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Thinnest Covering of a Circle by Eight,

Nine, or Ten Congruent Circles

GÁBOR FEJES TÓTH

Abstract. Let rn be the maximum radius of a circular disc that can be
covered by n closed unit circles. We show that rn = 1 + 2 cos(2π/(n−1))
for n = 8, n = 9, and n = 10.

1. Introduction

What is the maximum radius rn of a circular disk which can be covered by

n closed unit circles? The determination of rn for n ≤ 4 is an easy task: we

have r1 = r2 = 1, r3 = 2/
√

3 and r4 =
√

2. The problem of finding r5 has been

motivated by a game popular on fairs around the turn of the twentieth century

[Neville 1915; Ball and Coxeter 1987, pages 97–99]. The goal of the game was

to cover a circular space painted on a cloth by five smaller circles equal to each

other. The difficulty consisted in the restriction that an “on-line algorithm” had

to be used, that is no circle was allowed to be moved once it had been placed.

Neville [1915] conjectured that r5 = 1.64100446 . . . and this has been verified by

K. Bezdek [1979; 1983] who also determined the value of r6 = 1.7988 . . . . The

proofs of these cases are complicated. The case n = 7 is again easy. We have

r7 = 2 and if 7 unit circles cover a circle C7 of radius 2, then one of them is

concentric with C7 while the centers of the other circles lie in the vertices of a

regular hexagon of side
√

3 concentric with C7. In his thesis Dénes Nagy [1975]

claimed without proof that rn = 1 + 2 cos
(
2π/(n−1)

)
for n = 8 and n = 9 and

that, as for n = 7, the best arrangement has (n−1)-fold rotational symmetry.

He conjectured the same for n = 10. Krotoszyński [1993] claimed to have proved

this even for n ≤ 11. Unfortunately, his proof contains some errors. In fact,

Melissen and Schuur (see [Melissen 1997]) gave a counter example for n = 11.
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In this note we settle the cases n = 8, n = 9, and n = 10.

Theorem. Let rn be the maximum radius of a circular disk which can be covered

by n unit circles. Then we have for n = 8, 9, and 10

rn = 1 + 2 cos
2π

n− 1
.

Moreover , if for n = 8, n = 9, or n = 10, n unit circles cover a circle Cn of radius

rn, then one of them is concentric with Cn and the centers of the other circles

are situated in the vertices of a regular (n−1)-gon at a distance 2 sin
(
π/(n−1)

)

from the center of Cn.

The analogous problems of the thinnest covering of a square and an equilateral

triangle with a given number of equal circles, as well as the dual problem con-

cerning the densest packing of a given number of equal circles in a circle, a square

or an equilateral triangle have been investigated intensively. A comprehensive

account can be found in [Melissen 1997].

Generally, given a compact set C in a metric space, one can consider the

problems of the densest packing of n balls in C and the thinnest covering of C

with n balls. In lack of similarity the problems are formulated in a dual form.

Let rC(n) be the maximum number with the property that n balls of radius

rC(n) can be packed in C and let RC(n) be the minimum number with the

property that n balls of radius rC(n) can cover C. The basic task is, of course,

to design effective algorithms determining the values of rC(n) and RC(n), as well

as the corresponding arrangements. So far only the case of rC(n) for C a square

has been solved, by an algorithm devised by Peikert [1994]; see also [Peikert

et al. 1992]. Exact solutions are generally known only for small values of n.

The only exception is the problem of densest packing of circles in an equilateral

triangle. When C is an equilateral triangle, rC(n) is known for all n of the

form k(k + 1)/2, the triangular numbers; see [Groemer 1960; Oler 1961]. If C is

an equilateral triangle with side-length 1, we have for such triangular numbers

rC(n) = 1/2(k +
√

3 − 1). The optimal arrangement is given by the regular

triangular lattice.

Many conjectured best arrangements of circles, both for packing and for cov-

ering, have been constructed using different heuristic algorithms. The examples

show that optimal arrangements quite often contain freely movable circles. This

raises the following questions.

Does there exist a compact set C for which for infinitely many n an optimal

packing of (covering with) n congruent circles contains a freely movable circle?

Does there exist a C for which there is no n at all such that an optimal packing

of (covering with) n congruent circles contains a freely movable circle? Is there

a constant c, possibly depending on C but independent of n such that the number

of freely movable circles in an optimal arrangement is at most c?
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The densest packing of n = k(k + 1)/2 circles in an equilateral triangle shows

another interesting phenomenon. According a conjecture of Erdős and Oler

[Croft et al. 1991, page 248] if n is a triangular number, then rC(n) = rC(n −
1), that is, the optimal arrangement for n − 1 circles is obtained by removing

one circle from the optimal arrangement of n circles. The conjecture has been

confirmed for n = 6 and n = 10 [Melissen 1997]. There is a similar situation

on the sphere: it is known (see [Rankin 1955], for example) that if C = Sd, the

d-dimensional sphere, then rC(d + 3) = rC(d + 4) = . . . = rC(2d + 2). This

suggests the following question.

For a given compact set C, are there natural numbers k = k(C) and K = K(C)

such that rC(n) > rC(n+ k) and RC(n) > RC(n+K) for every n?

I conjecture that the answer is yes if C = Sd and also if C is a compact convex set

in Euclidean or spherical space, but I would not be surprised if the answer turned

out to be no for general compact sets, or even for convex bodies in hyperbolic

geometry.

2. Proof of the Theorem

For the proof we modify the argument used by Schütte [1955] for the de-

termination of the thinnest covering of the sphere by 5 and 7 congruent caps.

Clearly, it suffices to show the second statement of the theorem, from that it

follows immediately that no circle of radius greater than rn can be covered by

n unit circles (n = 8, n = 9, or 10). The proof of the three cases are similar,

however the case n = 10 is more complicated. We shall leave two of the more

involved discussions for n = 10 to Section 3. In the treatment of all three cases

the functions fr(α) and Fr(α) defined for 0 ≤ α ≤ π by

fr(α) = 2 arcsin
sin(α/2)

r

and

Fr(α) = r2
(

arcsin
sin(α/2)

r
− 1

2
sin

(
2 arcsin

sin(α/2)

r

))
+

sinα

2

play an important role. Here r > 2 is not a variable but a parameter.

The geometric meaning of fr(α) and Fr(α) is the following: Let C be a circle

of radius r centered at o and let C̃ be a unit circle with center õ ∈ C such that

bdC and bd C̃ intersect, say in a and b. If ]aõb = α, then f(α) = ]aob and

F (α) is the area of the domain bounded by the segments õa, õb and the arc ab

of bdC.

We have

f ′r(α) =
cos(α/2)

(
r2 − sin2(α/2)

)1/2
, f ′′r (α) = − (r2 − 1) sin(α/2)

2
(
r2 − sin2(α/2)

)3/2
,
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F ′
r(α) =

sinα sin(α/2)

2
(
r2 − sin2(α/2)

)1/2
+

cosα

2
,

F ′′
r (α) = −

(
sin

α

2

)(
cosα

(
sin2(α/2) − r2

)
− r2 cos2(α/2)

2(r2 − sin2(α/2))3/2
+ cos

α

2

)
.

Hence it is easily seen that fr(α) is concave and strictly increasing for 0 ≤ α ≤ π.

The concavity of Fr(α) needs some calculation. To check it, we have to show

that

cosα
(
sin2 α

2
− r2

)
− r2 cos2

α

2
+ 2 cos

α

2

(
r2 − sin2 α

2

)3/2

> 0.

Introducing the abbreviations s = sin(α/2) and c = cos(α/2), we have

cosα
(
s2 − r2

)
− r2c2 + 2c

(
r2 − s2

)3/2

> cosα
(
s2 − r2

)
− r2c2 + 2c

(
r2 − s2

)

=
(
2c2 − 1

) (
1 − c2 − r2

)
− r2c2 + 2c

(
r2 − 1 + c2

)

= (r2 − 1) (1 − c) (1 + 3c) + 2c3 (1 − c) > 0.

Let Cn be a circle of radius rn centered at o and let C0, . . . , Cn−1 be closed

unit circles with centers o0, . . . , on−1 covering Cn. We assume that for a circle

Ci, i = 0, . . . , n−1, for which Ci∩bdCn 6= ? the centers of Ci and Cn lie on the

same side of the radical axis of the circles Ci and Cn. Otherwise we reflect Ci in

this radical axis and still get a covering of Cn. Let C0, . . . , Cn−1 be unit circles

in the position described in the theorem, that is so that C0 is concentric with

Cn and the centers ō1, . . . , ōn−1 of C1, . . . , Cn−1 are situated in the vertices of

a regular (n−1)-gon at distance 2 sin
(
π/(n−1)

)
from o. We are going to show

that the two arrangements of circles are congruent.

The following lemma claims that the two arrangements of circles {Ci}n
i=0 and

{Ci}n
i=0 have the same topological structure.

Lemma. Exactly one of the circles {Ci}n−1

i=0
is contained in intCn. Moreover ,

no three of the circles intersecting bdCn can have a common point .

Since rn > 2, there is a circle, say C0, which is contained in intCn. Observe that

an arc of bdCn which is covered by a unit circle spans at o an angle not greater

than 2 arcsin(1/rn). Since

6 arcsin
1

r8
= 2.76326081 . . . < π and 7 arcsin

1

r9
= 2.989550105 . . . < π,

it follows that if n = 8 or n = 9, then Ci ∩ bdCn 6= ? for i = 1, . . ., n − 1. We

also observe that three unit circles with a common point cannot cover a part of

bdCn whose angle spanned at o exceeds 2 arcsin(2/rn). Since

4 arcsin
1

r8
+ arcsin

2

r8
= 2.942412903 . . . < π
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and

5 arcsin
1

r9
+ arcsin

2

r9
= 3.111686536 . . . < π,

it follows that for n = 8 and 9 no three of the circles Ci, i = 1, . . . , n − 1, can

have a common point.

This argument breaks down when n = 10. We have

7 arcsin
1

r10
= 2.841948021 . . . < π,

showing that at most two of the circles {Ci}9
i=0 are contained in intC10; however

8 arcsin
1

r10
= 3.24794059 . . . > π,

so we cannot exclude in this way that two of the circles {Ci}9
i=0 are contained in

intC10. Also the proof that no three of the circles intersecting bdCn can have

a common point requires a different argument. Melissen [1997, pp. 108–111]

proved the Lemma for n = 10 using an argument based on the investigation of

distances. In Section 3 we repeat Melissen’s argument for the proof of the first

part of the Lemma and give an alternative proof for the second statement, using

estimations of areas.

Let Di, i = 0, . . . , n− 1, be the Dirichlet cell of Ci with respect to Cn. From

the considerations above it follows that each vertex in the cell complex of the

Dirichlet cells is trihedral, D0 is an (n−1)-gon, while for i = 1, . . . , n−1, Di is a

curved quadrilateral bounded by three line segments and an arc of bdCn. Thus

the cell complex of the cells Di is isomorphic to the cell complex of the Dirichlet

cells Di of the circles Ci.

We introduce some notations. We describe them for the circles Ci. The same

symbols with a bar will be used for the corresponding objects and quantities for

the circles Ci (see Figure 1).

Let the vertices of D0 be p1, . . . , pn−1 and let the vertices of Dirichlet cells

on bdCn be q1, . . . , qn−1. We write pn = p1, qn = q1 and assume, as we may

without loss of generality, that the notation is chosen so that the vertices of Di

are pi, pi+1, qi+1, qi for i = 1, . . . , n− 1. We write

αi = ]qioiqi+1, βi = ]pioiqi, γi = ]pi+1oiqi+1,

δi = ]pioipi+1, εi = ]pio0pi+1.

We note that the assumption that o and oi lie on the same side of the radical

axis of Cn and Ci implies that

αi ≤ π

for i = 1, . . . , n− 1. It is easy to check that

ᾱi =
6π

n− 1
, β̄i = γ̄i =

(n− 5)π

n− 1
, and δ̄i = ε̄i =

2π

n− 1
.
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Figure 1.

Using the relation ᾱi = 6π/(n−1) one can verify that

f
(

6π

n− 1

)
=

2π

n− 1
.

We dissect Cn into the triangles Ti = pio0pi+1, T
∗
i = pioipi+1, T

−
i = pioiqi,

T+

i = pi+1oiqi+1 and into the regions Ri bounded by the segments oiqi, oiqi+1

and the arc qiqi+1 of bdCn, for i = 1, . . . , n−1. We shall estimate the total area of

these domains and show that it is less than the area of Cn unless the arrangement

of the circles C0, . . . , Cn−1 is congruent to that of the circles C0, . . . , Cn−1.

Observe that the triangles Ti and T ∗
i are congruent, so that

n−1∑

i=1

δi =

n−1∑

i=1

εi = 2π =

n−1∑

i=1

δ̄i =

n−1∑

i=1

ε̄i (1)

and
n−1∑

i=1

(βi + γi) = (n− 1)2π −
n−1∑

i=1

(αi + δi) = (n− 2)2π −
n−1∑

i=1

αi. (2)

We have

2π =

n−1∑

i=1

]qioqi+1 ≤
n−1∑

i=1

frn
(αi) ≤ (n− 1)frn

(∑n−1

i=1
αi

n− 1

)
.

Hence we get

n−1∑

i=1

αi ≥ (n− 1)f−1
rn

(
2π

n− 1

)
= (n− 1)

6π

n− 1
=

n−1∑

i=1

ᾱi. (3)

Now we are in the position to estimate the total area of the parts of Cn. Using

Jensen’s inequality we get
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n−1∑

i=1

(a(Ti) + a(T ∗
i )) ≤

n−1∑

i=1

sin εi ≤ (n− 1) sin

∑n−1

i=1
εi

n− 1
, (4)

n−1∑

i=1

(a(T−
i ) + a(T+

i )) ≤ 1

2

n−1∑

i=1

(sin βi + sin γi) ≤ (n− 1) sin

∑n−1

i=1
(βi + γi)

n− 1
, (5)

n−1∑

i=1

a(Ri) ≤
n−1∑

i=1

Frn
(αi) ≤ (n− 1)Frn

(∑n−1

i=1
αi

n− 1

)
. (6)

In view of (1) we have

(n− 1) sin

∑n−1

i=1
εi

n− 1
=

n−1∑

i=1

sin ε̄i =

n−1∑

i=1

(a(T i) + a(T ∗
i )).

Write

α =
n−1∑

i=1

αi

n− 1
.

Then we have, in view of (2),

∑n−1

i=1
(βi + γi)

n− 1
=

2(n− 2)π

n− 1
− α;

hence, by (5) and (6),

n−1∑

i=1

(
a(T−

i ) + a(T+

i ) + a(Ri)
)
≤ (n− 1)

(
sin

(
2(n− 2)π

n− 1
− α

)
+ Frn

(α)

)
.

The function

sin

(
2(n− 2)π

n− 1
− α

)
+ Frn

(α)

is concave for 0 ≤ α ≤ π and, as it can be checked numerically, decreasing for

α = 6π/(n−1). Therefore it is decreasing for 6π/(n−1) ≤ α ≤ π. Observing

that

6π

n− 1
= ᾱi and

2(n− 2)π

n− 1
− 6π

n− 1
=

2(n− 10)π

n− 1
= β̄i = γ̄i,

we deduce that

n−1∑

i=1

(
a(T−

i ) + a(T+

i ) + a(Ri)
)
≤ (n− 1)

(
sin

2(n− 10)π

n− 1
+ Frn

(
6π

n− 1

))

=
1

2

n−1∑

i=1

(sin β̄i + sin γ̄i) +

n−1∑

i=1

Frn
(ᾱi)

=

n−1∑

i=1

(
a(T−

i ) + a(T+

i ) + a(Ri)
)
. (7)
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Adding inequalities (4) and (7) we get

a(Cn) =

n−1∑

i=1

(a(Ti) + a(T ∗
i ) + a(T−

i ) + a(T+

i ) + a(Ri))

≤
n−1∑

i=1

(a(T i) + a(T ∗
i ) + a(T −

i ) + a(T +

i ) + a(Ri)) = a(Cn).

Therefore we have equality in all of the inequalities (5)–(7). This can only

occur if the arrangements of the circles C0, . . . , Cn−1 and C0, . . . , Cn−1 are con-

gruent.

3. Proof of the Lemma for n = 10

Let C0, . . . , C9 be closed unit circles covering the circle C10 of radius r10. As in

the previous section, we denote the center of Ci, i = 0, . . . , 9 by oi and the center

of C10 by o. We shall follow the argument of Melissen to show that no eight of

the circles can cover bdC10. Suppose that bdC10 ⊂
⋃7

i=0
Ci. Since the angular

measure of an arc of bdC10 covered by a unit circle is at most 2 arcsin(1/r10)

and

7 arcsin
1

r10
= 2.841948021 . . . < π,

no proper subset of the circles Ci, i = 0, . . . , 7 covers bdC10, hence no three of

the arcs Ci ∩ bdC10, 0 ≤ i ≤ 7 intersect. This property defines a cyclic order

of the arcs Ci ∩ bdC10. We assume that the notation is chosen so that this

cyclic order coincides with the order of the indices, that is C0 ∩ C1 ∩ bdC10 6=
?, . . . , C6 ∩C7 ∩ bdC10 6= ?, C7 ∩C0 ∩ bdC10 6= ?. We choose points q1, . . . , q8
from the sets C0 ∩ C1 ∩ bdC10, . . . , C7 ∩ C0 ∩ bdC10, respectively.

Recall that the maximum angular measure of an arc of bdC10 covered by

three unit circles with a common point is 2 arcsin(2/r10). Since

arcsin
2

r10
+ 5arcsin

1

r10
= 2.940546309 . . . < π,

no three of the circles Ci, i = 0, . . . , 7 have a common point. Let

pi = bdCi−1 ∩ Ci ∩ intC10

for i = 1, . . . , 7, and p8 = C7 ∩ C0 ∩ intC10 (see Figure 2).

The main observation of Melissen is that the points pi, i = 1, . . . , 8, cannot

be covered by two circles. This follows easily from the following result:

Proposition. We have

|pipi+3| > 2 and |pipi+4| > 2

for i = 1, . . . , 8, with pi = pi+8.
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C
i

pi

p
i+1

q
i+5

p
i+2

C
i+1

o q
i+7

q
i+6

p
i+3

q
i+4

q
i+3

q
i+2

q
i+1

q q
i+8=i

Figure 2.

Indeed, the first inequality readily implies that one of the circles C8 and C9

contains all points pi with an odd subscript and the other contains all points

with an even subscript. This, however, contradicts the second inequality.

In order to estimate the distances between the points pi we need a lower bound

for the distance |opi|. Let h(ϑ) be the minimum distance between o and a point

of intersection of the boundaries of two unit circles that cover an arc of angular

measure ϑ from bdC10, with 0 ≤ ϑ ≤ 4 arcsin(1/r10). It is easy to see that this

minimum distance is achieved in the symmetric position when each of the unit

circles cover an arc of angular measure ϑ
2

from bdC10. Using some trigonometry

we calculate that

h(ϑ) = r10 cos
ϑ

2
− 2

√
1 − r210 sin2 ϑ

4
cos

ϑ

4
.

Writing s = sin2 ϑ
4

we have

h′(ϑ) =

√
s
(√

1 − r210s
2 − r10 cos ϑ

4

)2

√
1 − r210s

2

and

h′′(ϑ) =
−2r10(1 − r210s)

3/2 cos ϑ
2

+ (1 + r210 − 6r210s+ 4r410s
2) cos ϑ

4

8(1 − r210s
2)3/2

.

It immediately follows that h(ϑ) is increasing. Observing that

1 + r210 − 6r210s+ 4r410s
2 > r210 −

5

4

we get

h′′(ϑ) >
−2r10 cos ϑ

2
+ (r210 − 5

4
) cos ϑ

4

8
=

−4r10 cos2 ϑ
4

+ (r210 − 5

4
) cos ϑ

4
+ 2r10

8
.
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The minimum of the right side is 1

8

(
r210 − 2r10 − 5

4

)
> 0, showing that h(ϑ) is

convex.

Now we are in the position to estimate the distances between the points pi.

Write ψ = ]piopi+3 and ξ = ]piopi+4. Then we have, on the one hand,

ψ = 2π − ]pi+3oqi+4 −
6∑

j=4

]qi+joqi+j+1 − ]qi+7opi

≥ 2π − 2 arcsin
2

r10
− 6 arcsin

1

r10
= ψmin = 2.026062 . . . >

π

2

and

ξ = 2π − ]pi+4oqi+5 −
6∑

j=45

]qi+joqi+j+1 − ]qi+7opi

≥ 2π − 2 arcsin
2

r10
− 4 arcsin

1

r10
= ξmin = 2.838048136 . . . >

π

2
,

and on the other hand,

ψ = ]pioqi+1 + ]qi+1oqi+2 + ]qi+2opi+3

≤ 2 arcsin
2

r10
+ 2arcsin

1

r10
= 2.633152 . . . < π

and
ξ = ]pioqi+1 + ]qi+1oqi+2 + ]qi+2opi+3 + ]pi+3opi+4

≤ 2 arcsin
2

r10
+ 4arcsin

1

r10
= 2π − ξmin.

By the law of cosines we get

|pipi+3| =
√

|opi|2 + |opi+3|2 − 2|opi||opi+3| cosψ,

|pipi+4| =
√

|opi|2 + |opi+4|2 − 2|opi||opi+4| cos ξ.

Let ϑ1, ϑ2, and ϑ3 be the angular measure of the arc of bdC10 covered by

the pair of circles Ci−1, Ci, Ci+2, Ci+3, and Ci+3, Ci+4, respectively. As the

triangles piopi+3 and piopi+4 are obtuse, we get lower bounds for |pipi+3| and

|pipi+4| if we substitute for |opi|, |opi+3|, and |opi+4| their minimum values and

for cosψ and cos ξ their maximum values:

|pipi+3| ≥
√
h2(ϑ1) + h2(ϑ2) − 2h(ϑ1)h(ϑ2) cosψmin,

|pipi+4| ≥
√
h2(ϑ1) + h2(ϑ3) − 2h(ϑ1)h(ϑ3) cos ξmin.

We have, for j = 2, 3,

ϑ1 + ϑj ≤ 2π − 8 arcsin
1

r10
.

Since h(ϑ) is increasing and convex, therefore,

h(ϑ1) + h(ϑj) ≥ 2h
(
π − 4 arcsin

1

r10

)
.
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The functions
√
h2

1 + h2
2 − 2h1h2 cosψmin and

√
h2

1 + h2
2 − 2h1h2 cos ξmin are ho-

mogeneous of degree one in the variables h1 and h2, thus, they are convex. They

are also increasing in both variables. Therefore

|pipi+3| ≥
√

2h2(π − 4 arcsin(1/r10))(1 − cosψmin) =

= 2h(π − 4 arcsin(1/r10)) sin
ψmin

2
= 2.02349 . . . > 2

and

|pipi+4| ≥
√

2h2(π − 4 arcsin(1/r10))(1 − cos ξmin) =

= 2h(π − 4 arcsin(1/r10)) sin
ξmin

2
= 2.357538 . . . > 2.

This completes the proof of the Proposition and at the same time the proof of

the first part of the Lemma.

It remains to show the second part of the Lemma, namely that if nine of the

circles C0, . . . , C9 intersect bdC10, then no three of them can have a common

point. This part of the Lemma can be settled by estimating areas in a similar

way as we did in the previous section.

Suppose that C0 ∩ bdC10 = ? and Ci ∩ bdC10 6= ? for i = 1, . . . , 9. We

shall scrutinize the cell complex formed by the Dirichlet cells Di of the circles

Ci, 0 ≤ i ≤ 9, with respect to C10. We may assume that Di ∩ bdC10 6= ?

for i = 1, . . . , 9, otherwise bdC10 is covered by eight circles, which we already

excluded. Without loss of generality we may suppose that the arcs Di ∩ bdC10,

i = 1, . . . , 9, are situated on bdC10 in their natural cyclic order.

We shall exclude the possibility that three of the Dirichlet cells D1, . . . , D9

intersect. We note that three circles can intersect without their corresponding

Dirichlet cells having a common point, however the case when no three of the

cells D1, . . . , D9 intersect has been already discussed in the previous section.

Observe that

Di ∩Di±j = ? for i = 1, . . . , 9, j = 3, 4. (8)

Otherwise the circles Ci, Ci±1 . . . , Ci±j cover from bdC10 an arc whose angular

measure is at most 2 arcsin(2/r10), while the angular measure of the arc cov-

ered by the other 9 − j − 1 ≤ 5 circles cannot exceed 10 arcsin(1/r10). Since

arcsin(2/r10) + 5 arcsin(2/r10) = 2.940546309 . . . < π, this is impossible.

Suppose that three of the cells D1, . . . , D9 intersect. In view of (8) they must

belong to consecutive indices. Assume, say, that D1∩D2∩D3 6= ?. If no further

triple of the cells D1, . . . , D9 intersect, then the cells are arranged as depicted

on the left side of Figure 3, where the Dirchlet cells are drawn by broken lines.

We shall refer to this situation as Case 1.

If there is another intersecting triple, say Di, Di+1, and Di+2, among the

cells D1, . . . , D9, then {1, 2, 3}∩{i, i+1, i+2} 6= ?. Otherwise the total angular
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measure of the arcs of bdC10 covered by the circles is at most 4 arcsin(2/r10) +

6 arcsin(1/r10) = 6.078289194 . . . < 2π. D2 cannot be the member of another in-

tersecting triple of cells. For, ifD2, D3, andD4 orD9, D1, andD2 intersect, then

D1 ∩D4 6= ? or D9 ∩D3 6= ?, which is impossible by (8). Thus, the only candi-

dates for another triple of intersecting cells are {D3, D4, D5} and {D8, D9, D1}.
As these triples are disjoint, only one of them can have a nonempty intersection.

Hence, the other case we have to investigate is that besides D1, D2, and D3, say

D3, D4, and D5 have a common point. This is Case 2 which is represented on

the right side of Figure 3.

As before, we denote by oi, i = 1, . . . , 10, the center of Ci, and by qi, i =

1, . . . , 9, the vertices of Dirichlet cells on bdC10 choosing the notation so that qi
is common to Di−1 and Di. We denote the vertices of D0 in their consecutive

order for the two cases by p1, p3, p4, . . . , p9 and p1, p3, p5, . . . , p9, respectively,

so that p1q1 is the side common to D1 and D9 (see Figure 3). We divide C10

into the following regions:

(i) the 16-gon P1 = p1o1p3o3p4o4p5o5p6o6p7o7p8o8p9o9, the pentagon P2 =

q2o1p3o3q3, the segment S1 cut off from C10 by the chord q2q3, the quadrilat-

erals Qi = oiqi+1oi+1pi+1, 3 ≤ i ≤ 9, and the regions Ri, 1 ≤ i ≤ 9, i 6= 2,

bounded by the segments oiqi, oiqi+1 and the arc qiqi+1 of bdCn in Case 1;

(ii) the 14-gon P1 = p1o1p3o3p5o5p6o6p7o7p8o8p9o9, the pentagons

P2 = q2o1p3o3q3 and P3 = q4o3p5o5q5,

the two segments S1 and S2 cut off from C10 by the chords q2q3 and q4q5,

respectively, the quadrilaterals Qi = oiqi+1oi+1pi+1, 5 ≤ i ≤ 9, and the

regions Ri, 1 ≤ i ≤ 9, i 6= 2, 4, bounded by the segments oiqi, oiqi+1 and the

arc qiqi+1 of bdCn in Case 2.
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As we saw in the previous section, P1 can be dissected into pairs of congruent

triangles one half of the triangles making up the cell D0. Hence we get

a(P1) ≤ 8 sin
π

4
= 5.656854249 . . . (9)

in Case 1 and

a(P1) ≤ 7 sin
2π

7
= 5.472820377 . . . (9′)

in Case 2.

The length of four sides of the pentagon P2 (P3) is bounded above by 1, while

the length of the fifth side is at most 2. The area of such a pentagon cannot

exceed the area of a pentagon with four sides of length 1 and one side of length

2 inscribed into a circle. The radius r of the circle is determined implicitly by

the equation

4 arcsin
1

2r
+ arcsin

1

r
= π.

r0 = 1.07326 is an upper bound for r and

r20

(
1

2
sin 2 arcsin

1

r0
+ 2 sin

π − arcsin 1

r0

2

)
= 2.284572282 . . .

is an upper bound for the area of the pentagon. Thus, we have

a(P2) ≤ 2.284572282 . . . (10)

and, in Case 2,

a(P2) + a(P3) ≤ 4.5691944564 . . . . (10′)

The area of S1 (S2) cannot exceed

r210

(
arcsin

1

r10
− 1

2
sin 2 arcsin

1

r10

)
= 0.27675335 . . . ,

the area of a segment of C10 cut off by a chord of length 2. Hence

a(S1) ≤ 0.27675335 . . . (11)

and

a(S1) + a(S2) ≤ 0.533506699 . . . . (11′)

Using the rough estimate a(Qi) ≤ 1 we get

9∑

i=3

a(Qi) ≤ 7 (12)

and
9∑

i=5

a(Qi) ≤ 5, (12′)

respectively.

We estimate the total area of the regions Ri using the method developed in

the previous section. Let x = ]q2oq3 in Case 1 and x = ]q2oq3 + ]q4oq5 in
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Case 2. Then we have x ≤ 2 arcsin(1/r10) and x ≤ 4 arcsin(1/r10), respectively.

Writing αi = ]qioiqi+1 we have

2π − x =
∑

1≤i≤9, i 6=2

]qioqi+1 ≤
∑

1≤i≤9, i 6=2

fr10
(αi) ≤ 8fr10

(
1

8

∑

1≤i≤9, i 6=2

αi

)

and

2π − x =
∑

1≤i≤9, i 6=2,4

]qioqi+1 ≤
∑

1≤i≤9, i 6=2,4

fr10
(αi) ≤ 8fr10

(
1

8

∑

1≤i≤9, i 6=2,4

αi

)
,

hence

1

8

∑

1≤i≤9, i 6=2

αi ≥ f−1
r10

(
2π−x

8

)
≥ f−1

r10

(
π − arcsin 1

r10

4

)
= 2.028453422 . . .

and

1

7

∑

1≤i≤9, i 6=2, 4

αi ≥ f−1
r10

(
π−x

7

)
≥ f−1

r10

(
2π − 4 arcsin 1

r10

7

)
= 1.948256547 . . . ,

respectively.

Observing that Fr10
(α) is decreasing for α ≥ 1.9 we get for the total area of

the regions Ri the estimate

∑

1≤i≤9, i 6=2

a(Ri) ≤
∑

1≤i≤9, i 6=2

Fr10
(αi) ≤ 8Fr10

(
1

8

∑

1≤i≤9, i 6=2

αi

)

≤ 8Fr10

(
f−1

r10

(
π − arcsin 1

r10

4

))
= 4.92397937 . . . (13)

in Case 1 and

∑

1≤i≤9, i 6=2,4

a(Ri) ≤
∑

1≤i≤9, i 6=2,4

Fr10
(αi) ≤ 7Fr10

(
1

7

∑

1≤i≤9, i 6=2,4

αi

)

≤ 7Fr10

(
f−1

r10

(
2π − 4 arcsin 1

r10

7

))
= 4.332295377 . . . (13′)

in Case 2.

From inequalities (9)–(13) we conclude that

a(C10) = a(P1) + a(P2) + a(S1) +

9∑

i=3

a(Qi) +
∑

1≤i≤9, i 6=2

a(Ri) ≤

≤ 20.14216 < 20.1422 < a(C10)
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in Case 1, and it follows from (9′)–(13′) that

a(C10) = a(P1) + a(P2) + a(P3) + a(S1) + a(S2) +

9∑

i=5

a(Qi) +
∑

1≤i≤9, i 6=2,4

a(Ri)

≤ 20 < 20.1422 < a(C10)

in Case 2, yielding in both cases a contradiction.

This completes the proof of the Lemma.
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