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Tropical Halfspaces

MICHAEL JOSWIG

Abstract. As a new concept tropical halfspaces are introduced to the
(linear algebraic) geometry of the tropical semiring (R, min, +). This yields
exterior descriptions of the tropical polytopes that were recently studied
by Develin and Sturmfels [2004] in a variety of contexts. The key tool
to the understanding is a newly defined sign of the tropical determinant,
which shares remarkably many properties with the ordinary sign of the
determinant of a matrix. The methods are used to obtain an optimal
tropical convex hull algorithm in two dimensions.

1. Introduction

The set R of real numbers carries the structure of a semiring if equipped

with the tropical addition λ ⊕ µ = min{λ, µ} and the tropical multiplication

λ�µ = λ+µ, where + is the ordinary addition. We call the triplet (R,⊕,�) the

tropical semiring1. It is an equally simple and important fact that the operations

⊕,� : R× R→ R are continuous with respect to the standard topology of R. So

the tropical semiring is, in fact, a topological semiring. Considering the tropical

scalar multiplication

λ� (µ0, . . . , µd) = (λ+µ0, . . . , λ+µd)

(and componentwise tropical addition) turns the set R
d+1 into a semimodule.

The study of the linear algebra of the tropical semiring and, more generally,

of idempotent semirings, has a long tradition. Applications to combinatorial

optimization, discrete event systems, functional analysis etc. abound. For an

introduction see [Baccelli et al. 1992]. A recent contribution in the same vein,

with many more references, is [Cohen et al. 2004].

This work has been carried out while visiting the Mathematical Sciences Research Institute in
Berkeley for the special semester on Discrete and Computational Geometry.

1Other authors reserve the name tropical semiring for (N ∪ {+∞}, min, +) and call (R ∪
{+∞}, min, +) the min-plus-semiring.
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Convexity in the tropical world (and even in a more general setting) was first

studied by Zimmermann [1977]. Following the approach of Develin and Sturmfels

[2004] here we stress the point of view of discrete geometry. We recall some of

the key definitions. A subset S ⊂ R
d+1 is tropically convex if for any two points

x, y ∈ S the tropical line segment

[x, y] =
{

λ�x⊕ µ�y
∣

∣ λ, µ ∈ R
}

is contained in S. The tropical convex hull of a set S ⊂ R
d+1 is the smallest

tropically convex set containing S; it is denoted by tconv S. It is easy to see

[Develin and Sturmfels 2004, Proposition 4] that

tconv S =
{

λ1�x1 ⊕ · · · ⊕ λn�xn

∣

∣ λi ∈ R, xi ∈ S
}

.

A tropical polytope is the tropical convex hull of finitely many points. Since

any convex set in R
d+1 is closed under tropical multiplication with an arbitrary

scalar, it is common to identify tropically convex sets with their respective images

under the canonical projection onto the d-dimensional tropical projective space

TP
d =

{

R� x
∣

∣ x ∈ R
d+1

}

= R
d+1/R(1, . . . , 1).

In explicit computations we often choose canonical coordinates for a point x ∈

TP
d, meaning the unique nonnegative vector in the class R � x which has at

least one zero coordinate. For visualization purposes, however, we usually nor-

malize the coordinates by choosing the first one to be zero (which can then be

omitted): This identification (ξ0, . . . , ξd) 7→ (ξ1−ξ0, . . . , ξd−ξ0) : TP
d → R

d is a

homeomorphism.

Develin and Sturmfels observed that tropical simplices, that is tropical convex

hulls of d+1 points in TP
d (in sufficiently general position), are related to Isbell’s

[1964] injective envelope of a finite metric space; see [Develin and Sturmfels 2004,

Theorem 29] and the Erratum. Isbell’s injective envelope in turn coincides with

the tight span of a finite metric space that arose in the work of Dress and others;

see [Dress et al. 2002] and its list of references. In a way, tropical simplices may

be understood as nonsymmetric analogues of injective hulls or tight spans.

Additionally, tropical polytopes are interesting also from a purely combinato-

rial point of view: They bijectively correspond to the regular polyhedral subdi-

visions of products of simplices; see [Develin and Sturmfels 2004, Theorem 1].

The present paper studies tropical polytopes as geometric objects in their

own right. It is shown that, at least to some extent, it is possible to develop a

theory of tropical polytopes in a fashion similar to the theory of ordinary convex

polytopes. The key concept introduced to this end is the notion of a tropical

halfspace. One of our main results, Theorem 4.7, gives a characterization of

tropical halfspaces in terms of the tropical determinant, which is the same as the

min-plus-permanent already studied by Yoeli [1961] and others; see also [Richter-

Gebert et al. 2005]. The proof leads to the definition of the faces of a tropical

polytope in a natural way. In the investigation, in particular, we prove that the
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faces form a distributive lattice; see Theorem 3.7. Moreover, as one would expect

by analogy to ordinary convex polytopes, the tropical polytopes are precisely the

bounded intersections of finitely many tropical halfspaces; see Theorem 3.6.

It is a further consequence of our results on tropical polytopes that some con-

cepts and ideas from computational geometry can be carried over from ordinary

convex polytopes to tropical polytopes. In Section 5 this leads us to a compre-

hensive solution of the convex hull problem in TP
2. The general tropical convex

hull problem in arbitrary dimension is certainly interesting, but this is beyond

our current scope.

The paper closes with a selection of open questions.

2. Hyperplanes and Halfspaces

We start this section with some observations concerning the topological as-

pects of tropical convexity. As already mentioned the tropical projective space

TP
d is homeomorphic to R

d with the usual topology. Moreover, the space

TP
d carries a natural metric: For a point x ∈ TP

d with canonical coordinates

(ξ0, . . . , ξd) let

||x|| = max{ξ0, . . . , ξd}

be the tropical norm of x. Equivalently, for arbitrary coordinates (ξ′0, . . . , ξ
′

d) ∈

R � x we have that ||x|| = max
{

|ξ′i − ξ′j |
∣

∣ i 6= j
}

. We prove a special case of

[Cohen et al. 2004, Theorem 17]:

Lemma 2.1. The map

TP
d × TP

d → R : (x, z) 7→ ||x− z||

is a metric.

Proof. By definition the map is nonnegative. Moreover, it is clearly definite

and symmetric. We prove the triangle inequality: Assume that x = (ξ0, . . . , ξd),

z = (ζ0, . . . , ζd), and that y = (η0, . . . , ηd) be a third point. Then

||x− z|| = max
{

|(ξi−ζi)− (ξj−ζj)|
∣

∣ i 6= j
}

= max
{

|(ξi−ξj)− (ηi−ηj) + (ηi−ηj)− (ζi−ζj)|
∣

∣ i 6= j
}

≤ max
{

|(ξi−ξj)− (ηi−ηj)|+ |(ηi−ηj)− (ζi−ζj)|
∣

∣ i 6= j
}

≤ max
{

|(ξi−ηi)− (ξj−ηj)|
∣

∣ i 6= j
}

+ max
{

|(ηi−ζi)− (ηj−ζj)|
∣

∣ i 6= j
}

= ||x−y||+ ||y−z||. ˜

The topology induced by this metric coincides with the quotient topology on TP
d

(and thus with the natural topology of R
d). In particular, TP

d is locally compact

and a set C ⊂ TP
d is compact if and only if it is closed and bounded. Tacitly

we will always assume that d ≥ 2.
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Proposition 2.2. The topological closure of a tropically convex set is tropically

convex .

Proof. Let S be a tropically convex set with closure S̄. Then, by [Develin and

Sturmfels 2004, Proposition 4], tconv(S̄) is the set of points in TP
d which can be

obtained as tropical linear combinations of points in S̄. Now the claim follows

from the fact that tropical addition and multiplication are continuous. ˜

From the named paper by Develin and Sturmfels we quote a few results which

will be useful in our investigation.

Theorem 2.3 [Develin and Sturmfels 2004, Theorem 15]. A tropical polytope

has a canonical decomposition as a finite ordinary polytopal complex , where the

cells are both ordinary and tropical polytopes.

Proposition 2.4 [Develin and Sturmfels 2004, Proposition 20]. The intersection

of two tropical polytopes is again a tropical polytope.

Proposition 2.5 [Develin and Sturmfels 2004, Proposition 21] (see also [Helbig

1988]). For each tropical polytope P there is a unique minimal set Vert(P ) ⊂ P

with tconv(Vert(P )) = P .

The elements of Vert(P ) are called the vertices of P . The following is implied

by Theorem 2.3. There is also an easy direct proof which we omit, however.

Proposition 2.6. A tropical polytope is compact .

The tropical hyperplane defined by the tropical linear form a = (α0, . . . , αd) ∈

R
d+1 is the set of points (ξ0, . . . , ξd) ∈ TP

d such that the minimum

min{α0 + ξ0, . . . , αd + ξd} = α0 � ξ0 ⊕ · · · ⊕ αd � ξd

is attained at least twice. The point −a is contained in the tropical hyperplane

defined by a, and it is called its apex. Note that any two tropical hyperplanes

only differ by a translation.

Proposition 2.7 [Develin and Sturmfels 2004, Proposition 6]. Tropical hyper-

planes are tropically convex .

The complement of a tropical hyperplane H in TP
d has d + 1 connected compo-

nents corresponding to the facets of an ordinary d-simplex. We call each such

connected component an open sector of H. The topological closure of an open

sector is a closed sector. It is easy to prove that each (open or closed) sector is

convex both in the ordinary and in the tropical sense.

Example 2.8. Consider the zero tropical linear form 0 ∈ R
d+1. The open

sectors of the corresponding tropical hyperplane Z are the sets S0, . . . , Sd, where

Si =
{

(ξ0, . . . , ξd)
∣

∣ ξi < ξj for all j 6= i
}

.
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The closed sectors are the sets S̄0, . . . , S̄d, where

S̄i =
{

(ξ0, . . . , ξd)
∣

∣ ξi ≤ ξj for all j 6= i
}

.

In canonical coordinates this can be expressed as follows:

Si =
{

(ξ0, . . . , ξd)
∣

∣ ξi = 0 and ξj > 0, for j 6= i
}

and

S̄i =
{

(ξ0, . . . , ξd)
∣

∣ ξi = 0 and ξj ≥ 0, for j 6= i
}

.

Just as any two tropical hyperplanes are related by a translation, each translation

of a sector is again a sector. We call such sectors parallel.

The following simple observation is one of the keys to the structural results

on tropical polytopes in the subsequent sections. It characterizes the solvability

of one tropical linear equation. For related results see [Akian et al. 2005].

Proposition 2.9. Let x1, . . . , xn ∈ TP
d. Then 0 ∈ tconv{x1, . . . , xn} if and

only if each closed sector S̄k of the zero tropical linear form contains at least one

xi.

Proof. We write ξij for the canonical coordinates of the xi in R
d+1. Then all

the n(d + 1) entries in the matrix






ξ10 · · · ξ1d

...
. . .

...

ξn0 · · · ξnd







are nonnegative. Hence

0 = λ1�x1 ⊕ · · · ⊕ λn�xn

(with λi ≥ 0, as we may assume without loss of generality) if and only if min{λ1+

ξ1k, . . . , λn + ξnk} = 0 for all k. We conclude that zero is in the tropical convex

hull of x1, . . . , xn if and only if for all k there is an i such that ξik = 0 or,

equivalently, xi ∈ S̄k. ˜

Throughout the following we abbreviate [d + 1] = {0, . . . , d}, and we write

Sym(d + 1) for the symmetric group of degree d + 1 acting on the set [d + 1].

Let ei be the i-th unit vector of R
d+1. Observe that under the natural action

of Sym(d + 1) on TP
d by permuting the unit vectors tropically convex sets get

mapped to tropically convex sets. The set of all k-element subsets of a set Ω is

denoted by
(

Ω
k

)

.

We continue our investigation with the construction of a two-parameter family

of tropical polytopes.

Example 2.10. We define the k-th tropical hypersimplex in TP
d as

∆d
k = tconv

{

∑

i∈J

−ei

∣

∣

∣

∣

J ∈

(

[d + 1]

k

)

}

⊂ TP
d.
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It is essential that

Vert(∆d
k) =

{

∑

i∈J

−ei

∣

∣

∣

∣

J ∈

(

[d + 1]

k

)

}

,

for all k > 0: This has to do with the fact that the symmetric group Sym(d + 1)

acts on the set, due to which either all or none of the points
∑

i∈J −ei is a ver-

tex. But from Proposition 2.5 we know that ? 6= Vert(∆d
k) ⊆

{
∑

i∈J −ei

∣

∣ J ∈
(

[d+1]
k

)}

, and hence the claim follows. Develin, Santos, and Sturmfels [Develin

et al. 2005] construct tropical polytopes from matroids. The tropical hypersim-

plices arise as the special case of uniform matroids.

It is worth-while to look at two special cases of the previous construction.

Example 2.11. The first tropical hypersimplex in TP
d is the d-dimensional

tropical standard simplex ∆d = ∆d
1 = tconv{−e0, . . . ,−ed}. Note that ∆d is a

tropical polytope which at the same time is an ordinary polytope.

Example 2.12. The second tropical hypersimplex ∆d
2 ⊂ TP

d is the tropical

convex hull of the
(

d+1
2

)

vectors −ei−ej for all pairs i 6= j. The tropical polytope

∆d
2 is not convex in the ordinary sense. It is contained in the tropical hyperplane

Z corresponding to the zero tropical linear form. For d = 2 see Figure 1 below.

Proposition 2.13. The second tropical hypersimplex ∆d
2 ⊂ TP

d is the intersec-

tion of the tropical hyperplane Z corresponding to the zero tropical linear form

with the set of points whose tropical norm is bounded by 1.

Proof. Clearly, −ei − ej ∈ Z for i 6= j. We have to show that a point x with

canonical coordinates (ξ0, . . . , ξd) and ||x|| ≤ 1 such that, e.g., ξ0 = ξ1 = 0, is a

tropical linear combination of the
(

d+1
2

)

vertices of ∆d
2. We compute

x = (0, 0, 1, . . . , 1)⊕ ξ2�(0, 1, 0, 1, . . . , 1)⊕ · · · ⊕ ξd�(0, 1, . . . , 1, 0),

and hence the claim. ˜

In particular, this implies that ∆d
2 contains ∆d

k, for all k > 2. A similar compu-

tation further shows that ∆d
k ) ∆d

k+1, for all k.

Example 2.14. The ordinary d-dimensional ±1-cube

Cd =
{

(0, ξ1, . . . , ξd)
∣

∣ −1 ≤ ξi ≤ 1
}

is a tropical polytope: Cd = tconv{−e0 − 2e1, . . . ,−e0 − 2ed, e1 + . . . + ed}.

One way of reading Proposition 2.13 is that the intersection of the tropical hyper-

plane corresponding to the zero tropical linear form with the ordinary ±1-cube

is a tropical polytope. An important consequence is the following.

Corollary 2.15. The (nonempty) intersection of a tropical polytope with a

tropical hyperplane is again a tropical polytope.
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Proof. Let P ⊂ TP
d be a tropical polytope and H a tropical hyperplane. As

usual, up to a translation we can assume that H = Z corresponds to the zero

tropical linear form. By Proposition 2.13 the intersection P ∩ Z is contained in

a suitably scaled copy of the second tropical hypersimplex ∆d
2. Now the claim

follows from Proposition 2.4. ˜

A closed tropical halfspace in TP
d is the union of at least one and at most d

closed sectors of a fixed tropical hyperplane. Hence it makes sense to talk about

the apex of a tropical halfspace. An open tropical halfspace is the complement

of a closed one. Clearly, the topological closure of an open tropical halfspace

is a closed tropical halfspace. To each (open or closed) tropical halfspace H+

there is an opposite (open or closed) tropical halfspace H− formed by the sectors

of the corresponding tropical hyperplane which are not contained in H+. Two

halfspaces are parallel if they are formed of parallel sectors.

Lemma 2.16. Let a + S̄k ⊂ TP
d be a closed sector , for some k ∈ [d + 1], and

b ∈ a + S̄k a point inside. Then the parallel sector b + S̄k is contained in a + S̄k.

Note that this includes the case where b is a point in the boundary a+(S̄k \Sk).

The proof of the lemma is omitted.

Proposition 2.17. Each closed tropical halfspace is tropically convex .

Proof. Let H+ be a closed tropical halfspace. Without loss of generality, we

can assume that H+ is the union the of closed sectors S̄i1 , . . . , S̄il
of the tropical

hyperplane Z corresponding to the zero tropical linear form. Since we already

know that each S̄ik
is tropically convex, it suffices to consider, e.g., x ∈ S̄i1 and

y ∈ S̄i2 and to prove that [x, y] ⊂ H+. Let (ξ0, . . . , ξd) and (η0, . . . , ηd) be the

canonical coordinates of x, y ∈ TP
d, respectively. Since x ∈ S̄i1 and y ∈ S̄i2 we

have that ξi1 = 0 and ηi2 = 0. Then the minimum

min{λ + ξ0, . . . , λ + ξd, µ + η0, . . . , µ + ηd}

is λ = λ + ξi1 or µ = µ + ηi2 , for arbitrary λ, µ ∈ R. This is equivalent to

λ� x + µ� y ∈ S̄i1 ∪ S̄i2 , which implies the claim. ˜

A similar argument shows that open tropical halfspaces are tropically convex.

Corollary 2.18. The boundary of a tropical halfspace is tropically convex .

Proof. The boundary of a closed tropical halfspace H+ is the intersection of

H+ with its opposite closed tropical halfspace H−. ˜

Tropical Separation Theorem 2.19. Let P be tropical polytope, and x 6∈ P

a point outside. Then there is a closed tropical halfspace containing P but not x.

Proof. From Proposition 2.9 we infer that there is a closed sector x+ S̄k of the

tropical hyperplane with apex x which is disjoint from P . Now ek is the unique

coordinate vector such that ek 6∈ S̄k. Since P is compact and S̄k is closed there
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is some ε > 0 such that the closed sector x + εek + S̄k is disjoint from P . The

complement of the open sector x + εek + Sk is a closed tropical halfspace of the

desired kind. ˜

Tropical halfspaces implicitly occur in [Cohen et al. 2004]. In particular, their

results imply the Tropical Separation Theorem. In fact, a variation of this re-

sult already occurs in [Zimmermann 1977]. Another variant of the same is the

Tropical Farkas Lemma [Develin and Sturmfels 2004, Proposition 9].

3. Exterior Descriptions of Tropical Polytopes

Throughout this section let P ⊂ TP
d be a tropical polytope. Like their

ordinary counterparts tropical polytopes also have an exterior description.

Lemma 3.1. The tropical polytope P is the intersection of the closed tropical

halfspaces that it is contained in.

Proof. Let P ′ be the intersection of all the tropical halfspaces which contain P .

Clearly, P ′ contains P . Suppose that there is a point x ∈ P ′ \ P . Then, by the

Tropical Separation Theorem, there is a closed tropical halfspace which con-

tains P but not x. This contradicts the assumption that P ′ is the intersection

of all such tropical halfspaces. ˜

Of course, the set of closed tropical halfspaces that contain the given tropical

polytope P is partially ordered by inclusion. A closed tropical halfspace is said

to be minimal with respect to P if it is a minimal element in this partial order.

A key observation in what follows is that the minimal tropical halfspaces come

from a small set of candidates only. For a given finite set of points p1, . . . , pn ∈

TP
d let the standard affine hyperplane arrangement be generated by the ordinary

affine hyperplanes

pi +
{

(0, ξ1, . . . , ξd) ∈ R
d+1

∣

∣ ξj = 0
}

and pi +
{

(0, ξ1, . . . , ξd) ∈ R
d+1

∣

∣ ξj = ξk

}

.

For an example illustration see Figure 3. A pseudovertex of P is a vertex of the

standard affine hyperplane arrangement with respect to Vert(P ) which is con-

tained in the boundary ∂P . In [Develin and Sturmfels 2004] our pseudovertices

are called the vertices.

Here is a special case of [Develin and Sturmfels 2004, Proposition 18].

Proposition 3.2. The bounded cells of the standard affine hyperplane arrange-

ment are tropical polytopes which are at the same time ordinary convex polytopes.

Proposition 3.3. The apex of a closed tropical halfspace that is minimal with

respect to P is a pseudovertex of P .

Proof. Let H+ be a closed tropical halfspace, with apex a, which minimally

contains P . Suppose that a is not a vertex of the standard affine hyperplane

arrangement A generated by Vert(P ), but rather a is contained in the relative
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interior of some cell C of A of dimension at least one. Now there is some ε > 0

such that for each point a′ in C with ||a′−a|| < ε the closed tropical halfplane with

apex a′ and parallel to H+ still contains P . For each a′ ∈ H+ the corresponding

translate is contained in H+ and hence H+ is not minimal. Contradiction.

It remains to show that a ∈ P . Again suppose the contrary. Then, by the

Tropical Separation Theorem 2.19, there is a closed halfspace H+
1 containing P

but not a. Now, since H+ is minimal, H+
1 is not contained in H+ and, in

particular, H+
1 is not parallel to H+. As a 6∈ H+

1 the closed tropical halfspace

H+
2 with apex a which is parallel toH+

1 contains P . We infer thatH+∩H+
2 ( H+

is a closed tropical halfspace (with apex a) which contains P . This contradicts

the minimality of H+. ˜

Corollary 3.4. There are only finitely many closed tropical halfspace which

are minimal with respect to P .

Proof. The standard affine hyperplane arrangement generated by Vert(P ) is

finite, and thus there are only finitely many pseudovertices. Since there are only

2d+1 − 2 closed affine halfspaces with a given apex,2 the claim now follows from

Proposition 3.3. ˜
removed redundant “This
immediately gives the
following.”Corollary 3.5. The tropical polytope P is the intersection of the (finitely

many) minimal closed tropical halfspaces that it is contained in.

We can now prove our first main result.

Theorem 3.6. The tropical polytopes are exactly the bounded intersections of

finitely many tropical halfspaces.

Proof. Let P be the bounded intersection of finitely many tropical halfspaces

H+
1 , . . . ,H+

m. Then P is the union of (finitely many) bounded cells of the stan-

dard affine hyperplane arrangement corresponding to the apices of H+
1 , . . . ,H+

m.

By Proposition 3.2 each of those cells is the tropical convex hull of its pseu-

dovertices. Since P is tropically convex, this property extends to P , and P is a

tropical polytope.

The converse follows from Corollary 3.5. ˜

Ordinary polytope theory is combinatorial to a large extent. This is due to the

fact that many important properties of an ordinary polytope are encoded into

its face lattice. While it is tempting to start a combinatorial theory of tropical

polytopes from the results that we obtained so far, this turns out to be quite

intricate. Here we give a brief sketch, while a more detailed discussion will be

picked up in a forthcoming second paper.

A boundary slice of the tropical polytope P is the tropical convex hull of

Vert(P ) ∩ ∂H+ where H+ is a closed tropical halfspace containing P . The

2The Example 3.9 shows that there may indeed be more than one minimal halfspace with
a given apex.
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boundary slices are partially ordered by inclusion; we call a maximal element

of this finite partially ordered set a facet of P . Let F1, . . . , Fm be facets of P .

Then the set

F1 u . . . u Fm = tconv(Vert(P ) ∩ F1 . . . ∩ Fm)

is called a proper face of P provided that F1 u . . . u Fm 6= ?. The sets ? and P

are the nonproper faces. The faces of a tropical polytope are partially ordered by

inclusion, the maximal proper faces being the facets. Note that, by definition,

faces of tropical polytopes are again tropical polytopes.

Theorem 3.7. The face poset of a tropical polytope is a finite distributive lattice.

Proof. We can extend the definition of u to arbitrary faces, this gives the meet

operation. There is no choice for the join operation then: G tH is the meet of

all facets containing G and H, for arbitrary faces G and H. Denote the set of

facets containing the face G by Φ(G), that is, G =uΦ(G). It is immediate from

the definitions that Φ(G tH) = Φ(G) ∩ Φ(H) and Φ(G uH) = Φ(G) ∪ Φ(H).

Hence the absorption and distributive laws are inherited from the boolean lattice

of subsets of the set of all facets. ˜

In order to simplify some of the discussion below we shall introduce a certain

nondegeneracy condition: A set S ⊂ TP
d is called full, if it is not contained in

the boundary of any tropical halfspace. If S is not contained in any tropical

hyperplane, then, clearly, S is full. As the Example 3.9 below shows, however,

the converse does not hold.

Example 3.8. The tropical standard simplex

∆2 = tconv{(0, 1, 1), (1, 0, 1), (1, 1, 0)}

is not contained in a tropical hyperplane, and hence it is full; see Figure 1, left.

It is the intersection of the three minimal closed tropical halfspaces (1, 0, 0)+ S̄0,

(0, 1, 0) + S̄1, and (0, 0, 1) + S̄2. The tropical line segments [(0, 1, 1), (1, 0, 1)],

[(1, 0, 1), (1, 1, 0)], and [(1, 1, 0), (0, 1, 1)] form the facets. The three vertices form

the only other proper faces.

Example 3.9. The second tropical hypersimplex

∆2
2 = tconv{(1, 0, 0), (0, 1, 0), (0, 0, 1)}

is a full tropical triangle in the tropical plane TP
2, which is contained in the

tropical line Z corresponding to the zero tropical linear form. There are six

minimal closed tropical halfspaces: S̄0 ∪ S̄1, S̄1 ∪ S̄2, S̄0 ∪ S̄2, (1, 0, 0) + S̄0,

(0, 1, 0) + S̄1, and (0, 0, 1) + S̄2. Note that the three closed tropical halfspaces

S̄0 ∪ S̄1, S̄1 ∪ S̄2, and S̄0 ∪ S̄2 share the origin as their apex. The tropical

line segments [(1, 0, 0), (0, 1, 0)], [(0, 1, 0), (0, 0, 1)], and [(0, 0, 1), (1, 0, 0)] form the

facets. As in the example above, the three vertices form the only other proper

faces. The triangle is depicted in Figure 1, right.
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Figure 1. Two full tropical triangles in TP
2: the tropical standard simplex

∆2 (left) and the second tropical hypersimplex ∆2
2 ⊂ TP

2, which has collinear

vertices. Both have the same face lattice as an ordinary triangle.

Remark 3.10. It is a consequence of Proposition 2.4 and Corollary 2.15 that

boundary slices of tropical polytopes are tropical polytopes, but they need not

be faces: E.g., the intersection of ∆2
2 with the boundary of the halfspace

(0, 0, 1/2) + (S̄1 ∪ S̄2)

is the tropical (and at the same time ordinary) line segment [(0, 0, 1/2), (0, 0, 1)],

which contains the face (0, 0, 1) and is properly contained in the intersection

[(1, 0, 0), (0, 0, 1)] ∩ [(0, 1, 0), (0, 0, 1)] of two facets.

Remark 3.11. It is easy to see that the face lattice of a tropical n-gon in TP
2

(which is necessarily full) is always the same as that of an ordinary n-gon. This

will play a role in the investigation of the algorithmic point of view in Section 5.

Minimal closed tropical halfspaces can be recognized by the intersection of their

boundaries with P , provided that P is full.

Proposition 3.12. Assuming that P is full , let H+
1 and H+

2 be closed tropical

halfspaces which are minimal with respect to P . If ∂H+
1 ∩ P = ∂H+

2 ∩ P then

H+
1 = H+

2 .

Proof. If P is full then it is impossible that for any closed tropical halfspace

H+ containing P the opposite closed halfspace H− also contains P .

Let a1 and a2 be the respective apices of H+
1 and H+

2 . By Lemma 3.3 the

points a1 and a2 are contained in P and hence a1 ∈ ∂H+
2 and a2 ∈ ∂H+

1 . In

particular, a1 ∈ H
−

2 . Therefore, the closed tropical halfspace (a1 − a2) + H+
2

with apex a1 which is parallel to H+
2 is a closed tropical halfspace containing P .

Since H+
1 is minimal, H+

1 ⊆ (a1−a2)+H
+
2 and hence H+

1 ⊆ H
+
2 . Symmetrically,

H+
2 ⊆ H

+
1 , and the claim follows. ˜

Remark 3.13. The familiarity of the names for the objects defined could inspire

the question whether tropical polytopes and, more generally, point configurations

in the tropical projective space can be studied in the framework of oriented

matroids. However, as the example in Figure 1 shows, the boundaries of tropical
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halfspaces spanned by a given set of points do not form a pseudo-hyperplane

arrangement, in general.

4. Tropical Determinants and Their Signs

For algorithmic approaches to ordinary polytopes it is crucial that the inci-

dence of a point with an affine hyperplane can be characterized by the vanishing

of a certain determinant expression. Moreover, by evaluating the sign of that

same determinant, it is possible to distinguish between the two open affine half-

spaces which jointly form the complement of the given affine hyperplane. This

section is about the tropical analog.

Let M = (mij) ∈ R
(d+1)×(d+1) be a matrix. Then the tropical determinant is

defined as

tdetM =
⊕

σ∈Sym(d+1)

d
⊙

i=0

mi,σ(i) = min
{

m0,σ(0)+ . . .+md,σ(d)

∣

∣ σ ∈ Sym(d+1)
}

.

Now M is tropically singular if the minimum is attained at least twice, otherwise

it is tropically regular. Tropical regularity coincides with the strong regularity of

a matrix studied by Butkovič [1994]; see also [Burkard and Butkovič 2003].

The following is proved in [Richter-Gebert et al. 2005, Lemma 5.1].

Proposition 4.1. The matrix M is tropically singular if and only if the d + 1

points in TP
d corresponding to the rows of M are contained in a tropical hyper-

plane.

From the definition of tropical singularity it is immediate that M is tropically

regular if and only if its transpose M tr is. Hence the above proposition also

applies to the columns of M .

The tropical sign of tdet M , denoted as tsgn M , is either 0 or ±1, and it is

defined as follows. If M is singular, then tsgn M = 0. If M is regular, then there

is a unique σ ∈ Sym(d + 1) such that m0,σ(0) + . . . + md,σ(d) = tdet M . We let

the tropical sign of M be the sign of this permutation σ. See also [Baccelli et al.

1992, § 3.5.1] and Remark 4.9 below.

As it turns out the tropical sign shares some key properties with the (sign of

the) ordinary determinant.

Proposition 4.2. Let M ∈ R
(d+1)×(d+1).

(1) If M contains twice the same row (column), then tsgn M = 0.

(2) If the matrix M ′ is obtained from M by exchanging two rows (columns), we

have tsgn M ′ = − tsgn M .

(3) tsgn M tr = tsgn M .

Proof. The first property follows from Proposition 4.1. The second one is

immediate from the definition of the tropical sign. And since permuting the
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(1, 0, 0)

(0, 1, 0)

τ = 1

τ = 1

τ = −1

(0, 0, 0) (0, 1, 0)

τ ′ = 0

τ ′ = 1

τ ′ = −1

Figure 2. Values of τp,q in TP
2 for two pairs of points: nondegenerate case

for τ = τ(1,0,0),(0,1,0) (left) and degenerate case for τ
′ = τ(0,0,0),(0,1,0) (right).

On the tropical line spanned by the two black points the values are zero in both

cases.

rows of a matrix is the same as permuting the columns with the inverse, we

conclude that tsgnM tr = tsgn M . ˜

While the behavior of the sign of the ordinary determinant under scaling a row

(column) by λ ∈ R depends on the sign of λ, the tropical sign is invariant

under this operation. Given v0, . . . , vd ∈ R
d+1 we write (v0, . . . , vd) for the

(d + 1)× (d + 1)-matrix with row vectors v0, . . . , vd.

Lemma 4.3. For v0, . . . , vd ∈ R
d+1 and λ0, . . . , λd ∈ R we have tsgn(λ0 � v0,

. . . , λd � vd) = tsgn(v0, . . . , vd).

In fact, tsgn is a function on (d + 1)-tuples of points in the tropical projective

space TP
d. For given p1, . . . , pd, consider the function

τp1,...,pd
: TP

d → {−1, 0, 1} : x 7→ tsgn(x, p1, . . . , pd).

Note that we do allow the case where the points p1, . . . , pd are not in general

position, that is, they may be contained in more than one tropical hyperplane;

see the example in Figure 4, right.

Example 4.4. Consider the real (d + 1)× (d + 1)-matrix formed of the vertices

−e0, . . . ,−ed of the tropical standard simplex ∆d. Then we have

tdet(−e0, . . . ,−ed) = −d,

and the matrix is regular: The unique minimum is attained for the identity

permutation, hence

tsgn(−e0, . . . ,−ed) = 1,

or equivalently, τ−e1,...,−ed
(−e0) = 1.
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Proposition 4.5. The function τp1,...,pd
is constant on each connected compo-

nent of the set TP \ τ−1
p1,...,pd

(0).

Proof. Equip the set {−1, 0, 1} with the discrete topology. Away from zero the

function τp1,...,pd
is continuous, and the result follows. ˜

Throughout the following we keep a fixed sequence of points p1, . . . , pd, and

we write πij for the j-th canonical coordinate of pi. We frequently abbreviate

τ = τp1,...,pd
as well as p(σ) = π1,σ(1) + . . . + πd,σ(d) for σ ∈ Sym(d + 1).

Remark 4.6. The points p1, . . . , pd are in general position if and only if no

d× d-minor of the d × (d + 1)-matrix with entries πij is tropically singular; see

[Richter-Gebert et al. 2005, Theorem 5.3]. In the terminology of [Develin et al.

2005] this is equivalent to saying that the matrix (πij) has maximal tropical

rank d.

Theorem 4.7. The set
{

x ∈ TP
d

∣

∣ τ(x) = 1
}

is either empty or the union of at

most d open sectors of a fixed tropical hyperplane. Conversely, each such union

of open sectors arises in this way.

Proof. We can assume that τ(x) = 1 for some x ∈ TP
d, since otherwise

there is nothing left to prove. From Proposition 4.1 we know that the d + 1

points x, p1, . . . , pd are not contained in a tropical hyperplane, and hence they

are the vertices of a full tropical d-simplex ∆ = tconv{x, p1, . . . , pd}. Consider

the facet F = tconv{p1, . . . , pd}, and let H+ be the unique corresponding closed

tropical halfspace which is minimal with respect to ∆ and for which we have

∂H+ ∩ ∆ = F . Let a be the apex of H+, and let a + Sk be the open sector

containing x. By construction a + Sk ⊂ H
+.

Assume that τ(y) 6= τ(x) for some y ∈ a + Sk. Then there exists a point

z ∈ [x, y] with τ(z) = 0. Since sectors are tropically convex, z ∈ a + Sk. By

Proposition 4.1 there exists a tropical hyperplane K which contains the points

z, p1, . . . , pd. Let K+ be the minimal closed tropical halfspace of the tropical

hyperplane K containing x, p1, . . . , pd. As H+ and K+ are both minimal with

respect to the tropical simplex ∆, the Proposition 3.12 says that H+ = K+, and

in particular, a+Sk 3 z is an open sector of K. The latter contradicts, however,

z ∈ K.

For the converse, it surely suffices to consider the tropical hyperplane Z cor-

responding to the zero tropical linear form, since otherwise we can translate. We

have to prove that for each set K ⊂ [d + 1] with 1 ≤ #K ≤ d there is a set of

points u1, . . . , ud ∈ Z such that
{

x ∈ TP
d

∣

∣ τu1,...,ud
(x) = 1

}

=
⋃

{

Sk

∣

∣ k ∈ K
}

.

More specifically, we will even show that, for arbitrary K, those d points can

be chosen among the
(

d+1
2

)

vertices of the second tropical hypersimplex ∆d
2; see

Example 2.12. Since the symmetric group Sym(d + 1) acts on the set of open

sectors of Z as well as on the set Vert(∆d
2), it suffices to consider one set of sectors
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for each possible cardinality 1, . . . , d. Let us first consider the case where d is

odd and K = {0, 2, 4, . . . , d− 1} is the set of even indices, which has cardinality

(d + 1)/2. We set

qi =

{

−ei − ei+1 for i < d

−e0 − ed for i = d.

If we want to evaluate τq1,...,qd
(x) for some point x ∈ TP

d \ Z with canonical

coordinates (ξ0, . . . , ξd), we compute the tropical determinant and the tropical

sign of tdet(x, q1, . . . , qd), which in canonical row coordinates looks as follows:

Qd =























ξ0 ξ1 ξ2 ξ3 ξ4 · · · ξd

1 0 0 1 1 · · · 1

1 1 0 0 1 · · · 1
...

...
. . .

. . .
. . .

. . .
...

1 1 · · · 1 0 0 1

1 1 · · · 1 1 0 0

0 1 · · · 1 1 1 0























.

Since x 6∈ Z, there is a unique permutation σx ∈ Sym(d+1) such that tdet(Q) =

ξσx(0) + q(σx). We can verify that tdet(Q) = 0 in all cases and that

σx =

{

(0) if x ∈ S0,

(0 k k + 1 · · · d) if x ∈ Sk for k > 0.

Here we make use of the common cycle notation for permutations, and (0) de-

notes the identity. For k > 0 this means that σx is a (d + 2 − k)-cycle, which

is an even permutation if and only if k is even, since d is odd. We infer that

τq1,...,qd
(x) = 1 if and only if x ∈ Sk for k even.

We now discuss the case where #K ≥ (d + 1)/2 and d is arbitrary. As in

the case above, by symmetry, we can assume that K = {0, 2, 4, . . . , 2(l− 1), 2l−

1, 2l, . . . , d} for some l < bd/2c. We define

q′i = −e0 − ei,

for all i ≥ 2l+1, and we are concerned with the matrix (x, q1, . . . , ql, q
′

l+1, . . . , q
′

d),

which, in canonical row coordinates, looks like this:

Ql
d =





































ξ0 ξ1 ξ2 ξ3 ξ4 · · · ξ2l−1 ξ2l · · · ξd

1 0 0 1 1 · · · 1 1 · · · 1

1 1 0 0 1 · · · 1 1 · · · 1
...

...
. . .

. . .
. . .

. . .
...

...
. . .

...

1 1 · · · 1 0 0 1 1 · · · 1

1 1 · · · 1 1 0 0 1 · · · 1

0 1 · · · 1 1 1 0 1 · · · 1
...

...
. . .

...
...

...
. . .

. . .
. . .

...

0 1 · · · 1 1 1 · · · 1 0 1

0 1 · · · 1 1 1 · · · 1 1 0





































.
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Note that the upper left 2l×2l-submatrix is exactly Ql. Hence the same reasoning

now yields

σx =

{

(0) if x ∈ S0,

(0 k k + 1 · · · 2l − 1) if x ∈ Sk for k > 0,

and σx is an even permutation if and only if k is even or k > 2l.

Scrutinizing the matrices Qd and Ql
d yields that none of their d × (d + 1)-

submatrices consisting of all rows but the first contains a tropically singular mi-

nor. Equivalently, the points q1, . . . , qd as well as the points q1, . . . , ql, q
′

l+1, . . . , q
′

d

are in general position. But then the set
{

x ∈ TP
d

∣

∣ τq1,...,ql,q
′

l+1
,...,q′

d
(x) = −1

}

is just the union of the sectors in the complement [d + 1] \K, and since further,

according to Proposition 4.2, τq1,...,qd
= −τq2,q1,q3,...,ql,q

′

l+1
,...,q′

d
, the argument

given so far already covers the remaining case of #K < (d+1)/2. This completes

the proof. ˜

Now, for the fixed set of points p1, . . . , pd, we can glue together the connected

components of TP
d \ τ−1

p1,...,pd
(0) into two (if τp1,...,pd

6≡ 0) large chunks according

to their tropical sign: To this end we define the closure of the function τp1,...,pd
as

follows. Let τ̄p1,...,pd
(x) = ε if there is a neighborhood U of x such that τp1,...,pd

restricted to U \τ−1
p1,...,pd

(0) is identically ε; otherwise let τ̄p1,...,pd
(x) = 0. Clearly,

if τp1,...,pd
(x) 6= 0 then τ̄p1,...,pd

(x) = τp1,...,pd
(x).

Theorem 4.7 then implies the following.

Corollary 4.8. The set
{

x ∈ TP
d

∣

∣ τ̄(x) = 1
}

is empty or a closed tropical

halfspace. Conversely, each closed tropical halfspace arises in this way.

Remark 4.9. One can show that τ̄p1,...,pd
(x) = 1 if and only if all optimal

permutations, that is, all σ ∈ Sym(d + 1) with tdet(x, p1, . . . , pd) = ξσ(0) + p(σ)

are even. In this sense our function τ̄ captures the sign of the determinant in

the symmetrized min-plus-algebra as defined in [Baccelli et al. 1992, § 3.5.1].

Corollary 4.10. For each point x = (ξ0, . . . , ξd) ∈ TP
d with τ̄p1,...,pd

(x) = 0

there are two permutations σ and σ′ of opposite sign such that

tdet(x, p1, . . . , pd) = ξσ(0) + p(σ) = ξσ′(0) + p(σ′).

5. Convex Hull Algorithms in
��2

For points in the ordinary Euclidean plane the known algorithms can be

phrased easily in terms of sign evaluations of certain determinants. It turns out

that the results of the previous sections can be used to “tropify” many ordinary

convex hull algorithms.

In this section we do not use canonical coordinates for points in the tropical

projective space, but rather we normalize by setting the first coordinate to zero.
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This way the description of the algorithms can be made in the ordinary affine

geometry language more easily. In particular, a point in (0, ξ1, ξ2) ∈ TP
2 is

determined by its x-coordinate ξ1 and its y-coordinate ξ2. We hope that this

helps to see the strong relationship between the ordinary convex hull problem in

R
2 and the tropical convex hull problem in TP

2. Moreover, this way it may be

easier to interpret the illustrations.

Consider a set S = {p1, . . . , pn} ⊂ TP
2. Let bottom(S) be the lowest point

(least y-coordinate) of S with ties broken by taking the rightmost (highest x-

coordinate) one. Similarly, let right(S) be the rightmost one with ties broken by

taking the highest, top(S) the highest with ties broken by taking the rightmost,

and left(S) the leftmost one with ties broken by taking the highest. Clearly, some

of the four points defined may coincide. If a set of points is in general position,

that is, for any two points of the input their three rays are pairwise distinct,

then there are unique points with minimum and maximum x- and y-coordinate

respectively. In this case there are no ties.

bottom(S)

right(S)

top(S)

left(S)

Figure 3. Standard affine line arrangement generated by a set of points S ⊂ TP
2,

displayed in black. The white points are the pseudovertices on tropical line seg-

ments between any two points. Additionally, the tropical convex hull is marked.

Lemma 5.1. The points bottom(S), right(S), top(S), left(S) are vertices of the

tropical polygon tconv(S). Moreover , [bottom(S), left(S)] is a facet provided that

bottom(S) 6= left(S).

Proof. By definition, the closed sector bottom(S) + S̄1 does not contain any

point of S other than bottom(S). This certifies that, indeed, the point bottom(S)

is a vertex because of Propositions 2.5 and 2.9. We omit the proofs of the

remaining statements, which are similar. ˜
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Phase I

Phase II
Phase III

Figure 4. Three phases of Algorithm A.

Note that due to the special shape of the tropical lines, it is important how to

break the ties. For instance, if two points have the same lowest y-coordinate, then

the left one is also on the boundary, but not necessarily a vertex; see Figure 3.

A key difference between tropical versus ordinary polytopes is that the former

only have few directions for their (half-)edges. This can be exploited to produce

convex hull algorithms which do not have a directly corresponding ordinary ver-

sion.

Through each point p = (0, ξ, η) ∈ TP
2 there is a unique tropical line con-

sisting of three ordinary rays emanating from p: We respectively call the sets
{

(0, ξ + λ, η)
∣

∣ λ ≥ 0
}

,
{

(0, ξ, η + λ)
∣

∣ λ ≥ 0
}

, and
{

(0, ξ − λ, η − λ)
∣

∣ λ ≥ 0
}

the horizontal, vertical, and skew ray through x. If we have a second point

p′ = (0, ξ′, η′) then we can compare them according to the relative positions of

their three rays. This way there is a natural notion of left and right, but there

are two notions of above and below, which we wish to distinguish carefully: p′ is

y-above p if η′ > η, and it is skew-above if η′ − ξ′ > η − ξ.

The introduction of the sign of the tropical determinant now clearly allows to

take most ordinary 2-dimensional convex hull algorithms and produce a “tropi-

fied” version with little effort. For instance a suitable tropical version of Gra-

ham’s scan provides a worst-case optimal O(n log n)-algorithm. We omit the

details since we describe a different algorithm with the same complexity. The

commonly expected output of an ordinary convex hull algorithm in two dimen-

sions is the list of vertices in counter-clockwise order. As the results in the

previous section imply that the combinatorics of tropical polygons in TP
2 does

not differ from the ordinary, we adopt this output strategy.

The data structures for the Algorithm A below is are three doubly-linked lists

L, Y,B such that each input point occurs exactly once in each list. It is important

that all three lists can be accessed at their front and back with constant cost.
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In order to obtain a concise description we assume that the input set S is

in general position. For input not in general position the notions of left, right,

above, and below have to be adapted as above. The complexity of the algorithm

remains the same.

Input : S ⊂ TP
2 finite

Output: list of vertices of tconv(S) in counter-clockwise order

sort S from left to right and store the result in list L

sort S from y-below to y-above and store the result in list Y

sort S from skew-below to skew-above and store the result in list B

H ← empty list; v ← front(Y ); w ← next(v, Y )

while w y-below back(L) do

if w skew-below v then

v ← w; append v to H

w ← next(w, Y )

v ← back(L); append v to H

w ← previous(v, L)

while w to the right of back(Y ) do

if w y-above v then

v ← w; append v to H

w ← previous(w,L)

v ← back(Y ); append v to H;

w ← back(B)

while w skew-above front(L) do

if w to the left of v then

v ← w; append v to H

w ← previous(w,B)

v ← front(L); append v to H

if v 6= front(Y ) then

append front(Y ) to H

return H

Algorithm A: Triple sorting algorithm.

Proposition 5.2. The Algorithm A correctly computes the vertices of the trop-

ical convex hull in counter-clockwise order .

Proof. The algorithm has an initialization and three phases, where each phase

corresponds to one of the three while-loops; for an illustration see Figure 4. In

the first phase all the vertices between bottom(S) and right(S) are enumerated,
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in the second phase the vertices between right(S) and top(S), and in the third

phase the vertices between top(S) and left(S).

By Lemma 5.1 the point front(Y ) = bottom(S) is a vertex. Throughout the

algorithm the following invariant in maintained: v is the last vertex found, and

w is an input point not yet processed, which is a candidate for the next vertex in

counter-clockwise order. We have a closer look at Phase I, the remaining being

similar. If w is a vertex between bottom(S) and right(S) then it will be y-above

of v, hence we process the points according to their order in the sorted list Y .

However, none of those vertices can be y-above back(L) = right(S), therefore

the stop condition. Under these conditions w is a vertex if and only if w is skew-

below the tropical line segment [v, right(S)]. ˜

The worst-case complexity of the algorithm based on triple sorting is O(n log n).

If, however, the points are uniformly distributed at random, say, in the unit

square, then by applying Bucket Sort, we can sort the input in an expected

number of O(n) steps; see [Cormen et al. 2001].

If only few of the input points are actually vertices of the convex hull, then

it is easy to beat an O(n log n) algorithm. For ordinary planar convex hulls the

Jarvis’ march algorithm is known as an easy-to-describe method which is output-

sensitive in this sense. We sketch a “tropified” version, we will be instrumental

later. Its complexity is O(nh), where h is the number of vertices.

Input : S ⊂ TP
2 finite

Output: list of vertices of tconv(S) in counter-clockwise order

v0 ← bottom(S); v ← v0; H ← empty list

repeat

w ← some point in S

for p ∈ S \ {w} do

if τ̄v,w(p) = −1 or (τ̄v,w(p) = 0 and ||p− v|| > ||w − v||) then

w ← p

v ← w; S ← S \ {v}; append v to H

until v = v0

return H

Algorithm B: Tropical Jarvis’ march algorithm.

In the ordinary case, Chan [1996] has given a worst-case optimal O(n log h)

algorithm, based on a combination of Jarvis’ march and a divide-and-conquer

approach. We sketch how the same ideas can be used to obtain an O(n log h)

convex hull algorithm in TP
2. If we split the input into dn/me parts of size at

most m, then we can use our O(n log n) algorithm based on triple sorting to

compute the dn/me hulls in O((n/m)(m log m)) = O(n log m) time. Now we
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use Jarvis’ march to combine the dn/me tropical convex hulls into one. The

crucial observation is that each vertex of the big tropical polygon is also a vertex

of one of the dn/me small tropical polygons. Therefore, in order to compute

the next vertex of the big tropical polygon in the counter clockwise order, we

first compute the tropical tangent through the current vertex to each of the

small tropical polygons. In each small tropical polygon this can be done by

binary searching the vertices in their cyclic order; this requires O(log m) steps

per small tropical polygon and per vertex of the big tropical polygon. Summing

up this gives a total of O(n log m + h((n/m) log m)) = O(n(1 + h/m) log m)

operations. That is to say, if we could know the number of vertices of the big

tropical polygon beforehand, then we could split the input into portions of size

at most h, thus arriving at a complexity bound of O(n log h). But this can be

achieved by repeated guessing as has been suggested by Chazelle and Matoušek

[1995].

We summarize our findings in the following result, which is identical to the

ordinary case. Note that, as in the ordinary case, one has an Ω(n log n) worst

case lower bound for the complexity of the two-dimensional tropical convex hull

problem which comes from sorting. In this sense our output-sensitive algorithm

is optimal.

Theorem 5.3. The complexity of the problem to compute the tropical convex

hull of n points in TP
2 with h vertices is as follows:

(1) There is an output-sensitive O(n log h)-algorithm.

(2) There is an algorithm which requires expected linear time for random input .

6. Concluding Remarks

One of the main messages of this paper is that, with suitably chosen defini-

tions, it is possible to build up a theory of tropical polytopes quite similar to

the one for ordinary convex polytopes. But, of course, very many items are still

missing. We list a few open questions, and the reader will easily find more.

(1) How are the face lattices of tropical polytopes related to the face lattices of

ordinary convex polytopes? In particular, how do the face lattices of tropical

polytopes in TP
3 look alike?

(2) It is known [Develin and Sturmfels 2004, Lemma 22] that the tropical convex

hull of n points in TP
d is the bounded subcomplex of some (n + d)-dimensional

unbounded ordinary convex polyhedron (defined in terms in inequalities). Hence

the tropical convex hull problem can be reduced to solving a (dual) ordinary con-

vex hull problem, followed by a search of the bounded faces in the face lattice.

The question is: How does an intrinsic tropical convex hull algorithm look alike

that works in arbitrary dimensions? Here intrinsic means that the algorithm

should not take a detour via that face lattice computation in the realm of or-

dinary convex polytopes. While the complexity status of the ordinary convex
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hull problem is notoriously open (output-sensitive with varying dimension) it is

well conceivable that the tropical analog is, in fact, easier. An indication may be

the easy to check certificate in Proposition 2.9 which leads to a simple and fast

algorithm for discarding the nonvertices among the input points, a task which is

polynomially solvable in the ordinary case, but which requires an LP-type oracle.

(3) What is the proper definition of a tropical triangulation? Such a definition

would say that a tropical triangulation should be a subdivision into tropical sim-

plices which meet properly. The precise notion of meeting is subtle, however.

While it is obvious that the standard intersection as sets does not do any good,

the more refined way by extending the u operation also leads to surprising ex-

amples. A meaningful definition of a tropical triangulation should lead to one

solution of the previous problem.

(4) Can the dimension of an arbitrary tropical polytope, which is not necessarily

full, computed in polynomial time? Here dimension means the same as tropical

rank. In fact, this is Question (1) at the end of the paper [Develin et al. 2005].

(5) As mentioned in Remark 3.13 point configurations in the tropical projective

space do not generate an oriented matroid in the usual way. But does there exist

a more general notion than an oriented matroid which encompasses the tropical

case?
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