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On the Pair-Crossing Number

PAVEL VALTR

Abstract. By a drawing of a graph G, we mean a drawing in the plane
such that vertices are represented by distinct points and edges by arcs. The
crossing number cr(G) of a graph G is the minimum possible number of
crossings in a drawing of G. The pair-crossing number pair-cr(G) of G is
the minimum possible number of (unordered) crossing pairs in a drawing
of G. Clearly, pair-cr(G) ≤ cr(G) holds for any graph G. Let f(k) be the
maximum cr(G), taken over all graphs G with pair-cr(G) = k. Obviously,
f(k) ≥ k. Pach and Tóth [2000] proved that f(k) ≤ 2k2. Here we give
a slightly better asymptotic upper bound f(k) = O(k2/ log k). In case of
x-monotone drawings (where each vertical line intersects any edge at most

once) we get a better upper bound fmon(k) ≤ 4k4/3.

1. Introduction

By a drawing of a graph G, we mean a drawing in the plane such that vertices

are represented by distinct points and edges by arcs. The arcs are allowed to

cross, but they may not pass through vertices (except for their endpoints) and no

point is an internal point of three or more arcs. Two arcs may have only finitely

many common points. A crossing is a common internal point of two arcs. A

crossing pair is a pair of edges which cross each other at least once. A drawing

is planar, if there are no crossings in it. A subdrawing of a drawing is defined

analogously as a subgraph of a graph.

The crossing number cr(G) of a graph G is the minimum possible number of

crossings in a drawing of G. The pair-crossing number pair-cr(G) of G is the

minimum possible number of (unordered) crossing pairs in a drawing of G.

In this paper we investigate the relation between the crossing number and

the pair-crossing number. Clearly, pair-cr(G) ≤ cr(G) holds for any graph G.

The problem of deciding whether cr(G) = pair-cr(G) holds for every G appears

quite challenging. Let f(k) be the maximum cr(G), taken over all graphs G

with pair-cr(G) = k. Obviously, f(k) ≥ k. Pach and Tóth [2000] proved that
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f(k) ≤ 2k2. In fact, they proved this bound in a stronger version when the

pair-crossing number is replaced by the so-called odd-crossing number, which is

the minimum number of pairs of edges in a drawing that cross each other an

odd number of times. Here we find a slightly better asymptotic upper bound on

f(k):

Theorem 1. f(k) = O(k2/ log k).

The improvement is small but its proof gives some insight to the structure of

possible counterexamples to f(k) = k.

We get a significantly subquadratic upper bound in the case of (x-)monotone

drawings. A drawing D is monotone if every edge is drawn as an x-monotone

curve, meaning that no vertical line intersects it more than once. The monotone

crossing number crmon(G) is the minimum possible number of crossings in a

monotone drawing of G. The monotone pair-crossing number pair-crmon(G) is

defined analogously— it is the minimum possible number of (unordered) crossing

pairs in a monotone drawing of G. Let fmon(k) be the maximum crmon(G), taken

over all graphs G with pair-crmon(G) = k. Obviously, fmon(k) ≥ k.

Theorem 2. fmon(k) ≤ 4k4/3.

Theorem 1 is proved in Section 2 and Theorem 2 in Section 3.

Remarks. 1. It is possible that our results hold also if the (monotone) pair-

crossing number is replaced by the so-called (monotone) odd-crossing number

(see [Pach and Tóth 2000] for the definition of the odd-crossing number and for

a similar result). We did not investigate this question.

2. Some related results can be found in [Kolman and Matoušek 2004]. In

particular, these authors prove that

cr(G) = O

(

log3 |V |

(

pair-cr(G) +
∑

v∈V

(deg v)2
))

for any graph G = (V,E).

3. One could hope to prove f(k) = k by a contradiction, considering local

modifications of a drawing witnessing f(k) > k. We tried this approach but it

does not seem to work in some straightforward way. Our difficulties with this

approach might have an explanation in an example [Kratochv́ıl and Matoušek

1994] of a drawing in which it is not possible to eliminate multiple crossings of

edge pairs without introducing new crossing pairs.

2. A Logarithmic Improvement over the Quadratic Bound

Here we give a simple proof of f(k) ≤ 2k2 and then refine the method, thereby

obtaining f(k) = O(k2/ log k).
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A simple proof of the quadratic bound. The bound f(k) ≤ 2k2 can be

proved easily; this was probably known to experts but, as far as we know, hasn’t

appeared in print. Let G be a graph with pair-cr(G) = k. Consider a drawing D0

of G witnessing pair-cr(G) = k. At most 2k edges, the bad edges, are involved

in at least one crossing in D0. The remaining edges, the good edges, form a

planar subdrawing Dpl of D0. Each of the bad edges is drawn in a single face of

Dpl. Let us choose a drawing D of G that extends Dpl such that each bad edge

is drawn within a single face of Dpl, and the number of crossings is minimized

among all such drawings.

We now show that every two edges cross at most once in the drawing D.

Suppose on the contrary that x1, x2 are common crossings of two edges e, f . We

swap the portions of e and f between x1 and x2, thereby eliminating x1, x2 and

introducing no new crossings (see Figure 1). If the swap creates selfintersections

of e or f , we easily eliminate them without introducing any new crossings (see

Figure 2). We get a contradiction with the minimum number of crossings in D.

f

e

x1 x2

e

f

e

f

e

f

x1 x2

Figure 1. Swapping e, f between x1, x2 (two cases).

Figure 2. Eliminating selfintersections of an edge.

Thus, any two edges in D cross each other at most once.

It follows that there are at most
(

2k
2

)

≤ 2k2 crossings in D.
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The logarithmic improvement. Here we prove Theorem 1. Let G be a

graph with pair-cr(G) = k. Let us consider a drawing D0 of G witnessing

pair-cr(G) = k. Let t be a suitable parameter to be fixed later (it will be of

order log k). Let us call an edge of G good if it crosses no edge in the drawing

D0, light if it crosses at least one and at most t edges in D0, and heavy if it

crosses more than t edges in D0. Although we later redraw light and heavy

edges several times, the notation “good”, “light”, or “heavy” is fixed for each

edge of G by the above definition. Let l be the number of light edges and h the

number of heavy edges.

Let D1 be the subdrawing of D0 formed by the good and light edges, and let

Dpl be its planar subdrawing formed by the good edges only.

Consider a cell of Dpl. Suppose that some light edge in this cell crosses at

least 2t other light edges. Then we can decrease the number of crossings in D1

without introducing any new crossing pair of edges, as can be seen from the

following result of Schaefer and Štefankovič [2004] (implicitly contained in the

proof of their Theorem 3.2): Let D be a drawing of a graph G, and let e be an

edge of G that crosses at most t other edges in D. Suppose that e has at least 2t

crossings in D. Then the edge e and the edges crossing it can be redrawn (within

a small neighborhood of e) in such a way that the obtained drawing D′ of G has

fewer crossings than D and that there are no new crossing pairs of edges in D′

(compared to D).

Applying the result of Schaefer and Štefankovič finitely many times, we obtain

a redrawing D2 of D1 with the same or smaller number of crossing pairs, such

that each light edge is redrawn within the same face of Dpl and is involved in

at most 2t − 1 crossings. Thus, there are at most l · (2t − 1)/2 crossings in D2

(recall that l is the number of light edges).

Now, let D3 be a redrawing of D2 such that each light edge is redrawn within

the same face of Dpl and that the number of crossings in D3 is minimized. D3 has

at most as many crossings as D2, i.e., at most l · (2t − 1)/2 crossings. Moreover,

every two edges in D3 cross each other at most once (otherwise we could argue

analogously as in Figs. 1 and 2).

Finally, we add the heavy edges to the drawing D3, in such a way that each

heavy edge is drawn in the same face of Dpl as in D0, the number of heavy-light1

crossings is minimized, and subject to this, the number of heavy-heavy crossings

is minimized. Let D4 be the obtained drawing of G.

We claim that each heavy edge crosses any other edge at most once. To see

this, first suppose that a heavy edge e crosses a light edge f at least twice, and

let x1 and x2 be two crossings of e and f . Let ze be the number of crossings

of the portion of e between x1 and x2 with light edges, and similarly for zf . If

zf ≤ ze, then e can be routed along f between x1 and x2, thereby decreasing

1A crossing is heavy-light, if it is a crossing of a heavy edge with a light edge. Heavy-heavy

and light-light crossings are defined analogously.
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the number of heavy-light crossings. See Figure 3. Possible selfintersections of e

are eliminated as in Figure 2. If zf > ze, then the drawing D3 did not have the

e

f

e

f

x1 x2

x1 x2

e

f

e

f

Figure 3. Rerouting e along f between x1 and x2 (two cases).

minimum number of crossings, as the number of crossings in it could be decreased

by routing f along e. Again, possible selfintersections of f are eliminated as in

Figure 2.

Similarly, suppose that two heavy edges e and f cross at least twice, and let

x1, x2 be two of their common crossings. Then swapping the portions of e and

f between x1 and x2 eliminates x1 and x2; see Figure 1. (As above, possible

selfintersections of e or f are eliminated as in Figure 2.)

Thus, the heavy edges are involved in at most
(

h
2

)

+ h · l ≤ h(h + l) ≤ h · 2k

crossings. The good edges are involved in no crossings and the number of light-

light crossings is at most l · (2t − 1)/2. Thus, the total number of crossings in

D4 is at most h · 2k + l · (2t − 1)/2. Using the obvious inequalities l ≤ 2k and

h ≤ 2k/t, this is at most O(k2/t + k2t). Setting t = 1
2

log2 k, say, gives the

claimed bound. The proof of Theorem 1 is complete.

3. Monotone Drawings

In this section we prove Theorem 2. Let G be a graph with pair-crmon(G) = k.

Among all monotone drawings of G witnessing pair-crmon(G) = k, we choose a

drawing D with the minimum number of crossings. We define good, light , and

heavy edges in D in the same way as in the proof of Theorem 1 (now, the

parameter t will be equal to k1/3).

Lemma 1. Let e be a light edge in D. Then e intersects each edge at most 2t−1

times.

Proof. Consider an edge f ∈ E(D), f 6= e. Since D is monotone, each pair of

consecutive common crossings of e, f determines a lens bounded by one of the

edges e, f from above and by the other one from below. Let L be such a lens.
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We claim that at least one edge intersecting e has an endpoint inside L.

Suppose that this is not true. A sling in L is a continuous portion of an edge

such that it is contained in L and its endpoints lie on e (see Figure 4). If there

were some slings in L, we could reroute them along e (and outside L) in such

a way that no new crossing pairs are introduced and the number of crossings is

decreased (see Figure 4). Thus, there are no slings in L. It follows that rerouting

e

f

L
L

e

f

x1 x2 x1 x2

Figure 4. Three slings (bold) in a lens L determined by e, f and rerouting these

slings along e.

f along e at the lens L (see Figure 5) decreases the number of crossings and

introduces no new crossing pairs— a contradiction with the choice of D. Thus,

there had to be an edge intersecting e and having an endpoint inside L.

e

f

x1 x2
e

f

L

Figure 5. Rerouting f along e at the lens L.

Since at most t edges intersect e (e is light), it follows that there are at most

2(t − 1) lenses determined by e, f . Thus, e, f cross each other at most 2t − 1

times. ˜

There are k crossing pairs in D. By Lemma 1, each crossing pair involving

at least one light edge has at most 2t − 1 common crossings. Thus, there are at

most k(2t − 1) crossings involving at least one light edge.

We redraw the heavy edges so that there are no crossings with good edges, the

number of heavy-light crossings is minimized, and subject to this, the number

of heavy-heavy crossings is minimized.

The obtained drawing has at most k(2t − 1) crossings involving at least one

light edge. Moreover, any two heavy edges cross at most once, for otherwise we

could get a better drawing by swapping these two edges as in Figure 1 (top).

Since there are at most b2k/tc heavy edges, the total number of crossings is at

most k(2t− 1) +
(

b2k/tc
2

)

. Choosing t = k1/3, this is at most 4k4/3. This finishes

the proof of Theorem 2.
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of segments”, J. Combin. Theory Ser. B 62:2 (1994), 289–315.
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