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A Long Noncrossing Path Among Disjoint

Segments in the Plane

JÁNOS PACH AND ROM PINCHASI

Abstract. Let L be a collection of n pairwise disjoint segments in general
position in the plane. We show that one can find a subcollection of Ω(n1/3)
segments that can be completed to a noncrossing simple path by adding
rectilinear edges between endpoints of pairs of segments. On the other
hand, there is a set L of n segments for which no subset of size (2n)1/2 or
more can be completed to such a path.

1. Introduction

Since the publication of the seminal paper of Erdős and Szekeres [1935], many

similar results have been discovered, establishing the existence of various regular

subconfigurations in large geometric arrangements. The classical tool for proving

such theorems is Ramsey theory [Graham et al. 1990]. However, the size of the

regular substructures guaranteed by Ramsey’s theorem are usually very small (at

most logarithmic) in terms of the size n of the underlying arrangement. In most

cases, the results are far from optimal. One can obtain better bounds (nε for

some ε > 0) by introducing some linear orders on the elements of the arrangement

and applying some Dilworth-type theorems [1950] for partially ordered sets [Pach

and Törőcsik 1994; Larman et al. 1994; Pach and Tardos 2000]. A simple one-

dimensional prototype of such a statement is the Erdős-Szekeres lemma: any

sequence of n real numbers has a monotone increasing or monotone decreasing

subsequence of length
⌈√

n
⌉

. In this note, we give a new application of this idea.

A collection L of segments in the plane is in general position if no two elements

of L are parallel, all of their endpoints are distinct, and no three endpoints are

collinear. A polygonal path P = p1p2 . . . pn is called simple if no pair of its

vertices coincide, i.e., pi 6= pj whenever i 6= j. It is called noncrossing if no
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Figure 1. An arrangement of segments showing that f(n) ≤ 2
√

2n.

two edges share an interior point. A polygonal path P is called alternating with

respect to L if every other edge of P belongs to L.

We consider the following old problem of unknown origin: what is the max-

imum length f(n) of an alternating path that can be found in any collection

of n pairwise disjoint segments in the plane in general position? This question

appears in a list of open problems in computational geometry collected and an-

notated by Urrutia [2002]. The easy construction described there can be slightly

improved to show that f(n) ≤ 2
√

2
√

n for n = 2k2. Consider a 2k-gon inscribed

in a circle C and replace each of its edges e with k pairwise disjoint chords of

C, almost parallel to e, that are farther away from the center of C than e is.

(See Figure 1.) It seems likely that the order of magnitude of this bound is not

far from optimal. For some similar problems, see [Hoffmann and Tóth 2003;

Mirzaian 1992; Pach and Rivera-Campo 1998; Rappaport et al. 1990].

First we consider the special case when all segments cross the same line.

Theorem 1. Let L be a collection of n pairwise disjoint segments in general

position in the plane, all of whose members cross a given line. Then one can

select Ω(n1/2) segments from L that can be completed to a noncrossing simple

alternating path.

Theorem 2. The maximum length f(n) of an alternating path that can be

found in any collection of n pairwise disjoint segments in the plane satisfies

f(n) = Ω(n1/3).

Proof of Theorem 2 assuming Theorem 1. By the Dilworth theorem (for

example), any collection L of n pairwise disjoint segments has a subcollection

L1 consisting of least n1/3 segments whose projections to the x-axis are pairwise

disjoint, or a subcollection L2 consisting of at least n2/3 segments, all of which

can be crossed by a line parallel to the y-axis. In the first case, the elements of

L1 can be connected to form an alternating path. In the second case, we can

apply Theorem 1. ˜
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2. Proof of Theorem 1

Assume without loss of generality that all segments cross the y-axis, no two

of them are parallel, and all 2n coordinates of their endpoints are distinct. The

above-below relation between the crossings of the segments with the y-axis in-

duces a natural linear order on the elements of L. We apply the Erdős-Szekeres

lemma to find a subsequence of L consisting of
⌈√

n
⌉

segments with increasing

or decreasing slopes with respect to this order. Since we can always flip the

plane about the y-axis, we may assume that the slopes of the elements of this

subsequence are monotone increasing. In what follows, for convenience we as-

sume that
√

n and all other numbers that appear in the argument (except the

coordinates of the endpoints) are integers satisfying the necessary divisibility

conditions so that we do not have to use “floor” and “ceiling” operations. This

will not effect the asymptotic results obtained in this paper.

To be more precise, we find a sequence of at least
√

n segments s1, . . . , sm

(m =
√

n) of L such that if i < j, then si is above sj and the slope of si is

smaller than that of sj (see Figure 2).

Partition s1, . . . , sm into k = m/5 groups, each consisting of 5 consecutive

segments. That is, let Gi = {s5(i−1)+1, . . . , s5(i−1)+5} for every 1 ≤ i ≤ k. For

each Gi, apply again the Erdős-Szekeres lemma and find a subsequence of 3

segments such that the x-coordinates of their right endpoints form an increasing

or a decreasing sequence. By flipping the plane about the x-axis, if necessary, we

can also assume that for at least half of the Gis, these sequences are decreasing.

From now on, we disregard all other segments. Summarizing: we now have k/2

groups L1, . . . , Lk/2, each consisting of 3 elements of L. For each 1 ≤ i ≤ k/2, let

Li = {`i
1, `

i
2, `

i
3}, where `a

b is above `a′

b′ and its slope is smaller, whenever a < a′,

or if a = a′ and b < b′. Moreover, for a fixed a and any b < b′, the x-coordinate

of the right endpoint of `a
b is larger than that of `a

b′ . Let S := L1 ∪ · · · ∪ Lk/2.

Denote by pa
b and qa

b the left endpoint and the right endpoint of `a
b , respec-

tively. For any two points r, s, let [r, s] stand for the segment connecting r and s.

Define a set of auxiliary segments as follows. For 1 ≤ a ≤ k/2 and b = 1, 2, let

za
b = [qa

b , qa
b+1]. We say that za

b is bad, if there is a segment in S that meets the

interior of za
b . For any segment `t

j ∈ S meeting the interior of za
b , we have t > a,

because all elements of ∪t<aLt lie strictly above za
b , otherwise they would cross

`a
b . Define the witness index of a bad segment za

b as the smallest index t > a

with the property that there exists an `t
j meeting the interior of za

b .

Lemma 2.1. If the witness index of a bad segment za
b is t, then `t

1 meets za
b .

Moreover , qt
1 must belong to the interior of the region enclosed by the y-axis, `a

b ,

`a
b+1, and za

b .

Proof. We know that t > a and that for some j the segment `t
j crosses za

b .

Assume that j > 1. Let W denote the region bounded by the y-axis, `a
b+1, za

b ,

and `t
j . The segment `t

1 lies above `t
j , and the x-coordinate of its right endpoint
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Figure 2. The segments li1, l
i
2, l

i
3.

qt
1 is larger than the x-coordinate of qt

j . Clearly, the intersection point r of `t
j and

za
b is the rightmost corner of the boundary of W . There is a point on `t

1 whose

x-coordinate is the same as that of r. This point must lie above r and outside

the region W . Since `t
1 crosses the y-axis above `t

j and below `a
b+1, at a boundary

point of R, and it has a point outside W , it must have another crossing with the

boundary of W . Using the fact that the elements of S are pairwise disjoint, this

second crossing must belong to za
b .

As for the second part of the lemma, let R denote the region bounded by the

y-axis, `a
b , `a

b+1, and za
b . We have seen that `t

1 meets the boundary of R (at a

point of za
b ). Since `t

1 is disjoint from both `a
b and `a

b+1, and it intersects the

y-axis below `a
b+1, it follows that `t

1 cannot cross the boundary of R a second

time. Therefore, qt
1 must belong to the interior of R. ˜

Lemma 2.2. No two different bad segments can have the same witness index .

Proof. Assume to the contrary that t is the witness index of two bad segments,

za
b and za′

b′ . Suppose without loss of generality that `a
b lies above `a′

b′ . We know

that both of them lie above `t
1. As in the proof of Lemma 2.1, let R denote the

region bounded by the y-axis, `a
b , `a

b+1, and za
b . Similarly, let R′ denote the region

bounded by the y-axis, `a′

b′ , `a′

b′+1, and za′

b′ . R and R′ do not overlap. Indeed,

since the elements of S are pairwise disjoint, R and R′ could overlap only if `a′

b′

crossed za
b . However, this would contradict the minimality of t.
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On the other hand, by Lemma 2.1, `t
1 must intersect both za

b and za′

b′ , and

its right endpoint qt
1 must belong to the interiors of both R and R′. We thus

obtained the desired contradiction. ˜

Now we are in a position to prove Theorem 1.

By Lemma 2.2, the number of bad segments is at most k/2. We say that

an index i (1 ≤ i ≤ k/2) is good if at least one of the segments zi
1, z

i
2 is not

bad. Obviously, at least k/2 − 1
2 (k/2) = k/4 indices between 1 and k/2 are

good. Assume without loss of generality that the first k/4 indices are good. To

complete the proof it is sufficient to show how to draw a noncrossing simple

alternating path P that uses the segments `i
2, `

i
3 (and perhaps even `i

1) for 1 ≤
i ≤ k/4 = Ω(

√
n).

Let the first points of P be q1
1 , p1

1, q
1
2 , p1

2, q
1
3 , p1

3, in this order. That is, so far

we have built a “zigzag” path that uses the segments `11, `
1
2, `

1
3. Since 2 is a good

index, there exists a segment z2
j (j = 1 or 2) which is not bad. Let us extend

P by adding the vertices p2
j , q

2
j , q2

j+1, and hence adding the edges `2j (from left

to right) and z2
j . Next we can add the point p2

j+1 and, if j = 1, also the points

q2
3 , p2

3, zigzagging just like before. Continuing in the same manner, we build a

path P using at least two edges from each group Li (i ≤ k/4). It is easy to

check that P is a noncrossing path, because (1) its edges belonging to L ⊂ S

are pairwise disjoint; (2) its edges to the left of the y-axis do not cross any other

edge, by the assumption that the slopes of the elements of S form an increasing

sequence; (3) its edges to the right of the y-axis are not bad, therefore they do

not cross any other edge of P . This completes the proof of Theorem 1.

References

[Dilworth 1950] R. P. Dilworth, “A decomposition theorem for partially ordered sets”,
Ann. of Math. (2) 51 (1950), 161–166.
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