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Two Proofs for Sylvester’s Problem

Using an Allowable Sequence of Permutations

HAGIT LAST

Abstract. The famous Sylvester’s problem is: Given finitely many non-

collinear points in the plane, do they always span a line that contains

precisely two of the points? The answer is yes, as was first shown by Gallai

in 1944. Since then, many other proofs and generalizations of the problem

appeared. We present two new proofs of Gallai’s result, using the powerful

method of allowable sequences.

1. Introduction

Sylvester [1893] raised the following problem: Given finitely many noncollinear

points in the plane, do they always span a simple line (that is, a line that contains

precisely two of the points)? The answer is yes, as was first shown by Gallai

[1944].

By duality, the former question is equivalent to the question: Given finitely

many straight lines in the plane, not all passing through the same point, do they

always determine a simple intersection point (a point that lies on precisely two

of the lines)?

A natural generalization is to find a lower bound on the number of simple

lines (or simple points, in the dual version). The dual version of this question

can be generalized to pseudolines. The best lower bound [Csima and Sawyer

1993] states that an arrangement of n pseudolines in the plane determines at

least 6n/13 simple points. The conjecture [Borwein and Moser 1990] is that

there are at least n/2 simple points for n 6= 7, 13. For the history of Sylvester’s

problem, with its many proofs and generalizations, see [Borwein and Moser 1990;

Nilakantan 2005].

This paper presents two new proofs of Gallai’s result using allowable se-

quences. A proof of Gallai’s result using allowable sequences was given recently

by Nilakantan [2005], but it differs from the two given here.
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The notion of allowable sequences was introduced by Goodman and Pollack

[1980]. It has proved to be a very effective tool in discrete and computational

geometry; for a broad discussion see [Goodman and Pollack 1993]. Here is a

short description of the notion.

Let S be a set of n points in the plane, let L be the set of the lines spanned

by S, and let {k1, k2, . . . , km} be the m different slopes of the lines according to

a fixed coordinate system. We choose a directed line l in the plane with a point

P on it, such that l does not contain any point of S and is not orthogonal to any

line in L.

Here is the construction of Al,P (S), the allowable sequence of permutations

of a point set S, according to the directed line l and the point P : We label

the points of S according to their orthogonal projection on l and we get the

first permutation π0 = 1, . . . , n. Let l rotate counterclockwise around P by

180◦ and look at the orthogonal projections of the labeled points of S on l as

it rotates. A new permutation arises whenever l passes through a direction

orthogonal to one of the slopes k1, k2, . . . , km. It follows that along the course of

this rotation, beside π0, we will get m different permutations: π1, . . . , πm. Define

Al,P (S) = {π0, π1, π2, . . . , πm}.

For each 1 ≤ i ≤ m, whenever l passes through a direction orthogonal to ki,

the new permutation that arises differs from the previous one by reversing the

order of the consecutive elements whose corresponding points of S lie on a line

of slope ki. Such reversed consecutive elements are called a reversed substring.

If t lines in L have a slope equal to ki, the permutation that corresponds to ki

has t disjoint reversed substrings. A reversed substring of length 2 is called a

simple switch. A simple switch corresponds to a simple line.

Three important properties of Al,P (S) are:

1. Al,P (S) is a sequence of permutations of the elements {1, 2, . . . , n}, where n

is the cardinality of S.

2. The first permutation is π0 = 1, . . . , n − 1, n, and the last is πm = n, n −

1, . . . , 1. Here m is the number of different slopes of the lines spanned by S.

If the points of S are not collinear, then m > 1 (actually m ≥ n − 1, as was

proved in [Scott 1970]).

3. In the course of the sequence of permutations, every pair i < j switches exactly

once and so each permutation differs from the previous one by reversing at

least one increasing substring. Only increasing substrings are reversed.

For example, if πi = 1, 7, 2, 4, 6, 3, 5, then N1 = 1, 7, N2 = 2, 4, N3 = 2, 4, 6,

and N4 = 3, 5 are its increasing substrings, and so πi+1 is obtained from πi by

reversing the order of one or more of these substrings.

For the convenience of writing the proofs in Section 2, we would like to assume

that in each step only one increasing substring is reversed. We can arrange this

by replacing each permutation that contains t reversed substrings by t permuta-

tions, as we reverse a single substring at a time. The length of the new sequence
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of permutations, A, is the cardinality of L and satisfies the condition that each

permutation differs from the previous one by reversing a single increasing sub-

string.

2. The Proofs

Let S be a set of n noncollinear points in the plane. We will show the existence

of a simple spanned line by proving that A contains a permutation with a simple

switch. Assume, for a contradiction, that each reversed substring has length at

least 3.

Since S is a set of noncollinear points, then A has length greater than 2, with

π0 = 1, 2, . . . , n and πm = n, n − 1, . . . , 1 (m > 1).

For 1 ≤ r ≤ m, denote by Jr the reversed substring of πr and denote by Ir

the increasing substring of πr−1 which is reversed at πr. Jr and Ir consist of the

same set of elements, in Jr the elements are in decreasing order and in Ir they

are in increasing order. For example, if π1 = 1, 2, 5, 4, 3, π2 = 5, 2, 1, 4, 3, then,

I2 = 1, 2, 5, J2 = 5, 2, 1.

For Jr = a1, a2, . . . , ak−1, ak, we will refer to a2, . . . , ak−1 as its internal ele-

ments. By our assumption, every Ir as well as every Jr has an internal element.

Proof 1. We show that an internal element of a reversed substring cannot

change its location before a simple switch occurs.

For every 0 ≤ k ≤ m and every element 1 ≤ a ≤ n, denote by Tk(a) the

location of the element a in πk. For example, Tm(n − 1) = 2.

If Tk(a) 6= Tk−1(a), we say that JK changed the location of the element a. If

Tk(a) > Tk−1(a), we say that a moves to the right at πk.

A reversed substring, Jr, is centrally symmetric, if it is symmetric around

the middle of the permutation. For example, If π1 = 1, 2, 3, 6, 5, 4, 7, 8, 9, then

J1 = 6, 5, 4 is centrally symmetric.

Let s be the smallest number such that Js changes the location of an element

which was an internal element in Jt for t < s. Such s must exist, otherwise, all

internal elements of J1 are already on their final positions at πm. This means

that J1 is centrally symmetric. But then J2 cannot be centrally symmetric and

so its internal elements must later change their locations in order to be on their

final positions at πm.

Let a be an internal element of Jt with t < s, such that Js changes the location

of a. Without loss of generality, Ts(a) > Tt(a). Since a moves to the right, there

exist b, c such that a, b, c are consecutive elements of πs−1 and a < b < c. Since

a is an internal element of Jt, there are d, e such that d, a, e are consecutive

elements of πt and d > a > e.

Let πl, t < l < s− 1, be the first permutation in which b is the right neighbor

of a. Then there exist f, g such that a, b, f, g are consecutive elements of πl and

a < b > f > g. Since Ts−1(a) = Tl(a), it follows that Ts−1(c) = Tl(f). That

means that before a moves to the right at πs, f needs to change its location. But
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f is an internal element in Jl and so, no Jd, l < d < s, can change the location of

f (otherwise, it contradicts the definition of s). We conclude that such s cannot

exist, which leads a contradiction. ˜

Second proof. A substring of three consecutive elements x, y, z in a permuta-

tion is called a bad triplet if x < z but x, y, z are not in an increasing order.

Let πl be the last permutation that contains a bad triplet x, y, z. Such πl

exists because π1 has a bad triplet but πm does not. For example, if π1, πm are

π1 = 1, 4, 3, 2, 5, 6, πm = 6, 5, 4, 3, 2, 1, then π1 has two bad triplets 1, 4, 3 and

3, 2, 5. πm is in decreasing order, so it contains no bad triplet.

To get a contradiction, we show here that at least one of the permutations

that follows πl contains a bad triplet.

Suppose that none of the permutations that follows πl contains a bad triplet.

Then either x or z (but not both) are elements of Jl+1. Assume that x ∈ Jl+1

(similar arguments can be used for the case z ∈ Jl+1).

We define the closed interval [a, b]d to be the part of the permutation πd that

contains the consecutive elements between a and b including a and b. Example,

for πd : 6, 3, 2, 1, 5, 4 [3, 5]d = 3, 2, 1, 5.

We now consider two cases:

Case 1: x, y ∈ Jl+1.

Then x is the right neighbor of y in Jl+1, and Jl+1 contains at least one more

element to the right of x. Let a be the rightmost element of Jl+1 and b its left

neighbor. Then z > x ≥ b > a, from which follows that b, a, z are consecutive

elements of πl+1 satisfying b > a < z and b < z, which means that b, a, z is a

bad triplet.

Case 2: x ∈ Jl+1, y /∈ Jl+1.

Let s = min{k | k > l+1 and x ∈ Jk is not the leftmost element in Jk}. Such

s exists since z > x and z, x are not yet reversed at πl+1. Denote by c the left

neighbor of x in Js. Then x, c are consecutive elements of πs−1 and x < c.

Let t = max{k | k < s and x ∈ Jk}. Note that since x is an element of Jl+1

and l + 1 < s, such t exists and satisfies l + 1 ≤ t < s. Also, note that since x is

the leftmost element of Jl+1, x is the leftmost element in Jt.

Let a, b be the two right neighbors of x in Jt. Then x, a, b are three consecutive

elements of πt and x > a > b.

Since x /∈ Jr for t < r < s, it follows that in order for c to be the right neighbor

of x in πs−1, c must switch with b first, and then with a, in permutations between

t and s. So there exists r, t < r < s, such that c, b ∈ Jr and there exists q,

r < q < s, such that c, a ∈ Jq.

We claim that for every j satisfying t ≤ j < s, [x, b]j contains no increasing

substring of length greater than 2. Also, the three rightmost elements in [x, b]j
are in decreasing order.

We will prove it by induction. For j = t the claim holds. By the induction

hypothesis, the three rightmost elements in [x, b]j−1 are in decreasing order and
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Ij 6⊂ [x, b]j−1. Since, in addition, x /∈ Ij , it follows that if Ij contains elements

of [x, b]j−1, it must contain b only. If it does, the three rightmost elements of Jj

are the three rightmost elements of [x, b]j and are in decreasing order.

Any increasing substring in [x, b]j can consist of only two elements, each of

which belongs to a different reversed substring involving b. This completes the

proof of the claim. By the definition of r, for every j satisfying r ≤ j < s we have

c ∈ [x, b]j , but by the above claim, Ij 6⊂ [x, b]j−1, which implies that c cannot

switch with a in a permutation that precedes πs. So q as defined above cannot

exist: a contradiction. ˜

Acknowledgments

We thank Gil Kalai and Rom Pinchasi for useful discussions.

References

[Borwein and Moser 1990] P. Borwein and W. O. J. Moser, “A survey of Sylvester’s
problem and its generalizations”, Aequationes Math. 40:2-3 (1990), 111–135.

[Csima and Sawyer 1993] J. Csima and E. T. Sawyer, “There exist 6n/13 ordinary
points”, Discrete Comput. Geom. 9:2 (1993), 187–202.

[Goodman and Pollack 1980] J. E. Goodman and R. Pollack, “On the combinatorial
classification of nondegenerate configurations in the plane”, J. Combin. Theory Ser.

A 29:2 (1980), 220–235.

[Goodman and Pollack 1993] J. E. Goodman and R. Pollack, “Allowable sequences
and order types in discrete and computational geometry”, pp. 103–134 in New

trends in discrete and computational geometry, edited by J. Pach, Algorithms and
Combinatorics 10, Springer-Verlag, Berlin, 1993.

[Nilakantan 2005] N. Nilakantan, “On some extremal problems in combinatorial geom-
etry”, pp. 477–492 in Combinatorial and computational geometry, edited by J. E.
Goodman et al., Math. Sci. Res. Inst. Publ. 52, Cambridge U. Press, New York,
2005.

[Scott 1944] P. R. Scott, “Solution to Problem 4065”, Amer. Math. Monthly 51 (1944),
169–171.

[Scott 1970] P. R. Scott, “On the sets of directions determined by n points”, Amer.

Math. Monthly 77 (1970), 502–505.

[Sylvester 1893] J. J. Sylvester, “Mathematical question 11851”, Educational Times

46 (1893), 156.

Hagit Last

Institute of Mathematics

The Hebrew University

91904 Jerusalem

Israel

hagitl@math.huji.ac.il




