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On a Generalization of Schönhardt’s Polyhedron

JÖRG RAMBAU

Abstract. We show that the nonconvex twisted prism over an n-gon can-
not be triangulated without new vertices. For this, it does not matter what
the coordinates of the n-gon are as long as the top and the bottom n-gon
are congruent and the twist is not too large. This generalizes Schönhardt’s
polyhedron, which is the nonconvex twisted prism over a triangle.

1. The Background

Lennes [1911] was the first to present a simple three-dimensional nonconvex

polyhedron whose interior cannot be triangulated without new vertices. The

more famous example, however, was given by Schönhardt [1927]: he observed

that in the nonconvex twisted triangular prism (subsequently called “Schön-

hardt’s polyhedron”) every diagonal that is not a boundary edge lies completely

in the exterior. This implies that there can be no triangulation of it without new

vertices because there is simply no interior tetrahedron: all possible tetrahedra

spanned by four of its six vertices would introduce new edges. Moreover, he

proved that every simple polyhedron with the same properties must have at

least six vertices. Later, further such nonconvex, nontriangulable polyhedra with

an arbitrary number of points have been presented. Among them, Bagemihl’s

polyhedron [1948] also has the feature that every nonfacial diagonal is in the

exterior.

The nonconvex twisted prism over an arbitrary n-gon would arguably be the

most natural generalization of Schönhardt’s polyhedron. Surprisingly enough,

there has been no proof so far that it cannot be triangulated without new ver-

tices. One of the reasons seems to be that— in contrast to Schönhardt’s and

Bagemihl’s polyhedra— not every nonfacial diagonal lies completely outside the

polygonal prism. Yet, the nonconvex twisted polygonal prism indeed cannot be
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triangulated without new vertices, as we will show below. For this, it does not

matter what the coordinates of the n-gon are as long as the top and the bottom

n-gon are congruent and the twist is just a perturbation by rotation, i.e., it is

not too large.

There is also a convex variant of Schönhardt’s polyhedron, the untwisted tri-

angular prism. Consider the two possible cyclically symmetric triangulation of its

boundary quadrilaterals. They appear if we untwist the Schönhardt polyhedron

and keep the diagonals on the boundary quadrilaterals. Neither such boundary

triangulation can be extended to the interior without new vertices. The reason

is analogous to the Schönhardt case: every possible tetrahedron would induce

at least one diagonal that intersects one of the prescribed diagonals. We will

show below the corresponding generalization to the polygonal prism: there is no

a triangulation of the general (untwisted) polygonal prism extending a cyclically

symmetric triangulation of the boundary quadrilaterals.

Besides the fact that the (frequently asked) question about the existence of

triangulations of the nonconvex twisted polygonal prism deserves a conclusive

answer at last, we mention one other motivation for studying problems like this.

Deciding the existence of a triangulation without new vertices for a given poly-

hedron is NP-hard [Ruppert and Seidel 1992]. In studying the twisted polygonal

prism we surprisingly hit the borderline between existence and nonexistence of

triangulations without new vertices in a single type of point configurations, and

this could make the twisted or untwisted polygonal prism a handy gadget for

NP-hardness proofs. A similar pattern appears, e.g., in a proof that finding

minimal triangulations of polytopes is NP-hard [Below et al. 2000].

2. The Objects

Consider a two-dimensional point configuration Cn := {v0, v1, . . . , vn−1} in

strictly convex position labeled counterclockwise. Fix a point o in the interior

of Cn in R
2. For α ∈ [0, 2π), let Cn(α) be a copy of Cn rotated by α around

the point o (rotation by an angle in (0, 2π) means counterclockwise rotation).

We call the corresponding points w0, w1, . . . , wn−1. The Cayley embedding of Cn

and Cn(α) is defined by

Pn(α) := conv
(
(Cn × {0}) ∪ (Cn(α) × {1})

)
.

A triangulation of a three-dimensional polyhedron P is a dissection into finitely

many tetrahedra such that any two intersect in a common face (possibly empty).

For a triangulation of P and a simplex F of arbitrary dimension we say T uses

F if F is a face of some tetrahedron in T . Faces are denoted by their sets of

vertices. A triangulation without new vertices or a v-triangulation of P is a

triangulation all of whose vertices are vertices of P .
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Pn := Pn(0) is known as a prism over Cn. The cyclic set of diagonals

Dc :=
{
{vi, wi+1} : i = 0, 1, . . . , n−1

}

induces a triangulation of the quadrilateral facets of Pn(0) into the triangles

{vi, wi, wi+1} and {vi, wi+1, vi+1}, i = 0, 1, . . . , n−1 (indices taken modulo n).

The continuity of the determinant function ensures that there is an α > 0 such

that no full-dimensional tetrahedron in Pn(0) has a reversed orientation (sign of

determinant of the points in homogeneous coordinates) in Pn(α). In that case,

the vertical edges {vi, wi} and the reverse cyclic edges {wi, vi+1} are among the

boundary edges of Pn(α), for all i = 0, 1, . . . , n−1. For such an α, we call Pn(α)

a convex twisted prism over Cn. (Pn(α) is a convex twisted prism over Cn if

and only if the map sending vi, wi ∈ Pn(α) to the corresponding vi, wi ∈ Pn(0)

induces a weak map of oriented matroids [Björner et al. 1993].)

For a convex twisted prism over Cn, the cyclic set of tetrahedra is the set of

tetrahedra

Tc :=
{
{vi, vi+1, wi, wi+1} : i = 0, 1, . . . , n−1

}
.

Any pair of consecutive such tetrahedra intersects in a common edge.

3. The Results

Theorem 3.1. For all n ≥ 3, no prism Pn(0) over an n-gon admits a triangu-

lation without new vertices that uses the cyclic set Dc of diagonals.

Theorem 3.2. For all n ≥ 3 and all sufficiently small α > 0, no convex twisted

prism Pn(α) admits a triangulation that contains the cyclic set Tc of tetrahedra.

We define the nonconvex twisted prism P̌n(α) to be the topological closure of

Pn(α)\Tc. Since the twist is not too large, this is a nonconvex simple polyhedron.

Here is now the generalization of Schönhard’s polyhedron:

Corollary 3.3. For all n ≥ 3 and all sufficiently small α > 0, the nonconvex

twisted prism P̌n(α) cannot be triangulated without new vertices.

Remark 3.4. When Cn is a regular triangle and α ∈ (0, 2π/3), the twisted

prism P3(α) coincides with Schönhardt’s twisted prism.

4. The Tools

For a more detailed background about the following consult [Huber et al.

2000] and the references therein.

Minkowski sums and mixed subdivisions. Let P and Q be point configu-

rations in R
2. Then the Minkowski sum of P and Q scaled by λ ∈ (0, 1) is the

point configuration

(1−λ)P + λQ := {(1−λ)p + λq : p ∈ P, q ∈ Q} ⊂ R
2.
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We make the following simplifying assumption: we consider only generic λ ∈

(0, 1), for which (1−λ)p + λq = (1−λ)p′ + λq′ implies that p = p′ and q = q′.

A mixed cell in (1−λ)P + λQ is the Minkowski sum (1−λ)σ + λτ of subsets

σ ⊆ P and τ ⊆ Q. A mixed subdivision of (1−λ)P + λQ is a dissection of

(1−λ)P + λQ into finitely many mixed cells such that any two intersect in

common faces (possibly empty).

A two-dimensional mixed cell is fine if it is the Minkowski sum of either two

edges or of a point and a triangle. In the first case, the cell is a parallelogram,

in the second case the cell is a triangle. A mixed subdivision is fine if it contains

only fine mixed cells.

Cayley embeddings. Let P and Q as above. Then the Cayley embedding of

P and Q is the point configuration

C(P,Q) := {(p, 0) : p ∈ P} ∪ {(q, 1) : q ∈ Q} ⊂ R
3.

For example, Pn(α) from above is a Cayley embedding for all α.

The Cayley trick. The Cayley trick states that for all P and Q as above,

triangulations of C(P,Q) are in one-to-one correspondence with fine mixed sub-

divisions of (1−λ)P +λQ for all λ ∈ (0, 1). We will only need the fact that every

triangulation of C(P,Q) induces a fine mixed subdivision of (1−λ)P +λQ for all

λ ∈ (0, 1).

The correspondence is given by intersecting C(P,Q) with a horizontal hyper-

plane Hλ at height λ. The intersection of any tetrahedron in a triangulation

of C(P,Q) with Hλ is a fine mixed cell in
(
(1−λ)P + λQ

)
× {λ} ⊂ R

3. Since

intersection with affine hyperplanes preserves face relations, the set of all fine

mixed cells so obtained yields a fine mixed subdivision of (1−λ)P + λQ.

Applied to Pn(α) this means: each triangulation of Pn(α) induces a fine mixed

subdivision of Sn(α, λ) := (1−λ)Cn + λCn(α) for every λ ∈ (0, 1). In summary,

we have the following correspondences between objects in the Cayley embedding

and the Minkowski sum:

Pn(α) Sn(α, λ)

tetrahedra fine mixed polygons
tetrahedra with a triangle on the top or the bottom fine mixed triangles
tetrahedra with edges on both top and bottom fine mixed parallelograms
nonhorizontal triangles fine mixed edges
nonhorizontal edges fine mixed points
orientation counterclockwise orientation

Since the Minkowski sum lives in one dimension less than the Cayley embedding,

we rather work with Sn(α, λ).
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5. The Proofs

Let α ≥ 0 be small enough such that Pn(α) is a prism or a twisted prism.

Fix a (small) ε ∈ (0, 1) such that |ε(vj − vi)| < |(1−ε)(wj − wi)| for all i, j =

0, 1, . . . , n−1. (All following considerations are also true for arbitrary ε ∈ (0, 1);

the choice of a small ε makes some arguments more transparent) In particular,

the scaled Minkowski sum Sn(α) := Sn(α, 1−ε) = εPn + (1−ε)Pn(α) does not

contain multiple points. (We use ε here instead of λ as in the Cayley trick of the

previous page to generate the impression of a small scaling factor.) For brevity,

we will use the notation (i, j) for the point εvi + (1−ε)wj , i, j = 0, 1, . . . , n−1.

Some notions and notation. In all what follows, we use the term “edges” not

only for boundary edges but also for interior edges, sometimes called “diagonals”.

Consider mixed edges. All mixed edges are, by definition, Minkowski sums of

either a point and an edge or of an edge and a point. In our notation, they are

of the form (e, i) := {(k, i), (l, i)} or of the form (j, e) := {(j, k), (j, l)} for some

edge (or diagonal, see above) e = {k, l} in Cn or Cn(α), resp.

The following notions are motivated by regarding ε as being small. We high-

light the most important one as a definition.

Definition 5.1 (Short and Long Edges). Call a mixed edge short if it is of

the form (e, i), call it long otherwise. The short mixed edge ei := {(i, i), (i+1, i)}

is called special.

The special edges are interesting in Sn because— via the Cayley trick— they

correspond to triangles that are incompatible with the cyclic set of diagonals

Dc in Pn. Moreover, they are interesting in Sn(α) for α > 0 because the cyclic

set of tetrahedra Tc covers the corresponding triangles in Pn(α) so that in any

triangulation containing Tc no other cell can use them.

For i = 0, 1, . . . , n−1, there are the convex sub-n-gons (Cn, i) := εCn +

(1−ε)wi and (i, Cn(α)) := εvi + (1−ε)Cn(α) in Sn. By construction, all (Cn, i)

are scaled translates of Cn, and all (i, Cn(α)) are scaled translates of Cn(α),

which itself is an angle-preserving image of Cn under a (small) rotation that

we call r(α). The long translation that shifts (Cn, i) to (Cn, j) along the long

edge {(i, i), (i, j)} is denoted by Tij ; the short translation that moves (i, Cn(α))

to (j, Cn(α)) along the short edge {(i, i), (j, i)} is denoted by tij . Note that we

regard Cn, (Cn, i), and (j, Cn(α)) as point configurations in convex position, not

as two-dimensional polytopes. The corresponding polytopes will be denoted by

conv(Cn), conv(Cn, i), and conv(j, Cn(α)), resp.

Call the n-gons (Cn, i) small and the n-gons (j, Cn) large. Similarly, we call

a mixed triangle with only short edges small ; we call a mixed triangle with only

long edges large. By definition of the Minkowski sum, each mixed triangle is

either small or large. We can regard short mixed edges as edges that have both

end points in the same small sub-n-gon. The special short mixed edge ei lies in

the boundary of Sn(α). Figure 1 illustrates the setup.
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Cn × {0}

Cn(α) × {1}

εCn + (1−ε)Cn(α)

i

i

(Cn, i)

e
ei

(i, i)

Figure 1. Cutting the Cayley embedding of two n-gons with a horizontal hyper-

plane close to the top yields their Minkowski sum scaled as in Sn(α); the cyclic

set of diagonals and the special edges are drawn thicker.

Road-map of the proofs. Note that any triangulation of Pn that uses the

cyclic set of diagonals induces a mixed subdivision M of Sn in which no special

edge ei is used. Consider any nonspecial short edge e in M in some small n-gon

(Cn, i). Then the “region” between e and ei must be covered by M somehow.

We want to show that this cannot be accomplished unless at least one special

edge is used. We even show that at least one special edge must be used as an

edge of some mixed triangle (Theorem 5.10).



ON A GENERALIZATION OF SCHÖNHARDT’S POLYHEDRON 507

How can the region between e and ei be subdivided? There must be a cell

adjacent to e on the same side as ei. If we use a mixed triangle, i.e., a small

triangle, then we harvest new short edges in the same small n-gon. One of these

new short edges is “closer” to ei in a sense to be defined precisely below, and we

can proceed. If we use a mixed parallelogram then there is another short edge e′

opposite to e in some other small n-gon (Cn, j) at a “partner vertex” j of e. But

the “regions” containing potential partner vertices for e′ towards ej will turn out

to be strictly smaller than for e.

But what happens if we use a mixture of mixed triangles and parallelograms?

It fact, both ideas from above can be merged by using a certain lexicographic

partial order on short edges, in which the short edges that are hit by “chasing

the mixed subdivision M towards special short edges” are strictly decreasing.

This shows that not all special short edges can be avoided by M .

We can make this idea precise for both the prism and the twisted prism. In

the latter case, it is no surprise that even all special edges must be used, since

they are boundary edges of Sn(α). However, using the cyclic set of tetrahedra

means covering all special short edges by parallelograms, and we will show that

at least one of them must be in a small triangle.

In the sequel, we will formalize these arguments in order to obtain rigorous

proofs of Theorems 3.1 and 3.2.

Ordering short mixed edges. For the following, let e be a short edge in

(Cn, i). We want to give an orientation to the halfplanes separated by the line

l(e) spanned by e. If e = ei, then we make use of the fact that ei is in the

boundary of Sn, thus l(e) is a supporting hyperplane for Sn. Therefore, we can

define the positive side l(e)+ of e to be the halfplane not containing Sn. If e 6= ei,

we define the positive side l(e)+ of e to be the halfplane containing ei. This idea

of investigating the subdivision between e and ei can now be formulated as

looking at cells on the positive side of l(e).

The following is a simple observation.

Lemma 5.2. Let σ be a mixed parallelogram in Sn(α) with short edges e and e′.

Then:

(i) If σ is on the positive sides or on the negative sides of both of its short edges

then l(e) and l(e′) have opposite orientations.

(ii) If σ is on the positive side of e and on the negative side of e′, or vice versa,

then l(e) and l(e′) have parallel orientations.

One of the cases mentioned in Lemma 5.2 can actually never occur. This will

allow us to keep on finding new cells on the positive sides of short edges.

Lemma 5.3 (Orientation Lemma). There is no fine mixed 2-cell σ in Sn on

the positive side of all of its short edges.
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(4, 3) (3, 3)

(4, 4)

(1, 4)
(2, 2)

(3, 2)

(1, 2) (2, 1)

α

Figure 2. Parallelograms which are on the positive sides of both of their short

edges exist when α is too large; in the picture α = π/3. However, it can be seen

that the bad parallelogram flips its orientation when P4(α) is untwisted.

Remark 5.4. The correctness of the Orientation Lemma heavily depends on

the congruence of the top/bottom polygons of Pn(α) and on the restriction of

α. That the lemma is false in even slightly more general situations can be seen

in the example in Figure 2.

Proof. Assume, for the sake of contradiction, that σ is a mixed 2-cell in Sn

lying on the positive side of all of its short edges. Since σ contains the short

edge e, it must be either a small triangle or a parallelogram.

Consider the case where σ is a small triangle on the positive side of all of

its edges. The special edge ei cannot be an edge of σ, since σ is contained in

conv Sn, and l(ei)
+ was defined to be the side of l(ei) not containing Sn. By

definition of the orientations of short edges other than ei, we conclude that ei

must be contained in σ. Since (Cn, i) is convex, this can only be the case if ei is

an edge of σ: contradiction.

Therefore, σ must be a parallelogram lying on the positive sides of both of its

short edges e in (Cn, i) and e′ in (Cn, j) for some i, j ∈ {0, 1, . . . , n−1}. We first

consider this in the case of the prism, i.e., when α = 0. We will also include the

degenerate case, i.e., where σ is a line segment, into our considerations. Since

σ ⊂ l(e)+∩ l(e′)+, the orientations of e and e′ must be opposite (Lemma 5.2). In

terms of translations, Tij(l(e)
+) = l(e′)− and Tji(l(e

′)+ = l(e)−. By definition of

the orientation, ei is on the positive side of e, and hence (i, i) ∈ l(e)+. Similarly,
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(j, j) ∈ l(e′)+. This implies

(i, i) ∈ l(e)+,

(j, i) = Tji(j, j) ∈ Tji(l(e
′)+) = l(e)−,

(i, j) = Tij(i, i) ∈ Tij(l(e)
+) = l(e′)−,

(j, j) ∈ l(e′)+.

(5–1)

These are necessary conditions for a nondegenerate σ being on the positive side

of both of its short edges. While being on the positive side of short edges

does not make sense for degenerate σ, Conditions (5–1) have a meaning in the

degenerate case as well. For further reference, we call these necessary conditions

the orientation conditions.

Since α = 0, the points (i, i), (j, i), (i, j), and (j, j) lie on a straight line `.

Since ε is very small, the points appear on ` in the order (i, i), (j, i), (i, j), and

(j, j). This tells us that ` starts in l(e)+, enters l(e)−, and then returns into

l(e)+. This implies that ` = l(e). By the symmetric argument, also ` = l(e′).

Therefore, σ is a segment. Moreover, its short edges are actually e = {(i, i), (j, i)}

and e′ = {(i, j), (j, j)} because the points in (Cn, i) are in strictly convex position.

This shows that a nondegenerate σ cannot exist in the prism. Moreover, we

have learned the following useful fact: if the points (i, i), (j, i), (i, j), and (j, j)

satisfy the orientation conditions (5–1) for the short edges e and e′ of some

(possibly degenerate) parallelogram σ then σ = {(i, i), (j, i), (i, j), (j, j)}.

Since σ cannot exist in the prism, consider the case where α > 0 so that

Pn(α) is still a twisted prism. That means, no full-dimensional tetrahedron in

Pn switches orientation during the twisting towards Pn(α). That implies that

no full-dimensional parallelogram in Sn(0) changes its orientation with respect

to its short edges (by the Cayley trick correspondence, page 504; easy exercise

in linear algebra).

Now, untwist Pn(α), and hence σ. Then, σ must degenerate to a segment

in Pn. During the untwist, for all α > 0 the points (i, i), (j, i), (i, j), and

(j, j) must always satisfy the orientation conditions. Since the conditions de-

fine a closed space and untwisting changes all data continuously in α, they

must also hold in the degenerate position α = 0. Hence, σ must be of the

form {(i, i), (j, i), (i, j), (j, j)} for some i, j ∈ {0, 1, . . . , n−1}. In particular,

e = {(i, i), (j, i)}.

We finally show that during the twist, σ folds up in the “wrong” direction.

Consider the order of the short edges incident to (i, i) counterclockwise starting

at an edge of Sn. In this order ei is the first edge, by definition. Twisting Pn

again counterclockwise by α will turn the slope of the short edge e = {(i, i), (j, i)}

counterclockwise into the slope of the long edge {(i, i), (i, j)}. Therefore, the long

edge {(i, i), (i, j)} and the special short edge ei are on different sides of e. This

means, σ lies on the negative side of e: contradiction. ˜
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(i, i)
ei

ind1(e)

Cn(i)
e

+

Figure 3. Primary index ind1(e) of a short edge e.

The following quantity defines how close a short edge is to the corresponding

special short edge. See Figure 3 for an illustration.

Definition 5.5 (Primary Index). We define the primary index ind1(e) of

any short edge e in Sn(α) by

ind1(e) := vol
(
conv(Cn, i) ∩ l(e)+

)
.

We now turn our attention to measuring how many short partner edges a short

edge can find to build a parallelogram on its positive side. Consider the unique

line l(e, i) parallel to e through (i, i). Let l(e, i, α) be the line that is obtained

from l(e, i) by a rotation by −α around (i, i). Its orientation is obtained by

rotating the orientation of l(e) by −α as well. The resulting positive halfplane

defined by l(e, i, α) is called l(e, i, α)+.

Lemma 5.6 (Partner Lemma). Let σ be a mixed parallelogram with short

edges e and e′ so that σ lies on the positive side of e. Assume, e lies in the small

polygon (Cn, i) and e′ lies in the small polygon (Cn, j). Then (j, i) lies in the

interior of l(e, i, α)+.

Proof. Assume, for the sake of contradiction, that (j, i) lies in l(e, i, α)−. By

definition, ei is inside l(e)+. Since ei is a boundary edge of Sn(α), one of the

long edges E of σ must separate ei from σ. Let (k, i) := E ∩ e, where k = i is

possible.

Let β be the angle from e to E around (k, i). This angle is the same as the

angle from l(e, i) to {(i, i), (i, j)} around (i, i): the short translation tki moves

(k, i) to (i, i), E onto {(i, i), (i, j)}, and e into l(e, i)∩ conv Sn(α). There are two

cases: either 0 < β < π or −π < β < 0.

If 0 < β < π then the slope of e turns counterclockwise around (k, i) into the

slope of E. Since σ, and hence E, are in l(e)+, the interior of the positive side

l(e)+ of l(e) can be characterized as follows: a point x ∈ R
2 is in the interior

of l(e)+ if and only if the angle from e to {(k, i), x} around (k, i) is in the

interval (0, π). Since the orientation of l(e, i) is parallel to this, the analogous

characterization holds for the interior of l(e, i)+. The characterization of the

interior of the positive side l(e, i, α)+ of l(e, i, α) is analogous.
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(i, i)
ei

(k, i)

eβγ

α

β

(i, j)
l(e, i)

(j, i)

σ

l(e, i, α)

E
−

Figure 4. The case 0 < β < π in the proof of the Partner Lemma.

Let γ be the angle from {(i, i), (j, i)} to l(e, i, α) around (i, i). The assumption

that (j, i) lies in l(e, i, α)− can now be expressed as −γ ∈ [−π, 0] ⇐⇒ γ ∈

[0, π]. The angle from {(i, i), (j, i)} to {(i, i), (i, j)} around (i, i) equals α, by

construction of Pn(α). (See Figure 4 for an illustration.) Therefore:

α = \
(
{(i, i), (j, i)}, {(i, i), (i, j)}

)

= \
(
{(i, i), (j, i)}, l(e, i, α)

)
) + \

(
l(e, i, α), l(e, i)

)
) + \

(
l(e, i), {(i, i), (j, i)}

)

= γ
︸︷︷︸

∈[0,π]

+ α + β
︸︷︷︸

∈(0,π)

∈ (α, α + 2π).

This is a contradiction.

If −π < β < 0 then we get analogously γ ∈ [−π, 0]. (See Figure 5 for an

illustration.) Thus:

α = \
(
{(i, i), (j, i)}, {(i, i), (i, j)}

)

= \
(
{(i, i), (j, i)}, l(e, i, α)

)
) + \

(
l(e, i, α), l(e, i)

)
) + \

(
l(e, i), {(i, i), (j, i)}

)

= γ
︸︷︷︸

∈[−π,0]

+ α + β
︸︷︷︸

∈(−π,0)

∈ (α − 2π, α).

Contradiction again, and we are done. ˜

The following secondary index measures for any short edge the size of the region

in which partner edges for a parallelogram can be found. See Figure 6 for a

sketch.
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(i, i) ei

(k, i)

e

β γ
α

β

(i, j)

l(e, i)

(j, i)

σ l(e, i, α)

E

−

Figure 5. The case −π < β < 0 in the proof of the Partner Lemma.

(i, i)
ei

α

ind2(e)

l(e, i)

l(e, i, α)

Cn(i)
e

+
+

+

Figure 6. Secondary index ind2(e) of a short edge e.

Definition 5.7 (Secondary Index). The secondary index of a short edge e

is defined as

ind2(e) := vol
(
conv(Cn, i) ∩ l(e, i, α)+

)
.

We can now define a lexicographic partial order induced by primary and sec-

ondary index. This will turn out to be the crucial relation among short edges

in M . It is the partial order that will always decrease when we “chase M along

short edges towards special short edges”.

Definition 5.8. Let e and e′ be short edges in M ′. Then

e ≺ e′ : ⇐⇒

{
either ind1(e) < ind1(e

′)

or ind1(e) = ind1(e
′) and ind2(e) < ind2(e

′).

The following lemma is the formalization of “chasing the mixed subdivision to-

wards special short edges”.
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Lemma 5.9 (Order Lemma). Let e be a short edge in a mixed subdivision M

of Sn(α). Then the following hold :

(i) ind1(e) ≥ 0 and ind2(e) ≥ 0.

(ii) ind1(e) = 0 if and only if e = ei for some i = 0, 1, . . . , n−1.

(iii) If e 6= ei for all i = 0, 1, . . . , n−1, then there exists another short edge e′ in

M with e′ ≺ e; moreover , there exists a 2-cell σ such that both e and e′ are

short edges of σ, and σ is on the positive side of e and on the negative side

of e′.

Proof. Assertions (a) and (b) are true by definition.

In order to prove (c), consider a short edge e in M . Assume that e is in

(Cn, i) and that e 6= ei. Then the mixed subdivision M must contain cells that

subdivide the convex hull of e and ei. In particular, there must be a cell σ on

the positive side of e. There are two cases: Either σ is a simplex containing only

short edges inside (Cn, i), or σ is a parallelogram containing two short and two

long edges.

Case 1: The cell σ is a simplex with short edges. By construction, l(e)+

contains σ. By Lemma 5.3, σ lies on the negative side of one of its short edges,

say e′. Then l(e′)+ does not contain σ. Moreover, since (Cn, i) is convex, l(e)

and l(e′) do not cross inside conv(Cn, i). Thus, l(e′)+ ∩ conv(Cn, i) ⊆ l(e)+ ∩

conv(Cn, i) \ σ. Therefore, ind1(e
′) ≤ ind1(e)− vol(σ) < ind1(e), whence e′ ≺ e.

Case 2: The cell σ is a parallelogram containing two short and two long

edges. Consider the short edge e′ in σ opposite to e. It lies in (Cn, j) for some

j = 0, 1, . . . , n−1 with j 6= i.

We first prove that e and e′ have the same primary index. By Lemma 5.3, σ

lies on the negative side of e′. By construction, σ lies on the positive side of e.

Therefore, by Lemma 5.2, the parallel lines l(e) and l(e′) have parallel orienta-

tions. That means, Tij(l(e)
+) = l(e′)+. Because Tij(conv(Cn, i)) = conv(Cn, j),

we conclude ind1(e
′) = ind1(e).

Next, we show that the secondary index of e′ is strictly smaller than that of e.

By Lemma 5.6, (j, i) lies in the interior of l(e, i, α)+. This implies that (j, j) =

Tij(j, i) lies in the interior of Tij(l(e, i, α)+). Since the parallel lines l(e) and

l(e′) have parallel orientations, the parallel lines l(e, i, α) and l(e′, j, α) also have

parallel orientations. Thus, l(e′, j, α)+ is strictly contained in Tij(l(e, i, α)+).

Therefore,

ind2(e
′) = vol

(
conv(Cn, j) ∩ l(e′, j, α)+

)

= vol
(
conv Tij(Cn, i) ∩ l(e′, j, α)+

)

< vol
(
conv Tij(Cn, i) ∩ Tij(l(e, i, α)+)

)

= vol
(
conv(Cn, i) ∩ (l(e, i, α)+)

)

= ind2(e
′).

This proves that e′ ≺ e, and (iii) is proven as well. ˜
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The neighborhood of special short edges. We are now in a position to

prove the main property of mixed subdivisions of Sn(α).

Theorem 5.10. Let α ≥ 0 such that Pn(α) is a prism or a twisted prism. Then

every mixed subdivision M of Sn(α) contains at least one triangle one of whose

edges is some special short edge.

Remark 5.11. If α is too large then not only the Order Lemma is false but also

Theorem 5.10, which can be seen in Figure 7. Theorem 3.2, however, might still

be true for large α because the cyclic set of tetrahedra defines parallelograms that

are incompatible with the parallelogram that is on the positive sides of both of

its short edges in Figure 7. One could consider all α ≥ 0 for which the face lattice

of Pn(α) equals the one of the twisted prism in our sense. Since the existence of

triangulations depends on the orientations of tetrahedra (the oriented matroid)

rather than on the face lattice, we decided not to investigate this any further.

If the top and the bottom n-gons are not congruent, Theorem 5.10— and even

Theorem 3.1— do not hold either, as can be seen in Figure 8.

(4, 3) (3, 3)e3

(4, 4)

(1, 4)

e4

(2, 2)

(3, 2)

e2

(1, 2) (2, 1)e1

Figure 7. When α is too large (here α = π/3), there exists a mixed subdivision

where no special edge is covered by a mixed triangle; the parallelogram of Figure 2

serves as kind of an adapter between two part of the subdivision that would

be incompatible otherwise. This mixed subdivision disappears when P4(α) is

untwisted. The indicated mixed subdivision does, however, not contradict the

statement in Theorem 3.2 for larger α, since it does not use the parallelograms

corresponding to the cyclic set of tetrahedra.
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e3

(4, 4)

(1, 4)

(4, 1)

(1, 1)

e4

(3, 4)

(2, 1)

(4, 3)

(1, 2)

(3, 3)

(2, 3)

(3, 2)

(2, 2)

e2
e1

Figure 8. Congruence of top and bottom n-gons is important: even if the

top and the bottom n-gon of a Cayley embedding of two n-gons are normally

equivalent, there may be triangulations using the cyclic set of diagonals of the re-

sulting combinatorial polygonal prism; the figure shows the corresponding mixed

subdivision; note that indeed no special edge is used.

Proof. Since every triangulation of Pn(α) induces a triangulation of its top

and its bottom polygon, at least one short triangle must be used. Not all of its

short edges can be edges of Sn(α). Therefore, there is a short edge having cells

on both of its sides. Hence, there is at least on 2-cell that is on the positive side

of some short edge. By Lemma 5.3, every such cell lies on the negative side of

one of its other short edges.

Let σ be a cell on the positive side of its short edge e and on the negative

side of its short edge e′ such that e′ is minimal with respect to “≺”. Then, by

Lemma 5.3(iii), e′ is a special edge.

Every parallelogram σ with a special short edge ei must lie on the negative side

of ei, since the positive side of ei is outside Sn(α). Therefore, the parallelogram

σ lies on the same side of ei as (Cn, i). Assume the opposite edge e of σ lies in

(Cn, j) for some j ∈ {0, 1, . . . , n−1}. Then, by Lemma 5.2, σ lies on the opposite

side of e as (Cn, j). In particular, σ lies on the opposite side of e as ej , which

means, σ lies also on the negative side of e. ˜

Proof of Theorem 3.1 (prism). For the sake of contradiction, assume that

there is a triangulation T of Pn that uses the cyclic set Dc of diagonals. Using

the Cayley trick, T induces a fine mixed subdivision M of Sn that uses, among

others, the set of points (i, i+1) for all i = 0, 1, . . . , n−1, corresponding to the

cyclic set of diagonals (labels again regarded modulo n). The triangles in the

quadrilateral facets of Pn induce the mixed edges {(i, i), (i, i+1)} in the boundary

of Sn. They already cover the whole boundary of Sn. Thus, the special edges

ei := {(i, i), (i+1, i)} in the boundary of Sn, which correspond to the reverse

cyclic set of diagonals in the quadrilateral facets of Pn, are not used in M .

However, by Theorem 5.10, at least one ei must be in M : contradiction. ˜

Proof of Theorem 3.2 (twisted prism). For the sake of contradiction,

assume that there is a triangulation T of Pn that uses the cyclic set Tc of tetra-

hedra. Construct the corresponding mixed subdivision M of Sn(α). The set Mc

of mixed cells corresponding to Tc are parallelograms that cover all the special
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edges ei. Therefore, there can be no other cell that contains a special edge. By

Theorem 5.10, there must be at least one mixed triangle containing a special

edge ei: contradiction. ˜
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