
Combinatorial and Computational Geometry
MSRI Publications
Volume 52, 2005

Quasiconvex Programming

DAVID EPPSTEIN

Abstract. We define quasiconvex programming, a form of generalized lin-

ear programming in which one seeks the point minimizing the pointwise

maximum of a collection of quasiconvex functions. We survey algorithms

for solving quasiconvex programs either numerically or via generalizations

of the dual simplex method from linear programming, and describe varied

applications of this geometric optimization technique in meshing, scientific

computation, information visualization, automated algorithm analysis, and

robust statistics.

1. Introduction

Quasiconvex programming is a form of geometric optimization, introduced in

[Amenta et al. 1999] in the context of mesh improvement techniques and since

applied to other problems in meshing, scientific computation, information visual-

ization, automated algorithm analysis, and robust statistics [Bern and Eppstein

2001; 2003; Chan 2004; Eppstein 2004]. If a problem can be formulated as a

quasiconvex program of bounded dimension, it can be solved algorithmically

in a linear number of constant-complexity primitive operations by generalized

linear programming techniques, or numerically by generalized gradient descent

techniques. In this paper we survey quasiconvex programming algorithms and

applications.

1.1. Quasiconvex functions. Let Y be a totally ordered set, for instance the

real numbers R or integers Z ordered numerically. For any function f : X 7→ Y ,

and any value λ ∈ Y , we define the lower level set

f≤λ = {x ∈ X | f(x) ≤ λ} .

A function q : X 7→ Y , where X is a convex subset of Rd, is called quasiconvex

[Dharmadhikari and Joag-Dev 1988] when its lower level sets are all convex. A

one-dimensional quasiconvex function is more commonly called unimodal, and

This research was supported in part by NSF grant CCR-9912338.

287

288 DAVID EPPSTEIN

(−1, 0) (1, 0)

q(v) ≤ 90◦

q(v) ≤ 135◦

(includes darker area)

Figure 1. Level sets of the quasiconvex function q(v) = 180◦

− \uvw, for

u = (−1, 0) and w = (1, 0), restricted to the half-plane y ≥ 0.

another way to define a quasiconvex function is that it is unimodal along any

line through its domain.

As an example, let H = {(x, y) | y > 0} be the upper half-plane in R2, let

u = (−1, 0) and w = (1, 0), and let q measure the angle complementary to the

one subtended by segment uw from point v: thus q(v) = 180◦ − \uvw. Each

level set q≤λ consists of the intersection with H of a disk having u and w on its

boundary (Figure 1). Since these sets are all convex, q is quasiconvex.

Quasiconvex functions are a generalization of the well-known set of convex

functions, which are the functions Rd 7→ R satisfying the inequality

f
(

px̄ + (1 − p
)

ȳ) ≤ p f(x̄) + (1 − p)f(ȳ)

for all x̄, ȳ ∈ Rd and all 0 ≤ p ≤ 1: it is a simple consequence of this inequality

that any convex function has convex lower level sets. However, there are many

functions that are quasiconvex but not convex; for instance, the complementary

angle function q defined above is not convex, as can be seen from the fact that

its values are bounded above by 180◦. As another example, the function χK(x̄)

that takes the value 0 within a convex set K and 1 outside K has as its lower

level sets K and Rd, so it is quasiconvex, but not convex.

If r is convex or quasiconvex and f : Y 7→ Z is monotonically nondecreasing,

then q(x̄) = f(r(x̄)) is quasiconvex; for instance the function χK above can be

factored in this way into the composition of a convex function dK(x̄) measuring

the Euclidean distance from x̄ to K with a monotonic function f mapping 0

to itself and all larger values to 1. In the other direction, given a quasiconvex

function q : X 7→ Y , one can often find a monotonic function f : Y 7→ R

that, when composed with q, turns it into a convex function. However this sort

of convex composition is not always possible. For instance, in the case of the

step function χK described above, any nonconstant composition of χK remains

two-valued and hence cannot be convex.

QUASICONVEX PROGRAMMING 289

1.2. Nested convex families. Quasiconvex functions are closely related to

nested convex families. Following [Amenta et al. 1999], we define a nested convex

family to be a map κ : Y 7→ K(Rd), where Y is a totally ordered set and K(Rd)

denotes the family of compact convex subsets of Rd, and where κ is further

required to satisfy the following two axiomatic requirements (the second of which

is a slight generalization of the original definition that allows Y to be discrete):

(i) For every λ1, λ2 ∈ Y with λ1 < λ2 we have κ(λ1) ⊆ κ(λ2).

(ii) For all λ ∈ Y such that λ = inf {λ′ | λ′ > λ} we have κ(λ) =
⋂

λ′>λ κ(λ′).

If Y has the property that every subset of Y has an infimum (for instance,

Y = R ∪{∞,−∞}), then from any nested convex family κ : Y 7→ K(Rd) we can

define a function qκ : Rd 7→ Y by the formula

qκ(x̄) = inf {λ | x̄ ∈ κ(λ)} .

Lemma 1.1. For any nested convex family κ : Y 7→ K(Rd) and any λ ∈ Y ,

q≤λ
κ = κ(λ).

Proof. The lower level sets of qκ are

q≤λ
κ =

{

x̄ ∈ Rd | qκ(x̄) ≤ λ
}

=
{

x̄ ∈ Rd | inf {λ′ | x̄ ∈ κ(λ′) } ≤ λ
}

.

For any x̄ ∈ κ(λ) we have λ ∈ {λ′ | x̄ ∈ κ(λ′) } so the infimum of this set can

not be greater than λ and x̄ ∈ q≤λ
κ . For any x̄ /∈ κ(λ), inf {λ′ | x̄ ∈ κ(λ′) } ≥

λ+ > λ by the second property of nested convex families, so x̄ /∈ q≤λ
κ . Therefore,

q≤λ
κ = κ(λ). ˜

In particular, qκ has convex lower level sets and so is quasiconvex.

Conversely, suppose that q is quasiconvex and has bounded lower level sets.

Then we can define a nested convex family

κq(λ) =

{

⋂

λ′>λ cl(q≤λ′

) if λ = inf {λ′ | λ′ > λ},

cl(q≤λ) otherwise,

where cl denotes the topological closure operation.

If q does not have bounded lower level sets, we can still form a nested convex

family by restricting our attention to a compact convex subdomain K ⊂ Rd:

κq,K(λ) =

{

⋂

λ′>λ cl(K ∩ q≤λ′

) if λ = inf {λ′ | λ′ > λ},

cl(K ∩ q≤λ) otherwise.

This restriction to a compact subdomain is necessary to handle linear functions

and other functions without bounded level sets within our mathematical frame-

work.

The following two theorems allow us to use nested convex families and quasi-

convex functions interchangeably for each other for most purposes: more specif-

ically, a nested convex family conveys exactly the same information as a contin-

uous quasiconvex function with bounded lower level sets. Thus, later, we will

290 DAVID EPPSTEIN

use whichever of the two notions is more convenient for the purposes at hand,

using these theorems to replace an object of one type for an object of the other

in any algorithms or lemmas needed for our results.

Theorem 1.2. For any nested convex family κ, we have κ = κqκ
.

Proof. If λ is not an infimum of larger values, then qκ(x) ≤ λ if and only if

x ∈ κ(λ). So κqκ
(λ) = cl(qκ

≤λ) = {x | qκ(x) ≤ λ} = κ(λ).

Otherwise, by Lemma 1.1,

κqκ
(λ) =

⋂

λ′>λ

cl(κ(λ′)).

The closure operation does not modify the set κ(λ′), because it is already closed,

so we can replace cl(κ(λ′)) above by κ(λ′)), giving

κqκ
(λ) =

⋂

λ′>λ

κ(λ′).

The intersection on the right-hand side of the equation further simplifies to κ(λ)

by the second property of nested convex families. ˜

Theorem 1.3. If q : X 7→ R is a continuous quasiconvex function with bounded

lower level sets, then qκq
= q.

Proof. By Lemma 1.1, q≤λ
κq

= κq(λ). Assume first that λ = inf {λ′ | λ′ > λ}.

Expanding the definition of κq, we get

q≤λ
κq

=
⋂

λ′>λ

cl(q≤λ′

).

If q is continuous, its level sets are closed, so we can simplify this to

q≤λ
κq

=
⋂

λ′>λ

q≤λ′

.

Suppose the intersection on the right-hand side of the formula is nonempty, and

let x̄ be any point in it. We wish to show that q(x̄) ≤ λ, so suppose for a

contradiction that q(x̄) > λ. But then there is a value λ′ strictly between λ

and q(x̄) (else λ would not be the infimum of all greater values), and x̄ /∈ q≤λ′

,

contradicting the assumption that x̄ is in the intersection. Therefore, q(x̄) must

be at most equal to λ.

As we have now shown that q(x̄) ≤ λ for any x̄ in q≤λ
κq

, it follows that q≤λ
κq

cannot contain any points outside q≤λ. On the other hand, q≤λ
κq

is formed by

intersecting a collection of supersets of q≤λ, so it contains all points inside q≤λ.

Therefore, the two sets are equal.

If λ 6= inf {λ′ > λ}, the same equality can be seen even more simply to be

true, since we have no intersection operation to eliminate. Since qκq
and q have

the same level sets, they are the same function. ˜

QUASICONVEX PROGRAMMING 291

Thanks to these two theorems, we do not lose any information by using the

function qκ in place of the nested convex family κ, or by using the nested convex

family κqκ
= κ in place of a quasiconvex function that is of the form q = qκ or

in place of a continous quasiconvex function with bounded lower level sets. In

most situations quasiconvex functions and nested convex families can be treated

as equivalent and interchangeable: if we are given a quasiconvex function q and

need a nested convex family, we can use the family κq, and if we are given a nested

convex family κ and need a quasiconvex function, we can use the function qκ or

qκ,K . Our quasiconvex programs’ formal definition will involve inputs that are

nested convex families only, but in our applications of quasiconvex programming

we will describe inputs that are quasiconvex functions, and which will be assumed

to be converted to nested convex families as described above.

1.3. Quasiconvex programs. If a finite set of functions qi are all quasiconvex

and have the same domain and range, then the function Q(x̄) = maxi∈S qi(x̄) is

also quasiconvex, and it becomes of interest to find a point where Q achieves its

minimum value. For instance, in Section 2.2 below we discuss in more detail the

smallest enclosing ball problem, which can be defined by a finite set of functions

qi, each of which measures the distance to an input site; the minimum of Q

marks the center of the smallest enclosing ball of the sites. Informally, we use

quasiconvex programming to describe this search for the point minimizing the

pointwise maximum of a finite set of quasiconvex functions.

More formally, Amenta et al. [1999] originally defined a quasiconvex program

to be formed by a set of nested convex families S = {κ1, κ2, . . . κn}; the task to

be solved is finding the value

Λ(S) = inf
{

(λ, x̄)

∣

∣

∣
x̄ ∈

⋂

κi∈S

κi(λ)
}

where the infimum is taken in the lexicographic ordering, first by λ and then

by the coordinates of x̄. However, we can simplify the infimum operation in

this definition by replacing it with a minimum; that is, it is always true that

the set defined on the right-hand side of the definition has a least point Λ(S).

To prove this, suppose that (λ, x̄) is the infimum, that is, there is a sequence

of pairs (λj , x̄j) in the right-hand side intersection that converges to (λ, x̄), and

(λ, x̄) is the smallest pair with this property. Clearly, each λj ≥ λ (else (λj , x̄j)

would be a better solution) and it follows from the fact that the sets κi are closed

and nested that we can take each x̄j = x̄. But then, it follows from the second

property of nested convex families that x̄ ∈ κi(λ) for all κi ∈ S.

In terms of the quasiconvex functions defining a quasiconvex program, we

would like to say that the value of the program consists of a pair (λ, x̄) such

that, for each input function qi, qi(x̄) ≤ λ, and that no other pair with the

same property has a smaller value of λ. However, maxi qi(x̄) may not equal λ

if at least one of the input quasiconvex functions is discontinuous. For instance,

292 DAVID EPPSTEIN

consider a one-dimensional quasiconvex program with two functions q0(x) = |x|,

q1(x) = 1 for x ≥ 0, and q1(x) = 0 for x < 0. This program has value (0, 0),

but max{q0(0), q1(0)} = 1. The most we can say in general is that there exists

a sequence of points x̄j converging to x with limj→∞ maxi qi(x̄j) = λ. This

technicality is, however, not generally a problem in our applications.

In subsequent sections we explore various examples of quasiconvex programs,

algorithms for quasiconvex programming, and applications of those algorithms.

(The expression quasiconvex programming has also been applied to the prob-

lem of minimizing a single quasiconvex function over a convex domain; see [Kiwiel

2001; Xu 2001], for example. The two formulations are easily converted to each

other using the ideas described in Section 2.6. For the applications described

in this survey, we prefer the formulation involving minimizing the pointwise

maximum of multiple quasiconvex functions, as it places greater emphasis on

combinatorial algorithms and less on numerical optimization.)

2. Examples

We begin our study of quasiconvex programming by going through some sim-

ple examples of geometric optimization problems, and showing how they may be

formulated as low-dimensional quasiconvex programs.

2.1. Sighting point. When we introduced the definition of quasiconvex func-

tions, we used as an example the complementary angle subtended by a line

segment from a point: q(v) = 180◦ − \uvw. If we have a collection of line seg-

ments forming a star-shaped polygon, and form a quasiconvex program from the

functions corresponding to each line segment, then the point v that minimizes

the maximum function value must lie in the kernel of the polygon. If we define

the angular resolution of the polygon from v to be the minimum angle formed

by any two consecutive vertices as seen from v, then this choice of v makes the

angular resolution be as large as possible.

This problem of maximizing the angular resolution was used by Matoušek et

al. [1996] as an example of an LP-type problem that does not form a convex pro-

gram. It can also be viewed as a special case of the mesh smoothing application

described below in Section 4.1.

McKay [1989] had asked about a similar problem in which one wishes to choose

a viewpoint maximizing the angular resolution of an unordered set of points that

is not connected into a star-shaped polygon. However, it does not seem possible

to form a quasiconvex program from this version of the problem: for star-shaped

polygons, we know on which side of each line segment the optimal point must lie,

so we can use quasiconvex functions with level sets that are intersections of disks

and half-planes, but for point sets, without knowing where the viewpoint lies

with respect to the line through any pair of points, we need to use the absolute

value |q(v)| of the angle formed at v by each pair of points. This modification

QUASICONVEX PROGRAMMING 293

Figure 2. Smallest enclosing ball of a set of points (left), and the level sets of

maxi qi(x) for the distance functions qi defining the quasiconvex program for

the smallest enclosing ball (right).

leads to nonquasiconvex functions with level sets that are unions or intersections

of two disks. It remains open whether an efficient algorithm for McKay’s sighting

point problem exists.

2.2. Smallest enclosing ball. Consider the problem of finding the minimum

radius Euclidean sphere that encloses all of a set of points S = {p̄i} ⊂ Rd

(Figure 2, left). As we show below, this smallest enclosing ball problem can

easily be formulated as a quasiconvex program. The smallest enclosing ball

problem has been well studied and linear time algorithms are known in any fixed

dimension [Dyer 1984; Fischer et al. 2003; Gärtner 1999; Megiddo 1983; Welzl

1991], so the quasiconvex programming formulation does not lead to improved

solutions for this problem, but it provides an illuminating example of how to find

such a formulation more generally, and in later sections we will use the smallest

enclosing ball example to illustrate our quasiconvex programming algorithms.

Define the function qi(x̄) = d(x̄, p̄i) where d is the Euclidean distance. Then

the level set q≤λ
i is simply a Euclidean ball of radius λ centered at p̄i, so qi is

quasiconvex (in fact, it is convex). The function qS(x̄) = maxi qi(x̄) (the level

sets of which are depicted in Figure 2, right) measures the maximum distance

from x̄ to any of the input points, so a Euclidean ball of radius qS(x̄) centered at

x̄ will enclose all the points and is the smallest ball centered at x̄ that encloses

all the points.

If we form a quasiconvex program from the functions qi, the solution to the

program consists of a pair (λ, x̄) where λ = qS(x̄) and λ is as small as possible.

That is, the ball with radius λ centered at x̄ is the smallest enclosing ball of the

input points.

Any smallest enclosing ball problem has a basis of at most d + 1 points that

determine its value. More generally, it will turn out that any quasiconvex pro-

gram’s value is similarly determined by a small number of the input functions;

294 DAVID EPPSTEIN

this phenomenon will prove central in our ability to apply generalized linear

programming algorithms to solve quasiconvex programs.

If we generalize each qi to be the Euclidean distance to a convex set Ki, the

resulting quasiconvex program finds the smallest sphere that touches or encloses

each Ki. In a slightly different generalization, if we let qi(x̄) = d(x̄, p̄i) + ri, a

sphere centered at x̄ with radius qi(x̄) or larger will contain the sphere centered

at p̄i with radius ri. So, solving the quasiconvex program with this family of

functions qi will find the smallest enclosing ball of a family of balls [Megiddo

1989; Gärtner and Fischer 2003].

2.3. Hyperbolic smallest enclosing ball. Although we have defined qua-

siconvex programming in terms of Euclidean space Rn, the definition involves

only concepts such as convexity that apply equally well to other geometries such

as hyperbolic space Hn. Hyperbolic geometry (e.g. see [Iversen 1992]) may be

defined in various ways; for instance by letting Hn consist of the unit vectors of

Rn+1 according to the inner product 〈x̄, ȳ〉 =
∑

i<n(xiyi) − xnyn, and defining

the distance d(x̄, ȳ) = cosh−1 〈x̄, ȳ〉. Angles, congruence, lines, hyperplanes, and

other familiar Euclidean concepts can also be defined in a straightforward way

for hyperbolic space. Hyperbolic geometry satisfies many of the same axioms

as Euclidean geometry, but not the famous parallel postulate: in the hyperbolic

plane H2, given a line ` and a point p /∈ `, there will be infinitely many lines

through p that do not meet `. A hyperbolic convex set K is defined as in Eu-

clidean space to be one in which, for any two points {p, q} ⊂ K, all points on

the line segment connecting p to q also belong to K. Similarly, a quasiconvex

function Hn 7→ R is one for which all lower level sets are convex, or equivalently

one that is unimodal on any line in Hn. As in the Euclidean case we may define

a hyperbolic quasiconvex program to be the problem of searching for the point

minimizing the pointwise maximum of a collection of hyperbolic quasiconvex

functions.

There are several standard ways of representing the points and other geometric

objects of Hyperbolic space within a Euclidean space, of which the two best

known are the Poincaré and Klein models (Figure 3). In the Poincaré model,

the points of Hn are represented as Euclidean points interior to an n-dimensional

unit ball or half-space, and lines of Hn are represented as arcs of circles that meet

the boundary of this unit ball or half-space perpendicularly. In this model, the

hyperbolic angle between two objects in Hn is equal to the Euclidean angle

between the models of those objects, and hyperbolic circles and spheres are

modeled by Euclidean circles and spheres; however, hyperbolic distances do not

equal distances within the Poincaré model, and objects that are straight or flat

hyperbolically may have curved models. In the Klein model, again, points of Hn

are represented as Euclidean points interior to an n-dimensional unit ball, but

the hyperbolic line connecting two points is represented as the restriction to the

ball of the Euclidean line connecting the models of those points. In this model,

QUASICONVEX PROGRAMMING 295

Figure 3. Poincaré (left) and Klein (right) models of the hyperbolic plane.

Both models show the same hyperbolic arrangement of lines; analogous models

exist for any higher dimensional hyperbolic space. Figure taken from [Bern and

Eppstein 2001].

angles and distances may be distorted but straightness is preserved: a straight or

flat hyperbolic object will have a straight or flat model. In particular, since the

definition of convexity involves only straight line segments, a convex hyperbolic

object will have a convex Klein model and vice versa. The Poincaré and Klein

models for a hyperbolic space are not uniquely defined, as one may choose any

hyperbolic point to be modeled by the center of the Euclidean unit ball, and

that ball may rotate arbitrarily around its center.

If we let k be a function mapping Hn to a Klein model in Rn, and if each

qi(x̄) is a hyperbolic quasiconvex function, then q̂i(x̄) = qi(k
−1(x̄)) is a Euclidean

quasiconvex function. More, q̂i has bounded lower levels sets since they are all

subsets of the unit ball. Let (λ, x̄) be the solution to the Euclidean quasiconvex

program defined by the set of functions q̂i. Then, if x̄ is interior to the unit ball

defining the Klein model, (λ, k−1(x̄)) is the solution to the hyperbolic quasicon-

vex program defined by the original functions qi. On the other hand, x̄ may

be on the boundary of the Klein model; if so, x̄ may be viewed as an infinite

point of the hyperbolic space, and is the limit of sequence of points within the

space with monotonically decreasing values. The latter possibility, of an infinite

solution to the quasiconvex program, can only occur if some of the hyperbolic

quasiconvex functions have unbounded lower level sets. Therefore, as noted in

[Bern and Eppstein 2001], hyperbolic quasiconvex programs may in general be

solved as easily as their Euclidean counterparts.

As an example, consider the problem of finding the hyperbolic ball of minimum

radius containing all of a collection of hyperbolic points p̄i. As in the Euclidean

case, we can define qi(x̄) to be the (hyperbolic) distance from x̄ to p̄i; this

function has convex hyperbolic balls as its level sets, so it is quasiconvex. And,

296 DAVID EPPSTEIN

just as in the Euclidean case, the solution to the quasiconvex program defined by

the functions qi is the pair (λ, x̄) where the hyperbolic ball of radius λ centered

at x̄ is the minimum enclosing ball of the points p̄i.

2.4. Optimal illumination. Suppose that we have a room (modeled as a

possibly nonconvex three-dimensional polyhedron) and wish to place a point

source of light in order to light up the whole room as brightly as possible: that

is, we wish to maximize the minimum illumination received on any point of

the room’s surface. The quasiconvex programs we are studying solve min-max

rather than max-min problems, but that is easily handled by negating the input

functions.

So, let qi(x̄) be the negation of the intensity of light received at point i of

the room’s surface, as a function of x̄, the position of the light source. It is

not hard to see that, within any face of the polyhedron, the light intensity is

least at some vertex of the face, since those are the points at maximal distance

from the light source and with minimal angle to it. Therefore, we need only

consider a finite number of possibilities for i: one for each pair (f, v) where f

is a face of the polyhedron and v is a vertex of f . For each such pair, we can

compute qi via a simple formula of optics, qi(x̄) = −ū · (x̄ − v)/d(x̄, v)3, where

d is as usual the Euclidean distance, and u is a unit vector facing inwards at a

perpendicular angle to f . In this formula, one factor ū · (x̄− v)/d(x̄, v) accounts

for the angle of incidence of light from the source onto the part of face v near

vertex f , while the other factor 1/d(x̄, v)2 accounts for the inverse-square rule

for falloff of light from a point source in three-dimensional space. Note that we

can neglect occlusions from other faces in this formula, because, if some face is

occluded, then at least one other face will be facing away from the light source

and entirely unilluminated; this unilluminated face will dominate the occluded

one in our min-max optimization.

In [Amenta et al. 1999], as part of a proof of quasiconvexity of a more com-

plex function used for smoothing three-dimensional meshes by solid angles, we

showed that the function qi defined above is quasiconvex; more precisely, we

showed that (−qi(x̄))−1/2 is a convex function of x̄ by using Mathematica to

calculate the principal determinants of its Hessian, and by showing from the

structure of the resulting formulae that these determinants are always nonnega-

tive. Therefore, we can express the problem of finding an optimal illumination

point as a quasiconvex program.

2.5. Longest intersecting prefix. This example is due to Chan [2004].

Suppose we are given an ordered sequence of convex sets Ki, 0 ≤ i < n, that

are all subsets of the same compact convex set X ⊂ Rd. We would like to find

the maximum value ` such that
⋂

i<` Ki 6= ?. That is, we would like to find the

longest prefix of the input sequence, such that the convex sets in this prefix have

a nonempty intersection (Figure 4).

QUASICONVEX PROGRAMMING 297

K0

K1

K2
K3

K4

K5

K6

Figure 4. Instance of a longest intersecting prefix problem. The longest inter-

secting prefix is (K0, K1, K2, K3).

To represent this as a quasiconvex program, define a nested convex family

κi : Z 7→ K(Rd) for each set Ki in the sequence, as follows:

κi(λ) =

{

Ki, if λ < −i

X, otherwise.

The optimal value (λ, x̄) for the quasiconvex program formed by this set of nested

convex families has x̄ ∈ κi(λ) = Ki for all i < −λ, so the prefix of sets with index

up to (but not including) −λ has a nonempty intersection containing x̄. Since

the quasiconvex program solution minimizes λ, −λ is the maximum value with

this property. That is, the first −λ values of the sequence Ki form its longest

intersecting prefix.

More generally, the same technique applies equally well when each of the

convex sets Ki has an associated value ki, and we must find the maximum value

` such that
⋂

ki<` Ki 6= ?. The longest intersecting prefix problem can be seen

as a special case of this problem in which the values ki form a permutation

of the integers from 0 to n − 1. We will see an instance of this generalized

longest intersecting prefix problem, in which the values ki are integers with

some repeated values, when we describe Chan’s solution to the Tukey median

problem.

2.6. Linear, convex, quasiconvex. There are many ways of modeling linear

programs, but one of the simplest is the following: a linear program is the search

for a vector x̄ that satisfies all of a set of closed linear inequalities āi · x̄ ≥ bi

and that, among all such feasible vectors, minimizes a linear objective function

f(x) = c̄ · x̄. The vectors x̄, āi, and c̄ all have the same dimension, which we call

the dimension of the linear program. We typically use the symbol n to denote the

number of inequalities in the linear program. It is often useful to generalize such

programs somewhat, by keeping the linear constraints but allowing the objective

function f(x) to be convex instead of linear; such a generalization is known as

298 DAVID EPPSTEIN

Figure 5. Conversion of convex program into quasiconvex program, by treating

each half-space constraint as a quasiconvex step function.

a convex program, and many linear programming algorithms can be adapted to

handle the convex case as well.

For instance, consider the following geometric problem, which arises in col-

lision detection algorithms for maintaining simulations of virtual environments:

we are given as input two k-dimensional convex bodies P and Q, specified as

intersections of half-spaces P =
⋂

Pi and Q =
⋂

Qi; we wish to find the clos-

est pair of points p̄, q̄ with p̄ ∈ P and q̄ ∈ Q. If we view p̄, q̄ as forming a

2k-dimensional vector x̄, then each constraint p̄ ∈ Pi or q̄ ∈ Qi is linear in x̄,

but the objective function d(p̄, q̄) is nonlinear: evaluating the distance using the

Pythagorean formula results in a formula that is the square root of a sum of

squares of differences of coordinates. We can square the formula to eliminate the

square root, but what remains is a convex quadratic function. Thus, the closest

distance problem can be expressed as a convex program; similar formulations

are also possible when P and Q are expressed as convex hulls of their vertex sets

[Matoušek et al. 1996].

These formulations seem somewhat different from our quasiconvex program-

ming framework: in the linear and convex programming formulations above, we

have a large set of constraints and a single objective function, while in quasicon-

vex programming we have many input functions that take a role more analogous

to objectives than constraints. Nevertheless, as we now show, any linear or con-

vex program can be modeled as a quasiconvex program. Intuitively, the idea is

simply to treat each half-space constraint as a quasiconvex step function, and in-

clude them together with the convex objective functions in the set of quasiconvex

functions defining a quasiconvex program (Figure 5).

Theorem 2.1. Suppose a convex program is specified by n linear inequalities

āi · x̄ ≥ bi and a convex objective function f(x̄), and suppose that the solution of

this convex program is known to lie within a compact convex region K. Then we

can find a set of n + 1 nested convex families κi(λ) such that the solution (λ, x̄)

of the quasiconvex program formed by these nested convex families is an optimal

solution to the convex program, with λ = f(x̄).

QUASICONVEX PROGRAMMING 299

Proof. For each inequality āi · x̄ ≥ bi form a nested convex family

κi(λ) = K ∩ {x̄ | āi · x̄ ≥ bi};

that is, κi ignores its argument λ and produces a constant compact convex set

of the points satisfying the ith inequality. Also form a nested convex family

κn = κf,K representing the objective function.

If (λ, x̄) is the optimal solution to the quasiconvex program defined by the

nested convex families κi, then āi ·x̄ ≥ bi (else x̄ would not be contained in κi(λ))

and λ = f(x̄) (else either x̄ would be outside κn(λ) or the pair (f(x̄), x̄) would be

a better solution). There could be no ȳ satisfying all constraints āi · ȳ ≥ bi with

f(ȳ) < λ, else (f(ȳ), ȳ) would be a better solution than (λ, x̄) for the quasiconvex

program. Therefore, x̄ provides the optimal solution to the convex program as

the result states. ˜

The region K is needed for this result as a technicality, because our quasiconvex

programming formulation requires the nested convex families to be compact.

In practice, though, it is not generally difficult to find K; for instance, in the

problem of finding closest distances between convex bodies, we could let K be a

bounding box defined by extreme points of the convex bodies in each axis-aligned

direction.

3. Algorithms

We now discuss techniques for solving quasiconvex programs, both numeri-

cally and combinatorially.

3.1. Generalized linear programming. Although linear programs can be

solved in polynomial time, regardless of dimension [Karmarkar 1984; Khachiyan

1980], known results in this direction involve time bounds that depend not just

on the number and dimension of the constraints, but also on the magnitude of the

coordinates used to specify the constraints. In typical computational geometry

applications the dimension is bounded but these magnitudes may not be, so

there has been a long line of work on linear programming algorithms that take a

linear amount of time in terms of the number of constraints, independent of the

magnitude of coordinates, but possibly with an exponential dependence on the

dimension of the problem [Adler and Shamir 1993; Chazelle and Matoušek 1993;

Clarkson 1986; 1987; 1995; Dyer and Frieze 1989; Matoušek et al. 1996; Megiddo

1983; Megiddo 1984; 1991]. In most cases, these algorithms can be interpreted as

dual simplex methods: as they progress, they maintain a basis of d constraints,

and the point x̄ optimizing the objective function subject to the constraints in

the basis. At each step, the basis is replaced by another one with a worse value

of x̄; when no more basis replacement steps are possible, the correct solution has

been found.

300 DAVID EPPSTEIN

Very quickly, workers in this area realized that similar techniques could also

be applied to certain nonlinear programs such as the minimum enclosing ball

problem [Adler and Shamir 1993; Amenta 1994; Chazelle and Matoušek 1993;

Clarkson 1995; Dyer 1984; 1992; Fischer et al. 2003; Gärtner 1995; 1999; Ma-

toušek et al. 1996; Megiddo 1983; Post 1984; Welzl 1991]. One of the most

popular and general formulations of this form of generalized linear program is

the class of LP-type problems defined by Matoušek et al. [1996]; we follow the

description of this formulation from [Amenta et al. 1999].

An LP-type problem consists of a finite set S of constraints and an objective

function f mapping subsets of S to some totally ordered space and satisfying

the following two properties:

(i) For any A ⊂ B, f(A) ≤ f(B).

(ii) For any A, p, and q,

f(A) = f(A ∪ {p}) = f(A ∪ {q}) =⇒ f(A) = f(A ∪ {p, q}).

The problem is to compute f(S) using only evaluations of f on small subsets

of S.

For instance, in linear programming, S is a set of half-spaces and f(S) is the

point in the intersection of the half-spaces at which some linear function takes

its minimum value. In the smallest enclosing ball problem, S consists of the

points themselves, and f(A) is the smallest enclosing ball of A, where the total

ordering on balls is given by their radii. It is not hard to see that this system

satisfies the properties above: removing points can only make the radius shrink

or stay the same, and if a ball contains the additional points p and q separately

it contains them both together.

A basis of an LP-type problem is a set B such that f(A) < f(B) for any

A (B. Thus, due to the first property of an LP-type problem, the value of

the overall problem is the same as the value of the optimal basis, the basis B

that maximizes f(B). The dimension of an LP-type problem is the maximum

cardinality of any basis; although we have not included it above, a requirement

that this dimension be bounded is often included in the definition of an LP-type

problem. The dimension of an LP-type problem may differ from the dimension

of some space Rd that may be associated in some way with the problem; for

instance, for smallest enclosing balls in Rd, the dimension of the LP-type problem

turns out to be d + 1 instead of d.

As described in [Matoušek et al. 1996], efficient and simple randomized algo-

rithms for bounded-dimension LP-type problems are known, with running time

O(dnT + t(d)E log n) where n is the number of constraints, T measures the time

to test whether f(B) = f(B ∪ {x}) for some basis B and element x ∈ S, t(d)

is exponential or subexponential, and E is the time to perform a basis-change

operation in which we must find the basis of a constant-sized subproblem and

use it to replace the current basis. It is also possible with certain additional as-

QUASICONVEX PROGRAMMING 301

sumptions to solve these problems deterministically in time linear in n [Chazelle

and Matoušek 1993].

As shown in [Amenta et al. 1999], quasiconvex programs can be expressed as

LP-type problems, in such a way that the dimension of the LP-type problem is

not much more than the dimension of the domain of the quasiconvex functions;

therefore, quasiconvex programs can be solved in a linear number of function

evaluations and a sublinear number of basis-change operations.

In order to specify the LP-type dimension of these problems, we need one

additional definition: suppose we have a nested convex family κi. If κi(λ) does

not depend on λ, we say that κi is constant ; such constant families arose, for

instance, in our treatment of convex programs. Otherwise, suppose κi is asso-

ciated with a quasiconvex function qi. If there is no open set S such that qi is

constant over S, and if κ(t′) is contained in the interior of κ(t) for any t′ < t,

we say that κ is continuously shrinking. We note that this property is differ-

ent from the related and more well-known property of strict quasiconvexity (a

quasiconvex function is strictly quasiconvex if, whenever it is constant on a line

segment, it remains constant along the whole line containing the segment): L1

distance from the origin (in Rd, d > 1) is continuously shrinking but not strictly

quasiconvex. On the other hand, the function

f(x, y) = min{r | x2 + (y − r)2 ≤ r2}

(on the closed upper half-plane y ≥ 0) is strictly quasiconvex but not continu-

ously shrinking, since the origin is on the boundary of all its level sets.

We repeat the analysis of [Amenta et al. 1999], showing that quasiconvex

programs are LP-type problems, below.

Theorem 3.1. Any quasiconvex program forms an LP-type problem of dimen-

sion at most 2d + 1. If each κi in the quasiconvex program is either constant or

continuously shrinking , the dimension is at most d + 1.

Proof. We form an LP-type problem in which the set S consists of the nested

convex families defining the quasiconvex program, and the objective function

Λ(T) gives the value of the quasiconvex program defined by the nested convex

families in T . Then, property 1 of LP-type problems is obvious: adding another

nested convex family to the input can only further constrain the solution val-

ues and increase the min-max solution. To prove property 2, recall that Λ(T)

is defined as the minimum point of the intersection {(λ, x̄) | x̄ ∈ κi(λ)} (the

intersection is nonempty by the remark in Section 1.3 about replacing infima

by minima). If this point belongs to the intersection for sets A, A ∪ {κi}, and

A ∪ {κk}, then clearly it belongs to the intersection for A ∪ {κi, κj}. It remains

only to show the stated bounds on the dimension.

First we prove the dimension bound for the general case, where we do not

assume continuous shrinking of the families in S. Let (λ, x̄) = Λ(S). For any

302 DAVID EPPSTEIN

λ′ < λ,
⋂

i∈S

κi(λ
′) = ?,

so by Helly’s theorem some (d+1)-tuple of sets κi(λ
′) has empty intersection. If

there is some λ′′ < λ for which this (d+1)-tuple’s intersection becomes nonempty,

replace λ′ by λ′′, find another (d + 1)-tuple with empty intersection for the new

λ′, and repeat until this replacement process terminates. There are only finitely

many possible (d + 1)-tuples of nested convex families, and each replacement

increases λ′, so the replacement process must terminate and we eventually find

a (d + 1)-tuple B− of nested convex families that has empty intersection for all

λ′ < λ.

With this choice of B−, Λ(B−) = (λ, ȳ) for some ȳ, so the presence of B−

forces the LP-type problem’s solution to have the correct value of λ. We must

now add further nested convex families to our basis to force the solution to also

have the correct value of x̄. Recall that

x̄ ∈ L =
⋂

i∈S

κi(λ),

and x̄ is the minimal point in L. By Helly’s theorem again, the location of

this minimal point is determined by some d-tuple B+ of the sets κi(λ). Then

Λ(B−∪B+) = Λ(S), so some basis of S is a subset of B−∪B+ and has cardinality

at most 2d + 1.

Finally, we must prove the improved dimension bound for well-behaved nested

convex families, so suppose each κi ∈ S is constant or continuously shrinking.

Our strategy will be to again find a tuple B− that determines λ, and a tuple

B+ that determines x̄, but we will use continuity to make the sizes of these two

tuples add to at most d + 1.

The set L defined above has empty interior: otherwise, we could find an open

region X within L, and a nested family κi ∈ S such that κi(λ
′)∩X = ? for any

λ′ < λ, violating the assumption that κi is constant or continuously shrinking. If

the interior of some κi(λ) contains a point of the affine hull of L, we say that κi is

slack ; otherwise we say that κi is tight. The boundary of a slack κi(λ) intersects

L in a subset of measure zero (relative to the affine hull of L), so we can find

a point ȳ in the relative interior of L and not on the boundary of any slack κi.

Form the projection π : Rd 7→ Rd−dim L onto the orthogonal complement of L.

For any ray r in Rd−dim L starting at the point π(L), we can lift that ray to a

ray r̂ in Rd starting at ȳ, and find a hyperplane containing L and separating the

interior of some κi(λ) from r̂ \ {ȳ}. This separated κi must be tight (because

it has ȳ on its boundary as the origin of the ray) so the separating hyperplane

must contain the affine hull of L (otherwise some point in L within a small

neighborhood of x̄ would be interior to κi). Therefore the hyperplane is projected

by π to a lower dimensional hyperplane separating π(κi(λ)) from π(L). Since

one can find such a separation for any ray,
⋂

tight κi
π(κi(λ)) can not contain any

QUASICONVEX PROGRAMMING 303

points of any such ray and must consist of the single point π(L). At least one

tight κj must be continuously shrinking (rather than constant), since otherwise
⋂

κi∈S κi(λ
′) would be nonempty for some λ′ < λ. The intersection of the interior

of π(κj(λ)) with the remaining projected tight constraints π(κi(λ)) is empty, so

by Helly’s theorem, we can find a (d− dimL + 1)-tuple B− of these convex sets

having empty intersection, and the presence of B− forces the LP-type problem’s

solution to have the correct value of λ. Similarly, we can reduce the size of the

set B+ determining x̄ from d to dimL, so the total size of a basis is at most

(d − dim L + 1) + dimL = d + 1. ˜

This result provides theoretically efficient combinatorial algorithms for quasicon-

vex programs, and allows us to claim O(n) time randomized algorithms for most

quasiconvex programming problems in the standard computational model for

computational geometry, in which primitives of constant description complexity

may be assumed to be solved in constant time. For certain well-behaved sets of

quasiconvex functions (essentially, the family of sets Sx̄,λ = {κ ∈ S | x̄ ∈ κ(λ)}

should have bounded Vapnik–Chervonenkis dimension) the technique of Chazelle

and Matousek [1993] applies and these problems can be solved deterministically

in O(n) time.

However, there are some difficulties with this approach in practice. In particu-

lar, although the basis-change operations have constant description complexity,

it may not always be clear how to implement them efficiently. Therefore, in

Section 3.3 we discuss alternative numerical techniques for solving quasiconvex

programs directly, based only on simpler operations (function and gradient eval-

uation). It may be of interest to combine the two approaches, by using numerical

techniques to solve the basis change operations needed for the LP-type approach;

however, we do not have any theory describing how the LP-type algorithms might

be affected by approximate numerical results in the basis-change steps.

3.2. Implicit quasiconvex programming. In some circumstances we may

have a set of n inputs that leads to a quasiconvex program with many more

than n quasiconvex functions; for instance, there may be one such function per

pair of inputs. If we directly apply an LP-type algorithm, we will end up with a

running time much larger than the O(n) input size. Chan [2004] showed that, in

such circumstances, the time for solving the quasiconvex program can often be

sped up to match the time for a decision algorithm that merely tests whether a

given pair (λ, x̄) provides a feasible solution to the program.

As a simple example, consider a variation of the smallest enclosing ball prob-

lem. Suppose that we wish to place a center that minimizes the maximum sum

of distances to any k-tuple of sites, rather than (as in the smallest enclosing

ball problem) minimizing the maximum distance to a single site. This can be

expressed again as a quasiconvex program: the sum of distances to any k-tuple

of sites is quasiconvex, as it is a sum of convex functions. There are O(nk) such

functions, so the problem can be solved in O(nk) time by the methods discussed

304 DAVID EPPSTEIN

already. However, the quality of any fixed center can easily be evaluated much

more quickly, in O(n) time, and Chan’s technique provides an automatic method

for turning this fast evaluation algorithm into a fast optimization algorithm for

choosing the best center location.

Chan’s result applies more generally to LP-type problems, but we state it here

as it applies to implicit quasiconvex programming.

Theorem 3.2. Let Q be a space of quasiconvex functions, P be a space of input

values, and f : 2P 7→ 2Q map sets of input values to sets of functions in Q.

Further , suppose that P, f , and S satisfy the following properties:

• There exists a constant-time subroutine for solving quasiconvex programs of

the form f(B) for any B ⊂ P with |B| = O(1).

• There exists a decision algorithm that takes as input a set P ⊂ P and a pair

(λ, x̄), and returns yes if and only if x̄ ∈ κ(λ) for all κ ∈ f(P). The running

time of the decision algorithm is bounded by D(|P |), where there exists a

constant ε > 0 such that D(n)/nε is monotone increasing .

• There are constants α and r such that , for any input set P ⊂ P, we can find

in time at most D(|P |) a collection of sets Pi, 0 ≤ i < r, each of size at most

α|P |, for which f(P) =
⋃

i f(Pi).

Then for any P ⊂ P we can solve the quasiconvex program f(P), where |P | = n,

in randomized expected time O(D(n)).

The proof involves solving a slightly more general problem in which we are given,

not just a single input P , but a set of inputs P1, . . ., Pd, where d is the dimension

of the LP-type problems coming from Q, and must solve the quasiconvex program

∪f(Pi). Given any such problem, we partition each input Pi into ri subproblems

Pi,j of size at most αin for an appropriately chosen i, by repeatedly subdividing

large subproblems into smaller ones. We then view the subproblems Pi,j as

being constraints for an LP-type problem in which the objective function is the

solution to the quasiconvex program
⋃

Pi,j∈S f(Pi,j). This new LP-type problem

turns out to have the same dimension as the quasiconvex programs with which

we started, and the result follows by applying a standard LP-type algorithm to

this problem and solving the divide-and-conquer recurrence that results.

The first and last conditions of the theorem are easily met when f(P) produces

one or a constant number of quasiconvex functions per k-tuple of inputs for

some constant k (as in our example of optimizing the sum of k distances): then,

constant sized input sets lead to constant sized quasiconvex programs, and if

the input is partitioned into k + 1 equal-sized subsets, the complements of these

subsets provide the sets Pi needed for the last condition. For such problems,

the main difficulty in applying this theorem is finding an appropriate decision

algorithm. For our example of minimizing the maximum sum of k distances, the

decision algorithm is also straightforward (select and add the k largest distances

QUASICONVEX PROGRAMMING 305

w

Figure 6. Example showing the difficulty of applying standard gradient descent

methods to quasiconvex programming. The function to be minimized is the max-

imum distance to any point; only points within the narrow shaded intersection

of circles have function values smaller than the value at point w. Figure taken

from [Eppstein 2004].

from the given center to the sites) and so we can apply Chan’s result to solve

this problem in O(n) time.

Chan’s implicit quasiconvex programming algorithm is important in the ro-

bust statistics application described later. This algorithm has also been applied

to problems of inverse parametric minimum spanning tree computation [Chan

2004; Eppstein 2003a] and facility location [Eppstein and Wortman 2005].

3.3. Smooth quasiconvex programming. If all functions qi(x̄) are quasi-

convex, the function q(x̄) = maxi qi(x̄) is itself quasiconvex, so we can apply

hill-climbing procedures to find its infimum. Such hill climbing procedures may

be desirable in preference to the combinatorial algorithms for LP-type problems,

as they avoid the difficulty of describing and implementing an appropriate ex-

act basis change procedure. In addition, a hill climbing information that uses

only numerical evaluation of function values (or possibly also function gradient

evaluations) can be implemented in a generic way that does not depend on the

specific form of the quasiconvex functions given to it as input.

However, many of the known nonlinear optimization techniques require the

function being optimized to satisfy some smoothness conditions. In many of our

applications the individual functions qi are smooth, but their maximum q may

not be smooth, so it is difficult to apply standard gradient descent techniques.

The difficulty may be seen, for instance, in the smallest enclosing ball problem

in the plane (Figure 6). A basis for this problem may consist of either two or

three points. If a point set has only two points in its basis, and our hill climbing

procedure for circumradius has reached a point w equidistant from these two

points and near but not on their midpoint, then improvements to the function

value q(w) may be found only by moving w in a narrow range of directions

towards the midpoint. Standard gradient descent algorithms may have a difficult

time finding such an improvement direction.

306 DAVID EPPSTEIN

To avoid these difficulties, we introduced in [Eppstein 2004] the following

algorithm, which we call smooth quasiconvex programming, and which can be

viewed as a generalization of Zoutendijk’s [1960] method of feasible directions

for convex programming. If a quasiconvex function qi is differentiable, and w is a

point where qi is not minimal, then one can find a point with a smaller value by

moving a sufficiently small distance from x along any direction having negative

dot product with the gradient of qi at w. Thus, we can improve q(w) by moving

in a direction that is negative with respect to all the gradients of the functions

that determine the value of q(w).

We formalize this notion and generalize it to nondifferentiable functions as

follows. Assume for the purposes of this algorithm that, for each of the input

quasiconvex functions qi, and each x̄ that is not the minimum point of qi, we also

can compute a vector-valued function q∗i (x̄), satisfying the following properties:

(i) If qi(ȳ) < qi(x̄), then (ȳ − x̄) · q∗i (x̄) > 0, and

(ii) If q∗i (x̄) · ȳ > 0, then for all sufficiently small ε > 0, qi(x̄ + εȳ) < qi(x̄).

Less formally, any vector ȳ is an improving direction for qi(x̄) if and only if it

has positive inner product with q∗i (x̄).

If the level set q≤λ
i is a smooth convex set (one that has at each of its boundary

points a unique tangent plane), then the vector q∗i (x̄) should be an inward-

pointing normal vector to the tangent plane to q
≤q(x̄)
i at x̄. For example, in the

smallest enclosing ball problem, the level sets are spheres, having tangent planes

perpendicular to the radii, and q∗i should point inwards along the radii of these

spheres. If qi is differentiable then q∗i can be computed as the negation of the

gradient of qi, but the functions q∗i also exist for discontinuous functions with

smooth level sets.

Our smooth quasiconvex programming algorithm begins by selecting an initial

value for x̄, and a desired output tolerance. Once these values are selected, we

repeat the following steps:

(i) Compute the set of vectors q∗i (x̄), for each i such that qi(x̄) is within the

desired tolerance of maxi qi(x̄).

(ii) Find an improving direction ȳ; that is, a vector such that ȳ · q∗i (x̄) > 0 for

each vector q∗i (x̄) in the computed set. If no such vector exists, q(x̄) is within

the tolerance of its optimal value and the algorithm terminates.

(iii) Search for a value ε for which q(x̄ + εȳ) ≤ q(w̄), and replace x̄ by x̄ + εȳ.

The search for a vector ȳ in step 2 can be expressed as a linear program. However,

when the dimension of the quasiconvex functions’ domain is at most two (as in

the planar smallest enclosing ball problem) it can be solved more simply by

sorting the vectors q∗i (x̄) radially around the origin and choosing ȳ to be the

average of two extreme vectors.

In step 3, it is important to choose ε carefully. It would be natural, for

instance, to choose ε as large as possible while satisfying the inequality in that

QUASICONVEX PROGRAMMING 307

step; such a value could be found by a simple doubling search. However, such a

choice could lead to situations where the position of x̄ oscillates back and forth

across the true optimal location. Instead, it may be appropriate to reduce the

resulting ε by a factor of two before replacing x̄.

We do not have any theory regarding the convergence rate of the smooth

quasiconvex programming algorithm, but we implemented it and applied it suc-

cessfully in the automated algorithm analysis application discussed below [Epp-

stein 2004]. Our implementation appeared to exhibit linear convergence: each

iteration increased the number of bits of precision of the solution by a constant.

Among numerical algorithms techniques, the sort of gradient descent we perform

here is considered naive and inefficient compared to other techniques such as con-

jugate gradients or Newton iteration, and it would be of interest to see how well

these more sophisticated methods could be applied to quasiconvex programming.

4. Applications

We have already described some simple instances of geometric optimization

problems that can be formulated as quasiconvex programs. Here we describe

some more complex applications of geometric optimization, in which quasiconvex

programming plays a key role.

4.1. Mesh smoothing. An important step in many scientific computa-

tion problems, in which differential equations describing airflow, heat transport,

stress, global illumination, or similar quantities are simulated, is mesh generation

[Bern and Eppstein 1995; Bern and Plassmann 2000]. In this step, a complex

two- or three-dimensional domain is partitioned into simpler regions, called ele-

ments, such as triangles or quadrilaterals in the plane or tetrahedra or cuboids

in three dimensions. Once these elements are formed, one can then set up simple

equations relating the values of the quantity of interest in each of the elements,

and solve the equations to produce the results of the simulation. In this section

we are particularly concerned with unstructured mesh generation, in which the

pattern of connections from element to element does not form a regular grid; we

will consider a problem in structured mesh generation in a later section.

In meshing problems, it is important to find a mesh that has small elements

in regions of fine detail, but larger elements elsewhere, so that the total number

of elements is minimized; this allows the system of equations derived from the

mesh to be solved quickly. It is also important for the accuracy of the simulation

that the mesh elements be well shaped ; typically this means that no element

should have very sharp angles or angles very close to 180◦. To achieve a high

quality mesh, it is important not only to find a good initial placement of mesh

vertices (the main focus of most meshing papers) but then to modify the mesh

by changing its topology and moving vertices until no further quality increase

can be achieved. We here concentrate on the problem of moving mesh vertices

308 DAVID EPPSTEIN

Figure 7. Mesh of an arched domain. Too much Laplacian smoothing can lead

to invalid placements of the internal vertices beyond the boundaries of the arch.

Figure 8. Optimization-based smoothing of a triangular mesh in R
2. At each

step we remove a vertex from the mesh, leaving a star-shaped polygon, then add a

new vertex within the kernel (shaded) of the star-shaped region and retriangulate.

Figure taken from [Amenta et al. 1999].

while retaining a fixed mesh topology, known as mesh smoothing [Amenta et al.

1999; Bank and Smith 1997; Canann et al. 1998; Djidjev 2000; Freitag 1997;

Freitag et al. 1995; 1999; Freitag and Ollivier-Gooch 1997; Vollmer et al. 1999].

Two approaches to mesh smoothing have commonly been used, although they

may sometimes be combined [Canann et al. 1998; Freitag 1997]: In Laplacian

smoothing, all vertices are moved towards the centroid of their neighbors. Al-

though this is easy and works well for many instances, it has some problems; for

instance in a regular mesh on an arched domain (Figure 7), repeated Laplacian

smoothing can cause the vertices at the top of the arch to sag downwards, even-

tually moving them to invalid positions beyond the boundaries of the domain.

Instead, optimization-based smoothing takes a more principled approach, in

which we decide on a measure of element quality that best fits our application,

and then seek the vertex placement that optimizes that quality measure. How-

ever, since simultaneous global optimization of all vertex positions seems a very

difficult problem, we instead cycle through the vertices optimizing their posi-

tions a single vertex at a time. At each step (Figure 8), we select a vertex and

remove it from the mesh, leaving a star-shaped region consisting of the elements

incident to that vertex. Then, we place a new vertex within the kernel of the

QUASICONVEX PROGRAMMING 309

min max area

min max altitude

min max anglemax min area

max min altitude

min max aspect ratio

max min angle

max min altitude

min max aspect ratiomax min angle

min max perimeter min max enclosing diskmax min edge length

min max diameter

Figure 9. Level set shapes for various mesh element quality measures. Figure

modified from one in [Amenta et al. 1999].

star-shaped region, and form a mesh again by connecting the new vertex to the

boundary of the region. Each step improves the overall mesh quality, so this

optimization process eventually converges to a locally optimal placement, but

we have no guarantees about its quality with respect to the globally optimal

placement.

However, in the individual vertex placement steps we need accept no such

compromises with respect to global optimization. As we showed in [Amenta

et al. 1999], for many natural measures qi(x̄) of the quality of an element inci-

dent to vertex x̄ (with smaller numbers indicating better quality), the problem

of finding a mesh minimizing the maximum value of qi can be expressed as a

quasiconvex program. Figure 9 illustrates the level set shapes resulting from

various of these quasiconvex optimization-based mesh smoothing problems. For

shape-based quality measures, such as maximizing the minimum angle, the opti-

mal vertex placement will naturally land in the interior of the kernel of the region

formed by the removal of the previous vertex placement. For some other quality

measures, such as minimizing the maximum perimeter, it may be appropriate to

also include constant quasiconvex functions, forcing the vertex to stay within the

kernel, similar to the functions used in our transformation of convex programs

to quasiconvex programs. It would also be possible to handle multiple quality

310 DAVID EPPSTEIN

measures simultaneously by including quasiconvex functions of more than one

type in the optimization problem.

In most of the cases illustrated in Figure 9, it is straightforward to verify that

the quality measure has level sets of the convex shape illustrated. One possible

exception is the problem of minimizing the maximum aspect ratio (ratio of the

longest side length to shortest altitude) of any element. To see that this forms a

quasiconvex optimization problem, Amenta et al. [1999] consider separately the

ratios of the three sides to their corresponding altitudes; the maximum of these

three will give the overall aspect ratio. The ratio of a side external to the star

to its corresponding altitude has a feasible region (after taking into account the

kernel constraints) forming a half-space parallel to the external side, as shown in

Figure 9 (top center). To determine the aspect ratio on one of the other two sides

of a triangle ∆i, normalize the triangle coordinates so that the replaced point has

coordinates (x, y) and the other two have coordinates (0, 0) and (1, 0). The side

length is then
√

x2 + y2, and the altitude is y/
√

x2 + y2, so the overall aspect

ratio has the simple formula (x2 + y2)/y. The locus of points for which this is a

constant b is given by x2 + y2 = by, or equivalently x2 + (y − (b/2))2 = (b/2)2.

Thus the feasible region is a circle tangent to the fixed side of ∆i at one of its two

endpoints (Figure 9, center right). Another nontrivial case is that of minimizing

the smallest enclosing ball of the element, shown in the bottom right of the figure;

in that case the level set boundary consists of curves of two types, according to

whether, for placements in that part of the level set, the enclosing ball touches

two or three of the element vertices, but the curves meet at a common tangent

point to form a smooth convex level set.

Bank and Smith [1997] define yet another measure of the quality of a triangle,

computed by dividing the triangle’s area by the sum of the squares of its edge

lengths. This gives a dimensionless quantity which Bank and Smith normalize

to be one for the equilateral triangle (and less than one for any other triangle).

As Bank and Smith show, the lower level sets for this mesh quality measure form

circles centered on the perpendicular bisector of the two fixed points of the mesh

element, so, as with the other measures, finding the placement optimizing Bank

and Smith’s measure can be expressed as a quasiconvex program.

We have primarily discussed triangular mesh smoothing here, but the same

techniques apply with little modification to many natural element quality mea-

sures for quadrilateral and tetrahedral mesh smoothing. Smoothing of cubical

meshes is more problematic, though, as moving a single vertex may cause the

faces of one of the cuboid elements to become significantly warped. Several in-

dividual quasiconvex quality measures for quadrilateral and tetrahedral meshes,

and the shapes of their level sets, are discussed in more detail in [Amenta et al.

1999]. The most interesting of these from the mathematical viewpoint is the

problem of maximizing the minimum solid angle of any tetrahedral element, as

QUASICONVEX PROGRAMMING 311

Figure 10. Planar graph (left), its representation as a set of tangent disks on

a sphere (center), and the corresponding polyhedral representation (right). Left

and center images taken from [Bern and Eppstein 2001].

measured at its vertices, which with some difficulty we were able to show leads

to a quasiconvex objective function.

4.2. Graph drawing. The Koebe–Thurston–Andreev embedding theorem

[Brightwell and Scheinerman 1993; Koebe 1936; Sachs 1994] states that any pla-

nar graph embedding can be transformed into a collection of disks with disjoint

interiors on the surface of a sphere, one disk per vertex, such that two disks are

tangent if and only if the corresponding two vertices are adjacent (Figure 10,

left and center). The representation of the graph as such a collection of tan-

gent disks is sometimes called a coin graph. For maximal planar graphs, this

coin graph representation is unique up to Möbius transformations (the family of

transformations of the sphere that transform circles to circles), and for nonmaxi-

mal graphs it can be made unique by adding a new vertex within each face of the

embedding, adjacent to all vertices of the face, and finding a disk representation

of the resulting augmented maximal planar graph.

Given a coin graph representation, the graph itself can be drawn on the sphere,

say by placing a vertex at the center of each circle and connecting two vertices

by edges along an arc of a great circle; similar drawings are also possible in the

plane by using polar projection to map the circles in the sphere onto circles in the

plane [Hliněný 1997]. Coin graphs can also be used to form a three-dimensional

polyhedral representation of the graph, as follows: embed the sphere in space,

and, for each disk, form a cone in space that is tangent to the sphere at the

disk’s boundary; then, form a polyhedron by taking the convex hull of the cone

apexes. The resulting polyhedron’s skeleton is isomorphic to the original graph,

and its edges are tangent to the sphere (Figure 10, right).

In order to use these techniques for visualizing graphs, we would like to choose

a coin graph representation that leads to several desirable properties identified as

standard within the graph drawing literature [di Battista et al. 1999], including

the display of as many as possible of the symmetries of the original graph, and

the separation of vertices as far apart from each other as possible. In [Bern and

312 DAVID EPPSTEIN

Eppstein 2001] we used quasiconvex programming to formalize the search for a

drawing based on these objectives.

In order to understand this formalization, we need some more background

knowledge about Möbius transformations and their relation to hyperbolic geom-

etry. We can identify the unit sphere that the Möbius transformations transform

as being the boundary of a Poincaré or Klein model of hyperbolic space H3. The

points on the sphere can be viewed as “infinite” points that do not belong to

H3 but are the limit points of certain sequences of points within H3. With this

identification, circles on the sphere become the limit points of hyperplanes in

H3. Any isometry of H3 takes hyperplanes to hyperplanes, and therefore can be

extended to a transformation of the sphere that takes circles to circles, and the

converse turns out to be true as well. We can determine an isometry of H3 by

specifying which point of H3 is mapped to the center of the Poincaré or Klein

model, and then by specifying a spatial rotation around that center point. The

rotation component of this isometry does not change the shape of objects on

the sphere, so whenever we seek the Möbius transformation that optimizes some

quality measure of a transformed configuration of disks on the sphere, we can

view the problem more simply as one of seeking the optimal center point of the

corresponding isometry in H3.

To see how we apply this technique to our graph drawing problem, first con-

sider a version of the problem in which we seek a disk representation maximizing

the radius of the smallest disk. More generally, given any collection of circles on

the sphere, we wish to transform the circles in order to maximize the minimum

radius. Thus, let qi(x̄) measure the (negation of the) transformed radius of the

ith circle, as a function of the transformed center point x̄ ∈ H3. If we let Hi

denote the hyperplane in H3 that has the ith circle as its set of limit points, then

the transformed radius is maximized when the circle is transformed into a great

circle; that is, when x̄ ∈ Hi. If we choose a center point x̄ away from Hi, the

transformed radius will be smaller, and due to the uniform nature of hyperbolic

space the radius can be written as a function only of the distance from x̄ to Hi,

not depending in any other way on the location of x̄. That is, the level sets

of qi are the convex hyperbolic sets within some distance R of the hyperplane

Hi. Therefore, qi is a quasiconvex hyperbolic function. In fact, the quasiconvex

program defined by the functions qi can be viewed as a hyperbolic version of a

generalized minimum enclosing ball problem, in which we seek the center x̄ of

the smallest ball that touches each of the convex sets Hi. The two-dimensional

version of this problem, in which we seek the smallest disk touching each of a

collection of hyperbolic lines, is illustrated in Figure 11. If we form a Klein or

Poincaré model with the resulting optimal point x̄ at the center of the model,

the corresponding Möbius transformation of the model’s boundary maximizes

the minimum radius of our collection of circles.

Further, due to the uniqueness of quasiconvex program optima, the resulting

disk representation must display all the symmetries possible for the original pla-

QUASICONVEX PROGRAMMING 313

Figure 11. Two-dimensional analogue of max-min radius transform problem:

find the smallest disk touching all of a collection of hyperbolic lines.

nar graph embedding; for, if not all symmetries were displayed, one could use an

undisplayed symmetry to relabel the vertices of the disk representation, achiev-

ing a second disk representation with equal quality to the first. For instance, in

Figure 10, the disk representation shown has three planes of mirror symmetry

while the initial drawing has only one mirror symmetry axis.

Bern and Eppstein [2001] then consider an alternative version of the graph

drawing problem, in which the objective is to maximize the minimum distance

between certain pairs of vertices on the sphere surface. For instance, one could

consider only pairs of vertices that are adjacent in the graph, or instead consider

all pairs; in the latter case we can reduce the number of pairs that need be

examined by the algorithm by using the Delaunay triangulation in place of the

complete graph. The problem of maximizing the minimum spherical distance

among a set of pairs of vertices can be formulated as a quasiconvex program

by viewing each pair of vertices as the two limit points of a hyperbolic line in

H3, finding the center x̄ of the smallest ball in H3 that touches each of these

hyperbolic lines, and using this choice of center point to transform the sphere.

Möbius transformations can also be performed on the augmented plane R2 ∪

{∞} instead of on a sphere, and act on lines and circles within that plane; a

line can be viewed as a limiting case of a circle that passes through the special

point ∞. Multiplication of each coordinate of each point by the same constant

k forms a special type of Möbius transformation, which (if k > 1) increases

every distance, so it does not make sense to look for an unrestricted Möbius

transformation of the plane that maximizes the minimum Euclidean distance

among a collection of pairs of points. However, Bern and Eppstein were able

to show, given a collection of points within the unit ball in the plane, that

seeking the Möbius transformation that takes that disk to itself and maximizes

the minimum distances between certain pairs of the points can again be expressed

314 DAVID EPPSTEIN

Figure 12. Conformal meshing: transform domain to a more simply shaped

region with a known mesh, then invert the transformation to transform the mesh

back to the original domain.

as a two-dimensional quasiconvex program. The proof of quasiconvexity is more

complex and involves simultaneously treating the unit ball as a Poincaré model

of H2 and the entire plane as the boundary of a Poincaré model of H3.

Along with these coin graph based drawing methods, Bern and Eppstein also

considered a different graph drawing question, more directly involving hyperbolic

geometry. The Poincaré and Klein models of projective geometry have been

considered by several authors as a way of achieving a “fish-eye” view of a large

graph, so that a local neighborhood in the graph is visible in detail near the center

of the view while the whole graph is spread out on a much smaller scale at the

periphery [Lamping et al. 1995; Munzner 1997; Munzner and Burchard 1995].

Bern and Eppstein [Bern and Eppstein 2001] found quasiconvex programming

formulations of several versions of the problem of selecting an initial viewpoint for

these hyperbolic drawings, in order for the whole graph to be visible in as large

a scale as possible. For instance, a natural version of this problem would be to

choose a viewpoint minimizing the maximum hyperbolic distance to any vertex,

which is just the hyperbolic smallest enclosing ball problem again. One question

in this area that they left open is whether one can use quasiconvex programming

to find a Klein model of a given graph that maximizes the minimum Euclidean

distance between adjacent vertices.

4.3. Conformal mesh generation. The ideas of mesh generation and optimal

Möbius transformation coincide in the problem of conformal mesh generation

[Bern and Eppstein 2001]. In this problem, we wish to generate a mesh for a

simply-connected domain in R2 by using a conformal transformation (that is, a

transformation that preserves angles of incidence between transformed curves)

to map the shape into some easy-to-mesh domain such as a square, then invert

the transformation to map the meshed square back into the original domain

(Figure 12). There has been much work on algorithms for finding conformal maps

[Driscoll and Vavasis 1998; Howell 1990; Smith 1991; Stenger and Schmidtlein

1997; Trefethen 1980] and conformal meshes have significant advantages: the

orthogonality of the angles at mesh vertices means that one can avoid certain

additional terms in the definition of the partial differential equation to be solved

[Bern and Plassmann 2000; Thompson et al. 1985].

QUASICONVEX PROGRAMMING 315

If we replace the square in Figure 12 by a disk, the Riemann mapping the-

orem tells us that a conformal transformation always exists and is, moreover,

unique up to Möbius transformations that transform the disk to itself; any such

transformation preserves conformality. Thus, we have several degrees of freedom

for controlling the size of the mesh elements produced by the conformal method:

we can use a larger or smaller grid on the disk or square, but we can also use

a Möbius transformation in order to enlarge certain portions of the domain and

shrink others before meshing it. We would like to use these degrees of freedom

to construct a mesh that has small elements in regions of the domain where fine

detail is desired, and large elements elsewhere, in order to limit the total number

of elements of the resulting mesh.

Bern and Eppstein [2001] formalized the problem by assuming an input do-

main in which certain interior points pi are marked with a desired element size

si. If we find a conformal map f from the domain to a disk, the gradient of

f maps the marked element sizes to desired sizes s′i in the transformed disk:

s′i = ‖f ′(pi)‖. We can then choose a structured mesh with element size min s′i in

the disk, and transform it back to a mesh of the original domain. The goal is to

choose our conformal map in a way that maximizes min s′i, so that we can use a

structured mesh with as few elements as possible. Another way of interpreting

this is that s′i can be seen as the radius of a small disk at f(pi). What we seek is

the transformation that maximizes the minimum of these radii. This is not quite

the same as the max-min radius graph drawing problem of the previous section,

because the circles to be optimized belong to R2 instead of to a sphere, but as in

the previous section we can view the unit disk as being a Poincaré model of H2

(using the fact that circles in H2 are mapped by the Poincaré model into circles

in the unit disk), and seek a hyperbolic isometry that maps H2 into itself and

optimizes the circle radii. The transformed radius of a circle is a function only

of the distance from that circle to the center point of the transformed model, so

the level sets of the functions representing the transformed radii are themselves

circles and the functions are quasiconvex.

The quasiconvex conformal meshing technique of Bern and Eppstein does not

account for two remaining degrees of freedom: first, it is possible to rotate the

unit disk around its center point and, while that will not change the element size

as measured by Bern and Eppstein’s formalization, it will change the element

orientations. This is more important if we also consider the second degree of

freedom, which is that instead of using a uniform grid on a square, we could

use a rectangle with arbitrary aspect ratio. Bern and Eppstein leave as an open

question whether we can efficiently compute the optimal choice of conformal map

to a high-aspect-ratio rectangle to maximize the minimum desired element size.

316 DAVID EPPSTEIN

4.4. Brain flat mapping. In [Hurdal et al. 1999] methods are described for

visualizing the complicated structure of the brain by stretching its surface onto

a flat plane. This stretching is done via conformal maps: surfaces of major

brain components such as the cerebellum are simply connected, so there exists

a conformal map from these surfaces onto a Euclidean unit disk, sphere, or

hyperbolic plane. The authors approximate this conformal map by using a fine

triangular mesh to represent the brain surface, and forming the Koebe disk

representation of this mesh. Each triangle from the brain surface can then be

mapped to the triangle connecting the corresponding three disk centers. As in

the conformal meshing example, there is freedom to modify the conformal map

by means of a Möbius transformation, so Bern and Eppstein [2001] suggested

that the optimal Möbius transformation technique described in the previous two

sections could also be useful in this application.

Although conformal transformation preserves angles, it distorts other impor-

tant geometric information such as area. Bern and Eppstein proposed to ame-

liorate this distortion by using an optimal Möbius transformation to find the

conformal transformation minimizing the maximum ratio a/a′ where a is the

area of a triangle in the initial three-dimensional map, and a′ is the area of its

image in the flat map.

Unfortunately it has not yet been possible to prove that this optimization

problem leads to quasiconvex optimization problems. Bern and Eppstein for-

malized the difficulty in the following open question: Let T be a triangle in the

unit disk or on the surface of a sphere, and let C be the set of center points

for Poincaré models (of H2 in the disk case or H3 in the sphere case) such that

the Möbius transformations corresponding to center points in C transform T

into a triangle of area at least A. Is C necessarily convex? Note that, at least

in the spherical case, the area of the transformed triangle is the same as the

hyperbolic solid angle of T as viewed from the center point, so this question

seems strongly reminiscent of the difficult problem of proving quasiconvexity for

tetrahedral mesh smoothing to maximize the minimum Euclidean solid angle,

discussed in the initial subsection of this section. A positive answer would allow

the quasiconvex programming technique to be applied to this brain flat mapping

application.

4.5. Optimized color gamuts. Tiled projector systems [Humphreys and

Hanrahan 1999; Li et al. 2000; Raskar et al. 1999] are a recent development

in computer display technology, in which the outputs of multiple projectors are

combined into large seamless displays for collaborative workspaces. There are

many difficult research issues involved in achieving this seamlessness: how to

move the data quickly enough to all the screens, how to maintain physical align-

ment of the projectors, how to handle the radial reduction in brightness (vi-

gnetting) common to many projector systems, and so on. Here we concentrate

on one small piece of this puzzle: matching colors among the outputs of mul-

QUASICONVEX PROGRAMMING 317

K

R

G

B

W

C

M

Y

Figure 13. An additive color gamut, with vertices labeled by colors: K = black,

R = red, G = green, B = blue, C = cyan, M = magenta, Y = yellow,

W = white.

tiple projectors. Any imaging device has a gamut, the set of colors that it can

produce. However, two projectors, even of the same model, will have somewhat

different gamuts due to factors such as color filter batches and light bulb ages.

We seek a common gamut of colors that can be produced by all the projectors,

and a coordinate system for that gamut so that we can display color images in a

seamless fashion across multiple projectors [Bern and Eppstein 2003; Majumder

et al. 2000; Stone 2001].

Most projectors, and most computer graphics software, use an additive color

system in which colors are produced by adding signals of three primary colors,

typically red, green, and blue. If we view the gamuts as sets of points in a linear

three-dimensional device-independent color space, additive color systems pro-

duce gamuts that are the Minkowski sums of three line segments, one per color

signal, and therefore have the geometric form of parallelepipeds (Figure 13).

The color spaces representing human vision are three-dimensional, so these par-

allelepipeds have twelve degrees of freedom: three for the black point of the

projector (representing the color of light it projects when it is given a zero input

signal) and three each for the three primary colors (that is, the color that the

projector produces when given an input signal with full strength in one primary

color channel and zero in the other two color channels). The black point and

the three primary colors form four of the eight parallelepiped vertices; the other

four are the secondary colors cyan, yellow, and magenta, and the white point

produced when all three input color channels are saturated.

The computational task of finding a common color gamut, then, can be repre-

sented as a twelve-dimensional geometric optimization problem in which we seek

the best parallelepiped to use as our gamut, according to some measure of gamut

quality, while constraining our output parallelepiped to lie within the intersection

of a collection of input parallelepipeds, one per projector of our system.

To represent this problem as a quasiconvex program, Bern and Eppstein [2003]

suppose that we are given eight quasiconvex functions dK , dR, dG, dB , dC , dM ,

318 DAVID EPPSTEIN

dY , and dW , where each dX : R3 7→ R measures the distance of a color from the

ideal location of corner X of the color cube (here each capital letter is the initial

of one of the colors at the color cube corners, except for K which by convention

stands for black). This formulation allows different distance functions to be used

for each color; for instance, we might want to weight dK and dW more strongly

than the other six color distances. We also form eight functions fX : R12 7→ R3

mapping our twelve-dimensional parametrization of color gamuts into the color

values of each of the gamut corners. If we parametrize a gamut by the black

point and three primary colors, then fK , fR, fG, and fB are simply coordinate

projections, while the other four functions are simple linear combinations of the

coordinates. For each of the eight colors X, define qX(x̄) = dX(fX(x̄)). The level

sets of qX are simply Cartesian products of the three dimensional level sets of

dX with complementary nine-dimensional subspaces of R12, so they are convex

and each qX is quasiconvex.

It remains to formulate the requirement that our output gamut lie within

the intersection of the input gamuts. If we are given n input gamuts, form a

half-space Hi,j (with 0 ≤ i < n and 0 ≤ j < 6) for each of the six facets

of each of these parallelepipeds, and for each color X form a nested convex

family κi,j,X(λ) = {x̄ ∈ R12 | fX(x̄) ∈ Hi,j} that ignores its argument λ and

returns a constant half-space. We can then represent the problem of finding a

feasible gamut that minimizes the maximum distance from one of its corners

to the corner’s ideal location as the quasiconvex program formed by the eight

quasiconvex functions qX together with the 48n nested convex families κi,j,X .

4.6. Analysis of backtracking recurrences. In this section we discuss

another application of quasiconvex programming, in the automated analysis of

algorithms, from our paper [Eppstein 2004]. There has been much research on

exponential-time exact algorithms for problems that are NP-complete (so that no

polynomial time solution is expected); see [Beigel 1999; Byskov 2003; Dantsin

and Hirsch 2000; Eppstein 2001a; 2001b; 2003b; Gramm et al. 2000; Paturi

et al. 1998; Schöning 1999] for several recent papers in this area. Although other

techniques are known, many of these algorithms use a form of backtracking search

in which one repeatedly performs some case analysis to find an appropriate

structure in the problem instance, and then uses that structure to split the

problem into several smaller subproblems which are solved by recursive calls to

the algorithm.

For example, as part of a graph coloring algorithm [Eppstein 2001b] we used

the following subroutine for listing all maximal independent sets of a graph G

that have at most k vertices in the maximum independent set (we refer to such

a set as a k-MIS). The subroutine consists of several different cases, and applies

the first of the cases which is found to be present in the input graph G:

• If G contains a vertex v of degree zero, recursively list each (k − 1)-MIS in

G \ {v} and append v to each listed set.

QUASICONVEX PROGRAMMING 319

T (n, h) ≤ max
8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

T (n+3, h−2)+T (n+3, h−1)+T (n+4, h−2)+T (n+5, h−2),
T (n, h+1)+T (n+1, h+2),
2 T (n+2, h)+2 T (n+3, h),
2 T (n+2, h)+2 T (n+3, h),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−3)+T (n+5, h−2),
T (n+1, h)+T (n+3, h−1)+3 T (n+3, h+3),
T (n+3, h−2)+2 T (n+3, h−1)+T (n+7, h−2),
T (n+1, h)+2 T (n+4, h−2),
3 T (n+1, h+2)+2 T (n+1, h+5),
2 T (n+2, h)+T (n+3, h+1)+T (n+4, h)+T (n+4, h+1),
T (n+1, h−1)+T (n+4, h−1),
T (n+1, h+3)+2 T (n+2, h)+T (n+3, h),
2 T (n+2, h−1),
T (n, h+3)+T (n+1, h+2)+T (n+2, h),
T (n+1, h−1)+T (n+4, h−1),
2 T (n+1, h+1)+T (n+2, h+1),
9 T (n+2, h+3),
T (n+1, h)+T (n+1, h+1),
9 T (n+9, h−5)+9 T (n+9, h−4),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−2)+2 T (n+6, h−3),
T (n+1, h−1)+T (n+4, h)+T (n+4, h+1),
2 T (n+2, h)+T (n+3, h)+T (n+4, h)+T (n+5, h),
T (n+1, h)+2 T (n+2, h+1),
T (n+1, h−1),
2 T (n+2, h+1)+T (n+3, h−2)+T (n+3, h),
T (n+1, h+1)+T (n+1, h+2)+T (n+2, h),
2 T (n+2, h)+2 T (n+3, h),
T (n+1, h+2)+T (n+2, h−1)+T (n+2, h+1),
T (n+1, h),
T (n+2, h+1)+T (n+3, h−2)+T (n+4, h−3),
T (n−1, h+2),
3 T (n+4, h)+7 T (n+4, h+1),
T (n+2, h−1)+2 T (n+3, h−1),
T (n+2, h−1)+T (n+2, h)+T (n+2, h+1),
T (n+3, h−2)+T (n+3, h)+2 T (n+4, h−2),
T (n+1, h)+T (n+3, h−1)+T (n+3, h+3)+T (n+5, h)+T (n+6, h−1),
2 T (n+1, h+4)+3 T (n+3, h+1)+3 T (n+3, h+2),
3 T (n+3, h+1)+T (n+3, h+2)+3 T (n+3, h+3)+3 T (n+4, h),
T (n+2, h−1)+T (n+3, h−1)+T (n+4, h−2),
T (n, h+1),
T (n+1, h+2)+T (n+3, h−2)+T (n+3, h−1),
2 T (n+3, h−1)+T (n+3, h+2)+T (n+5, h−2)+T (n+5, h−1)+T (n+5, h)+2 T (n+7, h−3),
T (n+2, h+2)+2 T (n+3, h)+3 T (n+3, h+1)+T (n+4, h),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−3)+T (n+6, h−3)+T (n+7, h−4),
T (n+1, h−1),
T (n+1, h)+2 T (n+3, h),
4 T (n+3, h+1)+5 T (n+3, h+2),
4 T (n+2, h+3)+3 T (n+4, h)+3 T (n+4, h+1),
T (n+3, h−2)+2 T (n+3, h−1)+T (n+6, h−3),
4 T (n+2, h+3)+6 T (n+3, h+2),
T (n, h+1)+T (n+4, h−3),
T (n+1, h−1)+2 T (n+3, h+2),
2 T (n+2, h+1)+3 T (n+2, h+3)+2 T (n+2, h+4),
2 T (n+2, h)+2 T (n+2, h+3),
2 T (n+2, h)+T (n+2, h+3)+T (n+3, h+2)+T (n+4, h)+T (n+4, h+1),
2 T (n, h+2),
T (n+2, h)+T (n+3, h−2)+T (n+3, h−1),
T (n+3, h−2)+2 T (n+4, h−2)+T (n+5, h−3),
T (n+1, h)+T (n+5, h−4)+T (n+5, h−3),
T (n+1, h+2)+T (n+2, h−1)+T (n+3, h−1),
T (n+2, h−1)+T (n+2, h)+T (n+4, h−1),
10 T (n+3, h+2),
6 T (n+2, h+2),
T (n+2, h)+T (n+3, h),
2 T (n+3, h−1)+T (n+3, h+2)+T (n+5, h−2)+T (n+5, h−1)+T (n+5, h)+T (n+6, h−2)+T (n+7, h−2),
6 T (n+3, h+1),
3 T (n, h+3),
T (n+2, h−1)+T (n+2, h)+T (n+4, h−2),
2 T (n+5, h−3)+5 T (n+5, h−2),
2 T (n+2, h)+T (n+2, h+1)+T (n+4, h−1),
8 T (n+1, h+4),
T (n+3, h−2)+T (n+3, h−1)+T (n+5, h−3)+T (n+5, h−2)+T (n+7, h−3),
T (n+1, h−1)+T (n+2, h+2),
5 T (n+2, h+2)+2 T (n+2, h+3)

Table 1. A recurrence arising from unpublished work with J. Byskov on graph

coloring algorithms, taken from [Eppstein 2004].

320 DAVID EPPSTEIN

• If G contains a vertex v of degree one, with neighbor u, recursively list each

(k − 1)-MIS in G \ N(u) and append u to each listed set. Then, recursively

list each (k − 1)-MIS in G \ {u, v} and append v to each listed set.

• If G contains a path v1-v2-v3 of degree-two vertices, then, first, recursively

list each (k − 1)-MIS in G \ N(v1) and append v1 to each listed set. Second,

list each (k − 1)-MIS in G \ N(v2) and append v2 to each listed set. Finally,

list each (k − 1)-MIS in G \ ({v1} ∪ N(v3)) and append v3 to each listed set.

Note that, in the last recursive call, v1 may belong to N(v3) in which case the

number of vertices is only reduced by three.

• If G contains a vertex v of degree three or more, recursively list each k-MIS

in G \ {v}. Then, recursively list each (k − 1)-MIS in G \N(v) and append v

to each listed set.

Clearly, at least one case is present in any nonempty graph, and it is not hard

to verify that any k-MIS will be generated by one of the recursive calls made

from each case. Certain of the sets generated by this algorithm as described

above may not be maximal, but if these nonmaximal outputs cause difficulties

they can be removed by an additional postprocessing step. We can bound the

worst-case number of output sets produced by this algorithm as the solution to

the following recurrence in the variables n and k:

T (n, k) = max















T (n − 1, k − 1)

2T (n − 2, k − 1)

3T (n − 3, k − 1)

T (n − 1, k) + T (n − 4, k − 1)

As base cases, T (0, 0) = 1, T (n,−1) = 0, and T (n, k) = 0 for k > n. Each

term in the overall maximization of the recurrence comes from a case in the

case analysis; the recurrence uses the maximum of these terms because, in a

worst-case analysis, the algorithm has no control over which case will arise.

Each summand in each term comes from a recursive subproblem called for that

case. It turns out that, for the range of parameters of interest n/4 ≤ k ≤ n/3,

the recurrence above is dominated by its last two terms, and has the solution

T (n, k) = (4/3)n(34/43)k. We can also find graphs having this many k-MISs,

so the analysis given by the recurrence is tight. Similar but somewhat more

complicated multivariate recurrences have arisen in our algorithm for 3-coloring

[Eppstein 2001a] with variables counting 3- and 4-value variables in a constraint

satisfaction instance, and in our algorithm for the traveling salesman problem in

cubic graphs [Eppstein 2003b] with variables counting vertices, unforced edges,

forced edges, and 4-cycles of unforced edges. Another such recurrence, of greater

complexity but with the same general form, is depicted in Table 1.

We would like to perform this type of analysis algorithmically: if we are given

as input a recurrence such as the ones discussed above, can we efficiently deter-

mine its asymptotic solution, and determine which of the cases in the analysis

QUASICONVEX PROGRAMMING 321

are the critical ones for the performance of the backtracking algorithm that gen-

erated the recurrence? We showed in [Eppstein 2004] that these questions can

be answered automatically by a quasiconvex programming algorithm, as follows.

Let x̄ denote a vector of arguments to the input recurrence, and for each term

in the input recurrence define a univariate linear recurrence, by replacing x̄ with

a weighted linear combination ξ = w̄ · x̄ throughout. For instance, in the k-

bounded maximal independent set recurrences, the four terms in the recurrence

lead to four linear recurrences

t1(ξ) = t1(ξ − w̄ · (1, 1)),

t2(ξ) = 2t2(ξ − w̄ · (2, 1)),

t3(ξ) = 3t3(ξ − w̄ · (3, 1)),

t4(ξ) = t4(ξ − w̄ · (1, 0)) + t4(ξ − w̄ · (4, 1)).

We can solve each of these linear recurrences to find constants ci such that

ti(ξ) = O(cξ
i); it follows that, for any weight vector w̄, T (x̄) = O(max cw̄·x̄

i).

This technique only yields a valid bound when each linear recurrence is solv-

able; that is, when each term on the right-hand side of each linear recurrence

has a strictly smaller argument than the term on the left hand side. In addition,

different choices of w̄ in this upper bound technique will give us different bounds.

To get the tightest possible upper bound from this technique, for x̄ = nt̄ where

t̄ is a fixed target vector, constrain w̄ · t̄ = 1 (this is a normalizing condition since

multiplying w̄ by a scalar does not affect the overall upper bound), and express

ci as a function ci = qi(w̄) of the weight vector w̄; set ci = +∞ whenever the

corresponding linear inequality has a right-hand side term with argument greater

than or equal to that on the left hand side. We show in [Eppstein 2004] that

these functions qi are quasiconvex, as their level sets can be expressed by the

formula

q≤λ
i =

{

w̄

∣

∣

∣

∑

j

λ−w̄·δi,j ≤ 1
}

,

where the right-hand side describes a level set of a sum of convex functions of w̄.

Therefore, we can find the vector w̄ minimizing maxi qi(w) as a quasiconvex

program. The value λ of this quasiconvex program gives us an upper bound

T (nt̄) = O(λn) on our input recurrence.

In the same paper, we also show a lower bound T (nt̄) = Ω(λnn−c), so the

upper bound is tight to within a factor that is polylogarithmic compared to

the overall solution. The lower bound technique involves relating the recurrence

solution to the probability that a random walk in a certain infinite directed

graph reaches the origin, where the sets of outgoing edges from each vertex in

the graph are also determined randomly with probabilities determined from the

gradients surrounding the optimal solution of the quasiconvex program for the

upper bound.

322 DAVID EPPSTEIN

Figure 14. The Tukey depth of the point marked with the + sign is three, since

there is a half-plane containing it and only three sample points; equivalently,

three points can be removed from the sample set to place the test point outside

the convex hull of the remaining points (shaded).

4.7. Robust statistics. If one has a set of n observations xi ∈ R, and wishes

to summarize them by a single number, the average or mean is a common choice.

However, it is sensitive to outliers: replacing a single observation by a value far

from the mean can change the mean to an arbitrarily chosen value. In contrast,

if one uses the median in place of the mean, at least n/2 observations need to

be corrupted before the median can be changed to an arbitrary value; if fewer

than n/2 observations are corrupted, the median will remain within the interval

spanned by the uncorrupted values. In this sense, the median is robust while the

mean is not. More generally, we define a statistic to be robust if its breakdown

point (the number of observations that must be corrupted to cause it to take an

arbitrary value) is at least cn for some constant c > 0.

If one has observations x̄i ∈ Rd, it is again natural to attempt to summarize

them by a single point x̄ ∈ Rd. In an attempt to generalize the success of the

median in the one-dimensional problem, statisticians have devised many notions

of the depth of a point, from which we can define a generalized median as being

the point of greatest depth [Gill et al. 1992; Hodges 1955; Liu 1990; Liu et al.

1999; Mahalanobis 1936; Oja 1983; Tukey 1975; Zuo and Serfling 2000]. Of

these definitions, the most important and most commonly used is the Tukey

depth [Hodges 1955; Tukey 1975], also known as half-space depth or location

depth. According to this definition, the depth of a point x̄ (which need not be

one of our sample points) is the minimum number of sample points contained

in any half-space that contains x̄ (Figure 14). The Tukey median is any point

of maximum depth. It follows by applying Helly’s theorem to the system of

half-spaces containing more than dn/(d + 1) observations that, for observations

in Rd, the Tukey median must have depth at least n/(d + 1). This depth is

also its breakdown point, so the Tukey median is robust, and it has other useful

statistical properties as well, such as invariance under affine transformations and

the ability to form a center-outward ordering of the observations based on their

depths.

QUASICONVEX PROGRAMMING 323

There has been much research on the computation of Tukey medians, and

of other points with high Tukey depth [Chan 2004; Clarkson et al. 1996; Cole

1987; Cole et al. 1987; Jadhav and Mukhopadhyay 1994; Langerman and Steiger

2000; 2001; 2003; Matoušek 1992; Naor and Sharir 1990; Rousseeuw and Ruts

1998; Struyf and Rousseeuw 2000]. Improving on many previously published

algorithms, Chan [Chan 2004] found the best bound known for Tukey median

construction, O(n log n + nd−1) randomized expected time, using his implicit

quasiconvex programming technique.

Let B be a bounding box of the sample points. Each d-tuple t of sample

points that are in general position in Rd defines a hyperplane that bounds two

closed half-spaces, H+
t and H−

t . If we associate with each such half-space a

number k+
t or k−

t that counts the number of sample points in the corresponding

half-space, then the pairs (B ∩ H±
t ,−k±

t) can be used to form a generalized

longest intersecting prefix problem, as defined in Section 2.5; borrowing the

terminology of LP-type problems, call any such pair a constraint. The solution

to the quasiconvex program defined by this set of constraints is a pair (k, x̄),

where k is minimal and every half-space with more than k samples contains

x̄. If a half-space H contains fewer than n − k samples, therefore, it does not

contain x̄, so the depth of x̄ is at least n − k. Any point of greater depth

would lead to a better solution to the problem, so x̄ must be a Tukey median

of the samples, and we can express the problem of finding a Tukey median as

a quasiconvex program. This program, however, has O(nd) constraints, larger

than Chan’s claimed time bound. To find Tukey medians more quickly, Chan

applies his implicit quasiconvex programming technique: we need to be able

to solve constant sized subproblems in constant time, solve decision problems

efficiently, and partition large problems into smaller subproblems.

It is tempting to perform the partition step as described after Theorem 3.2,

by dividing the set of samples arbitrarily into d+1 equal-sized subsets and using

the complements of these subsets. However, this idea does not seem to work

well for the Tukey median problem: the difficulty is that the numbers k±
t do not

depend only on the subset, but on the whole original set of sample points.

Instead, Chan modifies the generalized longest intersecting prefix problem (in

a way that doesn’t change its optimal value) by including a constraint for every

possible half-space, not just those half-spaces bounded by d-tuples of samples.

There are infinitely many such constraints but that will not be problematic as

long as we can satisfy the requirements of the implicit quasiconvex programming

technique. To perform the partition step for this technique, we use a standard

tool for divide and conquer in geometric algorithms, known as ε-cuttings. We

form the projective dual of the sample points, which is an arrangement of hy-

perplanes in Rd; each possible constraint boundary is dual to a point in Rd

somewhere in this arrangement, and the number k±
t for the constraint equals

the number of arrangement hyperplanes above or below this dual point. We

then partition the arrangement into a constant number of simplices, such that

324 DAVID EPPSTEIN

each simplex is crossed by at most εn hyperplanes. For each simplex we form a

subproblem, consisting of the sample points corresponding to hyperplanes that

cross the simplex, together with a constant amount of extra information: the

simplex itself and the numbers of hyperplanes that pass above and below it.

Each such subproblem corresponds to a set of constraints dual to points in the

simplex. When recursively dividing a subproblem already of this form into even

smaller sub-subproblems, we intersect the sub-subproblem simplices with the

subproblem simplex and partition the resulting polytopes into smaller simplices;

this increases the number of sub-subproblems by a constant factor. In this way

we fulfill the condition of Theorem 3.2 that we can divide a large problem into a

constant number of subproblems, each described by an input of size a constant

fraction of the original.

Subproblems of constant size may be solved by constructing and searching

the arrangement dual to the samples within the simplex defining the subprob-

lem. It remains to describe how to perform the decision algorithm needed for

Theorem 3.2. Decision algorithms for testing the Tukey depth of a point were

already known [Rousseeuw and Ruts 1996; Rousseeuw and Struyf 1998], but here

we need to solve a slightly more general problem due to the extra information

associated with each subproblem. Given k, x̄, and a subproblem of our overall

problem, we must determine whether there exists a violated constraint ; that is, a

half-space that is dual to a point in the simplex defined by the subproblem, and

that contains more than k sample points but does not contain x̄. Let H be the

hyperplane dual to x̄, and ∆ be the simplex defining the subproblem. If there

exists a violated constraint dual to a point h ∈ ∆, we can assume without loss of

generality that either h ∈ H or h is on the boundary of ∆; for, if not, we could

find another half-space containing as many or more samples by moving h along

a vertical line segment until it reaches either H or the boundary. Within H and

each boundary plane of the simplex, we can construct the (d − 1)-dimensional

arrangement formed by intersecting this plane with the planes dual to the sam-

ple points, in time O(n log n + nd−1). Within each face of these arrangements,

all points are dual to half-spaces that contain the same number of samples, and

as we move from face to face, the number of sample points contained in the

half-spaces changes by ±1, so we can compute these numbers in constant time

per face as we construct these arrangements. By searching all faces of these

arrangements we can find a violated constraint, if one exists.

To summarize, by applying the implicit quasiconvex programming technique

of Theorem 3.2 to a generalized longest intersecting prefix problem, using ε-

cuttings to partition problems into subproblems and (d−1)-dimensional arrange-

ments to solve the decision algorithm as described above, Chan [2004] shows

how to find the Tukey median of any point set in randomized expected time

O(n log n + nd−1).

QUASICONVEX PROGRAMMING 325

5. Conclusions

We have introduced quasiconvex programming as a formalization for geo-

metric optimization intermediate in expressivity between linear and convex pro-

gramming on the one hand, and LP-type problems on the other. Quasiconvex

programs are capable of expressing a wide variety of geometric optimization prob-

lems and applications, but are still sufficiently concrete that they can be solved

both by rapidly converging numeric local improvement techniques and (given

the assumption of constant-time primitives for solving constant-sized subprob-

lems) by strongly-polynomial combinatorial optimization algorithms. The power

of this approach is demonstrated by the many and varied applications in which

quasiconvex programming arises.

References

[Adler and Shamir 1993] I. Adler and R. Shamir, “A randomization scheme for speeding
up algorithms for linear and convex quadratic programming problems with a high
constraints-to-variables ratio”, Mathematical Programming 61 (1993), 39–52.

[Amenta 1994] N. Amenta, “Helly-type theorems and generalized linear programming”,
Discrete Comput. Geom. 12 (1994), 241–261.

[Amenta et al. 1999] N. Amenta, M. W. Bern, and D. Eppstein, “Optimal point
placement for mesh smoothing”, J. Algorithms 30:2 (1999), 302–322. Available at
http://www.arxiv.org/cs.CG/9809081.

[Bank and Smith 1997] R. E. Bank and R. K. Smith, “Mesh smoothing using a
posteriori error estimates”, SIAM J. Numerical Analysis 34:3 (1997), 979–997.

[di Battista et al. 1999] G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis, Graph
drawing: algorithms for the visualization of graphs, Prentice-Hall, 1999.

[Beigel 1999] R. Beigel, “Finding maximum independent sets in sparse and general
graphs”, pp. S856–S857 in Proc. 10th ACM-SIAM Symp. Discrete Algorithms, 1999.
Available at http://www.eecs.uic.edu/˜beigel/papers/mis-soda.PS.gz.

[Bern and Eppstein 1995] M. W. Bern and D. Eppstein, “Mesh generation and
optimal triangulation”, pp. 47–123 in Computing in euclidean geometry, second
ed., edited by D.-Z. Du and F. K.-M. Hwang, Lecture Notes Series on Com-
puting 4, World Scientific, 1995. Available at http://www.ics.uci.edu/̃ eppstein/
pubs/BerEpp-CEG-95.pdf.

[Bern and Eppstein 2001] M. W. Bern and D. Eppstein, “Optimal Möbius transforma-
tions for information visualization and meshing”, pp. 14–25 in Proc. 7th Worksh. Al-
gorithms and Data Structures, edited by F. Dehne et al., Lecture Notes in Computer
Science 2125, Springer, 2001. Available at http://www.arxiv.org/cs.CG/0101006.

[Bern and Eppstein 2003] M. W. Bern and D. Eppstein, “Optimized color gamuts for
tiled displays”, pp. 274–281 in Proc. 19th ACM Symp. Computational Geometry,
2003. Available at http://www.arxiv.org/cs.CG/0212007.

[Bern and Plassmann 2000] M. W. Bern and P. E. Plassmann, “Mesh generation”,
Chapter 6, pp. 291–332 in Handbook of computational geometry, edited by J.-R.
Sack and J. Urrutia, Elsevier, 2000.

326 DAVID EPPSTEIN

[Brightwell and Scheinerman 1993] G. R. Brightwell and E. R. Scheinerman, “Repre-
sentations of planar graphs”, SIAM J. Discrete Math. 6:2 (1993), 214–229.

[Byskov 2003] J. M. Byskov, “Algorithms for k-colouring and finding maximal inde-
pendent sets”, pp. 456–457 in Proc. 14th ACM-SIAM Symp. Discrete Algorithms,
2003.

[Canann et al. 1998] S. A. Canann, J. R. Tristano, and M. L. Staten, “An approach to
combined Laplacian and optimization-based smoothing for triangular, quadrilateral,
and quad-dominant meshes”, pp. 479–494 in Proc. 7th Int. Meshing Roundtable,
Sandia Nat. Lab., 1998. Available at http://www.andrew.cmu.edu/user/sowen/
abstracts/Ca513.html.

[Chan 2004] T. M.-Y. Chan, “An optimal randomized algorithm for maximum Tukey
depth”, pp. 423–429 in Proc. 15th ACM-SIAM Symp. Discrete Algorithms, 2004.

[Chazelle and Matoušek 1993] B. Chazelle and J. Matoušek, “On linear-time deter-
ministic algorithms for optimization problems in fixed dimensions”, pp. 281–290 in
Proc. 4th ACM-SIAM Symp. Discrete Algorithms, 1993.

[Clarkson 1986] K. L. Clarkson, “Linear programming in O(n×3d2

) time”, Information
Processing Letters 22 (1986), 21–24.

[Clarkson 1987] K. L. Clarkson, “New applications of random sampling in computa-
tional geometry”, Discrete Comput. Geom. 2 (1987), 195–222.

[Clarkson 1995] K. L. Clarkson, “Las Vegas algorithms for linear and integer program-
ming when the dimension is small”, J. ACM 42:2 (1995), 488–499.

[Clarkson et al. 1996] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and
S.-H. Teng, “Approximating center points with iterated Radon points”, Int. J.
Computational Geometry & Applications 6:3 (1996), 357–377.

[Cole 1987] R. Cole, “Slowing down sorting networks to obtain faster sorting algo-
rithms”, J. ACM 34 (1987), 200–208.

[Cole et al. 1987] R. Cole, M. Sharir, and C. K. Yap, “On k-hulls and related problems”,
SIAM J. Computing 16 (1987), 61–77.

[Dantsin and Hirsch 2000] E. Dantsin and E. A. Hirsch, “Algorithms for k-SAT based
on covering codes”, Preprint 1/2000, Steklov Inst. of Mathematics, St. Petersburg,
2000. Available at ftp://ftp.pdmi.ras.ru/pub/publicat/preprint/2000/01-00.ps.gz.

[Dharmadhikari and Joag-Dev 1988] S. Dharmadhikari and K. Joag-Dev, Unimodality,
convexity and applications, Academic Press, 1988.

[Djidjev 2000] H. N. Djidjev, “Force-directed methods for smoothing unstructured tri-
angular and tetrahedral meshes”, pp. 395–406 in Proc. 9th Int. Meshing Roundtable,
Sandia Nat. Lab., 2000. Available at http://www.andrew.cmu.edu/user/sowen/
abstracts/Dj763.html.

[Driscoll and Vavasis 1998] T. A. Driscoll and S. A. Vavasis, “Numerical conformal
mapping using cross-ratios and Delaunay triangulation”, SIAM J. Sci. Compu-
tation 19:6 (1998), 1783–1803. Available at ftp://ftp.cs.cornell.edu/pub/vavasis/
papers/crdt.ps.gz.

[Dyer 1984] M. E. Dyer, “On a multidimensional search procedure and its application
to the Euclidean one-centre problem”, SIAM J. Computing 13 (1984), 31–45.

QUASICONVEX PROGRAMMING 327

[Dyer 1992] M. E. Dyer, “On a class of convex programs with applications to compu-
tational geometry”, pp. 9–15 in Proc. 8th ACM Symp. Computational Geometry,
1992.

[Dyer and Frieze 1989] M. E. Dyer and A. M. Frieze, “A randomized algorithm for fixed-
dimensional linear programming”, Mathematical Programming 44 (1989), 203–212.

[Eppstein 2001a] D. Eppstein, “Improved algorithms for 3-coloring, 3-edge-coloring,
and constraint satisfaction”, pp. 329–337 in Proc. 12th ACM-SIAM Symp. Discrete
Algorithms, 2001. Available at http://www.arxiv.org/cs.DS/0009006.

[Eppstein 2001b] D. Eppstein, “Small maximal independent sets and faster exact graph
coloring”, pp. 462–470 in Proc. 7th Worksh. Algorithms and Data Structures, edited
by F. Dehne et al., Lecture Notes in Computer Science 2125, Springer, 2001.
Available at http://www.arxiv.org/cs.DS/0011009.

[Eppstein 2003a] D. Eppstein, “Setting parameters by example”, SIAM J. Computing
32:3 (2003), 643–653. Available at http://dx.doi.org/10.1137/S0097539700370084.

[Eppstein 2003b] D. Eppstein, “The traveling salesman problem for cubic graphs”,
pp. 307–318 in Proc. 8th Worksh. Algorithms and Data Structures (Ottawa, 2003),
edited by F. Dehne et al., Lecture Notes in Computer Science 2748, Springer, 2003.
Available at http://www.arxiv.org/cs.DS/0302030.

[Eppstein 2004] D. Eppstein, “Quasiconvex analysis of backtracking algorithms”, pp.
781–790 in Proc. 15th ACM-SIAM Symp. Discrete Algorithms, 2004. Available at
http://www.arxiv.org/cs.DS/0304018.

[Eppstein and Wortman 2005] D. Eppstein and K. Wortman, “Minimum dilation
stars”, in Proc. 21st ACM Symp. Computational Geometry, 2005. To appear.

[Fischer et al. 2003] K. Fischer, B. Gärtner, and M. Kutz, “Fast smallest-enclosing-ball
computation in high dimensions”, pp. 630–641 in Proc. 11th Eur. Symp. Algorithms,
Lecture Notes in Computer Science 2832, Springer, 2003.

[Freitag 1997] L. A. Freitag, “On combining Laplacian and optimization-based mesh
smoothing techniques”, pp. 37–43 in Proc. Symp. Trends in Unstructured Mesh Gen-
eration, Amer. Soc. Mechanical Engineers, 1997. Available at ftp://info.mcs.anl.gov/
pub/tech reports/plassman/lori combined.ps.Z.

[Freitag and Ollivier-Gooch 1997] L. A. Freitag and C. F. Ollivier-Gooch, “Tetrahedral
mesh improvement using face swapping and smoothing”, Int. J. Numerical Methods
in Engineering 40:21 (1997), 3979–4002. Available at ftp://info.mcs.anl.gov/pub/
tech reports/plassman/lori improve.ps.Z.

[Freitag et al. 1995] L. A. Freitag, M. T. Jones, and P. E. Plassmann, “An efficient
parallel algorithm for mesh smoothing”, pp. 47–58 in Proc. 4th Int. Meshing
Roundtable, Sandia Nat. Lab., 1995.

[Freitag et al. 1999] L. A. Freitag, M. T. Jones, and P. E. Plassmann, “A parallel
algorithm for mesh smoothing”, SIAM J. Scientific Computing 20:6 (1999), 2023–
2040.

[Gärtner 1995] B. Gärtner, “A subexponential algorithm for abstract optimization
problems”, SIAM J. Computing 24 (1995), 1018–1035.

[Gärtner 1999] B. Gärtner, “Fast and robust smallest enclosing balls”, pp. 325–338
in Proc. 7th Eur. Symp. Algorithms, Lecture Notes in Computer Science 1643,
Springer, 1999.

328 DAVID EPPSTEIN

[Gärtner and Fischer 2003] B. Gärtner and K. Fischer, “The smallest enclosing ball
of balls: combinatorial structure and algorithms”, pp. 292–301 in Proc. 19th ACM
Symp. Computational Geometry, 2003.

[Gill et al. 1992] J. Gill, W. Steiger, and A. Wigderson, “Geometric medians”, Discrete
Math. 108 (1992), 37–51.

[Gramm et al. 2000] J. Gramm, E. A. Hirsch, R. Niedermeier, and P. Rossmanith, “Bet-
ter worst-case upper bounds for MAX-2-SAT”, in Proc. 3rd Worksh. on the Satisfia-
bility Problem, 2000. Available at http://ssor.twi.tudelft.nl/˜warners/SAT2000abstr/
hirsch.html.

[Hliněný 1997] P. Hliněný, “Touching graphs of unit balls”, pp. 350–358 in Proc. 5th
Int. Symp. Graph Drawing, Lecture Notes in Computer Science 1353, Springer,
1997.

[Hodges 1955] J. L. Hodges, “A bivariate sign test”, Ann. Mathematical Statistics 26

(1955), 523–527.

[Howell 1990] L. H. Howell, Computation of conformal maps by modified Schwarz–
Christoffel transformations, Ph.D. thesis, MIT, 1990. Available at http://gov/
www.llnl.CASC/people/howell/lhhphd.ps.gz.

[Humphreys and Hanrahan 1999] G. Humphreys and P. Hanrahan, “A distributed
graphics system for large tiled displays”, in Proc. IEEE Visualization ’99, 1999.
Available at http://graphics.stanford.edu/papers/mural design/mural design.pdf.

[Hurdal et al. 1999] M. K. Hurdal, P. L. Bowers, K. Stephenson, D. W. L. Summers, K.
Rehm, K. Shaper, and D. A. Rottenberg, “Quasi-conformally flat mapping the hu-
man cerebellum”, Technical Report FSU-99-05, Florida State Univ., Dept. of Math-
ematics, 1999. Available at http://www.math.fsu.edu/˜aluffi/archive/paper98.ps.gz.

[Iversen 1992] B. Iversen, Hyperbolic geometry, London Math. Soc. Student Texts 25,
Cambridge Univ. Press, 1992.

[Jadhav and Mukhopadhyay 1994] S. Jadhav and A. Mukhopadhyay, “Computing a
centerpoint of a finite planar set of points in linear time”, Discrete Comput. Geom.
12 (1994), 291–312.

[Karmarkar 1984] N. Karmarkar, “A new polynomial-time algorithm for linear pro-
gramming”, Combinatorica 4 (1984), 373–395.

[Khachiyan 1980] L. G. Khachiyan, “Polynomial algorithm in linear programming”,
U.S.S.R. Comput. Math. and Math. Phys. 20 (1980), 53–72.

[Kiwiel 2001] K. C. Kiwiel, “Convergence and efficiency of subgradient methods for
quasiconvex minimization”, Mathematical Programming 90:1 (2001), 1–25.

[Koebe 1936] P. Koebe, “Kontaktprobleme der konformen Abbildung”, Ber. Verh.
Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl. 88 (1936), 141–164.

[Lamping et al. 1995] J. Lamping, R. Rao, and P. Pirolli, “A focus+context technique
based on hyperbolic geometry for viewing large hierarchies”, pp. 401–408 in Proc.
ACM Conf. Human Factors in Computing Systems, 1995. Available at http://
www.parc.xerox.com/istl/projects/uir/pubs/pdf/UIR-R-1995-04-Lamping-CHI95-
FocusContext.pdf.

[Langerman and Steiger 2000] S. Langerman and W. Steiger, “Computing a maximal
depth point in the plane”, pp. 46 in Proc. 4th Japan Conf. Discrete Comput. Geom.,

QUASICONVEX PROGRAMMING 329

edited by J. Akiyama et al., Lecture Notes in Computer Science 2098, Springer,
2000.

[Langerman and Steiger 2001] S. Langerman and W. Steiger, “Computing a high depth
point in the plane”, pp. 227–233 in Developments in Robust Statistics: Proc. ICORS
2001, edited by R. Dutter et al., 2001.

[Langerman and Steiger 2003] S. Langerman and W. Steiger, “Optimization in ar-
rangements”, pp. 50–61 in Proc. STACS 2003: 20th Ann. Symp. Theoretical Aspects
of Computer Science, edited by H. Alt and M. Habib, Lecture Notes in Computer
Science 2607, Springer, 2003.

[Li et al. 2000] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G.
Essl, A. Finkelstein, T. Funkhouser, A. Klein, Z. Liu, E. Praun, R. Samanta, B.
Shedd, J. P. Singh, G. Tzanetakis, and J. Zheng, “Early experiences and challenges
in building and using a scalable display wall system”, IEEE Computer Graphics &
Appl. 20:4 (2000), 671–680. Available at http://www.cs.princeton.edu/omnimedia/
papers/cga00.pdf.

[Liu 1990] R. Liu, “On a notion of data depth based on random simplices”, Ann.
Statistics 18 (1990), 405–414.

[Liu et al. 1999] R. Liu, J. M. Parelius, and K. Singh, “Multivariate analysis by data
depth: descriptive statistics, graphics and inference”, Ann. Statistics 27 (1999),
783–858.

[Mahalanobis 1936] P. C. Mahalanobis, “On the generalized distance in statistics”,
Proc. Nat. Acad. Sci. India 12 (1936), 49–55.

[Majumder et al. 2000] A. Majumder, Z. He, H. Towles, and G. Welch, “Achieving
color uniformity across multi-projector displays”, in Proc. IEEE Visualization 2000,
2000. Available at http://www.cs.unc.edu/˜welch/media/pdf/vis00 color.pdf.

[Matoušek 1992] J. Matoušek, “Computing the center of a planar point set”, pp. 221–
230 in Discrete and computational geometry: Papers from the DIMACS Special Year,
edited by J. E. Goodman et al., Amer. Math. Soc., 1992.

[Matoušek et al. 1996] J. Matoušek, M. Sharir, and E. Welzl, “A subexponential bound
for linear programming”, Algorithmica 16 (1996), 498–516.

[McKay 1989] J. McKay, “Sighting point”, Message to sci.math bulletin board, April
1989. Available at http://www.ics.uci.edu/˜eppstein/junkyard/maxmin-angle.html.

[Megiddo 1983] N. Megiddo, “Linear time algorithms for linear programming in R
3

and related problems”, SIAM J. Computing 12 (1983), 759–776.

[Megiddo 1984] N. Megiddo, “Linear programming in linear time when the dimension
is fixed”, J. ACM 31 (1984), 114–127.

[Megiddo 1989] N. Megiddo, “On the ball spanned by balls”, Discrete Comput. Geom.
4 (1989), 605–610.

[Munzner 1997] T. Munzner, “Exploring large graphs in 3D hyperbolic space”, IEEE
Comp. Graphics Appl. 18:4 (1997), 18–23. Available at http://graphics.stanford.edu/
papers/h3cga/.

[Munzner and Burchard 1995] T. Munzner and P. Burchard, “Visualizing the structure
of the world wide web in 3D hyperbolic space”, pp. 33–38 in Proc. VRML ’95, ACM,
1995. Available at http://www.geom.umn.edu/docs/research/webviz/webviz/.

330 DAVID EPPSTEIN

[Naor and Sharir 1990] N. Naor and M. Sharir, “Computing a point in the center of
a point set in three dimensions”, pp. 10–13 in Proc. 2nd Canad. Conf. Comput.
Geom., 1990.

[Oja 1983] H. Oja, “Descriptive statistics for multivariate distributions”, Stat. Prob.
Lett. 1 (1983), 327–332.

[Paturi et al. 1998] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane, “An improved
exponential-time algorithm for k-SAT”, pp. 628–637 in Proc. 39th IEEE Symp.
Foundations of Computer Science, 1998. Available at http://www.math.cas.cz/

˜pudlak/ppsz.ps.

[Post 1984] M. J. Post, “Minimum spanning ellipsoids”, pp. 108–116 in Proc. 16th
ACM Symp. Theory of Computing, 1984.

[Raskar et al. 1999] R. Raskar, M. S. Brown, R. Yang, W.-C. Chen, G. Welch, H.
Towles, B. Seales, and H. Fuchs, “Multi-projector displays using camera-based regis-
tration”, in Proc. IEEE Visualization ’99, 1999. Available at http://www.cs.unc.edu/
Research/ootf/stc/Seamless/.

[Rousseeuw and Ruts 1996] P. J. Rousseeuw and I. Ruts, “Algorithm AS 307: bivariate
location depth”, J. Royal Statistical Soc., Ser. C: Applied Statistics 45 (1996), 516–
526.

[Rousseeuw and Ruts 1998] P. J. Rousseeuw and I. Ruts, “Constructing the bivariate
Tukey median”, Statistica Sinica 8:3 (1998), 827–839.

[Rousseeuw and Struyf 1998] P. J. Rousseeuw and A. Struyf, “Computing location
depth and regression depth in higher dimensions”, Statistics and Computing 8

(1998), 193–203.

[Sachs 1994] H. Sachs, “Coin graphs, polyhedra, and conformal mapping”, Discrete
Math. 134:1–3 (1994), 133–138.

[Schöning 1999] U. Schöning, “A probabilistic algorithm for k-SAT and constraint
satisfaction problems”, pp. 410–414 in Proc. 40th IEEE Symp. Foundations of
Computer Science, 1999.

[Seidel 1991] R. Seidel, “Low dimensional linear programming and convex hulls made
easy”, Discrete Comput. Geom. 6 (1991), 423–434.

[Smith 1991] W. D. Smith, “Accurate circle configurations and numerical conformal
mapping in polynomial time”, preprint, 1991. Available at http://citeseer.nj.nec.com/
smith94accurate.html.

[Stenger and Schmidtlein 1997] F. Stenger and R. Schmidtlein, “Conformal maps via
sinc methods”, pp. 505–549 in Proc. Conf. Computational Methods in Function
Theory, edited by N. Papamichael et al., World Scientific, 1997. Available at http://
www.cs.utah.edu/˜stenger/PAPERS/stenger-sinc-comformal-maps.ps.

[Stone 2001] M. C. Stone, “Color and brightness appearance issues for tiled dis-
plays”, IEEE Computer Graphics & Appl. 21:5 (2001), 58–66. Available at http://
graphics.stanford.edu/papers/tileddisplays/.

[Struyf and Rousseeuw 2000] A. Struyf and P. J. Rousseeuw, “High-dimensional
computation of deepest location”, Computational Statistics and Data Analysis 34

(2000), 415–426.

[Thompson et al. 1985] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin, Numerical
grid generation: foundations and applications, North-Holland, 1985.

QUASICONVEX PROGRAMMING 331

[Trefethen 1980] L. N. Trefethen, “Numerical computation of the Schwarz-Christoffel
transformation”, SIAM J. Sci. Stat. Comput. 1:1 (1980), 82–102.

[Tukey 1975] J. W. Tukey, “Mathematics and the picturing of data”, pp. 523–531 in
Proc. Int. Congress of Mathematicians, vol. 2, edited by R. D. James, Canadian
Mathematical Congress, Vancouver, 1975.

[Vollmer et al. 1999] J. Vollmer, R. Mencl, and H. Müller, “Improved Laplacian
smoothing of noisy surface meshes”, in Proc. 20th Conf. Eur. Assoc. for Computer
Graphics (EuroGraphics ’99), 1999.

[Welzl 1991] E. Welzl, “Smallest enclosing disks (balls and ellipsoids)”, pp. 359–370
in New results and new trends in computer science, edited by H. Maurer, Lecture
Notes in Computer Science 555, Springer, 1991.

[Xu 2001] H. Xu, “Level function method for quasiconvex programming”, J. Optimiza-
tion Theory and Applications 108:2 (2001), 407–437.

[Zoutendijk 1960] G. Zoutendijk, Methods of feasible directions: A study in linear and
non-linear programming, Elsevier, 1960.

[Zuo and Serfling 2000] Y. Zuo and R. Serfling, “General notions of statistical depth
function”, Ann. Statistics 28:2 (2000), 461–482.

David Eppstein

Computer Science Department

Donald Bren School of Information and Computer Sciences

University of California, Irvine

Irvine, CA 92697-3424

United States

eppstein@uci.edu

