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Cylindrical Partitions of Convex Bodies

ALADÁR HEPPES AND W LODZIMIERZ KUPERBERG

Abstract. A cylindrical partition of a convex body in R
n is a partition

of the body into subsets of smaller diameter, obtained by intersecting the
body with a collection of mutually parallel convex-base cylinders. Convex
bodies of constant width are characterized as those that do not admit a
cylindrical partition. The main result is a finite upper bound, exponential
in n, on the minimum number bc(n) of pieces needed in a cylindrical parti-
tion of every convex body of nonconstant width in R

n. (A lower bound on
bc(n), exponential in

√

n, is a consequence of the construction of Kalai and
Kahn for counterexamples to Borsuk’s conjecture.) We also consider cylin-
drical partitions of centrally symmetric bodies and of bodies with smooth
boundaries.

1. Introduction and Preliminaries

Throughout this article, M denotes a compact subset of R
n containing at least

two points. By diam M we denote the maximum distance between points of M ,

but diameter of M also means the line segment connecting any pair of points

of M that realize this distance (ambiguity is always avoided by the context). A

Borsuk partition of M is a family of subsets of M , each of diameter smaller than

diam M , whose union contains M . The Borsuk partition number of M , denoted

by b(M), is the minimum number of sets needed in a Borsuk partition of M . It is

obvious that b(M) is finite. It is also obvious that the maximum of b(M) over all

bounded sets M in R
n exists and is bounded above exponentially in n, since every

set of diameter d is contained in a ball of radius d. Therefore the n-th Borsuk

partition number, denoted by b(n), and defined as the minimum number of sets

needed for a Borsuk partition of any bounded set in R
n, is finite. Since a Borsuk
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400 ALADÁR HEPPES AND W LODZIMIERZ KUPERBERG

partition of a ball in R
n requires at least n + 1 sets, it follows that b(n) ≥ n + 1.

K. Borsuk [1933] conjectured that b(n) = n + 1, to which a counterexample was

found by G. Kalai and J. Kahn [1993] in dimension n = 1325. In fact, Kalai and

Kahn proved that, for large n, b(n) is bounded below exponentially in 1.2
√

n. (At

the time of writing of this paper, the lowest dimension known for which Borsuk’s

conjecture fails is 298; see [Hinrichs and Richter 2003].)

In this paper we consider a special kind of Borsuk partitions, which we will

call cylindrical partitions; we ask related questions and provide some answers.

Definition. By a cylinder in the direction of a line l we understand a closed

set that contains every line parallel to l that intersects the set. A cylinder’s

cross-section perpendicular to its direction is called the base of the cylinder.

Let M be a compact set, let l be a line, and let {Mi} be a Borsuk partition

of M . We say that the partition is cylindrical and that l defines its direction,

provided that each of the sets Mi is the intersection of M with a cylinder parallel

to l. For brevity, we say “cylindrical partition” instead of “cylindrical Borsuk

partition,” assuming automatically that the pieces of M are of diameter smaller

than diam M .

For the purpose of studying the problem of existence and minimum cardinality

of cylindrical partitions of M (over variable M) one can always replace M with

its convex hull ConvM . Therefore it will be assumed from now on that M is a

convex body, unless otherwise specified.

The width of M in the direction of line l is the distance between the pair of

hyperplanes of support of M that are perpendicular to l and enclose M between

them. If M has the same width in every direction, then M is said to be a body

of constant width (see [Heil and Martini 1993, p. 363]). It is easy to see that if

segment d is of maximum length among all chords of M parallel to d, then there

exist two parallel hyperplanes of support of M , each containing an end of d. It

follows that a body of constant width has a diameter in every direction. Hence:

Proposition 1. If M is a body of constant width, then M does not admit a

cylindrical partition in any direction (not even into an infinite number of pieces).

The converse to the above is true as well:

Proposition 2. If M is a bounded set of nonconstant width, then there exists

a direction in which M admits a finite cylindrical partition.

Proof. Denote the diameter of M by d. Let P1 and P2 be a pair of parallel

hyperplanes supporting M from opposite sides and determining a width d1 < d.

Let M1 be the perpendicular projection of M to P1. There exists a finite partition

of M1 (in P1) into sets of diameter smaller than
√

d2 − d2

1
. This partition gives

rise (perpendicularly to P1) to a finite cylindrical partition of M . ˜

Corollary 3. Bodies of constant width are characterized among convex bodies

as those that do not admit a finite cylindrical partition.
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The above characterization of bodies of constant width and the subsequent in-

vestigations were inspired by a previous result of A. Heppes [1959] characterizing

curves of constant width in the plane.

Definition. If M is a set of nonconstant width, let bc(M), the Borsuk cylindri-

cal partition number of M , or the cylindrical partition number of M for short,

denote the smallest number of pieces into which M can be cylindrically parti-

tioned.

The notion defined below is analogous to the n-th Borsuk number:

Definition. The maximum of bc(M) over all sets M of nonconstant width in

R
n is called the n-th cylindrical partition number and is denoted by bc(n).

The above proof of Proposition 2 may seem to indicate that already in the plane

the cylindrical partition number of a set of nonconstant width may be arbitrarily

large. But in Section 3 we show that there is an upper bound for bc(M) depending

on the dimension of the ambient space only, which justifies the definition of bc(n).

Specifically, we show that bc(n) is bounded above exponentially in n. In our proof

we apply the following classical result concerning bodies of constant width (see

[Bonnesen and Fenchel 1974, p. 129]), obtained by E. Meissner [1911] for n = 2

and n = 3, and generalized to all n by B. Jessen [1928]:

Theorem 4 (Meissner–Jessen). Every convex body in R
n can be enlarged ,

without increasing its diameter , to a body of constant width.

Henceforth, the distance from point A to point B, the segment with ends A and

B, and the line containing them are denoted by AB, AB, and
←→
AB, respectively.

Definition. Let s be a segment and let l be a line containing neither of the

two ends of s. The angle at which s is seen from l is the measure of the smallest

dihedral angle with its edge on l and containing s. We denote this angle by

\(l, s).

Observe that the above definition is meaningful in every dimension n ≥ 2, al-

though for n = 2 the angle is always 0◦ or 180◦. In the next section we present

a lemma concerning the minimum angle at which a diameter of a bounded set

can be seen from the line of another diagonal.

2. Diameters of a Bounded Set

Here we relax the standing assumption that M is a convex body. We do not

even require M to be compact, only to be bounded. In what follows, α0 denotes

the measure of the dihedral angle in a regular tetrahedron, α0 = arccos 1

3
=

70.52 . . .◦.

Lemma 5. Let M be a bounded set and let d1 and d2 be diameters of M that do

not have a common end point . Then

\
(←→

d1 , d2

)
≥ α0,
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equality being attained if and only if the convex hull of d1 ∪ d2 is a regular

tetrahedron.

Proof. (F. Santos, private communication, 2003). Assume for simplicity that

diam M = 1 and let l denote the line of d1. Observe that d2 cannot have an

end on l, hence \(l, d2) is well defined. If the segments d1 and d2 intersected,

then we would have \(l, d2) = 180◦, hence we can assume otherwise. Then the

lines of d1 and d2 cannot intersect at all, and, obviously, they cannot be parallel.

Since any pair of skew lines in R
n with n > 3 determine a 3-dimensional flat

containing them, we can now assume that M is a subset of R
3. Hence all we

need to prove is the following:

Assertion. Among all tetrahedra of diameter 1 and with two nonadjacent edges

of length 1, the minimum of the dihedral angle at either one of the two edges is

attained on, and only on, the regular tetrahedron.

Let T = ABCD be a tetrahedron with AB = CD = 1, and with all four of its

remaining edges of length at most 1. Obviously, T lies in a lens-like set L that

is in the common part of two unit balls, one centered at A and the other at B.

Let p be the plane containing
←→
AB and parallel to

←→
CD, let h denote the distance

between p and
←→
CD, and let ph be the plane parallel to p and containing

←→
CD.

The set Lh = L ∩ ph is the common part of two circular disks (in ph) of radius√
1− h2 each, their centers one unit apart. The boundary of Lh is the union of

two circular arcs: the A-arc, consisting of points in Lh one unit away from A,

and the B-arc, consisting of points one unit away from B. Clearly, edge CD of T

lies in Lh; we will vary the position of that edge within Lh in order to minimize

the dihedral angle at edge AB.

Rotating CD (within Lh) about either of its ends to a position “more parallel

to”
←→
AB (that is, to decrease the angle between

←→
CD and

←→
AB) decreases the

dihedral angle at AB. By combining at most two such rotations we can bring

CD to a position in which one of its ends, say C, lies on the B-arc, and the

other one, D, on the A-arc of Lh. Then we have AD = BC = 1. Observe that

unless the equality AD = BC = 1 held already before, this change requires at

least one rotation, thus it actually decreases the dihedral angle at AB.

Finally, if AC < 1, then increasing the length of AC while keeping the length

of the remaining edges fixed results in a decrease of the dihedral angle at
←→
AB (and

the same holds about lengthening the edge BD). To prove this fact, consider

a sufficiently small sphere centered at point B. The intersection of the sphere

with T is an isosceles (spherical) triangle t∗ = A∗D∗C∗ (labeling to reflect the

correspondence to points A, D, and C) with legs A∗D∗ and C∗D∗ whose length

remains constant, since triangles ABD and CBD remain rigid, hinged on their

common edge BD. Observe that the angle of t∗ at A∗ is the dihedral angle

of T at the edge AB. Now, as AC increases, the constant-length legs of the

isosceles triangle t∗ open wider, and the two equal angles at its base decrease.
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This argument proves that the dihedral angle at AB attains its minimum when,

and only when, T is regular, which completes the proof of the lemma. ˜

3. An Exponential Upper Bound for bc(n)

In this section we prove our main result:

Theorem 6. There is a constant k such that bc(n) ≤ kn for every n.

Proof. Let K be a convex body of nonconstant width in R
n and let K̂ be a

body of constant width containing K and of the same diameter as K, whose

existence is provided by Theorem 4. Assume diam K = diam K̂ = 1. Then there

is a line l such that d = l ∩ K̂ is of length 1, while the segment l ∩K is shorter

than 1, hence is a proper subset of d. Let H be the hyperplane perpendicular to

l and let O denote the intersection point l ∩H. There exists a round cylinder C

about l of radius r small enough so that diam (C ∩K) < 1. Let Br denote the

base of C in H, which is an (n− 1)-dimensional ball of radius r, centered at O.

Let S denote the boundary of Br, which is a sphere of dimension n− 2.

Consider a covering of S with the smallest number sn−2 of congruent spherical

caps Ci of angular diameter α slightly smaller than α0 = 70.5 . . .◦ (α0 is the

dihedral angle in a regular tetrahedron, as in Lemma 5). By a simple argument

involving a saturated packing with caps and a rough volume estimate, sn−2 is

bounded above exponentially in n. (C. A. Rogers [1963] gives a very good,

specific upper bound obtained by a refined analysis.) Let Vi denote the cone (in

H) composed of rays emanating from O and passing through Ci, and let Wi be

the subset of Vi obtained by chopping off a small tip of Vi, say Wi is the convex

hull of the closure of the set Vi \ Br, a truncated cone. The family of 1 + sn−2

subsets of H consisting of Br and the truncated cones Wi (i = 1, 2, . . . , sn−2)

covers H. This covering gives rise to a family of cylinders in the direction of

l whose intersections with K form a cylindrical partition of K. Indeed: every

diagonal of K is a diagonal of K̂, and every diagonal of K̂ other than d, either:

(i) has a common end with d, in which case that end lies outside the union of

the cylinders over the truncated cones Wi, or

(ii) has no common end with d and therefore is seen from l at an angle greater

than or equal to α0, which implies that it cannot be contained in any one of

the cylinders over the sets Wi.

Since C does not contain any diameter of K by design and none of the cylinders

over the truncated cones Wi does either, and since each of these cylindrical pieces

is convex, we have a cylindrical partition of K, with an exponential (in n) upper

bound on the number of pieces. ˜

Remark. The construction in the proof of Theorem 6 actually demonstrates

that bc(n) ≤ 1 + sn−2. However, in case K is smooth, i.e., at every point of

the boundary of K the support hyperplane is unique, no diagonal of K has a
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common end with another diagonal of K̂. Then the cylinders over the cones Vi,

1 ≤ i ≤ sn−2, form a cylindrical partition of K already (the “central piece” C is

not needed). Thus, bc(K) ≤ sn−2 for every n-dimensional smooth convex body

K of nonconstant width.

The construction described above in the proof of Theorem 6, combined with

the fact that the necessary number of pieces in a Borsuk partition of the n-

dimensional regular simplex is n + 1, yield:

Corollary 7. A constant k exists such that the inequalities n+ 1 ≤ bc(n) ≤ kn

hold . In dimensions up to 4, we have, more specifically , bc(2) = 3, 4≤ bc(3)≤ 7,

and 5 ≤ bc(4) ≤ 15. Moreover , by virtue of the remark above, if K is a smooth

convex body of nonconstant width in R
n, then bc(K) = 2 for n = 2, bc(K) ≤ 6

for n = 3, and bc(K) ≤ 14 for n = 4.

The inequality bc(3) ≤ 7 follows from 5α0 < 360◦ < 6α0, i.e., s1 = 6. The

inequality bc(4) ≤ 15 is obtained by the fact that the 2-sphere (the boundary

of the 3-dimensional ball) can be covered with 14 congruent spherical caps of

spherical diameter smaller than α0, i.e., s2 = 14. Indeed, the smallest diameter

of 14 congruent spherical caps that can cover the 2-sphere is approximately

69.875◦ (see [Fejes Tóth 1969]), just a little bit less than α0.

Remark. Let An denote the counterexample of Kalai and Kahn [1993] to Bor-

suk’s conjecture in R
n, whose Borsuk partition number is bounded below expo-

nentially by
√

n. Since each of the sets An is finite, the set Kn = ConvAn, being

a polyhedron, is of nonconstant width. It follows that bc(Kn) ≥ b(Kn).

Consequently, we have:

Corollary 8. There exist constants k1 > 1 and k2 such that , for large n,

k
√

n
1
≤ bc(n) ≤ kn

2
.

4. Cylindrical Partitions of Bodies With Central Symmetry

Under the assumption of central symmetry of the body to be cylindrically

partitioned, the upper bound on the number of pieces needed is much lower

than the bound obtained in the previous section:

Theorem 9. Let K be a centrally symmetric convex body in R
n other than a

ball . Then bc(K) ≤ n, and the inequality is sharp.

Proof. Assume that O is the symmetry center of K and that diam K = 1.

Then the ball B of radius 1/2 and centered at O contains K as a proper subset.

Therefore one of the diameters of B, say d, has both of its ends outside K. Let H

be a hyperplane perpendicular to d and passing through O. The set H ∩B is an

(n− 1)-dimensional ball (in H) of diameter 1, hence its boundary S, a sphere of

dimension n−2, can be covered by n congruent caps ci of diameter smaller than
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180◦, with centers placed at the vertices of a regular (n − 1)-simplex inscribed

in S. Let Ci be the cone composed of rays that emanate from O and pass

through ci. By erecting a cylinder Di parallel to d with base Ci (i = 1, 2, . . . , n),

we obtain a cylindrical partition of K into n pieces, since neither of the convex

sets Di ∩K contains a pair of antipodes of B.

The inequality is sharp, since any Borsuk partition of a ball in R
n with a pair

of small antipodal congruent caps cut off requires n pieces. ˜

5. Final Remarks and Some Open Problems

Our Proposition 1, Proposition 2, and Corollary 3 can be generalized to n-

dimensional Minkowski spaces by methods described in [Averkov and Martini

2002]. The classical Meissner–Jessen theorem (Theorem 4 here) has been gener-

alized to convex bodies in n-dimensional Minkowski spaces by G. D. Chakerian

and H. Groemer [1983]. Therefore it is perhaps possible that Theorem 6, our

main result, can be so generalized as well, although the magnitude of the upper

bound may depend on the unit ball in the Minkowski space.

One could generalize the concept of cylindrical partitions in R
n by consider-

ing “k-cylinders” obtained as a Cartesian product of a set lying in an (n − k)-

dimensional flat with a k-dimensional flat (a 1-cylinder would then be a “usual”

cylinder, i.e., a product with a line). But, because of their connection to bodies

of constant width, we decided to deal with cylindrical partitions based on the

usual cylinders only.

M. Lassak [1982] proved that b(n) ≤ 2n−1+1, and from a result of O. Schramm

[1988] on covering a body of constant width with its smaller homothetic copies

it follows that b(n) ≤ 5n
√

n(4 + log n)
(

3

2

)n/2

, presenting an upper bound of

order of magnitude
(√

1.5
)n

. The precise asymptotic behavior of b(n) remains

unknown.

The problem of determining the precise asymptotic behavior of bc(n) as n→
∞ (let alone the exact values), appears to be extremely difficult, just as, or

perhaps even more so than, the similar problem for b(n). But it seems reasonable

to expect some improvements on the bounds given in Corollary 7 and in Theorem

8. In particular, we feel that the upper bound in 4 ≤ bc(3) ≤ 7 can be lowered,

perhaps all the way down to 4. Also, one should be able to narrow the gap

between the lower and upper bounds in 5 ≤ bc(4) ≤ 15.

And, finally, it seems strange that the seemingly natural inequality b(n) ≤
bc(n) is not obvious at all; perhaps it may even be false for some n. It is a priori

conceivable that in some dimension n, the value of b(n) is attained on a body

(or bodies) of constant width only, and that in such dimension, bc(n), being

defined by bodies of nonconstant width, is smaller than b(n). Paradoxical as it

may seem, thus far such possibility has not been excluded. However, it is quite

obvious that b(n) ≤ bc(n) + 1, because every convex body of constant width can
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be reduced to a convex body of nonconstant width by separating from it one

small piece.
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