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De Concini–Procesi Wonderful Arrangement

Models: A Discrete Geometer’s Point of View

EVA MARIA FEICHTNER

Abstract. This article outlines the construction of De Concini–Procesi

arrangement models and describes recent progress in understanding their

significance from the algebraic, geometric, and combinatorial point of view.

Throughout the exposition, strong emphasis is given to the combinatorial

and discrete geometric data that lie at the core of the construction.
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1. An Invitation to Arrangement Models

The complements of coordinate hyperplanes in a real or complex vector space

are easy to understand: The coordinate hyperplanes in R
n dissect the space into

2n open orthants; removing the coordinate hyperplanes from C
n leaves the com-

plex torus (C∗)n. Arbitrary subspace arrangements, i.e., finite families of linear

subspaces, have complements with far more intricate combinatorics in the real

case, and far more intricate topology in the complex case. Arrangement models

improve this complicated situation locally— constructing an arrangement model

means to alter the ambient space so as to preserve the complement and to re-

place the arrangement by a divisor with normal crossings, i.e., a collection of

smooth hypersurfaces which locally intersect like coordinate hyperplanes. Al-

most a decade ago, De Concini and Procesi provided a canonical construction

of arrangement models—wonderful arrangement models — that had significant

impact in various fields of mathematics.
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Why should a discrete geometer be interested in this model construction?

Because there is a wealth of wonderful combinatorial and discrete geometric

structure lying at the heart of the matter. Our aim here is to bring these discrete

pearls to light.

First, combinatorial data plays a descriptive role in various places: The combi-

natorics of the arrangement fully prescribes the model construction and a natural

stratification of the resulting space. We will see details and examples in Section 2.

In fact, the rather coarse combinatorial data reflect enough of the situation so

as to, for instance, determine algebraic-topological invariants of the arrange-

ment models (compare the topological interpretation of the algebra D(L,G) in

Section 4.2).

Secondly, the combinatorial data put forward in the study of arrangement

models invites purely combinatorial generalizations. We discuss such generaliza-

tions in Section 3 and show in Section 4 how this combinatorial generalization

opens unexpected views when related back to geometry.

Finally, in Section 5 we propose arrangement models as a tool for resolving

group actions on manifolds. Again, it is an open eye for discrete core data that

enables the construction.

We have kept the exposition self-contained and illustrated it with many ex-

amples. We invite discrete geometers to discover an algebro-geometric context

in which familiar discrete structures play a key role. We hope that yet many

more bridges will be built between algebraic and discrete geometry— areas that,

despite the differences in terminology, concepts, and methods, share what has

inspired and driven mathematicians for centuries: a passion for geometry.

2. Introducing the Main Character

2.1. Basics on arrangements. We first need to fix some basic terminology, in

particular as it concerns the combinatorial data of an arrangement. We suggest

that the reader, who is not familiar with the setting, reads through the first

part of this Section and compares the notions to the illustrations given for braid

arrangements in Example 2.1.

An arrangement A = {U1, . . . , Un} is a finite family of linear subspaces

in a real or complex vector space V . The topological space most obviously

associated to such an arrangement is its complement in the ambient space,

M(A) := V \
S

A.

Having arrangements in real vector spaces in mind, the topology of M(A)

does not look very interesting: the complement is a collection of open polyhedral

cones, and apart from their number there is no significant associated topological

data. In the complex case, however, already a single hyperplane in C
1, the origin,

has a nontrivial complement: it is homotopy equivalent to S1, the 1-dimensional
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sphere. The complement of two (for instance, coordinate) hyperplanes in C
2 is

homotopy equivalent to the torus S1 × S1.

The combinatorial data associated with an arrangement is usually recorded in

the intersection lattice L = L(A), which is the set of intersections of subspaces

in A, partially ordered by reversed inclusion. We adopt terminology from the

theory of partially ordered sets and often denote the unique minimum in L(A)

(corresponding to the empty intersection, i.e., the ambient space V ) by 0̂ and

the unique maximum of L(A) (the overall intersection of subspaces in A) by 1̂.

In many situations, the elements of the intersection lattice are labeled by the

codimension of the corresponding intersection. For arrangements of hyperplanes,

this information is recorded in the rank function of the lattice — the codimension

of an intersection X is the number of elements in a maximal chain in the half-

open interval (0̂, X] in L(A).

As with any poset, we can consider the order complex ∆(L) of the proper part,

L := L \ {0̂, 1̂}, of the intersection lattice, i.e., the abstract simplicial complex

formed by the linearly ordered subsets in L,

∆(L) =
{
X1 < . . . < Xk

∣∣ Xi ∈ L \ {0̂, 1̂}
}
.

The topology of ∆(L) plays a prominent role for describing the topology of ar-

rangement complements. For instance, it is the crucial ingredient for the explicit

description of cohomology groups of M(A) by Goresky and MacPherson [1988,

Part III].

For hyperplane arrangements, the homotopy type of ∆(L) is well known: the

complex is homotopy equivalent to a wedge of spheres of dimension equal to the

codimension of the total intersection of A. The number of spheres can as well be

read from the intersection lattice, it is the absolute value of its Möbius function.

For subspace arrangements however, the barycentric subdivision of any finite

simplicial complex can appear as the order complex of the intersection lattice.

Besides ∆(L), we will often refer to the cone over ∆(L) obtained by extending

the linearly ordered sets in L by the maximal element 1̂ in L. We will denote

this complex by ∆(L \ {0̂}) or ∆(L>0̂).

In order to have a standard example at hand, we briefly discuss braid arrange-

ments. This class of arrangements has figured prominently in many places and

has helped develop lots of arrangement theory over the last decades.

Example 2.1 (Braid arrangements). The arrangement An−1 given by the

hyperplanes

Hij : xi = xj , for 1 ≤ i < j ≤ n,

in real n-dimensional vector space is called the (real) rank n−1 braid arrange-

ment . There is a complex version of this arrangement. It consists of hyperplanes

Hij in C
n given by the same linear equations. We denote the arrangement by

AC
n−1. Occasionally, we will use the analogous AR

n−1 if we want to stress the real
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Figure 1. The rank 2 braid arrangement A2, its intersection lattice Π3, and the

order complex ∆(Π3 \ {0̂}).

setting. In many situations a similar reasoning applies to the real and to the

complex case. To simplify notation, we then use K to denote R or C.

Observe that the diagonal ∆ = {x ∈ Kn | x1 = . . . = xn} is the overall

intersection of hyperplanes in An−1. Without loosing any relevant information on

the topology of the complement, we will often consider An−1 as an arrangement

in complex or real (n−1)-dimensional space V = Kn/∆ ∼=
{
x ∈ Kn |

∑
xi = 0

}
.

This explains the indexing for braid arrangements, which may appear unusual

at first sight.

The complement M(AR
n−1) is a collection of n! polyhedral cones, correspond-

ing to the n! linear orders on n pairwise noncoinciding coordinate entries. The

complement M(AC
n−1) is the classical configuration space of the complex plane

F (C, n) =
{
(x1, . . . , xn) ∈ C

n
∣∣ xi 6= xj for i 6= j

}
.

This space is the classifying space of the pure braid group, which explains the

occurrence of the term “braid” for this class of arrangements.

As the intersection lattice of the braid arrangement An−1 we recognize the

partition lattice Πn, i.e., the set of set partitions of {1, . . . , n} ordered by reversed

refinement. The correspondence to intersections in the braid arrangement can

be easily described: The blocks of a partition correspond to sets of coordinates

with identical entries, thus to the set of points in the corresponding intersection

of hyperplanes.

The order complex ∆(Πn) is a pure, (n−1)-dimensional complex that is ho-

motopy equivalent to a wedge of (n−1)! spheres of dimension n−1.

In Figure 1 we depict the real rank 2 braid arrangement A2 in V = R
3/∆, its

intersection lattice Π3, and the order complex ∆(Π3 \ {0̂}). We denote partitions

in Π3 by their nontrivial blocks. The complex depicted is a cone over ∆(Π3), a

union of three points, which indeed is the wedge of two 0-dimensional spheres.
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Figure 2. The maximal wonderful model for A2.

2.2. The model construction. We provide two alternative definitions for

De Concini–Procesi arrangement models: the first one describes the models as

closures of open embeddings of the arrangement complements. It comes in handy

for technical purposes. By contrast, the second definition, which describes ar-

rangement models as results of sequences of blowups, is much more intuitive and

suitable for inductive constructions and proofs.

Definition 2.2 (Model construction I). Let A be an arrangement of real

or complex linear subspaces in V . Consider the map

Ψ : M(A) → V ×
∏

X∈L
>0̂

P(V/X)

x 7→
(
x , (〈x,X〉/X)X∈L

>0̂

)
;

(2–1)

it encodes the relative position of each point in the arrangement complement

M(A) with respect to the intersection of subspaces in A. The map Ψ is an open

embedding; the closure of its image is called the (maximal) De Concini–Procesi

wonderful model for A and is denoted by YA.

Definition 2.3 (Model construction II). Let A be an arrangement of real

or complex linear subspaces in V . Let X1, . . . , Xt be a linear extension of the op-

posite order L
op

>0̂
on L>0̂. The (maximal) De Concini–Procesi wonderful model

for A is the result YA of successively blowing up subspaces X1, . . . , Xt, respec-

tively their proper transforms.

To avoid confusion with spherical blowups that have been appearing in model

constructions as well [Gaiffi 2003], let us emphasize here that, also in the real

setting, we think about blowups as substituting points by projective spaces.

Before we list the main properties of arrangement models let us look at a first

example.

Example 2.4 (The arrangement model YA2
). Consider the rank 2 braid

arrangement A2 in V = R
3/∆. Following the description in Definition 2.3 we

obtain YA2
by a single blowup of V at {0}. The result is an open Möbius band;

the exceptional divisor D123
∼= RP1 in YA2

intersects transversally with the

proper transforms Dij of the hyperplanes Hij , 1 ≤ i < j ≤ 3. We illustrate the

blowup in Figure 2.
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To recognize the Möbius band as the closure of the image of Ψ according to

Definition 2.2, observe that the product on the right-hand side of (2–1) consists

of two relevant factors, V × RP1. A point x in M(A2) gets mapped to (x, 〈x〉)

and we observe a one-to-one correspondence between points in M(A2) and points

in YA2
\ (D123 ∪D12 ∪D13 ∪D23). Points added when taking the closure are of

the form (y,Hij) for y ∈ Hij \ {0} and (0, `) for ` some line in V .

Observe that the triple intersection of hyperplanes in V has been replaced by

double intersections of hypersurfaces in YA2
. Without changing the topology of

the arrangement complement, the arrangement of hyperplanes has been replaced

by a normal crossing divisor. Moreover, note that the irreducible divisor com-

ponents D12, D13, D23, and D123 intersect if and only if their indexing lattice

elements form a chain in L(A2).

The observations we made for YA2
are special cases of the main properties of

(maximal) De Concini–Procesi models that we list in the following:

Theorem 2.5 [De Concini and Procesi 1995a, Theorems in § 3.1 and § 3.2]. (1)

The arrangement model YA as defined in 2.2 and 2.3 is a smooth variety with

a natural projection map to the original ambient space, π : YA −→ V , which

is one-to-one on the arrangement complement M(A).

(2) The complement of π−1(M(A)) in YA is a divisor with normal crossings; its

irreducible components are the proper transforms DX of intersections X in L,

YA \ π−1(M(A)) =
⋃

X∈L
>0̂

DX .

(3) Irreducible components DX for X ∈ S ⊆ L>0̂ intersect if and only if S is

a linearly ordered subset in L>0̂. If we think about YA as stratified by the

irreducible components of the normal crossing divisor and their intersections,

then the poset of strata coincides with the face poset of the order complex

∆(L>0̂).

Example 2.6 (The arrangement model YA3
). We now consider a somewhat

larger and more complicated example, the rank 3 braid arrangement A3 in V ∼=
R

4/∆. First note that the intersection lattice of A3 is the partition lattice Π4,

which we depict in Figure 3 for later reference. Again, we denote partitions by

their nontrivial blocks.

Following again the description of arrangement models given in Definition 2.3,

the first step is to blow up V at {0}. We obtain a line bundle over RP2; in Figure 4

we depict the exceptional divisor D1234
∼= RP2 stratified by the intersections of

proper transforms of hyperplanes in A3.

This first step is now followed by the blowup of triple, respectively double in-

tersections of proper transforms of hyperplanes in arbitrary order. In each such

intersection the situation locally corresponds to the blowup of a 2-dimensional

real vector space in a point as discussed in Example 2.4. Topologically, the ar-

rangement model YA3
is a line bundle over a space obtained from a 7-fold punc-
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Figure 3. The intersection lattice of A3.

tured RP2 by gluing 7 Möbius bands along their boundaries into the boundary

components.

We can easily check the statements of Theorem 2.5 for YA3
. In particular, we

see that intersections of irreducible divisors in YA3
are nonempty if and only if the

corresponding index sets form a chain in L>0̂. For instance, the 0-dimensional

stratum of the divisor stratification that is encircled in Figure 4 corresponds to

the chain 14 < 134 < 1234 in Π4 \ {0̂}. For comparison, we depict the order

complex of Π4 \ {0̂} in Figure 5. Recall that the complex is a pure 2-dimensional

cone with apex 1234 over ∆(Π4); we only draw its base.

If our only objective was to construct a model for M(A3) with a normal cross-

ing divisor, it would be enough to blow up Bl{0}V in the 4 triple intersections.

The result would be a line bundle over a 4-fold punctured RP2 with 4 Möbius

bands glued into boundary components.
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Figure 4. The construction of YA3
.
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Figure 5. The order complex ∆(Π4).

This observation leads to a generalization of the model construction presented

so far: it is enough to do successive blowups on a specific subset of intersections

in A to obtain a model with similar properties as those summarized in Theo-

rem 2.5. In fact, appropriate subsets of intersections lattices, so-called building

sets, were specified in [De Concini and Procesi 1995a]; all give rise to wonderful

arrangement models in the sense of Theorem 2.5. The only reservation being

that the order complex ∆(L>0̂) is no longer indexing nonempty intersections of

irreducible divisors: chains in L>0̂ are replaced by so-called nested sets — subsets

of building sets that again form an abstract simplicial complex.

We will not give the original definitions of De Concini and Procesi for build-

ing sets and nested sets in this survey. Instead, we will present a generalization

of these notions for arbitrary meet-semilattices in Section 3.1. This combina-

torial abstraction has proved useful in many cases beyond arrangement model

constructions. Its relation to the original geometric context will be explained in

Section 4.1.

2.3. Some remarks on history. Before we proceed, we briefly sketch the

historic background of De Concini–Procesi arrangement models. Moreover, we

outline an application to a famous problem in arrangement theory that, among

other issues, served as a motivation for the model construction.

Compactifications of configuration spaces due to Fulton and MacPherson

[1994] have prepared the scene for wonderful arrangement models. Their work

is concerned with classical configurations spaces F (X,n) of smooth algebraic

varieties X, i.e., spaces of n-tuples of pairwise distinct points in X:
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F (X,n) = { (x1, . . . , xn) ∈ Xn |xi 6= xj for i 6= j}.

A compactification X[n] of F (X,n) is constructed in which the complement of

the original configuration space is a normal crossing divisor; in fact, X[n] has

properties analogous to those listed for arrangement models in Theorem 2.5. The

relation to the arrangement setting can be summarized by saying that, on the one

hand, the underlying spaces in the configuration space setting are incomparably

more complicated — smooth algebraic varieties X rather than real or complex

linear space; the combinatorics, on the other hand, is far simpler — it is the com-

binatorics of our basic Examples 2.4 and 2.6, the partition lattice Πn. The notion

of building sets and nested sets, which constitutes the defining combinatorics of

arrangement models, has its roots in the Fulton–MacPherson construction for

configuration spaces, hence is inspired by the combinatorics of Πn.

Looking along the time line in the other direction, De Concini–Procesi ar-

rangement models have triggered a number of more general constructions with

similar spirit: compactifications of conically stratified complex manifolds by

MacPherson and Procesi [1998], and model constructions for mixed real sub-

space and halfspace arrangements and real stratified manifolds by Gaiffi [2003]

that use spherical rather than classical blowups.

As a first impact, the De Concini–Procesi model construction has yielded

substantial progress on a longstanding open question in arrangement theory

[De Concini and Procesi 1995a, Section 5], the question being whether com-

binatorial data of a complex subspace arrangement determines the cohomology

algebra of its complement. For arrangements of hyperplanes, there is a beautiful

description of the integral cohomology algebra of the arrangement complement

in terms of the intersection lattice — the Orlik–Solomon algebra [1980]. Also,

a prominent application of Goresky and MacPherson’s Stratified Morse Theory

states that cohomology of complements of (complex and real) subspace arrange-

ments, as graded groups over Z, are determined by the intersection lattice and

its codimension labelling. In fact, there is an explicit description of cohomology

groups in terms of homology of intervals in the intersection lattice [Goresky and

MacPherson 1988, Part III]. However, whether multiplicative structure is deter-

mined as well remained an open question 20 years after it had been answered for

arrangements of hyperplanes (see [Feichtner and Ziegler 2000; Longueville 2000]

for results on particular classes of arrangements).

The De Concini–Procesi construction allows to apply Morgan’s theory on ra-

tional models for complements of normal crossing divisors [Morgan 1978] to ar-

rangement complements and to conclude that their rational cohomology algebras

indeed are determined by the combinatorics of the arrangement. A key step in

the description of the Morgan model is the presentation of cohomology of divisor

components and their intersections in purely combinatorial terms [De Concini

and Procesi 1995a, 5.1, 5.2]. For details on this approach to arrangement coho-

mology, see [De Concini and Procesi 1995a, 5.3].
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Unfortunately, the Morgan model is fairly complicated even for small arrange-

ments, and the approach is bound to rational coefficients. The model has been

considerably simplified in work of Yuzvinsky [2002; 1999]. In [Yuzvinsky 2002]

explicit presentations of cohomology algebras for certain classes of arrangements

were given. However, despite an explicit conjecture of an integral model for

arrangement cohomology in [Yuzvinsky 2002, Conjecture 6.7], extending the re-

sult to integral coefficients remained out of reach. Only years later, the ques-

tion has been fully settled to the positive in work of Deligne, Goresky and

MacPherson [Deligne et al. 2000] with a sheaf-theoretic approach, and paral-

lely by de Longueville and Schultz [2001] using rather elementary topological

methods: Integral cohomology algebras of complex arrangement complements

are indeed determined by combinatorial data.

3. The Combinatorial Core Data: A Step Beyond Geometry

We will now abandon geometry for a while and in this section fully concentrate

on combinatorial and algebraic gadgets that are inspired by De Concini–Procesi

arrangement models.

We first present a combinatorial analogue of De Concini–Procesi resolutions

on purely order theoretic level following [Feichtner and Kozlov 2004, Sections 2

and 3]. Based on the notion of building sets and nested sets for arbitrary lattices

proposed therein, we define a family of commutative graded algebras for any

given lattice.

The next Section then will be devoted to relate these objects to geometry—

to the original context of De Concini–Procesi arrangement models and, more

interestingly so, to different seemingly unrelated contexts in geometry.

3.1. Combinatorial resolutions. We will state purely combinatorial def-

initions of building sets and nested sets. Recall that, in the context of model

constructions, building sets list the strata that are to be blown up in the construc-

tion process, and nested sets describe beforehand the nonempty intersections of

irreducible divisor components in the final resolution.

Let L be a finite meet-semilattice, i.e., a finite poset such that any pair of ele-

ments has a unique maximal lower bound. In particular, such a meet-semilattice

has a unique minimal element that we denote with 0̂. We will talk about semilat-

tices for short. As a basic reference on partially ordered sets we refer to [Stanley

1997, Chapter 3].

Definition 3.1 (Combinatorial building sets). A subset G ⊆ L>0̂ in

a finite meet-semilattice L is called a building set if for any X ∈ L>0̂ and

max G≤X = {G1, . . . , Gk} there is an isomorphism of posets

ϕX :

k∏

j=1

[0̂, Gj ]
∼=
−→ [0̂, X] (3–1)
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with ϕX(0̂, . . . , Gj , . . . , 0̂) = Gj for j = 1, . . . , k. We call FG(X) := max G≤X the

set of factors of X in G.

There are two extreme examples of building sets for any semilattice: we can

take the full semilattice L>0̂ as a building set. On the other hand, the set of

elements X in L>0̂ which do not allow for a product decomposition of the lower

interval [0̂, X] form the unique minimal building set (see Example 3.3 below).

Intuitively speaking, building sets are formed by elements in the semilattice

that are the perspective factors of product decompositions.

Any choice of a building set G in L gives rise to a family of so-called nested

sets. These are, roughly speaking, subsets of G whose antichains are sets of

factors with respect to the chosen building set. Nested sets form an abstract

simplicial complex on the vertex set G. This simplicial complex plays the role

of the order complex for arrangement models more general than the maximal

models discussed in Section 2.2.

Definition 3.2 (Nested sets). Let L be a finite meet-semilattice and G a

building set in L. A subset S in G is called nested (or G-nested if specification is

needed) if, for any set of incomparable elements X1, . . . , Xt in S of cardinality at

least two, the join X1 ∨ . . . ∨Xt exists and does not belong to G. The G-nested

sets form an abstract simplicial complex N(L,G), the nested set complex with

respect to L and G.

Observe that if we choose the full semilattice as a building set, then a subset is

nested if and only if it is linearly ordered in L. Hence, the nested set complex

N(L,L>0̂) coincides with the order complex ∆(L>0̂).

Example 3.3 (Building sets and nested sets for the partition lat-

tice). Choosing the maximal building set in the partition lattice Πn, we obtain

the order complex ∆((Πn) \ {0̂}) as the associated complex of nested sets. Topo-

logically, it is a cone over a wedge of (n− 1)! spheres of dimension n−1.

The minimal building set Gmin in Πn is given by partitions with at most one

block of size larger or equal 2, the so-called modular elements in Πn. We can

identify these partitions with subsets of {1, . . . , n} of size larger or equal 2. A

collection of such subsets is nested, if and only if none of the pairs of subsets

have a nontrivial intersection, i.e., for any pair of subsets they are either disjoint

or one is contained in the other. Referring to a naive picture of such containment

relation explains the choice of the term nested— it appeared first in the work

of Fulton and MacPherson [1994] on compactifications of classical configuration

spaces. As we noted earlier, the combinatorics they are concerned with is indeed

the combinatorics of the partition lattice.

For the rank 3 partition lattice Π3, maximal and minimal building sets co-

incide, G = Π3 \ {0̂}. The nested set complex N(Π3,G) is the order complex

∆(Π3 \ {0̂}) depicted in Figure 1.
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For the rank 4 partition lattice Π4, we have seen the nested set complex for

the maximal building set N(Π4,Gmax) in Figure 5. The nested set complex asso-

ciated with the minimal building set Gmin in Π4 is depicted in Figure 6. Again,

N(Π4,Gmin) is a cone with apex 1234, and we only draw its base, N(Π4,Gmin).

N(Π4,Gmin)

1423

124234

34

134

24

13

123

12

Figure 6. The nested set complex N(Π4,Gmin).

Adding one or two 2-block partitions to Gmin yields all the other building sets

for Π4. The corresponding nested set complexes are subdivisions of N(Π4,Gmin).

When studying the (maximal) wonderful model YA3
in Example 2.6 we had

observed that, if we only wanted to achieve a model with normal crossing di-

visors, it would have been enough to blow up the overall and the triple inter-

sections. This selection of strata, respectively elements in L(A3) = Π4, exactly

corresponds to the minimal building set Gmin in Π4 — a geometric motivation for

Definition 3.1.

We can also get a glimpse on the geometry that motivates the definition of

nested sets: comparing simplices in N(Π4,Gmin) with intersections of irreducible

divisor components in the arrangement model resulting from blowups along sub-

spaces in Gmin, we see that there is a 1-1 correspondence. For instance, {12, 34} is

a nested set with respect to Gmin, and divisor components D12 and D34 intersect

in the model (compare Figure 4).

It is not a coincidence that, in the example above, one nested set complex is

a subdivision of the other if one building set contains the other. In fact, the

following holds:

Theorem 3.4 [Feichtner and Müller 2005, Proposition 3.3, Theorem 4.2]. For

any finite meet-semilattice L, and G a building set in L, the nested set complex
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N(L,G) is homotopy equivalent to the order complex of L>0̂,

N(L,G) ' ∆(L>0̂).

Moreover , if L is atomic, i .e., any element is a join of a set of atoms, and G and

H are building sets with G⊇H, then the nested set complex N(L,G) is obtained

from N(L,H) by a sequence of stellar subdivisions. In particular , the complexes

are homeomorphic.

We now propose a construction on semilattices producing new semilattices: the

combinatorial blowup of a semilattice in an element.

Definition 3.5 (Combinatorial blowup). For a semilattice L and an ele-

ment X in L>0̂ we define a poset (BlXL,≺) on the set of elements

BlXL = {Y | Y ∈ L, Y 6≥ X} ∪ {Y ′ | Y ∈ L, Y 6≥ X, andY ∨X exists in L }.

The order relation < in L determines the order relation ≺ within the two parts

of BlXL described above,

Y ≺ Z, forY < Z in L,

Y ′ ≺ Z ′,forY < Z in L,

and additional order relations between elements of these two parts are defined

by

Y ≺ Z ′,forY < Z in L,

where in all three cases it is assumed that Y,Z 6≥ X in L. We call BlXL the

combinatorial blowup of L in X.

In fact, the poset BlXL is again a semilattice. Figure 7 explains what is going

on.

The construction does the following: it removes the closed upper interval on

top of X from L, and then marks the set of elements in L that are not larger or

equal X, but have a join with X in L. This subset of L (in fact, a lower ideal

in the sense of order theory) is doubled and any new element Y ′ in the copy is

BlXL

L≥X

Y : Y 6≥X, Y ∨X ex.

X
Y

Y ′

L

Figure 7. A combinatorial blowup.
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12′ 13′ 23′

Bl123Π3Π3

123

12 13 23 12 13 23

Figure 8. The combinatorial blowup of Π3 in 123.

defined to be covering the original element Y in L. The order relations in the

remaining, respectively the doubled, part of L stay the same as before.

In Figure 8 we give a concrete example: the combinatorial blowup of the

maximal element 123 in Π3, Bl123Π3. The result should be compared with

Figure 2. In fact, Bl123Π3 is the face poset of the divisor stratification in YA2
=

Bl{0}V .

The following theorem shows that the three concepts introduced above— com-

binatorial building sets, nested sets, and combinatorial blowups— fit together so

as to provide a combinatorial analogue of the De Concini–Procesi model con-

struction.

Theorem 3.6 [Feichtner and Kozlov 2004, Theorem 3.4]. Let L be a semilattice,

G a combinatorial building set in L, and G1, . . . , Gt a linear order on G that is

nonincreasing with respect to the partial order on L. Then, consecutive combi-

natorial blowups in G1, . . . , Gt result in the face poset of the nested set complex

N(L,G):

BlGt
(. . . (BlG2

(BlG1
L)) . . .) = F(N(L,G)).

3.2. An algebra defined for atomic lattices. For any atomic lattice, we

define a family of graded commutative algebras based on the notions of building

sets and nested sets given above. Our exposition here and in Section 4.2 follows

[Feichtner and Yuzvinsky 2004]. Restricting our attention to atomic lattices is

not essential for the definition. However, for various algebraic considerations and

for geometric interpretations (compare Section 4.2) it is convenient to assume

that the lattice is atomic.

Definition 3.7. Let L be a finite atomic lattice, A(L) its set of atoms, and G

a building set in L. We define the algebra D(L,G) of L with respect to G as

D(L,G) := Z [{xG}G∈G]
/

I,

where the ideal of relations I is generated by

t∏

i=1

xGi
for {G1, . . . , Gt} 6∈ N(L,G) ,

∑

G≥H

xG for H ∈ A(L).
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Observe that this algebra is a quotient of the face ring of the nested set com-

plex N(L,G).

Example 3.8 (Algebras associated to Π3 and Π4). For Π3 and its only

building set Gmax = Π3 \ {0̂}, the algebra reads as follows:

D(Π3,Gmax)=Z [x12, x13, x23, x123]
/〈

x12x13, x12x23, x13x23

x12 + x123, x13 + x123, x23 + x123

〉

∼=Z [x123]/〈x
2
123〉.

For Π4 and its minimal building set Gmin, we obtain the following algebra after

simplifying slightly the presentation:

D(Π4,Gmin) ∼= Z [x123, x124, x134, x234, x1234]
/

〈 xijk x1234 for all 1 ≤ i < j < k ≤ 4

xijk xi′j′k′ for all ijk 6= i′j′k′

x2
ijk + x2

1234 for all 1 ≤ i < j < k ≤ 4

〉
.

There is an explicit description for a Gröbner basis of the ideal I, which in par-

ticular yields an explicit description for a monomial basis of the graded algebra

D(L,G).

Theorem 3.9. (1) [Feichtner and Yuzvinsky 2004, Theorem 2] The following

polynomials form a Gröbner basis of the ideal I:
∏

G∈S

xG for S 6∈ N(L,G),

k∏

i=1

xAi

( ∑

G≥B

xG

)d(A,B)

,

where A1, . . . , Ak are maximal elements in a nested set H ∈ N(L,G), B ∈ G

with B>A =
∨k

i=1Ai, and d(A,B) is the minimal number of atoms needed

to generate B from A by taking joins.

(2) [Feichtner and Yuzvinsky 2004, Corollary 1] The resulting linear basis for

the graded algebra D(L,G) is given by the following set of monomials:
∏

A∈S

x
m(A)
A ,

where S is running over all nested subsets of G, m(A) < d(A′, A), and A′ is

the join of S∩L<A.

Part (2) of Theorem 3.9 generalizes a basis description by Yuzvinsky [1997] for

D(L,G) in the case of G being the minimal building set in an intersection lattice

L of a complex hyperplane arrangement. Yuzvinsky’s basis description has also

been generalized in a somewhat different direction by Gaiffi [1997], namely for

closely related algebras associated with complex subspace arrangements.
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We will return to the algebra D(L,G) and discuss its geometric significance

in Section 4.2.

4. Returning to Geometry

4.1. Understanding stratifications in wonderful models. We first relate

the combinatorial setting of building sets and nested sets developed in Section 3.1

to its origin, the De Concini–Procesi model construction. Here is how to recover

the original notion of building sets [De Concini and Procesi 1995a, Definition in

§ 2.3], we call them geometric building sets, from our definitions:

Definition 4.1 (Geometric building sets). Let L be the intersection lattice

of an arrangement of subspaces in real or complex vector space V and cd : L → N

a function on L assigning the codimension of the corresponding subspace to each

lattice element. A subset G in L is a geometric building set if it is a building set

in the sense of 3.1, and for any X ∈ L the codimension of X is equal to the sum

of codimensions of its factors, FG(X):

cd (X) =
∑

Y ∈FG(X)

cd (Y ).

An easy example shows that the notion of geometric building sets indeed is more

restrictive than the notion of combinatorial building sets. For arrangements of

hyperplanes, however, the notions coincide [Feichtner and Kozlov 2004, Propo-

sition 4.5.(2)].

Example 4.2 (Geometric versus combinatorial building sets). Let A

denote the following arrangement of 3 subspaces in R
4:

A1 : x4 = 0, A2 : x1 = x2 = 0, A3 : x1 = x3 = 0.

The intersection lattice L(A) is a boolean algebra on 3 elements; we depict the

lattice with its codimension labelling in Figure 9. The set of atoms obviously is

a combinatorial building set. However, any geometric building set must contain

the intersection A2 ∩A3: its codimension is not the sum of codimensions of its

(combinatorial) factors A2 and A3.

L(A)

1 2 2

3 3

4

3

0

A1 A2 A3

A2 ∩A3

Figure 9. Geometric versus combinatorial building sets.
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As we mentioned before, there are wonderful model constructions for arrange-

ment complements M(A) that start from an arbitrary geometric building set G

of the intersection lattice L(A) [De Concini and Procesi 1995a, 3.1]: In Def-

inition 2.2, replace the product on the right hand side of (2–1) by a product

over building set elements in L, and obtain the wonderful model YA,G by again

taking the closure of the image of M(A) under Ψ. In Definition 2.3, replace the

linear extension of L
op

>0̂
by a nonincreasing linear order on the elements in G, and

obtain the wonderful model YA,G by successive blowups of subspaces in G, and

of proper transforms of such.

The key properties of these models are analogous to those listed in Theo-

rem 2.5, where in part (2), lattice elements are replaced by building set ele-

ments, and in part (3), chains in L as indexing sets of nonempty intersections of

irreducible components of divisors are replaced by nested sets. Hence, the face

poset of the stratification of YA,G given by irreducible components of divisors

and their intersections coincides with the face poset of the nested set complex

N(L,G). Compare Examples 2.6 and 3.3, where we found that nested sets with

respect to the minimal building set Gmin in Π4 index nonempty intersections of

irreducible divisor components in the arrangement model YA3,Gmin
.

While the intersection lattice L(A) captures the combinatorics of the strat-

ification of V given by subspaces of A and their intersections, the nested set

complex N(L,G) captures the combinatorics of the divisor stratification of the

wonderful model YA,G. More than that: combinatorial blowups turn out to be

the right concept to describe the incidence change of strata during the construc-

tion of wonderful arrangement models by successive blowups:

Theorem 4.3 [Feichtner and Kozlov 2004, Proposition 4.7(1)]. Let A be a com-

plex subspace arrangement , G a geometric building set in L(A), and G1, . . . , Gt

a nonincreasing linear order on G. Let Bli(A) denote the result of blowing up

strata G1, . . . , Gi, for i ≤ t, and denote by Li the face poset of the stratification

of Bli(A) by proper transforms of subspaces in A and the exceptional divisors.

Then the poset Li coincides with the successive combinatorial blowups of L in

G1, . . . Gi:

Li = BlGi
(. . . (BlG2

(BlG1
L)) . . .).

Combinatorial building sets, nested sets and combinatorial blowups occur in

other situations and prove to be the right concept for describing stratifications

in more general model constructions. This applies to the wonderful conical com-

pactifications of MacPherson and Procesi [1998] as well as to models for mixed

subspace and halfspace arrangements and for stratified real manifolds by Gaiffi

[2003].

Also, combinatorial blowups describe the effect which stellar subdivisions in

polyhedral fans have on the face poset of the fans. In fact, combinatorial blowups

describe the incidence change of torus orbits for resolutions of toric varieties by
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consecutive blowups in closed torus orbits. This implies, in particular, that for

any toric variety and for any choice of a combinatorial building set in the face

poset of its defining fan, we obtain a resolution of the variety with torus orbit

structure prescribed by the nested set complex associated to the chosen building

set. We believe that such combinatorially prescribed resolutions can prove useful

in various concrete situations (see [Feichtner and Kozlov 2004, Section 4.2] for

further details).

There is one more issue about nested set stratifications of maximal wonder-

ful arrangement models that we want to discuss here, mostly in perspective of

applications in Section 5. According to Definition 2.2, any point in the model

YA can be written as a collection of a point in V and lines in V , one line for

each element in L(A). There is a lot of redundant information in this rendering,

e.g., points on the open stratum π−1(M(A)) are fully determined by their first

“coordinate entry”, the point in M(A) ⊆ V .

Here is a more economic encoding of a point ω on YA [Feichtner and Kozlov

2003, Section 4.1]: we find that ω can be uniquely written as

ω = (x,H1, `1,H2, `2, . . . ,Ht, `t) = (x, `1, `2, . . . , `t), (4–1)

where x is a point in V , the H1, . . . ,Ht form a descending chain of subspaces

in L>0̂, and the `i are lines in V . More specifically, x = π(ω), and H1 is the

maximal lattice element that, as a subspace of V , contains x. The line `1 is

orthogonal to H1 and corresponds to the coordinate entry of ω indexed by H1 in

P(V/H1). The lattice element H2, in turn, is the maximal lattice element that

contains both H1 and `1. The specification of lines `i, i.e., lines that correspond

to coordinates of ω in P(V/Hi), and the construction of lattice elements Hi+1,

continues analogously for i ≥ 2 until a last line `t is reached whose span with

Ht is not contained in any lattice element other than the full ambient space V .

Observe that the Hi are determined by x and the sequence of lines `i; we choose

to include the Hi in order to keep the notation more transparent.

The full coordinate information on ω can be recovered from (4–1) by setting

H0 =
⋂

A, `0 = 〈x〉, and retrieving the coordinate ωH indexed by H ∈ L>0̂ as

ωH = 〈`j ,H〉/H ∈ P(V/H),

where j is chosen from {1, . . . , t} such that H ≤ Hj , but H 6≤ Hj+1.

A nice feature of this encoding is that for a given point ω in YA we can tell

the open stratum in the nested set stratification which contains it:

Proposition 4.4 [Feichtner and Kozlov 2003, Proposition 4.5]. A point ω in a

maximal arrangement model YA is contained in the open stratum indexed by the

chain H1>H2> . . . >Ht in L>0̂ if and only if its point/line description (4–1)

reads ω = (x,H1, `1,H2, `2, . . . ,Ht, `t).
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4.2. A wealth of geometric meaning for D(L,G). We turn to the algebra

D(L,G) that we defined for any atomic lattice L and combinatorial building set

G in L in Section 3.2. We give two geometric interpretations for this algebra;

one is restricted to L being the intersection lattice of a complex hyperplane

arrangement and originally motivated the definition of D(L,G), the other applies

to any atomic lattice and provides for a somewhat unexpected connection to toric

varieties.

We comment briefly on the projective version of wonderful arrangement mod-

els that we need in this context (see [De Concini and Procesi 1995a, § 4] for

details). For any arrangement of linear subspaces A in V , a model for its pro-

jectivization PA = {PA | A ∈ A} in PV , i.e., for M(PA) = PV \
⋃

PA, can

be obtained by replacing the ambient space V by its projectivization PV in the

model constructions 2.2 and 2.3. The constructions result in a smooth projective

variety that we denote by Y P
A. A model Y P

A,G for a specific geometric building set

G in L can be obtained analogously. In fact, under the assumption that P(
⋂

A)

is contained in the building set G, the affine model YA,G is the total space of a

(real or complex) line bundle over the projective model Y P
A,G which is isomorphic

to the divisor component in YA,G indexed with
⋂

A.

The most prominent example of a projective arrangement model is the min-

imal wonderful model for the complex braid arrangement, YAC
n−2

,Gmin
. It is iso-

morphic to the Deligne–Knudson–Mumford compactification M0,n of the moduli

space of n-punctured complex projective lines [De Concini and Procesi 1995a,

4.3].

Here is the first geometric interpretation of D(L,G) in the case of L being the

intersection lattice of a complex hyperplane arrangement.

Theorem 4.5 [De Concini and Procesi 1995b; Feichtner and Yuzvinsky 2004].

Let L = L(A) be the intersection lattice of an essential arrangement of complex

hyperplanes A and G a building set in L which contains the total intersection

of A. Then, D(L,G) is isomorphic to the integral cohomology algebra of the

projective arrangement model Y P
A,G:

D(L,G) ∼= H∗(Y P
A,G,Z).

Example 4.6 (Cohomology of braid arrangement models). The pro-

jective arrangement model Y P
A2

is homeomorphic to the exceptional divisor in

YA2
= Bl{0}C

2, hence to CP1. Its cohomology is free of rank 1 in degrees 0 and

2 and zero otherwise. Compare with D(Π3,Gmax) in Example 3.8.

The projective arrangement model Y P
A3,Gmin

is homeomorphic to M0,5, whose

cohomology is known to be free of rank 1 in degrees 0 and 4, free of rank 5 in

degree 2, and zero otherwise. At least the coincidence of ranks is easy to verify

in comparison with D(Π4,Gmin) in Example 3.8.
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Theorem 4.5 in fact gives an elegant presentation for the integral cohomology

of M0,n
∼= Y P

An−2,Gmin
in terms of generators and relations:

H∗(M0,n) ∼= D(Πn−1,Gmin)

∼= Z [ {xS}S⊆[n−1],|S|≥2 ]
/〈 xS xT for S ∩ T 6= ?, S 6⊆T, T 6⊆S,

∑
{i,j}⊆S

xS for 1≤ i< j≤n− 1

〉
.

A lot of effort has been spent on describing the cohomology of M0,n (see

[Keel 1992]), but none of the presentations comes close to the simplicity of the

one stated above.

A nice expression for the Hilbert function of H∗(M0,n) has been derived

in [Yuzvinsky 1997] as a consequence of a monomial linear basis for minimal

projective arrangement models presented there.

To propose a more general geometric interpretation for D(L,G), we start by de-

scribing a polyhedral fan Σ(L,G) for any atomic lattice L and any combinatorial

building set G in L.

Definition 4.7 (A simplicial fan realizing N(L,G)). Let L be an atomic

lattice with set of atoms A = {A1, . . . , An}, G a combinatorial building set in L.

For any G ∈ G define the characteristic vector vG in R
n by

(vG)i :=

{
1 if G ≥ Ai,

0 otherwise,
for i = 1, . . . , n.

The simplicial fan Σ(L,G) in R
n is the collection of cones

VS := cone{vG | G ∈ S}

for S nested in G.

By construction, Σ(L,G) is a rational, simplicial fan that realizes the nested set

complex N(L,G). The fan gives rise to a (noncompact) smooth toric variety

XΣ(L,G) [Feichtner and Yuzvinsky 2004, Proposition 2].

Example 4.8 (The fan Σ(Π3,Gmax) and its toric variety). We depict

Σ(Π3,Gmax) in Figure 10. The associated toric variety is the blowup of C
3

in {0} with the proper transforms of coordinate axes removed.

v23

v123

v13

v12

Figure 10. The simplicial fan Σ(Π3,Gmax).
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The algebra D(L,G) here gains another geometric meaning, this time for any

atomic lattice L. The abstract algebraic detour of considering D(L,G) in this

general setting is rewarded by a somewhat unexpected return to geometry:

Theorem 4.9 [Feichtner and Yuzvinsky 2004, Theorem 3]. For an atomic lattice

L and a combinatorial building set G in L, D(L,G) is isomorphic to the Chow

ring of the toric variety XΣ(L,G),

D(L,G) ∼= Ch∗(XΣ(L,G)).

5. Adding Arrangement Models to the Geometer’s Toolbox

Let a differentiable action of a finite group Γ on a smooth manifoldM be given.

The goal is to modify the manifold by blowups so as to have the group act on

the resolution M̃ with abelian stabilizers— the quotient M̃/Γ then has much

more manageable singularities than the original quotient. Such modifications

for the sake of simplifying quotients have been of crucial importance at various

places. One instance is Batyrev’s work [1999] on stringy Euler numbers, which

in particular implies a conjecture of Reid [1992], and constitutes substantial

progress towards higher dimensional MacKay correspondence.

There are two observations that point to wonderful arrangement models as a

possible tool in this context. First, the model construction is equivariant if the

initial setting carries a group action: if a finite group Γ acts on a real or complex

vector space V , and the arrangement A is Γ-invariant, then the arrangement

model YA,G carries a natural Γ-action for any Γ-invariant building set G ⊆ L(A).

Second, the model construction is not bound to arrangements. In fact, locally

finite stratifications of manifolds which are local subspace arrangements, i.e.,

locally diffeomorphic to arrangements of linear subspaces, can be treated in a

fully analogous way. In the complex case, the construction has been pushed to

so-called conical stratifications in [MacPherson and Procesi 1998] with a real

analogue in [Gaiffi 2003].

The significance of De Concini–Procesi model constructions for abelianizing

group actions on complex varieties has been recognized by Borisov and Gunnells

[2002], following work of Batyrev [1999; 2000]. Here we focus on the real setting.

5.1. Learning from examples: permutation actions in low dimension.

Consider the action of the symmetric group Sn on real n-dimensional space by

permuting coordinates:

σ (x1, . . . , xn) = (xσ(1), . . . , xσ(n)) for σ ∈ Sn, x ∈ R
n.

Needless to say, we find a wealth of nonabelian stabilizers: For a point x ∈

R
n that induces the set partition π = (B1| . . . |Bt) of {1, . . . , n} by pairwise

coinciding coordinate entries, the stabilizer of x with respect to the permutation

action is the Young subgroup Sπ = SB1
× . . .× SBt

of Sn, where SBi
denotes

the symmetric subgroup of Sn permuting the coordinates in Bi for i = 1, . . . , t.
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The locus of nontrivial stabilizers for the permutation action of Sn, in fact, is

a familiar object: it is the rank (n−1) braid arrangement An−1. A natural idea

that occurs when trying to abelianize a group action by blowups is to resolve

the locus of nonabelian stabilizers in a systematic way. We look at some low-

dimensional examples.

Example 5.1 (The permutation action of S3). We consider S3 acting

on real 2-space V ∼= R
3/∆. The locus of nontrivial stabilizers consists of the 3

hyperplanes in A2: for x ∈ Hij \ {0}, stabx = 〈(ij)〉 ∼= Z2; in fact, 0 is the only

point having a nonabelian stabilizer, namely it is fixed by all of S3.

Blowing up {0} in V according to the general idea outlined above, we recognize

the maximal wonderful model for A2 that we discussed in Example 2.4.

H23

H12

H13

A2 ⊆ V YA2

stab (x, 〈x〉)=1

(x, 〈x〉)

ψ23 ψ13

x

(0, `)

ψ12

stab (y,H12)=〈(12)〉

y

stab (0, `)=1

stabψ12 = 〈(12)〉

(y,H12)

Figure 11. S3 acting on YA2
.

By construction, S3 acts coordinate-wise on YA2
. For points on proper trans-

forms of hyperplanes (y,Hij) ∈ Dij , 1 ≤ i < j ≤ 3, stabilizers are of or-

der two: stab (y,Hij) = 〈(ij)〉 ∼= Z2. Otherwise, stabilizers are trivial, unless

we are looking at one of the three points ψij marked in Figure 11. E.g., for

ψ12=(0, 〈(1,−1, 0)〉), stabψ12 = 〈(12)〉 ∼= Z2. Although the transposition (12)

does not fix the line 〈(1,−1, 0)〉) point-wise, it fixes ψ12 as a point in YA2
! We

see that transpositions (ij) ∈ S3 act on the open Möbius band YA2
by central

symmetries in ψij .

Observe that the nested set stratification is not fine enough to distinguish

stabilizers: as the points ψij show, stabilizers are not isomorphic on open strata.

Example 5.2 (The permutation action of S4). We now consider S4 acting

on real 3-space V ∼= R
4/∆. The locus of nonabelian stabilizers consists of the

triple intersections of hyperplanes in A3, i.e., the subspaces contained in the

minimal building set Gmin in L(A3)=Π4. Our general strategy suggests to look

at the arrangement model YA,Gmin
.

We consider a situation familiar to us from Example 2.6. In Figure 12, we illus-

trate the situation after the first blowup step in the construction of YA,Gmin
, i.e.,

the exceptional divisor after blowing up {0} in V with the stratification induced

by the hyperplanes of A3. To complete the construction of YA,Gmin
, another

4 blowups in the triple intersections of hyperplanes are necessary, the result of
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14

13

34
134

D13

D34

D134

D14

12|34

234

34

124

13 134

14|23

23
14

123
12

ν=(0, 〈(1,−1,−1, 1)〉

(0, 〈(1,−1, 1,−1)〉)

24
13|24

ω=(0, 〈(1,−1, 0, 0)〉

stab ν ∼= Z2 o Z2

stabω ∼= Z2 × Z2

Figure 12. S4 acting on Bl{0}V , where V = R
4/∆.

which we illustrate locally for the triple intersection corresponding to 134. Triple

intersections of hyperplanes in Bl{0}V have stabilizers isomorphic to S3 — the

further blowups in triple intersections are indeed necessary to obtain an abelian-

ization of the permutation action.

Again, we observe that the nested set stratification on YA,Gmin
does not dis-

tinguish stabilizers: we indicate subdivisions of nested set strata resulting from

nonisomorphic stabilizers by dotted lines, respectively unfilled points in Fig-

ure 12.

We now look at stabilizers of points on the model YA,Gmin
. We find points

with stabilizers isomorphic to Z2 — any generic point on a divisor Dij will be

such. We also find points with stabilizers isomorphic to Z2 × Z2, e.g., the point

ω on D1234 corresponding to the line 〈(1,−1, 0, 0)〉.

But, on YA,Gmin
we also find points with nonabelian stabilizers! For example,

the intersection ofD14 andD23 onD1234 corresponding to the line 〈(1,−1,−1, 1)〉

is stabilized by both (14) and (12)(34) in S4, which do not commute. In fact,

the stabilizer is isomorphic to Z2 oZ2.

This observation shows that blowing up the locus of nonabelian stabilizers is

not enough to abelianize the action! Further blowups in double intersections of

hyperplanes are necessary, which suggests, contrary to our first assumption, the

maximal arrangement model YA3
as an abelianization of the permutation action.

Some last remarks on this example: observe that stabilizers of points on YA3

all are elementary abelian 2-groups. We will later see that the strategy of resolv-

ing finite group actions on real vector spaces and even manifolds by constructing
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a suitable maximal De Concini–Procesi model does not only abelianize the ac-

tion, but yields stabilizers isomorphic to elementary abelian 2-groups.

Also, it seems we cannot do any better than that within the framework of

blowups, i.e., we neither can get rid of nontrivial stabilizers, nor can we reduce

the rank of nontrivial stabilizers any further. The divisors Dij are stabilized

by transpositions (ij) which supports our first claim. For the second claim,

consider the point ω = (0, `1) in YA3
with `1 = 〈(1,−1, 0, 0)〉 (here we use the

encoding of points on arrangement models proposed in (4–1)). We have seen

above that stabω ∼= Z2 × Z2, in fact stabω = 〈(12)〉 × 〈(34)〉. Blowing up YA3

in ω means to again glue in an open Möbius band. Points on the new exceptional

divisor Dω
∼= RP1 will be parameterized by tupels (0, `1, `2), where `2 is a line

orthogonal to `1 in V . A generic point on this stratum will be stabilized only

by the transposition (12), specific points however, e.g., (0, `1, 〈(0, 0, 1,−1)〉) will

still be stabilized by all of stabω ∼= Z2 × Z2.

5.2. Abelianizing a finite linear action. Following the basic idea of propos-

ing De Concini–Procesi arrangement models as abelianizations of finite group

actions and drawing from our experiences with the permutation action on low-

dimensional real space in Section 5.1 we here treat the case of finite linear actions.

Let a finite group Γ act linearly and effectively on real n-space R
n. Without

loss of generality, we can assume that the action is orthogonal [Vinberg 1989,

Section 2.3, Theorem 1]; we fix the appropriate scalar product throughout.

Our strategy is to construct an arrangement of subspaces A(Γ) in real n-space,

and to propose the maximal wonderful model YA(Γ) as an abelianization of the

given action.

Construction 5.3 (The arrangement A(Γ)). For any subgroup H in Γ,

define a linear subspace

L(H) := span{ ` | ` line in R
n with H ◦ ` = ` }, (5–1)

the linear span of all lines in V that are invariant under the action of H.

Denote by A(Γ) = A(Γ ˘ R
n) the arrangement of proper subspaces in R

n

that are of the form L(H) for some subgroup H in Γ.

Observe that the arrangement A(Γ) never contains any hyperplane: if L(H) were

a hyperplane for some subgroup H in Γ, then also its orthogonal line ` would be

invariant under the action of H. By definition of L(H), however, ` would then

be contained in L(H) which in turn would be the full ambient space.

Theorem 5.4 [Feichtner and Kozlov 2005, Thm. 3.1]. For any effective linear

action of a finite group Γ on n-dimensional real space, the maximal wonderful

arrangement model YA(Γ) abelianizes the action. Moreover , stabilizers of points

on the arrangement model are isomorphic to elementary abelian 2-groups.

The first example coming to mind is the permutation action of Sn on real n-

space. We find that A(Sn) is the rank 2 truncation of the braid arrangement,
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A
rk≥2
n−1 , i.e., the arrangement consisting of subspaces in An−1 of codimension at

least 2. For details, see [Feichtner and Kozlov 2005, Section 4.1]. In earlier work

[Feichtner and Kozlov 2003], we had already proposed the maximal arrangement

model of the braid arrangement as an abelianization of the permutation action.

We proved that stabilizers on YAn−1
are isomorphic to elementary abelian 2-

groups by providing explicit descriptions of stabilizers based on an algebraic-

combinatorial set-up for studying these groups.

5.3. Abelianizing finite differentiable actions on manifolds. We now

look at a generalization of the abelianization presented in Section 5.2. Assume

that Γ is a finite group that acts differentiably and effectively on a smooth real

manifold M . We first observe that such an action induces a linear action of

the stabilizer stabx on the tangent space TxM at any point x in M . Hence,

locally we are back to the setting that we discussed before: For any subgroup

H in stabx, we can define a linear subspace L(x,H) := L(H) of the tangent

space TxM as in (5–1), and we can combine the nontrivial subspaces to form an

arrangement Ax := A(stab ˘ TxM) in TxM .

Combined with the information that a model construction in the spirit of

De Concini–Procesi arrangement models exists also for local subspace arrange-

ments, we need to stratify the manifold so as to locally reproduce the arrange-

ment Ax in any tangent space TxM . Here is how to do that:

Construction 5.5 (The stratification L). For any x ∈ M , and any sub-

group H in stabx, define a normal (!) subgroup F (x,H) in H by

F (x,H) = {h ∈ H | h ◦ y = y for any y ∈ L(x,H)};

F (x,H) is the subgroup of elements in H that fix all of L(x,H) point-wise.

Define L(x,H) to be the connected component of the fixed point set of F (x,H)

in M that contains x. Now combine these submanifolds so as to form a locally

finite stratification

L = (L(x,H))x∈M, H≤stab x.

Observe that, as we tacitly did for stratifications induced by arrangements or by

irreducible components of divisors, we only specify strata of proper codimension.

The stratification L locally coincides with the tangent space stratifications

coming from our linear setting. Technically speaking: for any x ∈M , there exists

an open neighborhood U of x in M , and a stabx-equivariant diffeomorphism

Φx : U → TxM such that

Φx(L(x,H)) = L(x,H) (5–2)

for any subgroup H in stabx. In particular, (5–2) shows that the stratification

L of M is a local subspace arrangement.

Theorem 5.6 [Feichtner and Kozlov 2005, Theorem 3.4]. Let a finite group Γ act

differentiably and effectively on a smooth real manifold M . Then the wonderful
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model YL induced by the locally finite stratification L of M abelianizes the action.

Moreover , stabilizers of points on the model YL are isomorphic to elementary

abelian 2-groups.

Example 5.7 (Abelianizing the permutation action on RP2). We take

a small nonlinear example: the permutation action of S3 on the real projective

plane induced by S3 permuting coordinates in R
3.

We picture RP2 by its upper hemisphere model in Figure 13, where we agree

to place the projectivization of ∆⊥ on the equator. The locus of nontrivial

stabilizers of the S3 permutation action consists of the projectivizations of hy-

perplanes Hij :xi = xj , for 1 ≤ i < j ≤ 3, and three additional points Ψij on

P∆⊥ indicated in Figure 13. The S3 action can be visualized by observing that

transpositions (ij) ∈ S3 act as reflections in the lines PHij , respectively.

∆ = [1 : 1 : 1]

Ψ23 = [0 : 1 : −1]
[1 : −2 : 1]

Ψ12=[1 : −1 : 0]

[−2 : 1 : 1] Ψ13 = [1 : 0 : −1]

[1 : 1 : −2]

PH13

PH23

PH12

Figure 13. S3 acting on RP
2: the stabilizer stratification.

We find that the arrangements A` in the tangent spaces T`RP2 are empty,

unless ` = [1:1:1]. Hence, (5–2) allows us to conclude that the L-stratification of

RP2 consists of a single point, [1:1:1]. Observe that the S3-action on T[1:1:1]RP2

coincides with the permutation action of S3 on R
3/∆.

The wonderful model YL hence is a Klein bottle, the result of blowing up RP2

in [1:1:1], i.e., glueing a Möbius band into the punctured projective plane.

Observe that the L-stratification is coarser than the codimension 2 truncation

of the stabilizer stratification: The isolated points Ψij on P∆⊥ have nontrivial

stabilizers, but do not occur as strata in the L-stratification.
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