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Extremal Problems Related to the

Sylvester–Gallai Theorem

NIRANJAN NILAKANTAN

Abstract. We discuss certain extremal problems in combinatorial geom-

etry, including Sylvester’s problem and its generalizations.

1. Introduction

Many interesting problems in combinatorial geometry have remained unsolved

or only partially solved for a long time. From time to time breakthroughs are

made. In this survey, we shall discuss the known results about some metric and

nonmetric problems. In particular, we shall discuss the Sylvester–Gallai problem

and the Dirac–Motzkin conjecture on the existence and number of ordinary lines,

the Dirac conjecture on the number of connecting lines, and the problem of

distinct and repeated distances. The main focus will be on versions of these

problems in the Euclidean and real projective plane.

The method of allowable sequences will be described as a tool to give purely

combinatorial solutions to extremal problems in combinatorial geometry.

2. Sylvester’s Problem

Sylvester [1893] posed a question in the Educational Times that was to remain

unsolved for 40 years until it was raised again by Erdős [1943]. Then it was soon

solved by Gallai [1944], who gave an affine proof. More followed: Steinberg’s

proof in the projective plane and others by Buck, Grünwald and Steenrod, all

collected in [Steinberg et al. 1944]; Kelly’s Euclidean proof [1948], and others,

including [Motzkin 1951; Lang 1955; Williams 1968].

We give the following definitions before we state the problem and its solutions.

Let P be a finite set of 3 or more noncollinear points in the plane. Let F be

a finite collection of simple closed curves in the real projective plane which do
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not separate the plane, every two of which have exactly one point in common,

where they cross. F is known as a pseudoline arrangement.

Connecting line: a line containing two or more points of P .

Ordinary line: a connecting line which has exactly two points of P on it.

Vertex: an intersection of two or more lines of a straight line arrangement or

pseudolines of a pseudoline arrangement.

Ordinary point: a vertex which is the intersection of exactly two lines or two

pseudolines.

Sylvester asked for a proof of the statement that every set P of noncollinear

points always determines an ordinary line. In the dual, one has to show that

any straight line arrangement in which not all lines are concurrent has an or-

dinary point. By the principle of duality, proofs for point configurations carry

over trivially into proofs for line arrangements and vice versa. The canonical

correspondence maps the point (a, b) to the line y = −ax + b.

Levi [1926] introduced the notion of a pseudoline defined above. A natural

question to ask is whether every pseudoline arrangement in which not all pseu-

dolines are concurrent has an ordinary vertex. This is more general than the

question of whether every straight line arrangement has an ordinary vertex, since

every straight-line arrangement has an equivalent pseudoline arrangement, but

there exist unstretchable pseudoline arrangements [Grünbaum 1970; Goodman

and Pollack 1980b].

Solutions to Sylvester’s problem. We now show some of the techniques used

to solve Sylvester’s problem in the both the primal and dual versions, and in the

Euclidean as well as the projective plane.

Gallai’s proof (affine). Choose any point p1 ∈ P . If p1 lies on an ordinary line,

we are done, so we may assume that p1 does not lie on any ordinary line. Project

p1 to infinity and consider the set of lines containing p1. These lines are parallel,

and there are at least two such lines. Let s be a connecting line not through p1

which forms the smallest angle with the parallel lines:

p1

s

We assert that s is ordinary. If not, it must have at least 3 points p2, p3, p4, as

in the figure at the top of the next page. The connecting line through p1 and p3

has another point p5, since it is not ordinary (this point is shown in two possible

positions in the figure). Then, either p5p2 or p5p4 forms a smaller angle with

the parallel lines than s, contradicting the hypothesis that s forms the smallest

angle.



PROBLEMS RELATED TO THE SYLVESTER–GALLAI THEOREM 481

p1

p2

p3

p4

p5 p5

s

Kelly’s proof (Euclidean). We have the set P of points not all collinear and the

set S of connecting lines determined by P . Any point in P and any connecting

line not through the point determine a perpendicular distance from the point to

the line. The collection of all these distances is finite, because P and S are finite,

so there is a smallest such distance. Let p∗ ∈ P and s∗ ∈ S be a nonincident

pair realizing this smallest distance, and let q be the foot of the perpendicular

line from p∗ to s∗:

s∗
p2p1q

p∗

Then s∗ is ordinary; otherwise it would contain three points of P , at least two

of them lying on the same side of q. Let these two points be p1 and p2, with p1

between q and p2. Now the distance from p1 to the connecting line p∗p2 would

be less than the distance from p∗ to s∗, giving a contradiction.

Steinberg’s proof (projective). With S and P as above, take any p in P . If p lies

on an ordinary line we are done, so we may assume that p lies on no ordinary

line. Let l be a line through p that is not a connecting line, that is, one that

contains no point of P apart from p. Let Q be the set of intersections of l with

lines in S, and take q ∈ Q next to p (meaning that one of the open segments

determined by p and q on the projective line l contains no element of Q). Let

s be a line of S through q; then s must be ordinary. Otherwise, there would be

three points of P on s, say p1, p2, p3 (arranged in that order in s \ {q}; note that

q is not in P , by our choice of l):

s

p

p4

p4

p3p2p1q

The line through p and p2 would then contain another point of P , say p4, since

p lies on no ordinary line; then p1p4 or p3p4 would meet the forbidden segment

pq (see the figure where two possibilities for p4 are shown).
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The Dirac–Motzkin conjecture. Having determined the existence of an

ordinary line (or point, in the dual problem), attention was turned to the problem

of establishing the number of ordinary lines (or points). For P an allowable set

of points— one not all of whose elements are collinear— let m(P ) denote the

number of ordinary lines determined by P . Define

m(n) = min
|P |=n

m(P ),

where P ranges over all allowable sets of points of cardinality |P | = n.

De Bruijn and Erdős [1948] proved that m(n) ≥ 3, and this was proved again

by Dirac [1951], who conjectured that there were at least bn/2c ordinary lines. In

a different context, Melchior [1941] proved again the m(n) ≥ 3 bound. Motzkin

[1951] improved this to m(n) >
√

2n − 2. Kelly and Moser [1958] improved the

lower bound to 3n/7. Kelly and Rottenberg [1972] proved the same result for

pseudoline arrangements. In 1980, Hansen gave a lengthy “proof” of Dirac’s

bn/2c conjecture, but it was found to be incorrect by Csima and Sawyer [1993],

who nonetheless proved that there exist at least 6n/13 ordinary lines.

Creating point configurations with few ordinary lines is hard. When n is odd,

we know of configurations where the conjecture is tight only when n = 7 and

n = 13. The former is shown by the Kelly–Moser configuration [1958]:

and the latter by the Crowe–McKee configuration [1968]. The Böröczky config-

urations [Crowe and McKee 1968] are valid for all even n; they are most easily

visualized dually— here is the case n = 12, with dots marking ordinary vertices:
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Solutions to the generalized problem. We now outline the techniques used

in the progress towards settling the conjecture.

pencil: a collection of lines all of which intersect at a single point.

near-pencil: a collection of lines all but one of which intersect at a single point.

According to the moment’s convenience, we assume given either some arrange-

ment L of lines not forming a pencil or near-pencil, or a configuration of points

not all collinear. We seek to prove a lower bound for the number of ordinary

points in the first case, and ordinary lines in the second.

Melchior’s proof of the existence of 3 ordinary points. The lines of L partition

the real projective plane into polygonal regions. Let V,E and F denote the

number of vertices, edges and faces in the partition. By Euler’s formula,

V − E + F = 1.

Let fi denote the number of faces with exactly i sides and vi the number of

vertices incident with exactly i lines. Since the lines are not all concurrent,

every face has at least three sides, so f2 = 0. Then,

V =
∑

i≥2

vi, F =
∑

i≥3

fi, 2E =
∑

i≥3

ifi = 2
∑

i≥2

ivi.

This implies that

3 = 3V − E + 3F − 2E = 3
∑

i≥2

vi −
∑

i≥2

ivi + 3
∑

i≥3

fi −
∑

i≥3

ifi

=
∑

i≥2

(3 − i)vi +
∑

i≥3

(3 − i)fi,

and hence that

v2 = 3 +
∑

i≥4

(i − 3)vi +
∑

i≥4

(i − 3)fi ≥ 3 +
∑

i≥4

(i − 3)vi.

Thus, any finite set of nonconcurrent lines has at least 3 ordinary points.

Motzkin’s proof of the existence of O(
√

n) ordinary lines. Consider a point

p ∈ P not lying on any ordinary line. (If there is no such point, there are at

least n/2 ordinary lines and we are done.) Consider the set of connecting lines

not passing through p. These partition the plane into regions, and p lies in one

of these, which is called its cell C. If p has at least 3 lines on the boundary of

its cell, then all the lines in the boundary of the region containing p must be

ordinary.

It is easy to see that no point of P can lie on the edges of the cell C. Suppose

one of the lines l on the boundary of the cell is not ordinary, that is, l has 3

points p1, p2, p3 labeled so that p1, x separate p2, p3, where x is a point on l not

in P on the boundary of C (see figure on the next page). The line pp1 is not

ordinary by hypothesis, and therefore contains a point q of P . But then either



484 NIRANJAN NILAKANTAN

p1p2p3

x

q

p

l

qp2 or qp3 cuts the cell C, contradicting the fact that C is the polygonal region

containing p.

Thus, the ordinary lines partition the plane into polygonal regions, and all

the points which do not lie an any ordinary line lie in one of these regions. It is

easy to see that no region can have more than one point.

Now, m ordinary lines determine at most
(

m
2

)

+ 1 regions, and can have at

most 2m points of P on them. Since every point is on an ordinary line or in a

cell, we have
(

m
2

)

+ 1 + 2m ≥ n, implying that m ≥
√

2n − 2.

Kelly and Moser’s proof of the existence of 3n/7 ordinary lines. Let P be the set

of points and S the set of connecting lines. We denote a generic point by p and a

generic line by s. The set of lines of S which do not go through p subdivide the

plane into polygonal regions. p is contained in one of these polygonal regions,

which is called its residence.

Neighbor of p: a line of S containing the edges of the residence of p.

Order of p: the number of ordinary lines passing through p.

Rank of p: the number of neighbors of p which are ordinary lines.

Index of p: the sum of its order and rank.

Theorem 1. If a point q has precisely one neighbor , then S is a near-pencil .

This is because the neighboring line is the only line which does not pass through

q, and all the other lines pass through q:

pq

Theorem 2. If a point p has precisely two neighbors, then S is a near-pencil .

The lines of S that do not pass through p form a pencil, or else p would have at

least three neighbors. Let q be the vertex of the pencil. Let si and sj be two
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lines through q and pi and pj be points on si and sj respectively, different from

q. The connecting line through pi and pj does not pass through q and therefore

passes through p. Thus, only one line of S passes through p, and all the rest

pass through q, as in the previous figure.

As a consequence of the previous two theorems, we have:

Theorem 3. If S is not a near-pencil , each point of P has at least three neigh-

bors.

Theorem 4. If the order of p is zero, every neighbor of p is an ordinary line.

This was proved in [Motzkin 1951]; we gave the proof on page 483.

Theorem 5. Any point of P not of order two has index at least three.

If the order is zero and S is not a near-pencil, the rank is at least three. If the

order is at least three, there is nothing more to prove. If the order is one, the

rank is at least two and the correct proof of this was given by Dirac in his review

of Kelly and Moser’s article [Dirac 1959].

Theorem 6. If a line s of S is a neighbor of three points p1, p2, p3, then the

points of P which lie on s are on the connecting lines determined by p1, p2, p3.

Three points that have a common neighbor cannot be collinear: if p1, p2 sepa-

rate x, p3, where x is the intersection of s with p1p2, then s cannot lie on the

boundary of p3’s cell. Let the intersections of p1p2, p2p3, p3p1 with s be x3, x1,

x2 respectively. If p is a point of P on s such that xixj separate xkp, then ppi

and ppj separate s from pk. Here, i, j, k is some permutation of 1, 2, 3.

p1

p2

p3

x1x2
x3

This implies the following.

Theorem 7. A line l of S is a neighbor of at most four points.

Suppose l was the neighbor of five points p1, . . . , p5. Looking at p1, p2, p3, we

see that at least 2 of x1, x2, x3 must be elements of P . Assume that x2, x3 are

elements of P . However, neither x2 nor x3 can be on the lines p1p4 or p1p5. This

means that one of the points of P on l is not on the connecting lines of the set

p1, p4, p5, implying that l is not a neighbor of one of the three points.

Theorem 8. If Ii is the index of the point pi, then

m ≥ 1

6

n
∑

i=1

Ii
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Since each ordinary line can be counted at most six times — four times as a

neighbor and twice as being incident with each of its points—the sum of the

index over all the points is greater than six times the number of ordinary lines.

Theorem 9. m ≥ 3n/7.

Let k be the number of points of order 2. Then

m ≥ 3(n − k) + 2k

6
=

3n − k

6
,

which leads to 6m ≥ 3n− k ≥ 3n−m since m ≥ k (trivially). Hence m ≥ 3n/7.

Proof by Csima and Sawyer. Csima and Sawyer improved upon Kelly and Moser

by showing that except for pencils and the Kelly–Moser configuration the number

s of ordinary points in a configuration of n lines is at least 6

13
n, with eqaulity

occuring for the McKee configuration. They generalize the Kelly–Moser proof

in the following way. In the Kelly–Moser proof, the sum of the indices of each

point was compared to the six times the number of ordinary lines to get the

desired bound. In the Csima–Sawyer result, the index is a weighted sum of the

order and the rank. The following is a sketch of their proof for an arrangement

of lines, and works for arrangements of pseudolines as well.

Attached: An ordinary point which not on a line but associated to it, by

proximity. For instance, in the proof of Kelly and Moser, the ordinary lines

on the boundary of the cell of a point are attached to it.

Type of a line l: The pair T (l) = (µ, ν), if there are exactly µ ordinary points

on l and ν ordinary points attached to l.

α-weight of a line l of type (µ, ν): : the number wα(l) = αµ + ν.

Theorem 10. Suppose Γ is a finite configuration of lines in the real projective

plane having two lines of type (2, 0) that intersect in an ordinary point . Then Γ

is the Kelly–Moser configuration.

Theorem 11. Apart from pencils, if T (l) 6= (2, 0), then w1(l) ≥ 3.

This is a restatement of a theorem of Kelly and Moser, which asserts that the

index of a point which is not of order two is at least three.

Theorem 12. If l1 and l2 have an ordinary intersection in any configuration

other than pencils, then w1(l1) + w1(l2) ≥ 5.

Theorem 13. Except for pencils and the Kelly–Moser configuration, s ≥ 6

13
n.

Partition the ordinary points into the sets

σ = ordinary points that lie on a line of type (2, 0),

τ = ordinary points that do not lie on a line of type (2, 0).
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and the lines into sets of bad, good and fair lines:

B = lines l of type (2, 0),

G = lines l that contain a point in σ but l /∈ B,

F = lines l that do not contain a point in σ.

The set G is further partitioned into sets

Gj = lines l in G which contain exactly j points of σ

Consider two lines l and m. If their intersection is in σ, we can assume without

loss of generality that l ∈ B. Then m has a 1-weight of at least three, and lies in

G. Thus, each point in σ appears on exactly one line from B and one line from

G. If B = |B|, G = |G|, F = |F|, and Gj = |Gj |, we have

G =
∑

j

Gj

∑

j≥1

Gj = |σ| = 2B.

If l ∈ G1, then T (l) = (µ, ν) ≥ (1, 0), and w1(l) = µ + ν ≥ 3, and since α ≥ 1,

we have wα(l) = αµ + ν ≥ α + 2. If l ∈ G2, then wα(l) ≥ 2α + 1. If l ∈ Gj for

j ≥ 3, then wα(l) ≥ jα. If l ∈ B, then wα(l) = 2α, and if l ∈ F, then wα(l) ≥ 3.

Thus,
∑

l∈Γ

wα(l) =
∑

l∈B

wα(l) +
∑

j

∑

m∈Gj

+
∑

l∈F

wα(l)

≥ 2αB + (α + 2)G1 + (2α + 1)G2 +
∑

j≥3

jαGj + 3F

= 2αB + α(
∑

j≥1

jGj) + 2G1 + G2 + 3F

= (4α − 2)B + 3G1 + 3G2 +
∑

j≥3

jGj + 3F

≥ (4α − 2)B + 3G + 3F

Choosing α = 5

4
we get,

∑

l∈Γ

w5/4(l) ≥ 3B + 3G + 3F = 3n.

Consider a matrix with rows labeled by the lines l and columns labeled by

the ordinary points. If the ith line is incident with the j-th ordinary point, the

(i, j)-th entry of the matrix is 5

4
. If the j-th point is attached to the i-th line,

the (i, j)-th entry is 1. All other entries are zero.

An ordinary point P is attached to at most four lines. Therefore, the column

sum is at most 2(5

4
)+4 = 13

2
. The sum over all the rows is exactly

∑

l∈Γ
w5/4(l) ≥

3n. Consequently,

3n ≤
∑

l∈Γ

w5/4(l) ≤ 13

2
s.
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3. Allowable Sequences

The notion of allowable sequences has proved very effective in determining

the combinatorial classification of configurations of the plane.

A configuration of n points is an ordered n-tuple of distinct points in the

plane. The points are labeled 1, 2, . . . , n. Given a configuration C and a directed

line l which is not orthogonal to any line determined by two points of C, the

orthogonal projection of C on l determines a permutation of 1, 2, . . . , n. As the

line l rotates in a counterclockwise direction about a fixed point, we obtain a

periodic sequence of permutations which is called the circular sequence of the

configuration.

Allowable sequences are circular sequences constrained by the following prop-

erties:

1. Succesive permutations differ only by having the order of two or more adjacent

numbers switched.

2. If a move results in the reversal of a pair ij then every other pair is reversed

subsequently before i and j switch again.

Allowable sequences and the Sylvester problem. The point configurations

encountered in the Sylvester problem must take into account highly degenerate

cases. Since many points may be collinear, the corresponding circular sequence

will have switches in which more than two adjacent numbers are reversed. The

problem of showing the existence of an ordinary line is equivalent to the problem

of determining whether a simple switch occurs.

History of the use of allowable sequences. Though the concept was intro-

duced by Goodman and Pollack [1980a] to study the Erdős-Szekeres conjecture,

it has been very useful in solving a range of problems which depend mainly on

the order types of the point configuration. In particular, it has been used to

show that

• every pseudoline arrangement of less than nine lines is stretchable [Goodman

and Pollack 1980b];

• the number of directions determined by 2n points is at least 2n [Ungar 1982];

• the number of k-sets among a set of n points is O(nk1/2) [Edelsbrunner and

Welzl 1985];

• the maximum number of at most k-sets is O(nk) [Welzl 1986];

• pseudoline arrangements are semispace equivalent if and only if they have

the same allowable sequence modulo local equivalence [Goodman and Pollack

1984].

Properties determined by allowable sequences.

• i1, i2, . . . , ik are collinear if and only if they switch simultaneously

• i is in the convex hull of i1, i2, . . . , ik if and only if in every permutation in

the sequence, i is preceded by one of i1, i2, . . . , ik.
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• i is an extreme point if and only if some permutation begins with i

• ij is parallel to kl if and only if they both switch simultaneously

• ijk turn counterclockwise if and only if ij precedes ik, written as ij ≺ ik.

• ij separates k from m if and only if when ij switches, k and m are on opposite

sides of the substring ij in the permutation.

Using allowable sequences, Edelsbrunner and Welzl [1985] were able to derive

improved upper bounds for the k−set problem viz. that the number of k−sets

is O(n
√

k). Welzl [1986] generalized this result to bound the number of at

most k−sets in a configuration of n points. Ungar [1982] was able to settle the

conjecture regarding the number of directions determined by a configuration of

points.

As an example of the power of allowable sequences, we give the following proof

by Ungar.

Ungar’s proof for the number of directions determined by 2n points.

We pay special attention to switches which straddle the midpoint of a permu-

tation. A switch in which some indices cross the midpoint is called a crossing

move. The ith crossing move causes an increasing string straddling the midpoint

to be reversed. If di denotes the distance from the midpoint to the nearest end of

the string, then, at the ith crossing move, exactly 2di indices cross the midpoint.

Since every index must cross the midpoint, if there are t crossing moves in all,

then

2d1 + 2d2 + · · · + 2dt ≥ 2n

since some indices can cross more than once.

Between two crossing moves, there must be at least di + di+1 − 1 noncrossing

moves, since we must first tear down a decreasing string of length di and build

an increasing string of length di+1, and a decreasing string can be shortened by

at most one in a switch (an increasing string can be increased by at most one in

a switch).

Thus, the total number of switches between the first crossing move and when

this same crossing move occurs in reverse corresponds to a half period and has
∑

(di + di+1 − 1 + 1) =
∑

(2di) ≥ 2n.

This is a tight lower bound, since the regular 2n-gon determines exactly 2n

directions, as in the Böröczky configuration of page 482.

When the number of points is odd, say 2n + 1, the number of directions can

be shown to be at least 2n, since all but one point must cross the position n + 1

in the permutation.

4. Colored Extensions of Sylvester’s Problem

Let {Pi} be a collection of sets of points, and let all points in the same set

be assigned a color. A line is monochromatic if it passes through at least two

points of the same color and no points of any other color. The following problem
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is attributed to Graham and Newman: Given a finite set of points in the plane

colored either red or blue, and not all collinear, must there exist a monochromatic

line? Motzkin [1967] solved the problem in the dual, showing there must exist a

monochromatic point in an arrangement of colored lines. The proof is sketched

in Section 4 (page 490). Chakerian [1970] and Stein gave additional proofs.

monochromatic point: an intersection point in an arrangement of colored

lines where all the lines intersecting at that point have the same color.

Consider the following question: Does there exist for every k a set of points in

the plane so that if one colors the points by two colors in an arbitrary way, there

should always be at least one line which contains at least k points, all of whose

points have the same color? This is known to be true for k = 3, but nothing is

known for larger values of k.

Various generalizations of this problem to higher dimensions have been pro-

posed and solved [Chakerian 1970; Borwein 1982; Borwein and Edelstein 1983;

Tingley 1975; Baston and Bostock 1978].

Clearly, we cannot insist that the monochromatic line be ordinary without

additional restrictions. In the search for ordinary lines in the colored setting,

Fukuda [1996] raised the following question. Let R be a set of red points and

B be a set of blue points in the plane, not all on the same line. If R and B

are separated by a line and their sizes differ by at most one, then there exists

an ordinary bichromatic line, that is, a line with exactly one red point and one

blue point. This conjecture is shown not to be true for small n in [Finschi and

Fukuda 2003].

Pach and Pinchasi [2000] have shown that there exist bichromatic lines with

few points.

Motzkin’s solution of the existence of a bichromatic point.

Theorem 14. Let S and T be two sets of nonconcurrent lines in the real pro-

jective plane colored red and blue respectively . At least one of the intersection

points in S ∪ T is monochromatic.

Suppose S and T do not define any monochromatic vertex. Then, every inter-

section point w of two red lines has a blue line passing through it. These lines

can be ordered so that the blue line lies in between the red lines. Since not all

the blue lines are concurrent, there is some other blue line that does not pass

through this intersection point. The new blue line forms a triangle wxy with the

two red lines, as shown here (blue = gray):

x y

w

z

v
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Consider such a triangle that is minimal in the sense that it does not completely

contain another such triangle. This must exist because there only finitely many

triangles in the arrangement.

The intersection point v of the two blue lines must be monochromatic. If not,

there must exist a red line through v producing a triangle vzx of the original

type (two red lines and a blue line) which is contained in the minimal triangle,

contradicting the assumption that wxy is minimal.

5. Connecting Lines and Dirac’s Conjecture

Another interesting problem concerns the connecting lines of a set of P points.

Define an i−line to be a connecting line containing exactly i points of P and

let ti(P ) denote the number of i−lines determined by P . Also, let t(P ) =
∑

i≥2
ti(P ). Let r(n) be the minimum over all configurations of n points of the

maximum number of connecting lines from a single point. i.e.

r(n) = min
P⊂Rn

max
p∈P

t(p)

Dirac [1951] asked whether one of the n points must always be incident with

at least bn
2
c of the connecting lines. He showed that this was the best possible

by placing all the points evenly on two intersecting lines. He also proved a trivial

lower bound of
√

n. In [Grünbaum 1972] a list of exceptions to this formulation

is enumerated.

Erdős relaxed the problem by asking whether it could be shown that r(n) ≥
cn. The more general question he raised was the following. Is it true that there

exists an absolute constant c independent of k and n such that if 0 ≤ k ≤ 2 and

ti(P ) = 0 for i > n − k then

ckn < t(P ) < 1 + kn

The upper bound is trivial, and the lower bound was shown by Beck [1983]

and Szemerédi and Trotter [1983], but with very small constants. Clarkson et

al. [1990] improved the constant significantly.

The question of whether t(P ) ≥ n was raised by Erdős [1943] and proved

by various people including Erdős and Hanani [Hanani 1951]. Kelly and Moser

[1958] were able to prove that

t(P ) ≥ kn − 1

2
(3k + 2)(k − 1)

if k is small compared to n and any connecting line contains at most n−k points.

6. A Solution for Sylvester’s Problem Using Allowable

Sequences

We now look at a simple application of allowable sequences to solve Sylvester’s

problem.
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Consider an allowable sequence of permutations of 1, . . . , n. In the first half-

period, each permutation is obtained from the previous one by the switch of a

substring that is monotonically increasing. We shall pay special attention to the

switches involving 1 or n. We claim that the first switch involving a substring to

the right of n or a substring to the left on 1 in the permutation is simple, thus

proving the theorem.

Assume that n makes a switch before 1 makes a switch. Similar arguments

hold for 1 if this not the case. This assumption implies that the first switch

involving n does not involve 1.

Every substring switch involving n has n at the end of the substring before

switch. After the switch, the right of n in the permutation consists of a concate-

nation of substrings, each of which is monotonically decreasing, since a switch

turns an increasing substring into a decreasing one. Note that either n is in-

volved in a simple switch, in which case there is nothing further to prove, or else

each switch involving n has length at least three.

If there have been no switches to the right of n, the length of the longest

monotonically increasing substring to the right of n is at most two, which can

happen only at the end of one substring and the beginning of another formed by

the switches involving n. Thus, the first switch involving elements to the right

of n in the permutation has a length of exactly two.

There must be at least one such switch, since:

(i) n must switch at least twice as there is no switch of length n, which corre-

sponds to the case when all the points are collinear, an excluded case.

(ii) We have assumed that n switches before 1, implying that 1 is not involved

in the first switch involving n, which in turn implies that the elements to the

right n are not always monotonically decreasing.
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