a limited number of stages,1 and there is often considerable confusion
between the stages and the mathematics on these stages.

Here are some examples of stages. The integers build a stage,the rationals
build a stage, and the reals build yet another a stage. These are the most im-
portant stages for mathematics by far, but you cannot limit mathematics to just
these stages.

1By “stage” I mean — in mathematical terms — a category having objects, maps, maybe Cartesian prod-
ucts, and sufficient structure to do mathematics. However, stage, in the theatric sense, seems a very good
description of these structures.
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� Patterns, once one has a proper definition, build a stage. This is the theory of
groups and group actions — a very advanced subject in mathematics.

� Geometry plays out on another stage. Geometry as we commonlyknow it, is
the mathematics of the plane or space together with its points, lines, planes,
distance, angles and transformations. However, the precise definitions here
are even more difficult than is the case with patterns.

In practice, in school mathematics, some of the stages aboveare systematically
but heuristically developed for students over a period of years and mathematics
is played out to varying degrees. For example, here is a quickdescription of
what happens during the first three years in a program that does things right —
the Russian texts translated by the University of Chicago School Mathematics
Project [UCSMP 1992a; 1992b; 1992c].

First grade. The stage on which first grade mathematics plays consists of the
counting numbers from 1 to 100, addition, subtraction, and simple two- and
three-dimensional geometric figures. There are very few definitions here and,
since the stage is so small, the definitions can be quite different from definitions
students will see later, though they should be present. For example, some of
the definitions are given almost entirely via pictures, as isillustrated by the
definition of adding and subtracting 1 on page 9:

Second grade. The stage is larger, the counting numbers at least from 1 to
1000, all four operations, time, beginning place value, small fractions, and a
larger class of geometric figures. There are more definitionsand they are more
advanced than those in the first-grade universe. Here is the definition of multi-
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plication. Note that it is the first paragraph in the chapter on multiplication and
division on page 38:

The vertical bar above appears in these texts to indicate a definition. One can
legitimately ask if this definition is sufficient, or if it is possible to do better. But
here the main point is that thereis a definitionpresent, and its position in the
exposition indicates that it is an important part of the sequence of instruction.

The definition of division is the first topic in the section on division that begins
on page 42, immediately following the section on multiplication:
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In words, the translation of the definition (which is mostly visual) is that division
of b by a is the number of equal groups ofa objects making upb. It would likely
be the teacher’s obligation to see that each student understood the definition. For
most, the example and practice would suffice. Some would require the entire
verbal definition, and others might need a number of visual examples. This also
illustrates an important point. There is no necessity that definitions be entirely
verbal. For young learners, visual definitions may be more effective, and these
Russian texts show a consistent progression from visual to verbal, as we will
see shortly when we give the corresponding third-grade definitions.

As an example of how these definitions are applied, we have thediscussion
of even and odd numbers (from the section on multiplying and dividing by 2),
page 90:

It is worth noting that the students have not yet seen fractions so the definition
is actually unambiguous. (It has been pointed out to me that children are often
ahead of the class instruction, and some children will be familiar with fractions,
so that this definition, talking aboutnumbersand notwhole numbersis inappro-
priate. This is an interesting point, and illustrates one ofthe points oftension
between rigorous mathematics and practical teaching. Fromthe mathematical
perspective, since the onlynumbersin the universe at the time of the definition
are whole numbers, the definition is entirely correct. However, as a practical
matter, the teacher must deal with children who want to test the definition on
fractions.)

Third grade. The stage is much larger by third grade. Place value and the
standard algorithms are fully developed.2 Area and complex polygonal figures
in the plane are present, weights and measures, velocity andthe relationship be-
tween time and distance traveled at constant velocity have been given, fractions
have been developed much further and are now represented on the number line.

2The details of the algorithms in the Russian texts are different from the details commonly taught in the
United States. Nonetheless, the underlying mathematical algorithms are identical, so I use the termstandard
algorithm for the Russian algorithms as well as ours.



4. WHAT IS MATHEMATICAL PROFICIENCY? 37

Again, there are new definitions appropriate to this new stage, some of which
are quite sophisticated. Here is the definition of multiplication — as before the
first item in the chapter on multiplication and division on page 89:

And here is the definition of division. Note the considerableadvance on the
second-grade definition. This definition will be unchanged in later grades, page
110:

Just for illustration, here are some problems from the end ofthis chapter on page
137:

This is a dramatic demonstration of just how far third-gradestudents can go
with mathematics when the foundations are properly set up. Each concept used
in these problems has been defined and discussed in this textbook.
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We can compare this program and what is done in other successful foreign
programs with what is typically done in this country.3 For example, the prob-
lems above are very similar to those found in fourth-grade Singapore textbooks,
so this level of expectation is normal for both countries. Inthe U.S., where pre-
cise definitions are not the norm, problems like these do not appear in textbooks
until much later.

To a professional mathematician, one of the most glaring differences between
the textbooks in high achieving countries and the United States is the care with
which the distinctions above are made for the students and the precision (stage-
appropriate, of course, but precision nonetheless) of the definitions in the pro-
grams of the successful countries. Moreover, this holds from the earliest grades
onwards.

The tools of mathematics. Each stage has its own tools, the rules that we
assume are valid there. There are also the overriding tools of mathematics,
those tools that tend to have wide applicability over many stages. One of the
most important of these tools is abstraction — focusing attention on the most
important aspects of a situation or problem and excluding the extraneous.4

Problems in mathematics

A problem in mathematics (or a well-posed problem) is a problem where
every term is precisely understood in the context of a singlestage. It may have
no answer, it may have an answer that contains many special subcases. The
answer may be complex, as in the case of the problem

Find all quadruples of whole numbers.n; a; b; c/ that satisfy the equation
an C bn D cn

— this is Fermat’s “Last Theorem,” of course, and the answer is fn D 1 and
aCb D c, orn D 2 and.a; b; c/ forms a Euclidean triple, soa D 2vw, b D v�w,
c D v C w for two integersv, w g; its proof, found by Andrew Wiles some ten
years ago, is one of the greatest achievements of modern mathematics.

On the other hand, the answer might be simple, as for the problem “Is the
square root of2 a rational number?”, whose answer is “No.” The problem can
be rephrased as

Find all triples of integers that satisfy the two equationsa2 C b2 D c2 and
a D b;

3To do this properly with any particular program would take much more space than we have available,
but there is some discussion of a few of the issues with these programs on the next few pages.

4The type of abstraction being discussed here is part of problem solving. Abstraction appears in another
form in mathematics, when processes that are common to a number of situations are generalized and given
names. We do not discuss this aspect of abstraction here.
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rigorously showing that the answer isa D b D c D 0, which implies that the
square root of two is not rational, was one of the triumphs of Greek mathematics.

As long as all the terms are precisely understood and everything is included
in a mathematical stage, we have a problem in mathematics. However, an item
like

Find the next term in the sequence3; 8; 15; 24; : : : ,

which is extremely similar to items found on almost every state mathematics
assessment that I’ve seen in this country is not a mathematics problem as stated.

Why not? The phrase “next term” has been given no meaning within the
context of the question — presumably the stage of whole numbers and their op-
erations. In order to answer this question one would have tomake a guessas
to what the phrase means.5 At best this is a question in psychology. As such
it is somewhat typical of the questions one used to find on IQ tests, or the now
discontinued SAT analogies section, where a cultural or taught predisposition
to understand “next term” in the same way as the person askingthe question
biases the results. In short, there most definitely tend to behidden assumptions
in problems of the type described.

It might be helpful to explain in more detail what is wrong with the above
problem. Presumably what is wanted is to recognize that then-th term is given
by the rule.n C 1/2 � 1 D n.n C 2/, but this only makes sense if you are told
that the rule should be a polynomial inn of degree no more than2. If you are
not given this information then there is no reason that the following sequence is
not equally correct (or equally incorrect):

3; 8; 15; 24; 3; 8; 15; 24; 3; 8; 15; 24 : : :

with general term
8

ˆ

ˆ

<

ˆ

ˆ

:

3 n � 1 mod.4/

8 n � 2 mod.4/

15 n � 3 mod.4/

24 n � 4 mod.4/

for n � 1. But that’s only one possibility among an infinity of others.One could,
for example, check that the polynomial

g.n/ D n4 � 10n3 C 36n2 � 48n C 24

has3, 8, 15, 24 as its values atn D 1, 2, 3, 4 respectively, butg.5/ D 59, and

5Guessing might be an appropriate strategy at some point whensolving a problem, but not whenun-
derstandinga problem. This is a real distinction between mathematics and some other disciplines. For
example, it is perfectly sensible to make guesses about whatit is you are trying to understand in science, but
in mathematics, if the basic terms have not been defined, there can be no problem.
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g.6/ D 168. So the ruleg.n/ would give an entirely different fifth term than
would n.n C 2/ though both give the same values at 1, 2, 3, and 4. Likewise,
one could assume the rule is another repeating form, for example

3; 8; 15; 24; 15; 8; 3; 8; 15; 24; 15; 8; : : :

where the value atn C 6 is the same as the value atn with the values atn D

1; 2; 3; 4; 5; 6 given above. In fact the way in which the original sequence could
be continued is limited only by your imagination, and who is to say one of these
answersis more correct than another?

Put yourself in the position of a student who has just been told that the correct
answer to the “problem”f3; 8; 15; 24g is 35. What will such a student think?
There is nomathematicalreason for such a claim, but the teacher is an authority
figure, so this student will tend to accept the teacher’s statement and revise any
idea he or she might have about what mathematics is. The student will begin to
arrive at the understanding that mathematics is, in fact, whatever the instructor
wants it to be! Moreover, the student will, as a corollary, learn that answering a
mathematical problem amounts to guessing what the person stating the problem
wants. Once that happens the student is lost to mathematics.I cannot tell you
the number of times that colleagues and even nonprofessionals from Russia,
Europe, Japan, and China have mentioned these ubiquitous next-term problems
on our tests to me and wondered how we managed to teach mathematics at all.

I wish I could say that these next-term questions are the onlyproblem with
K–12 mathematics in this country. But we’ve only skimmed thesurface. For
example,the one thing that is most trumpeted by advocates of so-called reform
math instruction in the United States is problem solving. Wewill see later that
the handling of this subject in K–12 is every bit as bad as the next term questions.
To prepare for our discussion of problem solving we need somepreliminaries.

School Mathematics as Lists

Perhaps the major reason for the pervasive collapse of instruction in the
subject lies in the common view of many educators that learning mathematics
consists of memorizing long lists of responses to various kinds of triggers —
mathematics as lists.

Over the past eight years I have read a large number of K–8 programs both
from this country and others and a number of math methods textbooks. None of
the underlying foundations for the subject are ever discussed in this country’s
textbooks. Instead, it seems as if there is a checklist of disconnected topics. For
example, there might be a chapter in a seventh- or eighth-grade textbook with
the following sections:
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� two sections onsolving one-step equations,
� two sections onsolving two-step equations,
� one section onsolving three-step equations,

but no discussion of the general process of simplifying linear equations and
solving them. Sometimes these check lists are guided bystate standards, but
the same structure is evident in older textbooks.

My impression is that too many K–8 teachers in this country, and conse-
quently too many students as well, see mathematics as lists of disjoint, dis-
connected factoids, to be memorized, regurgitated on the proximal test, and
forgotten, much like the dates on a historical time-line. Moreover, and more
disturbing, since the isolated items are not seen as coherent and connected, there
does not seem to be any good reason that other facts cannot be substituted for
the ones that are out of favor.

A good example is long division. Many people no longer see thelong-division
algorithm as useful since readily available hand calculators and computers will
do division far more quickly and accurately than we can via hand calculations.
Moreover, it takes considerable class time to teach long division. Therefore
many textbooks do not cover it. Instead, discussion of what is calleddata anal-
ysis replaces it. As far as I am able to tell, there was no consideration of the
mathematical issues involved in this change, indeed no awareness that there are
mathematical issues.6

The other concern that one has with the “mathematics as lists” textbooks is
that it’s like reading a laundry list. Each section tends to be two pages long.
No section is given more weight than any other, though their actual importance
may vary widely. Moreover, each section tends to begin with an example of a
trivial application of this day’s topic in an area that youngstudents are directly
experiencing. Cooking is common. Bicycles are common. But the deeper and
more basic contributions of mathematics to our society are typically absent.
How can students avoid seeing the subject as boring and useless?

6To mention but one, the algorithm for long division is quite different from any algorithm students have
seen to this point. It involves a process of successive approximation, at each step decreasing the difference
between theestimateand the exact answer by a factor of approximately 10. This is the first time that students
will have been exposed to a convergent process that is notexact. Such processes become ever more important
the further one goes in the subject. Additionally, this is the first time that estimation plays a major role
in something students are doing. Aside from this, the sophistication of the algorithm itself should be very
helpful in expanding students’ horizons, and help prepare them for the ever more sophisticated algorithms
they will see as they continue in mathematics. The algorithmwill be seen by students again in polynomial
long division, and from there becomes a basic support for thestudy of rational functions, with all their
applications in virtually every technical area. In short, if students do not begin to learn these things using the
long-division algorithm, they will have to get these understandings in some other way. These are aspects of
mathematics that should not be ignored.
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The Applications of Mathematics

The usual reasons given in school mathematics for studying mathematics are
because it is “beautiful,” for “mental discipline,” or “a subject needed by an
educated person.” These reasons are naive. It doesn’t matter if students find the
subject beautiful or even like it. Doing mathematics isn’t like reading Shake-
speare — something that every educated person should do, butthat seldom has
direct relevance to an adult’s everyday life in our society.The main reason for
studying mathematics is that our society could not even function without the
applications of a very high level of mathematical knowledge. Consequently,
without a real understanding of mathematics one can only participate in our so-
ciety in a somewhat peripheral way. Every student should have choices when he
or she enters the adult world. Not learning real mathematicscloses an inordinate
number of doors.

The applications of mathematics are all around us. In fact, they are the un-
derpinnings of our entire civilization, and this has been the case for quite a long
time. Let us look at just a few of these applications. First there are buildings,
aqueducts, roads. The mathematics used here is generally available to most
people, but includes Euclidean geometry and the full arithmetic of the rationals
or the reals.7 Then there are machines, from the most primitive steam engines
of three centuries back to the extremely sophisticated engines and mechanisms
we routinely use today.

Sophisticated engines could not even be made until Maxwell’s use of dif-
ferential equations in order to stop the engines of that timefrom flying apart,
stopping, or oscillating wildly, so the mathematics here starts with advanced
calculus. Today’s engines are far more sophisticated. Their designs require the
solutions of complex nonlinear partial differential equations and very advanced
work with linear algebra.

Today a major focus is on autonomous machines, machines thatcan do rou-
tine and even nonroutine tasks without human control. They will do the most
repetitive jobs, for example automating the assembly line and the most danger-
ous jobs.

Such jobs would then be gone, to be replaced by jobs requiringmuch more
sophisticated mathematical training. The mathematics needed for these ma-
chines, as was case with engines, has been the main impediment to actual wide-
scale implementation of such robotic mechanisms. Recently, it has become clear
that the key mathematics is available — mathematics of algebraic and geometric
topology, developed over the last century — and we have begunto make dra-
matic progress in creating the programs needed to make such machines work.

7The need to build structures resistant to natural disasterslike earthquakes requires much more advanced
mathematics.
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Because of this, we have to anticipate that later generations of students will not
have the options of such jobs, and we will have to prepare themfor jobs that
require proportionately more mathematical education.

But this only touches the surface. Computers are a physical implementation
of the rules of (mathematical) computation as described by Alan Turing and
others from the mid-1930s through the early 1940s. Working with a computer
at any level but the most superficial requires that you understand algorithms,
how they work, how to show they are correct, and that you are able to construct
new algorithms. The only way to get to this point is tostudybasic algorithms,
understand why they work, and even why these algorithms are better (or worse)
than others. The highly sophisticated “standard algorithms” of arithmetic are
among the best examples to start. But one needs to know other algorithms,
such as Newton’s Method, as well. What is essential is real knowledge of and
proficiency withalgorithms in general, not just a few specific algorithms.

And we’ve still only touched the surface. Students have to beprepared to live
effective lives in this world, not the world of five hundred years back. That world
is gone, and it is only those who long for what never was who regret its pass-
ing. Without a serious background in mathematics one’s options in our present
society are limited and become more so each year. Robert Reich described the
situation very clearly [2003]:

The problem isn’t the number of jobs in America; it’s the quality of jobs.
Look closely at the economy today and you find two growing categories
of work — but only the first is commanding better pay and benefits. This
category involves identifying and solving new problems. . .. This kind of
work usually requires a college degree. . . .

The second growing category of work in America involves personal
services. . . . Some personal-service workers need education beyond high
school — nurses, physical therapists and medical technicians, for example.
But most don’t.

Mathematical Topics and Stages in School Mathematics

Historically, the choices of the mathematics played out on particular math-
ematical stages that is taught in K–12 have been tightly tiedto the needs of
our society. Thus, my own education in upstate New York and Minnesota, with
learning to use logarithms and interpolation in fifth and sixth grade, exponen-
tials and compound interest in seventh grade, and culminating in solid geometry
and trigonometry was designed to prepare for the areas of finance, architecture,
medicine, civil, and mechanical engineering. For example,exponentials are
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essential for figuring dosages of medicine and for dealing with instability, errors
and vibrations in mechanisms.

In the countries most successful in mathematics education,these consider-
ations routinely go into their construction of mathematicsstandards. People
from all concerned walks of life set thecriteria for the desired outcomes of the
education system, and professional mathematicians then write the standards.
In the U.S. the notion of overriding criteria and focused outcomes seems to
virtually never play a role in writing mathematics standards, and the outcomes
are generally chaotic.

Let us now return to our main theme — mathematical proficiency.

Definitions

We have talked about what mathematics is in general terms. The word that
was most frequently used was precision. The first key component of mathe-
matical proficiency is the ability to understand, use, and asnecessary, create
definitions.

A definition selects a subset of the universe under discussion — the elements
that satisfy the definition.

Once one has a definition one must understand it. This does notsimply mean
that one memorizes it and can repeat it verbatim on command. Rather, a student
should understand why it is stated the way it is. It is necessary to apply at least
the following three questions to every definition:

� What does the statement include?
� What does the statement exclude?
� What would happen if the definition were changed and why is thechanged

definition not used?

This is so basic that, once it became clear that my father could not dissuade
me from becoming a mathematician, he gave me one key piece of advice. He
said “Whenever you read a book or a paper in mathematics and you come to
a definition, stop. Ask why the definition was given in the way it was, try
variations and see what happens. You will not understand what is going on
unless you do.”

The lack of definitions in U.S. mathematics instruction. Definitions are the
most problematic area in K–12 instruction in this country. First, they hardly
ever appear in the early grades, and later, when people attempt to use definitions
they get things wrong. Consider the following problem from arecent sample of
released eighth-grade state assessment questions [Kentucky 2004, p. 5]:
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4. Which diagram below best shows a rotation of the pre-imageto the
image?
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The solution sheet tells us that the upper left choice is “theanswer,” but is it?
Let us ignore the imprecision of the phrase “best shows,” andassume that what
is being asked is “Which diagram shows the effect of a rotation from the pre-
image to the image?”8 In fact, each of the answers is correct, depending on how
well one knows the definition and properties of rotations.

A rotation in space always has an axis, a straight line fixed under the rotation.
To see such a rotation take an orange, support it only at the top and bottom and
spin the orange. When it stops you will have a rotation through the total angle of
the spin. We obtain all but the picture at the upper right in this way, depending
on the angle of the line connecting the top and bottom and where we put the
triangle in the orange. But even the picture at the upper right can be obtained by
a rotation from a more advanced mathematical perspective — that of projective
geometry. This is a subject that was extensively studied about a century back,
and is usually part of standard undergraduate geometry or applied linear algebra
courses at the college level. It is the essential tool in computer graphics. One
would hope that the people charged with writing a state math assessment would
know mathematics at this level, but they should certainly beaware that rotations
in space are easier to understand than rotations in the plane. Also, note the
gratuitous use of the terms “image” and especially “pre-image” in this problem.

8As stated this problem rests on the undefined notion of “best.” So, as discussed above, it is not a question
in mathematics. But we might guess the intent of the question, and that is what I tried to do in rephrasing it.
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It seems to be the norm in K–8 mathematics textbooks in this country that
there are no definitions in the early grades, and this seems toalso be the practice
in virtually all our K–5 classrooms. For example, in the NCTM’s Principles and
Standards[NCTM 2000] we find

� develop understanding of fractions as parts of unit wholes,as parts of a col-
lection, as locations on number lines, and as divisions of whole numbers;

� use models, benchmarks, and equivalent forms to judge the size of fractions.

Note the strict use of models (or representations, in factmultiple representa-
tions), instead of definitions. We had a difficult time with this standard in Cal-
ifornia. If you are going to compare fractions you have to have a definition of
fraction, and then a definition telling what it means for a fraction to be greater
than another fraction.9 So we changed it to

� Explain different interpretations of fractions, for example, parts of a whole,
parts of a set, and division of whole number by whole numbers.

Even this was not entirely satisfactory since there was no explicit definition, but
implicitly, the use of the terminterpretationsshould give a hint that there is a
single notion underlying all these differentrepresentations. At least that was
what we hoped.10

Who gets hurt when definitions are not present?The emphasis on precision
of language and definitions matters most for exactly the mostvulnerable of our
students. It is these students who must be given the most careful and precise
foundations. The strongest students often seem able to fill in definitions for
themselves with minimal guidance. On the other hand, foreign outcomes clearly
show that with proper support along these lines, all students can get remarkably
far in the subject.

Mathematical Problem Solving

We have seen that there are three basic components to mathematics: stages,
definitions, and problem solving. We have discussed the firsttwo. It is now time
to discuss problem solving.

9Educators tend to look at one blankly when we say something like this. They typically respond that,
intuitively, there is only one possible ordering. But this is not true. Orderings have been studied in advanced
mathematics and it turns out that there are infinitely manydifferentconsistent meanings for less than or greater
than for fractions and integers, each of which has its uses. The actual situation is very far from being intuitive.

10Underlying the lacuna in school math around definitions sometimes appears to be a belief, or perhaps
a hope, that mathematics is innate, and that students, playing with manipulatives, will find all of mathematics
already hiding in their memories. Mathematicians who teachmathematics for pre-service elementary school
teachers often have to deal with such claims when students from the education schools come to them explain-
ing that they do not have to learn what is currently being covered in the course since they will automatically
know it when they need it.
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To start, I think everyone needs to be aware of this basic truth:

PROBLEM SOLVING IS CURRENTLY AN ARCANE ART.

We do not know how to reliably teach problem solving.The most effective
method I know is to have a mathematician stand in front of a class and solve
problems. Many students seem to be able to learn something ofthis multi-
faceted area in this way, but, as we will see, the stage has to be carefully set
before students can take advantage of this kind of experience.

What I will discuss now is what virtually all serious research mathematicians
believe, and, as far as I’ve been able to ascertain, most research scientists. This is
not what will be found in a typical math methods textbook. Other theories about
mathematical problem solving are current there. It could bethat the focus of the
views on problem solving in these texts is concerned with routine problems
where the biggest effort might be in understanding what the problem is asking.
This can be a difficult step, buthere we are talking about solving a problem
where the answer is not immediate and requires a novel idea from the student.
It is exactly this level of problem solving that should be theobjective for every
student, because, at a minimum, this is what virtually all nonroutine jobs will
require.

For example, when I was young, dock work was brutal — lifting and carrying.
Today, the vast majority of this work is done by huge robotic mechanisms, and
the dock worker of today spends most of his or her time controlling a very
expensive and complex machine or smaller forklifts. The usual requirement
is two years of college to handle the big machines, because running these big
machines entails extensive nonroutine problem solving.

The hidden part of problem solving. There is a hidden aspect to problem
solving: something that happens behind the scenes, something that we currently
do not know how to measure or explain. It is remarkable, when you read the
biographies of great mathematicians and scientists that they keep saying of their
greatest achievements, “I was doing something else and the answer to my prob-
lem just came to me.”11 This is not only true for the greatest, it is true for every
serious research mathematician or scientist that I’ve evertalked to about this
kind of issue.

Answers and ideas just seem to come out of the blue. But they don’t! There
are verbal and nonverbal aspects to problem solving.Successful researchers
have learned how to involve the nonverbal mechanisms in their brains in an-
alyzing and resolving their problems, and it is very clear that these nonverbal
regions are much more effective at problem solving than the verbal regions.(My

11H.-H. Wu points out that the first example of this that he is aware of in print is due to H. Poincaré.
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usual experience was to wake up suddenly at 2:00 a.m. or so, and the answer to
a problem that I had been working on without success maybe twoweeks back
would be evident.)

In order to engage the nonverbal areas of the brain in problemsolving, exten-
sive training seems to be needed. This is probably not unlikethe processes that
one uses to learn to play a musical instrument.12 Students must practice! One
of the effects, and a clear demonstration that the process isworking, is when
students become fluent with the basic operations and don’t have to think about
each separate step.

For the common stages of school mathematics, students must practice with
numbers. They must add them until basic addition is automatic. The same
for subtraction and multiplication. They must practice until these operations
are automatic. This isnot so that they can amaze parents and friends with
mathematical parlor tricks, but to facilitate the nonverbal processes of problem
solving. At this time we know of no other way to do this, and I can tell you, from
personal experience with students, that it is a grim thing towatch otherwise very
bright undergraduates struggle with more advanced coursesbecause they have
to figure everything out at a basic verbal level. What happenswith such students,
since they do not have total fluency with basic concepts, is that — though they
can often do the work — they simply take far too long working through the most
basic material, and soon find themselves too far behind to catch up.

Skill and automaticity with numbers is only part of the story. Students must
also bring abstraction into play. This is also very commonlyan unconscious
process. There are huge numbers of choices for what to emphasize and what to
exclude in real problems so as to focus on the core of what matters. Indeed, it
is often far from clear what the core actually is. As was the case before, one has
to practice to facilitate abstraction. How?

One explores the situation, focusing on one area, then another, and accumu-
lates sufficient data so that nonverbal tools in the brain cansort things out and
focus on what matters. But in order to do this, the groundworkhas to be laid.
That is what algebra does (or is supposed to do). That is why students should
practice with abstract problems and symbolic manipulation. Moreover, as we
know, Algebra I and more particularly Algebra II are the gatekeepers for college
[Adelman 1999, p. 17]. When we think of problem solving in this way, that is
not so surprising.

The need for further study. Our knowledge here is fragmentary and anecdotal.
What I was saying above is highly plausible, and all the research mathematicians
that I’ve discussed it with agree that it fits their experiences. However, it is not

12It is probably not a coincidence that an inordinate number ofprofessional mathematicians are also
skilled musicians.
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yet possible to assert this knowledge as fact. Basic research needs to be done,
much as was done for reading. The medical and psychological sciences almost
certainly have the tools to begin such research now. But so far, such work is
only in the earliest stages of development. In the meantime,I would suggest
that the observations above not be ignored. It is clear that current approaches to
problem solving in K–12 are not working as well as we would like.

We have not discussed the verbal aspects of problem solving.We will turn to
them shortly, but first let us discuss one final aspect of mathematics, the interface
between mathematics and the real world.

The Art of Creating Well-Posed Problems

This is another thing that we do not know how to teach. Rather,this is one of
the most important things that our best Ph.D. students in mathematics actually
are learning when they write a thesis. They are initially given small, reasonably
well-posed problems to get their feet wet, and, if they survive this, then they are
given a real problem, roughly posed, and some guidance.

What the students are then asked to do is to create sensible, appropriate, well-
posed problems, that, when taken together, will give a satisfactory answer to the
original question. And, of course, the students are expected to be able to resolve
the questions they come up with.

It should be realized that not all real-world problems are amenable to math-
ematical analysis in this way — including those that talk about numbers. For
example we have the following problem taken from theCalifornia Mathematics
Framework[California 1992]:

The 20 percent of California families with the lowest annualearnings pay
an average of 14.1 percent in state and local taxes, and the middle 20
percent pay only 8.8 percent. What does that difference mean? Do you
think it is fair? What additional questions do you have?

One can apply the processes we discussed earlier to create any number of well-
posed questions, but it will be very difficult to find any that are highly relevant.
A huge problem is how to give a precise but reasonable definition of “fair.” The
idea of fairness is subject to much debate among social scientists, politicians,
economists, and others. Then, when one attempts to see what the 14.1% and
8.8% might actually mean, further questions arise, including questions about the
amounts spent by these two groups in other areas, and what theimpact of these
amounts might be. In fact, applying rigorous analysis of thetype being discussed
here with the objective of creating proper questions in mathematics shows just
how poorly the question was actually phrased and prevents aneducated person
from taking such a question at face value. Moreover, it showsthat one essentially
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cannot produce well-posed questions in mathematics that accurately reflect the
objectives of this question. This example, even though numbers appear in it, is
not a question that can be directly converted into questionsin mathematics.

Let us look at one real-life example. A few years back I was asked to help
the engineering community solve the basic problem of constructing algorithms
that would enable a robotic mechanism to figure out motions without human
intervention in order to do useful work in a region filled withobstacles.

The discussion below illustrates the key issues in creatingwell-posed prob-
lems from real-world problems, and the way in which mathematicians, scien-
tists, engineers, and workers in other areas approach such problems.

The first step was to break the problem into smaller parts and replace each part
by a precise question in mathematics.The physical mechanism was abstracted
to something precise that modeled what we viewed as the most important fea-
tures of the mechanism. Then the obstacles were replaced by idealized obstacles
that could be described by relatively simple equations.

The initial problem was now replaced by an idealized problemthat could be
formulated precisely and was realistic in the sense that solutions of this new
problem would almost always produce usable motions of the actual mechanism.

The second step was to devise a method to solve the mathematical problem.We
tested the problem and soon realized that this first approximation was too big a
step. A computer had to be able to plan motions when there wereno obstacles
before it could handle the idealized problem in a region withobstacles. The
mathematics of even the problem with no obstacles had been a stumbling block
for engineers, and the methods that are currently used for both regions with and
without obstacles are quite crude — basically, create a large number of paths
and see if any of them work! The difficulty with this approach is that it takes
hours to compute relatively simple paths.

The plan was refined and revised.It turned out that the engineering community
was not aware of a core body of mathematics that had been developed over
the last hundred years. Within this work were basic techniques that could be
exploited to completely resolve the problem of motion planning when no obsta-
cles were present. Everything that was needed could be foundin the literature.
Of course, one needed extensive knowledge of mathematics tobe able to read
the literature and know where to look for what was known.

We could now resolve the simplified problem, but could we solve the original
mathematical problem?With the solution of the first problem as background,
we studied the problem with obstacles. The new techniques were applicable
to this problem as well. But here new and very focused problemsolving was
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needed, since the required results were not in the literature. It turned out that
this, too, could be done. What was needed was real understanding and fluency
with the mathematics being used.

Having solved the mathematical problem, could we apply the solution to the
original real-world problem?Once the mathematical problem was solved, the
solution and its meaning had to be communicated to the engineering community.
Translating the mathematics into practical algorithms wasthe final step. It is
currently being finished but already, programs have been written that do path
planning for simple mechanisms in regions with lots of obstacles in fractions of
a second.

What do we learn from this example? The first step is the key. One ab-
stracts the problem, replacing it by problems that can be precisely stated within a
common stage — hence are problems in mathematics — and that have a realistic
chance of being solved. This requires real knowledge of the subject, and is a key
reason why students have to learn a great deal of mathematics.13 When solving
or creating problems, knowledge of similar or related situations is essential.

But one also has to be sure that the resulting answers will be of use in the
original problem. For this, one must be cognizant of what hasbeen left out
in the abstracted problem, and how the missing pieces will affect the actual
results. This is why understanding approximation and error analysisare so
important. When one leaves the precise arena of mathematics and does actual
work with actual measurements, one has to know that virtually all measurements
have errors and that error build up that has not been accounted for can make all
one’s work useless.

There is no onecorrect problemin this process, in the sense that there can
be many differentfamilies of mathematical problemsthat one can usefully as-
sociate with the original real-world problem. However, it must be realized that
each “mathematical problem” will haveonly one answer. This is another point
where there has been confusion in school mathematics. Therehas been much
discussion of real-world problems in current K–12 mathematics curricula, but
then it is sometimes stated that these problems have many correct mathematical
answers, a confounding of two separate issues.14

Here is a very elementary example. This is a popular third-grade problem.

Two friends are in different classrooms. How do they decide which class-
room is bigger?

13More precisely, I should add “carefully selected mathematics,” where the selection criteria include the
liklihood that the mathematics taught will be needed in targeted occupations and classes of problems.

14Perhaps this should be recognized as an example of what happens if one is not sufficiently precise in
doing mathematics. Confoundingproblemswith answersconfused an entire generation of students and was
one of the precipitating factors in the California math wars.
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This is a real-world problem but not a problem in mathematics. The issue is that
the wordbigger does not have a precise meaning. Before the question above
can beassociated to a problem in mathematicsthis word must be defined. Each
different definition gives rise to a different problem.

The next step is to solve these new problems. That’s another story.

Mathematical Problem Solving II

We have discussed the general issues involved in solving problems in math-
ematics, the distinction between verbal processes and nonverbal processes. It is
now time to talk about the verbal processes involved in problem solving.

Many people regard my former colleague, George Pólya, as the person who
codified the verbal processes in problem solving.15 He wrote five books on
this subject, starting withHow to Solve It[Pólya 1945], which was recently
reprinted. We will briefly discuss his work on this subject.

One needs the context in which his books were written in orderto understand
what they are about. Ṕolya together with his colleague and long-time collabora-
tor, G. Szeg̈o, believed that their main mathematical achievement was the two-
volumeAufgaben und Lehrs̈atze aus der Analysis[1971], recently translated as
Problems and Theorems in Analysisand published by Springer-Verlag. These
volumes of problems were meant to help develop the art of problem solving
for graduate students in mathematics, and they were remarkably effective.16 I
understand that Ṕolya’s main motivation in writing his problem-solving books
was to facilitate and illuminate the processes he and Szegö hoped to see devel-
oped by students who worked through their two volumes of problems. (Ṕolya
indicates in the two-volumeMathematics and Plausible Reasoning[1954] that
graduate students were his main concern. But he also ran a special junior/senior
seminar on problem solving at Stanford for years, so at many points he does
discuss less advanced problems in these books.)

Another thing that should be realized is that the audience for these books
was modeled on the only students Pólya really knew, the students at the Eid-
gen̈ossische Technische Hochschule (Swiss Federal Institute of Technology) in
Zürich, and the graduate and undergraduate mathematics majors at Stanford.
Thus, when Ṕolya put forth his summary of the core verbal steps in problem
solving:

15Other people, particularly Alan Schoenfeld, have studied and written on mathematical problem solving
since, and I take this opportunity to acknowledge their work. However, the discussions in most mathematics
methods books concentrate on Pólya’s contributions, so these will be the focus of the current discussion.

16For example, my father helped me work through a significant part of the first volume when I was 18,
an experience that completely changed my understanding of mathematics.



4. WHAT IS MATHEMATICAL PROFICIENCY? 53

1. Understand the problem
2. Devise a plan
3. Carry out the plan
4. Look back

he was writing for very advanced students and he left out manycritical aspects
of problem solving like “check that the problem is well-posed,” since he felt
safe in assuming that his intended audience would not neglect that step. But,
as we’ve seen in the discussion above, this first step cannot be left out for a
more general audience. Indeed, for today’s wider audience we have to think
very carefully about what should be discussed here.

The other thing that appears to have been left out of Pólya’s discussion is the
fact that problem solving divides into its verbal and nonverbal aspects. This is
actually not the case. Pólya was well aware of the distinction. Here is a core
quote from [Ṕolya 1945, p. 9], where he talks about getting ideas, one of the
key nonverbal aspects of problem solving:

We know, of course, that it is hard to have a good idea if we havelittle
knowledge of the subject, and impossible to have it if we haveno knowl-
edge. Good ideas are based on past experience and formerly acquired
knowledge. Mere remembering is not enough for a good idea, but we can-
not have any good idea without recollecting some pertinent facts; materials
alone are not enough for constructing a house but we cannot construct a
house without collecting the necessary materials. The materials necessary
for solving a mathematical problem are certain relevant items of our for-
merly acquired mathematical knowledge, as formerly solvedproblems, or
formerly proved theorems. Thus, it is often appropriate to start the work
with a question: Do you know a related problem?

It is worth noting how these context difficulties have affected the importation
of Pólya’s ideas into the K–12 arena. Keep in mind that one of the key aspects
of problem solving — illustrated by all the previous remarks— is the degree of
flexibility that is needed in approaching a new problem. By contrast, today’s
math methods texts apply the rigidity of list-making even toPólya’s work. Thus
we have the following expansion of Pólya’s four steps taken from a widely used
math methods book17 that pre-service teachers are expected to learn as “problem
solving.”

1. Understanding the problem

(i) Can you state the problem in your own words?

17The book’s title and authors are not mentioned here because this represents a general failure and is not
specific to this book.



54 R. JAMES MILGRAM

(ii) What are you trying to find or do?

(iii) What are the unknowns?

(iv) What information do you obtain from the problem?

(v) What information, if any, is missing or not needed?

2. Devising a plan

(i) Look for a pattern

(ii) Examine related problems and determine if the same technique applied
to them can be applied here

(iii) Examine a simpler or special case of the problem to gaininsight into the
solution of the original problem.

(iv) Make a table.

(v) Make a diagram.

(vi) Write an equation.

(vii) Use guess and check.

(viii) Work backward.

(ix) Identify a subgoal.

(x) Use indirect reasoning.

3. Carrying out the plan

(i) Implement the strategy or strategies in step 2 and perform any necessary
actions or computations.

(ii) Check each step of the plan as you proceed. This may be intuitive check-
ing or a formal proof of each step.

(iii) Keep an accurate record of your work.

4. Looking back

(i) Check the results in the original problem. (In some cases, this will require
a proof.)

(ii) Interpret the solution in terms of the original problem. Does your answer
make sense? Is it reasonable? Does it answer the question that was asked?

(iii) Determine whether there is another method of finding the solution.

(iv) If possible, determine other related or more general problems for which
the technique will work.

Here are very similar expansions from another widely used math methods
text, to reinforce the fact that the rigid expansion of Pólya’s four steps above is
the norm, rather than the exception:
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Understand the problem

� Read the information
� Identify what to find or pose the problem
� Identify key conditions; find important data
� Examine assumptions.

Develop a plan

� Choose Problem-Solving Strategies

(i) Make a model.

(ii) Act it out.

(iii) Choose an operation.

(iv) Write an equation.

(v) Draw a diagram.

(vi) Guess-check-revise.

(vii) Simplify the problem.

(viii) Make a list.

(ix) Look for a pattern.

(x) Make a table.

(xi) Use a specific case.

(xii) Work backward.

(xiii) Use reasoning.

� Identify subproblems.
� Decide whether estimation, calculation, or neither is needed.

Implement the plan

� If calculation is needed, choose a calculation method.
� Use Problem-Solving Strategies to carry out the plan.

Look back

� Check problem interpretation and calculations.
� Decide whether the answer is reasonable.
� Look for alternate solutions.
� Generalize ways to solve similar problems.

The consequences of the misunderstanding of problem solving in today’s
textbooks and tests. I mentioned at the beginning of this essay that state
assessments in mathematics average 25% mathematically incorrect problems
each. Indeed, with Richard Askey’s help, I was responsible for guiding much
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of the development of the evaluation criteria for the mathematics portion of the
recently released report on state assessments by Accountability Works [Cross
et al. 2004]. In this role we had to read a number of state assessments, and 25%
was consistent. These errors were not trivial typos, but basic misunderstandings
usually centered around problem solving and problem construction.

Sadly, Ṕolya was fully aware of these risks, but could do nothing to prevent
them even though he tried. It is not common knowledge, but when the School
Mathematics Study Group (SMSG)18 decided to transport Ṕolya’s discussion
to K–12, Ṕolya strenuously objected. Paul Cohen told me that at one of the
annual summer meetings of SMSG at Stanford in the late 1960s,Pólya was
asked to give a lecture, and in this lecture he explained why the introduction of
“problem solving” as a key component of the SMSG program was avery bad
mistake. Afterwards, Cohen told me that Pólya was well aware that his audience
had applauded politely, but had no intention of following his advice. So Ṕolya
asked Cohen, who had just won the Fields medal, if he would help. But it was
not possible to deflect them.

In hindsight we can see just how accurate Pólya was in his concerns.

Summary

Mathematics involves three things: precision, stages, andproblem solving.
The awareness of these components and the ways in which they interact for
basic stages such as the real numbers or the spaces of Euclidean geometry and
the stages where algebra plays out are the essential components of mathematical
proficiency. Perhaps the biggest changes in K–12 instruction that should be
made to bring this to the forefront are in the use of definitions from the earliest
grades onwards. Students must learn precision because if they do not, they will
fail to develop mathematical competency. There is simply nomiddle ground
here.

It is well known that early grade teachers are very concernedwith making
mathematicsaccessibleto students, and believe that it is essential to make it fun.
However, while many educators may believe that precision and accessibility are
in direct opposition to each other, a study of the mathematics texts used in the
programs of the successful foreign countries shows that this is not the case.
Problems can be interesting and exciting for young students, and yet be precise.

Problem solving is a very complex process involving both verbal and nonver-
bal mental processes. There are traps around every corner when we attempt
to codify problem solving, and current approaches in this country have not

18The School Mathematics Study Group was the new-math projectthat met in the summer at Stanford
during the 1960s.
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been generally successful. The concentration has been almost entirely on verbal
aspects. But verbal problem solving skills, by themselves,simply do not get
students very far. On the other hand, the only way mathematicians currently
know to develop the nonverbal part involves hard work — practice, practice,
more practice, and opportunities to see people who are able to work in this way
actually solve problems.

Over a period of generations, teachers in the high-performing countries have
learned many of these skills, and consequently I assume thatstudents there are
exposed to all the necessary ingredients. It seems to be remarkable how success-
ful the results are. The percentages of students who come outof those systems
with a real facility with mathematics is amazing.

There is no reason that our students cannot reach the same levels, but there is
absolutely no chance of this happening overnight. Our entire system has to be
rebuilt. The current generation of pre-service teachers must be trained in actual
mathematics.

It is likely to take some time to rebuild our education system, and we can-
not be misled by “false positives” into prematurely thinking that we’ve reached
the goal. For example, right now, in California, the generaleuphoria over the
dramatic rise in test outcomes through the middle grades puts us in the most
dangerous of times, especially with limited resources and the fact that we have
been unable to change the educations that our K–8 teachers receive.

Our current teachers in California have done a remarkable job of rebuilding
their own knowledge. I’m in awe of them. I had assumed, when wewrote the
currentCalifornia Mathematics Standards, that the result would be a disaster
since the new standards represented such a large jump from previous expecta-
tions and consequent teacher knowledge, but these teachersproved themselves
to be far more resilient and dedicated than I had ever imagined.

As remarkable as our teachers have been, they could only go sofar. But given
the demonstrated quality of the people that go into teaching, if mathematicians
and mathematics educatorsmanage to do things right, I’ve every confidence
that theywill be able to go the rest of the way.

As Alan Greenspan’s remarks at the beginning of this essay show, the stakes
are simply too high for failure to be an option.
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[Pólya 1945] G. Ṕolya, How to solve it: A new aspect of mathematical method,
Princeton University Press, 1945.
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