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On the Rank of a Tropical Matrix

MIKE DEVELIN, FRANCISCO SANTOS, AND BERND STURMFELS

Abstract. This is a foundational paper in tropical linear algebra, which is
linear algebra over the min-plus semiring. We introduce and compare three
natural definitions of the rank of a matrix, called the Barvinok rank, the
Kapranov rank and the tropical rank. We demonstrate how these notions
arise naturally in polyhedral and algebraic geometry, and we show that
they differ in general. Realizability of matroids plays a crucial role here.
Connections to optimization are also discussed.

1. Introduction

The rank of a matrix M is one of the most important notions in linear algebra.

This number can be defined in many different ways. In particular, the following

three definitions are equivalent:

• The rank of M is the smallest integer r for which M can be written as the

sum of r rank one matrices. A matrix has rank 1 if it is the product of a

column vector and a row vector.

• The rank of M is the smallest dimension of any linear space containing the

columns of M .

• The rank of M is the largest integer r such that M has a nonsingular r × r

minor.

Our objective is to examine these familiar definitions over an algebraic struc-

ture which has no additive inverses. We work over the tropical semiring (R,⊕,�),

whose arithmetic operations are

a ⊕ b := min(a, b) and a � b := a + b.
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The set Rd of real d-vectors and the set Rd×n of real d × n-matrices are semi-

modules over the semiring (R,⊕,�). The operations of matrix addition and

matrix multiplication are well defined. All our definitions of rank make sense

over the tropical semiring (R,⊕,�):

Definition 1.1. The Barvinok rank of a matrix M ∈ Rd×n is the smallest

integer r for which M can be written as the tropical sum of r matrices, each of

which is the tropical product of a d × 1-matrix and a 1 × n-matrix.

Definition 1.2. The Kapranov rank of a matrix M ∈ Rd×n is the smallest

dimension of any tropical linear space (to be defined in Definition 3.2) containing

the columns of M .

Definition 1.3. A square matrix M = (mij) ∈ Rr×r is tropically singular if

the minimum in

detM :=
⊕

σ∈Sr

m1σ1
� m2σ2

� · · · � mrσr

= min
{

m1σ1
+ m2σ2

+ · · · + mrσr
: σ ∈ Sr

}

is attained at least twice. Here Sr denotes the symmetric group on {1, 2, . . . , r}.

The tropical rank of a matrix M ∈ Rd×n is the largest integer r such that M

has a nonsingular r × r minor.

These three definitions are easily seen to agree for r = 1, but in general they are

not equivalent:

Theorem 1.4. If M is a matrix with entries in the tropical semiring (R,⊕,�),

tropical rank (M) ≤ Kapranov rank (M) ≤ Barvinok rank (M). (1–1)

Both of these inequalities can be strict .

The proof of Theorem 1.4 consists of Propositions 3.6, 4.1, 7.2 and Theorem 7.3 in

this paper. As we go along, several alternative characterizations of the Barvinok,

Kapranov and tropical ranks will be offered. One of them arises from the fact

that every d×n-matrix M defines a tropically linear map Rn → Rd. The image

of M is a polyhedral complex in Rd. Following [Develin and Sturmfels 2004],

we identify this polyhedral complex with its image in the tropical projective

space TPd−1 = Rd/R(1, 1, . . . , 1). This image is the tropical convex hull of (the

columns of) M as in [Develin and Sturmfels 2004]. Equivalently, this tropical

polytope is the set of all tropical linear combinations of the columns of M . We

show in Section 4 that the tropical rank of M equals the dimension of this

tropical polytope plus one, thus justifying the definition of the vanishing of the

determinant given in Definition 1.3.

The discrepancy between Definition 1.3 and Definition 1.2 comes from the

crucial distinction between tropical polytopes and tropical linear spaces, as ex-

plained in [Richter-Gebert et al. 2005, § 1]. The latter are described in [Speyer
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and Sturmfels 2004] where it is shown that they are parametrized by the tropical

Grassmannian. That the two inequalities in Theorem 1.4 can be strict corre-

sponds to two facts about tropical geometry which are unfamiliar from classical

geometry. Strictness of the first inequality corresponds to the fact that a point

configuration in tropical space can have a d-dimensional convex hull but not lie

in any d-dimensional affine subspace. Strictness of the second inequality corre-

sponds to the fact that a point configuration in a d-dimensional subspace need

not lie in the convex hull of d + 1 points.

We start out in Section 2 by studying the Barvinok rank (Definition 1.1). This

notion of rank arises in the context of combinatorial optimization [Barvinok et al.

1998; Butkovič 2003; Çela et al. 1998]. In Section 3 we study the Kapranov rank

(Definition 1.2). This notion is the most natural one from the point of view of

algebraic geometry, where tropical arithmetic arises as the “tropicalization” of

arithmetic in a power series ring. It has good algebraic and geometric properties

but is difficult to characterize combinatorially; for instance, it depends on the

base field of the power series ring, which here we take to be the complex numbers

C, unless otherwise stated.

In Section 4 we study the tropical rank (Definition 1.3). This is the best notion

of rank from a geometric and combinatorial perspective. For instance, it can be

expressed in terms of regular subdivisions of products of simplices [Develin and

Sturmfels 2004]. In Section 5, we use this characterization to show that the

tropical and Kapranov ranks agree when either of them is equal to min(d, n).

Section 6 is devoted to another case where the Kapranov and tropical ranks

agree, namely when either of them equals two. The set of d×n-matrices enjoying

this property is the space of trees with d leaves and n marked points. This space

is studied in the companion paper [Develin 2004].

The second inequality of Theorem 1.4 is strict for many matrices (see Propo-

sition 2.2 for examples), but it requires more effort to find matrices for which the

first inequality is strict. Such matrices are constructed in Section 7 by relating

Kapranov rank to realizability of matroids.

Our definition of “tropically nonsingular” is equivalent to what is called

“strongly regular” in the literature on the min-plus algebra [Butkovič and Hevery

1985; Cuninghame-Green 1979]. The resulting notion of tropical rank, as well

as the notion of Barvinok rank, have previously appeared in this literature. In

fact, linear algebra in the tropical semiring has been called “the linear algebra of

combinatorics” [Butkovič 2003]. In the final section of the paper we revisit some

of that literature, which is concerned mainly with algorithmic issues, and relate

it to our results. We also point out several (mostly algorithmic) open questions.

Summing up, the three definitions of rank studied in this paper generally

disagree, and they have different flavors (combinatorial, algebraic, geometric).

But they all share some of the familiar properties of matrix rank over a field.

The following properties are easily checked for each of the three definitions of

rank: the rank of a matrix and its transpose are the same; the rank of a minor
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(2,0,3)

(4,1,4)

(0,2,2)

Figure 1. A tropical line in TP
2, and a one-dimensional tropical polytope.

cannot exceed that of the whole matrix; the rank is invariant under (tropical)

multiplication of rows or columns by constants, and under insertion of a row or

column obtained as a combination of others; the rank of M ⊕ N is at most the

sum of the ranks of M and N ; the rank of (M |N) is at least the ranks of M

and of N and at most the sum of their ranks; and the rank of M �N is at most

the minimum of the ranks of M and N .

2. The Barvinok Rank

The Traveling Salesman Problem can be solved in polynomial time if the

distance matrix is the tropical sum of r matrices of tropical rank one (with ⊕

as “max” instead of “min”). This result was proved by Barvinok, Johnson and

Woeginger [Barvinok et al. 1998], building on earlier work of Barvinok. This

motivates our definition of Barvinok rank as the smallest r for which M ∈ Rd×n

is expressible in this fashion. Since matrices of tropical rank one are of the form

X�Y T , for two column vectors X ∈ Rd and Y ∈ Rn, this is equivalent to saying

that M has a representation

M = X1 � Y T
1 ⊕ X2 � Y T

2 ⊕ · · · ⊕ Xr � Y T
r . (2–1)

For example, the following equation shows a 3×3-matrix which has Barvinok

rank two:




0 4 2

2 1 0

2 4 3



 =





0

2

2



 � (0, 4, 2) ⊕





3

0

3



 � (2, 1, 0).

This matrix also has tropical rank 2 and Kapranov rank 2 because the matrix

is tropically singular. The column vectors lie on the tropical line in TP2 =

R3/R(1, 1, 1) defined by 2 � x1 ⊕ 3 � x2 ⊕ 0 � x3, depicted in Figure 1. Their

convex hull, darkened, is a subset of the line and thus one-dimensional.

We next present two reformulations of the definition of Barvinok rank: in

terms of tropical convex hulls as introduced in [Develin and Sturmfels 2004], and

via a “tropical morphism” between matrix spaces.
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Proposition 2.1. Let M be a real d × n-matrix . The following properties are

equivalent :

(a) M has Barvinok rank at most r.

(b) The columns of M lie in the tropical convex hull of r points in TPd−1.

(c) There are matrices X ∈ Rd×r and Y ∈ Rr×n such that M = X�Y . Equiva-

lently , M lies in the image of the following tropical morphism, which is defined

by matrix multiplication:

φr : Rd×r × Rr×n → Rd×n, (X,Y ) 7→ X � Y. (2–2)

Proof. Let M1, . . . ,Mn ∈ Rd be the column vectors of M . Let X1, . . . , Xr ∈ Rd

and Y1, . . . , Yr ∈ Rn be the columns of two unspecified matrices X ∈ Rd×r and

Y ∈ Rn×r. Let Yij denote the jth coordinate of Yi. The following three algebraic

identities are easily seen to be equivalent:

(a) M = X1 � Y T
1 ⊕ X2 � Y T

2 ⊕ · · · ⊕ Xr � Y T
r ,

(b) Mj = Y1j � X1 ⊕ Y2j � X2 ⊕ · · · ⊕ Yrj � Xr for all j = 1, . . . , n, and

(c) M = X � Y T .

Statement (b) says that each column vector of M lies in the tropical convex hull

of X1, . . . , Xr. The entries of the matrix Y are the multipliers in that tropical

linear combination. This shows that the three conditions (a), (b) and (c) in the

statement of the proposition are equivalent. ˜

Part (b) of Proposition 2.1 suggests that the Barvinok rank of a tropical matrix

is more an analogue of the nonnegative rank of a matrix than of the usual rank.

Recall (from [Cohen and Rothblum 1993], for instance) that the nonnegative

rank of a real nonnegative matrix M ∈ Rd×n is the smallest r for which M

can be written as a product of nonnegative matrices of format d × r and r × n.

Equivalently, it is the smallest r for which the columns (or rows) of M lie in

the positive hull of r nonnegative vectors. Compare this with the formulation

of Barvinok rank given in Proposition 2.1 (b); this closer connection comes from

the fact that tropical linear combinations yield an object more analogous to a

“positive span” or “convex hull” [Develin and Sturmfels 2004; Richter-Gebert

et al. 2005] than a linear span. For more information on nonnegative rank see

[Cohen and Rothblum 1993], and for the connection to rank over other semigroup

rings see [Gregory and Pullman 1983].

By Proposition 2.1, the set of all Barvinok matrices of rank ≤ r is the image

of the tropical morphism φr. In particular, this set is a polyhedral fan in Rd×n.

This fan has interesting combinatorial structure, even for r = 2. These fans are

discussed in more detail in [Ardila 2004] and [Develin 2004].

We next present an example of a matrix which shows that the Barvinok rank

can be much larger than the other two notions of rank. The matrix to be
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considered is the classical identity matrix

Cn =















1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1















. (2–3)

This looks like the unit matrix (in classical arithmetic) but it is far from being

a unit matrix in tropical arithmetic, where 0 is the neutral element for � and

∞ is the neutral element for ⊕. After obtaining the following result, we learned

that the same calculation had already been done in [Çela et al. 1998].

Proposition 2.2. The Barvinok rank of the matrix Cn is the smallest integer

r such that

n ≤

(

r
⌊

r
2

⌋

)

.

Proof. Let r be an integer and assume that n ≤
(

r
br/2c

)

. We first show that

Barvinok rank(Cn) ≤ r. Let S1, . . . , Sn be distinct subsets of {1, . . . , r} each

having cardinality br/2c. For each k ∈ 1, . . . , r, we define an n × n-matrix

Xk = (xk
ij) with entries in {0, 1, 2} as follows:

xk
ij =







0 if k ∈ Si\Sj ,

2 if k ∈ Sj\Si,

1 otherwise.

The matrix Xk has tropical rank one. To see this, let Vk ∈ {0, 1}n denote the

vector with ith coordinate equal to one or zero depending on whether k is an

element of Si or not. Then

Xk = V T
k � ( 1 � (−Vk) ).

To prove Barvinok rank(Cn) ≤ r, it now suffices to establish the identity

Cn = X1 ⊕ X2 ⊕ · · · ⊕ Xr.

Indeed, all diagonal entries of the matrices on the right hand side are 1, and the

off-diagonal entries (for i 6= j) of the right hand side are min(x1
ij , x

2
ij , . . . , x

r
ij) = 0,

because Si\Sj is nonempty.

To prove the converse direction, we consider an arbitrary representation

Cn = Y1 ⊕ Y2 ⊕ · · · ⊕ Yr

where the matrices Yk = (yk
ij) have tropical rank one. For each k we set Tk :=

{(i, j) : yk
ij = 0}. Since the matrices Yk are nonnegative and have tropical rank

one, it follows that each Tk is a product Ik × Jk, where Ik and Jk are subsets of
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{1, . . . , n}. Moreover, we have Ik ∩ Jk = ? because the diagonal entries of Yk

are not zero. For each i = 1, . . . , n we set

Si := {k : i ∈ Ik} ⊆ {1, . . . , r}.

We claim that no two of the sets S1, . . . , Sn are contained in one another.

Sperner’s Theorem [Aigner and Ziegler 1998] then proves that n ≤
(

r
br/2c

)

. To

prove the claim, observe that if Si ⊂ Sj then the entry yk
i,j cannot be zero for

any k. Indeed, if k ∈ Si ⊆ Sj then j ∈ Ik implies j 6∈ Jk. And if k 6∈ Si then

i 6∈ Ik. ˜

For example, C6 has Barvinok rank 4, as the following decomposition shows:

C6 =

















1 1 1 2 2 2

1 1 1 2 2 2

1 1 1 2 2 2

0 0 0 1 1 1

0 0 0 1 1 1

0 0 0 1 1 1

















⊕

















1 1 0 0 0 1

1 1 0 0 0 1

2 2 1 1 1 2

2 2 1 1 1 2

2 2 1 1 1 2

1 1 0 0 0 1

















⊕

















1 0 1 0 1 0

2 1 2 1 2 1

1 0 1 0 1 0

2 1 2 1 2 1

1 0 1 0 1 0

2 1 2 1 2 1

















⊕

















1 2 2 2 1 1

0 1 1 1 0 0

0 1 1 1 0 0

0 1 1 1 0 0

1 2 2 2 1 1

1 2 2 2 1 1

















.

Similarly, C36 has Barvinok rank 8, even though all its 35 × 35 minors have

Barvinok rank 7 (and its 8 × 8 minors have Barvinok rank at most 5). Asymp-

totically,

Barvinok rank(Cn) ∼ log2 n.

We will see in Examples 3.5 and 4.4 that the Kapranov rank and tropical rank

of Cn are both two.

3. The Kapranov Rank

The tropical semiring has a strong connection to power series rings and their

algebraic geometry. We review the basic setup from [Speyer and Sturmfels 2004;

Sturmfels 2002]. Let K = C{{t}} be the field of Puiseux series with complex

coefficients. The elements in K are formal power series f = c1t
a1 + c2t

a2 + · · · ,

where a1 < a2 < · · · are rational numbers that have a common denominator.

Let deg : K∗ → Q be the natural valuation sending a nonzero Puiseux series

f to its degree a1. For any two elements f, g ∈ K, we have deg(fg) = deg f +

deg g = deg f � deg g. In general we also have deg(f + g) = min(deg f,deg g) =

deg f ⊕ deg g, unless there is a cancellation of leading terms. Thus the tropical

arithmetic is naturally induced from ordinary arithmetic in power series fields.

The field K = C{{t}} is algebraically closed of characteristic zero. If I is any

ideal in K[x1, . . . , xd] then we write V (I) for its variety in the d-dimensional alge-

braic torus (K∗)d. Thus the elements of V (I) are vectors x(t) = (x1(t), . . . , xd(t))

where each xi(t) is a Puiseux series and f(x(t)) = 0 for each polynomial f ∈ I.

Let us now enlarge the field K and allow all formal power series f = c1t
a1 +

c2t
a2 + · · · where the ai can be real numbers, not just rationals. We denote

this larger field by K̃ and we write Ṽ (I) for the variety in (K̃∗)d defined by I.
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The degree map can be applied coordinatewise, giving rise to a map which takes

vectors of nonzero power series into Rd:

deg : (K̃∗)d → Rd, (f1(t), . . . , fd(t)) 7→
(

deg f1, . . . ,deg fd

)

.

We define the tropical variety of I, denoted T (I) ⊂ Rd, to be the image of

Ṽ (I) under the map deg. In [Speyer and Sturmfels 2004; Sturmfels 2002], the

following alternative description of the tropical variety is given:

Theorem 3.1. The tropical variety T (I) is the set of vectors w ∈ Rn such that

the initial ideal inw(I) = 〈inw(f) : f ∈ I〉 contains no monomial . The dimension

of T (I) is the (topological) dimension of V (I).

The first statement in Theorem 3.1 is due to Misha Kapranov (in the special

case when I is a principal ideal) and the third author (for arbitrary ideals I,

in [Sturmfels 2002]). A complete proof can be found in [Speyer and Sturmfels

2004]. The second statement in Theorem 3.1 is due to Bieri and Groves [1984].

An elementary proof of this result, and the fact that T (I) is a polyhedral fan,

appears in [Sturmfels 2002, § 9].

We defined Kapranov rank to be the smallest dimension of any tropical linear

space containing the columns of M ; now, we can make this precise by defining

tropical linear spaces.

Definition 3.2. A tropical linear space in Rd is any subset T (I) where I is an

ideal generated by affine-linear forms a1x1+· · ·+adxd+b in K̃[x] = K̃[x1, . . . , xd].

Its dimension is its topological dimension, which is equal to d minus the number

of minimal generators of I.

Note that here the scalars a1, . . . , an, b are power series in t with complex coeffi-

cients, the choice of the complex numbers being crucial. If I is the principal ideal

generated by one affine-linear form a1x1 + · · ·+ anxn + b, then T (I) is a tropical

hypersurface. Tropical linear spaces were studied in [Speyer and Sturmfels 2004],

where it was shown that they are parametrized by the tropical Grassmannian.

Every tropical linear space L is a finite intersection of tropical hyperplanes, but

not conversely, and the number of tropical hyperplanes needed is generally larger

than the codimension of L.

Recall from Definition 1.2 that the Kapranov rank of a matrix M ⊂ Rd×n

is the smallest dimension of any tropical linear space containing the columns of

M . It is not completely apparent in this definition that the Kapranov rank of

a matrix and its transpose are the same, but this follows from our next result.

Let Jr denote the ideal generated by all the (r + 1) × (r + 1)-subdeterminants

of a d × n-matrix of indeterminates (xij). This is a prime ideal of dimension

rd+rn−r2, and the generating determinants form a Gröbner basis. The variety

V (Jr) consists of all d × n-matrices with entries in K∗ whose (classical) rank is

at most r.
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Theorem 3.3. For a real matrix M = (mij) ∈ Rd×n the following statements

are equivalent :

(a) The Kapranov rank of M is at most r.

(b) The matrix M lies in the tropical determinantal variety T (Jr).

(c) There exists a d×n-matrix F =
(

fij(t)
)

with nonzero entries in the field K̃

such that the rank of F is less than or equal to r and deg(fij) = mij for all i

and j.

The power series matrix F in part (c) is called a lift of M . We abbreviate this

as deg F = M .

Proof. The equivalence of (b) and (c) is simply our definition of tropical

variety applied to the ideal Jr since, over the field K̃, lying in the variety of the

determinantal ideal Jr is equivalent to having rank at most r. To see that (c)

implies (a), consider the linear subspace of K̃d spanned by the columns of F .

This is an r-dimensional linear space over a field, so it is defined by an ideal

I generated by d − r linearly independent linear forms in K̃[x1, . . . , xd]. The

tropical linear space T (I) contains all the column vectors of M = deg F .

Conversely, suppose that (a) holds, and let L be a tropical linear space of

dimension r containing the columns of M . Pick a linear ideal I in K̃[x1, . . . , xd]

such that L = T (I). By applying the definition of tropical variety to the ideal

I, we see that each column vector of M has a preimage in Ṽ (I) ⊂ (K̃∗)d under

the degree map. Let F be the d × n-matrix over K̃ whose columns are these

preimages. Then the column space of F is contained in the variety defined by I,

so we have rank(F ) ≤ r, and deg F = M as desired. ˜

Corollary 3.4. The Kapranov rank of a matrix M ∈ Rd×n is the smallest

rank of any lift of M .

The ideal J1 is generated by the 2× 2-minors xijxkl −xilxkj of the d×n-matrix

(xij). Therefore, a matrix of Kapranov rank one must certainly satisfy the linear

equations mij + mkl = mil + mkj . This happens if and only if there exist real

vectors X = (x1, . . . , xd) and Y = (y1, . . . , yn) with

mij = xi +yj for all i, j ⇐⇒ mij = xi�yj for all i, j ⇐⇒ M = XT �Y.

Conversely, if such X and Y exist, we can lift M to a matrix of rank one by

substituting tmij for mij . Therefore, a matrix M has Kapranov rank one if and

only if it has Barvinok rank one. In general, the Kapranov rank can be much

smaller than the Barvinok rank, as the following example shows.

Example 3.5. Let n ≥ 3 and consider the classical identity matrix Cn. It

does not have Kapranov rank one, so it has Kapranov rank at least two. Let
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a3, a4, . . . , an be distinct nonzero complex numbers. Consider the matrix

Fn =



















t 1 t+a3 t+a4 · · · t+an

1 t 1+a3t 1+a4t · · · 1+ant

t−a3 1 t t−a3+a4 · · · t−a3+an

t−a4 1 t−a4+a3 t · · · t−a4+an
...

...
...

...
. . .

...

t−an 1 t−an+a3 t−an+a4 · · · t



















.

The matrix Fn has rank 2 because the i-th column (for i ≥ 3) equals the first

column plus ai times the second column. Since deg Fn = Cn, we conclude that

Cn has Kapranov rank two.

The two-dimensional tropical plane containing the columns of Cn is the two-

dimensional fan L in Rn which consists of the n cones {xi ≥ x1 = · · · = xi−1 =

xi+1 = · · · = xn}; this is the tropical variety defined by the ideal in K[x1, . . . , xn]

generated by n−2 linear forms with generic coefficients in C. Its image in TPn−1

is the line all of whose tropical Plücker coordinates are zero [Speyer and Sturmfels

2004].

The following proposition establishes half of Theorem 1.4.

Proposition 3.6. Every matrix M ∈ Rd×n satisfies Kapranov rank (M) ≤

Barvinok rank (M), and this inequality can be strict .

Proof. Suppose that M has Barvinok rank r. Write M = M1 ⊕ · · · ⊕ Mr

where each Mi has Barvinok rank one. Then Mi has Kapranov rank one, so

there exists a rank one matrix Fi over K̃ such that deg Fi = Mi. Moreover,

by multiplying the matrices Fi by random complex numbers, we can choose Fi

such that there is no cancellation of leading terms in t when we form the matrix

F = F1 + · · · + Fr. This means deg F = M . Clearly, the matrix F has rank at

most r. Theorem 3.3 implies that M has Kapranov rank at most r. Example

3.5 shows that the inequality can be strict. ˜

A general algorithm for computing the Kapranov rank of a matrix M involves

computing a Gröbner basis of the determinantal ideal Jr. Suppose we wish to

decide whether a given real d×n-matrix M = (mij) has Kapranov rank > r. To

decide this question, we fix any term order ≺M on the polynomial ring C[xij ]

which refines the partial ordering on monomials given assigning weight mij to

the variable xij , and we compute the reduced Gröbner basis G of Jr in the term

order ≺M . For each polynomial g in G, we consider its leading form inM (g) with

respect to the partial ordering coming from M . As noted in [Sturmfels 1996,

§ 1], we have in≺M

(

inM (g)
)

= in≺M
(g) for all g ∈ G.

The ideal generated by the set of leading forms
{

inM (g) : g ∈ G
}

is the initial

ideal inM (Jr). Let xall denote the product of all dn unknowns xij . The second

step in our algorithm is to compute the saturation of the initial ideal with respect
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to the coordinate hyperplanes:
(

inM (Jr) : 〈xall〉∞
)

=
{

f ∈ C[xij ] : f · (xall)s ∈ Jr for some s ∈ N
}

. (3–1)

Computing such an ideal quotient, given the generators inM (g), is a standard

operation in computational commutative algebra. It is a built-in command in

software systems such as CoCoA [CoCoA 2000–], Macaulay 2 [Grayson and Still-

man 1993–] or Singular [Greuel et al. 2001]. Here is a direct consequence of

Theorems 3.1 and 3.3:

Corollary 3.7. The matrix M has Kapranov rank > r if and only if (3–1) is

the unit ideal 〈1〉.

In view of this, the (combinatorial) Theorem 5.5, Theorem 6.5 and Corollary

7.4 have the following commutative algebra implications. Recall from [Richter-

Gebert et al. 2005] that a finite generating set S of an ideal I is a tropical basis

if, for every weight vector w ∈ Rn for which the initial ideal inw(I) contains a

monomial, there is an f ∈ S such that inw(f) is a monomial. Every ideal I in

K[x1, . . . , xn] has a tropical basis but tropical bases are often much larger than

minimal generating sets.

Corollary 3.8. The 3×3-minors of a matrix of indeterminates form a tropical

basis. The same holds for the maximal minors of a matrix , but it does not hold

for the 4 × 4-minors of a 7 × 7-matrix .

We have defined Kapranov rank in terms of power series arithmetic over the com-

plex field C, which is a canonical choice for doing algebraic geometry. However,

the same definition works over any field k. One can consider the Puiseux series

field K = k{{t}} with either rational or real exponents. Note that the former is

not algebraically closed if k is algebraically closed of characteristic p, but this

need not concern us. We denote the latter by K̃ as before. All we need is the

degree map (K̃∗)d → Rd. We make the following analogous definitions.

Definition 3.9. Let K = k{{t}}. A tropical linear space over k is the image

under “deg” of any linear subspace of the K̃-vector space K̃d. Its dimension is

equal to the dimension of that linear subspace. The Kapranov rank over k of a

matrix M ∈ Rn×d is the smallest dimension of a tropical linear space containing

the columns of M .

Unless otherwise stated, we will concern ourselves only with Kapranov rank over

the complex numbers. In the general setting, Theorem 3.3 is true over all fields,

but Proposition 3.6 is true only over infinite fields because in its proof we needed

to take random coefficients. Indeed, Example 6.6 in Section 6 shows a matrix

whose Kapranov rank over the 2-element field F2 is greater than the Barvinok

rank. Even over algebraically closed fields, the Kapranov rank of a matrix may

depend on the characteristic of the field. We will discuss this further and give

examples in Section 7.
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4. The Tropical Rank

We begin by proving the first inequality in Theorem 1.4. To complete the

proof of Theorem 1.4, it remains to be seen that the inequality can be strict.

This will be done in Section 7.

Proposition 4.1. Every matrix M ∈ Rd×n satisfies

tropical rank (M) ≤ Kapranov rank (M).

Proof. If the matrix M has a tropically nonsingular r × r minor, then any

lift of M to the power series field K̃ must have the corresponding r × r-minor

nonsingular over K̃, since the leading exponent of its determinant occurs only

once in the sum. Consequently, no lift of M to K̃ can have rank less than r. By

Theorem 3.3, this means that the Kapranov rank of M must be at least r. ˜

The set of all tropical linear combinations of a set of n vectors in Rd is a poly-

hedral complex. It has a 1-dimensional lineality space, spanned by the vec-

tor (1, . . . , 1), but upon quotienting out by this 1-dimensional space, we get a

bounded subset in tropical projective space TPd−1 = Rd/R(1, . . . , 1). This set is

the tropical convex hull of the n given points in TPd−1, and it was investigated

in depth in [Develin and Sturmfels 2004]. We review some relevant definitions

and facts.

We fix a subset V = {v1, . . . , vn} ⊆ Rd. Given a point x ∈ Rd, its type is

the d-tuple of sets S = (S1, . . . , Sd), where each Sj ⊂ {1, . . . , n} and i ∈ Sj if

xj − vij ≥ xk − vik for all k ∈ {1, . . . , n}. Let XS be the region consisting of

points with type S; then according to [Develin and Sturmfels 2004, Theorem 15],

the tropical convex hull of V equals the union of the bounded regions XS, which

are precisely those regions for which each Sj is nonempty. (If x is a point in the

tropical convex hull with type S, then expressing x as a linear combination of the

vi’s, we have i ∈ Sj if the contribution of vi is responsible for the j-th coordinate

of x.) Indeed, (the topological closures of) these regions provide a polytopal

decomposition of the tropical convex hull of V . Note that by definition, any

type has the property that each i ∈ {1, . . . , n} is in some Sj .

The dimension of a particular cell XS of the tropical polytope can be easily

computed from the combinatorics of the d-tuple S: let GS be the graph which

has vertex set 1, . . . , d, with i and j connected by an edge if Si ∩Sj is nonempty.

The dimension of XS is one less than the number of connected components of

the graph GS .

Recall from Definition 1.3 that the tropical rank of a matrix is the size of the

largest nonsingular square minor, and that an r × r matrix M is nonsingular if
⊙r

i=1 Mσ(i),i =
∑r

i=1 Mσ(i),i achieves its minimum only once as σ ranges over

the symmetric group Sr. Here is another characterization.
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Theorem 4.2. Let M ⊂ Rd×n be a matrix . Then the tropical rank of M is

equal to one plus the dimension of the tropical convex hull of the columns of M ,

viewed as a tropical polytope in TPd−1.

Proof. Let V = {v1, . . . , vn} be the set of columns of M , and let P = tconv(V )

be their tropical convex hull in TPd−1. Suppose that r is the tropical rank of M ,

that is, there exists a tropically nonsingular r× r-submatrix of M , but all larger

square submatrices are tropically singular.

We first show that dimP ≥ r − 1. We fix a nonsingular r × r-submatrix

M ′ of M . Deleting the rows outside M ′ means projecting P into TPr−1, and

deleting the columns outside M ′ means passing to a tropical subpolytope P ′

of the image. Both operations can only decrease the dimension, so it suffices

to show dimP ′ ≥ r − 1. Hence, we can assume that M is itself a tropically

nonsingular r × r-matrix. Also, without loss of generality, we can assume that

the minimum over σ ∈ Sr of

f(σ) =

r
∑

i=1

vi,σ(i) (4–1)

is uniquely achieved when σ is the identity element e ∈ Sr. We now claim that

the cell X({1},...,{r}) exists; to do this, we need to demonstrate that there exists

a point with type ({1}, . . . , {r}).

The inequalities which must be valid on this cell are xk − xj ≤ vjk − vjj for

j 6= k. We claim that these inequalities define a full-dimensional region. Suppose

not; then, by Farkas’ Lemma, there exists a nonnegative linear combination of

the inequalities xk−xj ≤ vjk−vjj which equals 0 ≤ c for some nonpositive real c.

This linear combination would imply that some other σ ∈ Sr has f(σ) ≤ f(e), a

contradiction. So this cell is full-dimensional; it follows immediately that picking

a point in its interior yields a point with type ({1}, . . . , {r}), since because these

inequalities are all strict, no other type-inducing inequalities can hold.

For the converse, suppose that dimP ≥ r. Pick a region XS of dimension r,

and assume by translating the points (which adds a constant to each row of XS,

not changing the rank of the matrix) that (0, . . . , 0) is in XS, so that the only

inequalities valid on 0 are those given by S. The graph GS has r + 1 connected

components, so we can pick r + 1 elements of {1, . . . , n} of which no two appear

in a common Sj . Assume without loss of generality that this set is {1, . . . , r+1},

and again without loss of generality rearrange the labeling of the coordinates so

that i ∈ Sj if and only if i = j, for 1 ≤ i, j ≤ r + 1.

We now claim that the square submatrix consisting of the first r +1 rows and

columns of M is tropically nonsingular. Indeed, we have (using the definition of

f(σ) given in (4–1)):

f(σ) − f(e) =

r+1
∑

i=1

vi,σ(i) −

r+1
∑

i=1

vii =

r+1
∑

i=1

(

vi,σ(i) − vii

)

,
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but whenever σ(i) 6= i, vi,σ(i) − vii > 0 since i ∈ Si and i /∈ Sσ(i) for the point 0.

Therefore, if σ is not the identity, we have f(σ) − f(e) > 0, and e is the unique

permutation in Sr+1 minimizing the expression (4–1). So M has tropical rank

at least r + 1. This is a contradiction, and we conclude that dimP = r − 1. ˜

We next present a combinatorial formula for the tropical rank of a zero-one

matrix, or any matrix which has only two distinct entries. We define the support

of a vector in tropical space Rd as the set of its zero coordinates. We define the

support poset of a matrix M to be the set of all unions of supports of column

vectors of M . This set is partially ordered by inclusion.

Proposition 4.3. The tropical rank of a zero-one matrix with no column of all

ones equals the maximum length of a chain in its support poset .

The assumption that there is no column of all ones is needed for the statement

to hold because a column of zeroes and a column of ones represent the same

point in tropical projective space TPd−1.

Proof. There is no loss of generality in assuming that every union of supports

of columns of M is actually the support of a column. Indeed, the tropical sum

of a set of columns gives a column whose support is the union of supports, and

appending this column to M does not change the tropical rank since the tropical

convex hull of the columns remains the same. Therefore, if there is a chain with

r elements in the support poset we may assume that there is a set of r columns

with supports contained in one another. Since there is no column of ones, from

this we can easily extract an r × r minor with zeroes on and below the diagonal

and 1’s above the diagonal, which is tropically nonsingular.

Reciprocally, suppose there is a tropically nonsingular r × r minor N . We

claim that the support poset of N has a chain of length r, from which it follows

that the support poset of M also has a chain of length r. Assume without

loss of generality that the unique minimum permutation sum is obtained in the

diagonal. This minimum sum cannot be more than one, because if nii and njj

are both 1 then changing them for nij and nji does not increase the sum. If

the minimum is zero, orienting an edge from i to j if entry ij of N is zero

yields an acyclic digraph, which admits an ordering. Rearranging the rows and

columns according to this ordering yields a matrix with 1’s above the diagonal

and 0’s on and below the diagonal. The tropical sum of the last i columns (which

corresponds to union of the corresponding supports) then produces a vector with

0’s exactly in the last i positions. Hence, there is a proper chain of supports of

length r.

If the minimum permutation sum in N is 1, then let nii be the unique diagonal

entry equal to 1. The i-th row in N must consist of all 1’s: if nij is zero, then

changing nij and nji for nii and njj does not increase the sum. Changing this

row of ones to a row of zeroes does not affect the support poset of N (it just

adds an element to every support), and yields a nonsingular zero-one matrix
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with minimum sum zero to which we can apply the argument in the previous

paragraph. ˜

Example 4.4. The tropical rank of the classical identity matrix Cn equals two

(for all n), since all of its 3×3 minors are tropically singular, while the principal

2 × 2 minors are not. The supports of its columns are all the sets of cardinality

n − 1 and the support poset consists of them and the whole set {1, . . . , n}. The

maximal chains in the poset have indeed length two.

As with the matrices of Barvinok rank r, the d × n matrices of tropical rank at

most r form a polyhedral fan given as the intersection of the tropical hypersur-

faces T (f) where f runs over the set of (r + 1) × (r + 1)-subdeterminants of a

d × n-matrix of unknowns (xij). Note that this is very similar to the Kapranov

rank; by Theorem 3.3, the set of d×n matrices of tropical rank is the intersection

of the tropical hypersurfaces T (f) where f runs over the ideal generated by

the (r + 1) × (r + 1)-subdeterminants of a d × n-matrix of unknowns (xij).

However, these are not equal; matrices can have Kapranov rank strictly bigger

than their tropical rank, as will be seen in Section 7. In this sense, the subde-

terminants of a given size r ≥ 4 do not form a tropical basis for the ideal they

generate.

5. Mixed Subdivisions and Corank One

A useful tool in tropical convexity is the computation of tropical convex hulls

by means of mixed subdivisions of the Minkowski sum of several copies of a

simplex. We recall the definition of mixed subdivisions, adapted to the case of

interest to us. See [Santos 2003] for more details.

Definition 5.1. Let ∆d−1 be the standard (d − 1)-simplex in Rd, with vertex

set A = {e1, . . . , ed}. Let n∆d−1 denote its dilation by a factor of n, which we

regard as the convex hull of the Minkowski sum A + A + · · · + A (n times). Let

M = (vij) ⊂ Rd×n be a matrix. Consider the lifted simplices

Pi := conv
{

(e1, v1i), . . . , (ed, vdi)
}

⊂ Rd+1 for i = 1, 2, . . . , n.

The regular mixed subdivision of n∆d−1 induced by M is the set of projections

of the lower faces of the Minkowski sum P1 + · · · + Pn. Here, a face is called

lower if its outer normal cone contains a vector with last coordinate negative.

It was shown in [Develin and Sturmfels 2004, § 4] that there is a bijection between

the cells XS in the convex hull of the columns of M and the interior cells in the

regular subdivision of a product of simplices induced by M . Via the Cayley trick

[Santos 2003], the latter biject to interior cells in the regular mixed subdivision

defined above. Here we provide a short direct proof of the composition of these

two bijections:
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Lemma 5.2. Let M ⊂ Rd×n and let S = (S1, . . . , Sd), where each Sj is a subset

of {1, . . . , n}. Then, the following properties are equivalent :

(1) There exists a point in Rd of type S relative to the n points given by the

columns of M .

(2) There is a nonnegative matrix M ′ such that M ′ is obtained from M by

adding constants to rows or columns of M , and such that M ′
ji = 0 precisely

when i ∈ Sj .

(3) The regular mixed subdivision of n∆d−1 induced by M has as a cell the

Minkowski sum τ1 + · · · + τn where τi = conv({ej : i ∈ Sj}).

Moreover , if this happens, the cells referred to in parts (1) and (3) have comple-

mentary dimensions.

Proof. Adding a constant to a row of M amounts to translating the set of

n points in TPn−1, while adding a constant to a column leaves the point set

unchanged. Consider a cell XS in the tropical convex hull, let x be any point

in the relative interior of XS and let M ′ be the (unique) matrix obtained by

translating the point set by a vector −x and normalizing every column by adding

a scalar so that its minimum coordinate equals 0. Conversely, for a matrix M ′

as in (2), consider the point x whose coordinates are the amounts added to the

columns of M to obtain M ′. The point x is in the tropical convex hull of the

columns of M . Let S be its type. Then the modified matrix M ′ has zeroes

precisely in entries (j, i) with i ∈ Sj , proving the equivalence of (1) and (2).

For the equivalence of (2) and (3), observe that adding a constant to a row or

column of M does not change the mixed subdivision of
∑

Pi. For a nonnegative

matrix M ′ with at least a zero in every column, the positions of the zero entries

define the face of
∑

Pi in the negative vertical direction. Conversely, for every cell

of the regular mixed subdivision, we can apply a linear transformation changing

only the last coordinate to give that cell height zero and all other vertices positive

height (this is what it means to be in the lower envelope.) The resulting height

function is precisely the matrix M ′ in (2), which proves the equivalence of (2)

and (3). The assertion on dimensions is easy to prove. ˜

This lemma implies that the tropical convex hull is dual to the regular mixed

subdivision.

Corollary 5.3. Given a matrix M , the poset of types in the tropical convex

hull of its columns and the poset of interior cells of the corresponding regular

mixed subdivision are antiisomorphic.

Proof. From the proof of Lemma 5.2, it is clear that the poset of types (un-

der S < T if Sj ⊂ Tj for each j) and the poset of cells in the regular mixed

subdivision are antiisomorphic. Meanwhile, a type S is in the tropical convex

hull of its columns if and only if each Sj is nonempty; this is the same condition

categorizing when the corresponding cell is contained in the boundary of the
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mixed subdivision (which occurs whenever there exists a vertex appearing in no

summand.) ˜

Corollary 5.4. Let M ⊂ Rd×n. The tropical rank of M equals d minus the

minimal dimension of an interior cell in the regular mixed subdivision of n∆d−1

induced by M .

We can use these tools to prove that the tropical and Kapranov ranks of a matrix

coincide if the latter is maximal.

Theorem 5.5. If a d × n matrix M has Kapranov rank equal to d, then it has

tropical rank equal to d as well .

Proof. By Corollary 5.4, M has tropical rank d if and only if the corresponding

regular mixed subdivision has an interior vertex. The theorem then follows from

the next two lemmas. ˜

Lemma 5.6. A d × n-matrix M has Kapranov rank less than d if and only if

the corresponding regular mixed subdivision has a cell that intersects all facets of

n∆d−1.

Proof. If M has Kapranov rank less than d, then its column vectors lie in a

tropical hyperplane. Since all tropical hyperplanes are translates of one another,

there is no loss of generality in assuming that it is the hyperplane defined by

x1 ⊕ · · · ⊕ xd. That is, after normalization, all columns of M are nonnegative

and have at least two zeroes. Then, by Lemma 5.2, the zero entries of M define

a cell B in the regular mixed subdivision none of whose Minkowski summands

are single vertices. In particular, for every facet F of ∆d−1 and for every i ∈

{1, . . . , n}, the i-th summand of B is at least an edge and hence it intersects F .

Hence, B intersects all facets of n∆d−1. For the converse suppose the regular

mixed subdivision has a cell B which intersects all facets of n∆d−1. We may

assume that M gives height zero to the points in that cell and positive height

to all the others. The intersection of B with the j-th facet is given by the zero

entries in M after deletion of the j-th row. In particular, B intersects the j-th

facet if and only if every column has a zero entry outside of the j-th row, and so

B intersects all facets if and only if all columns of M have at least two zeroes,

implying that these all lie in the hyperplane defined by x1 ⊕ · · · ⊕ xd. ˜

The cell in the preceding statement need not be unique. For example, if a

tetrahedron is sliced by planes parallel to two opposite edges, then each maximal

cell meets all the facets of the tetrahedron.

Lemma 5.7. In every polyhedral subdivision of a simplex which has no inte-

rior vertices, but arbitrarily many vertices on the boundary , there is a cell that

intersects all of the facets.

Proof. Observe that there is no loss of generality in assuming that the poly-

hedral subdivision S is a triangulation. For a triangulation, we use Sperner’s
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Lemma [Aigner and Ziegler 1998]: “if the vertices of a triangulation of ∆ are

labeled so that (1) the vertices of ∆ receive different labels and (2) the vertices

in any face F of ∆ receive labels among those of the vertices of F , then there is

a fully labeled simplex”.

Our task is to give our triangulation a Sperner labeling with the property that

every vertex labeled i lies in the i-th facet of the simplex. The way to obtain

this is: the vertex opposite to facet i is labeled i + 1. More generally, the label i

of a vertex v is taken so that v is contained in facet i but not on facet i− 1. All

labels are modulo d. ˜

6. Matrices of Rank Two

By Theorem 4.2, if a matrix has tropical rank two, then the tropical convex

hull of its columns is one-dimensional. Since it is contractible [Develin and

Sturmfels 2004], this tropical polytope is a tree. Another way of showing this

is via the corresponding regular mixed subdivision. Tropical rank 2 means that

all the interior cells have codimension zero or one. Hence, the subdivision is

constructed by slicing the simplex via a certain number of hyperplanes (which do

not meet inside the simplex) and its dual graph is a tree. The special case when

the matrix has Barvinok rank two is characterized by the following proposition.

Proposition 6.1. The following are equivalent for a matrix M :

(1) It has Barvinok rank 2.

(2) All its 3 × 3 minors have Barvinok rank 2.

(3) The tropical convex hull of its columns is a path.

Proof. (1)=⇒ (2) is trivial (the Barvinok rank of a minor cannot exceed that

of the whole matrix) and (3)=⇒ (1) is easy: if a tropical polytope is a path, then

it is the tropical convex hull of its two endpoints. Proposition 2.1 then implies

that the Barvinok rank is two.

For (2)=⇒ (3) first observe that the case where M is 3× 3 again follows from

Proposition 2.1. We next prove the case where M is d × 3 by contradiction:

since the tropical convex hulls of rows and of columns of a matrix are isomorphic

as cell complexes [Develin and Sturmfels 2004, Theorem 23], assume that the

tropical convex hull of the rows of M is not a path. Then, there are three rows

whose tropical convex hull is not a path, and their 3 × 3 minor has Barvinok

rank 3. Finally, if M is of arbitrary size d× n and the tropical convex hull of its

columns is not a path, consider three columns whose tropical convex hull is not

a path and apply the previous case to them. ˜

Our goal in this section is to show that if M has tropical rank 2 then it has

Kapranov rank 2. Following Theorem 3.3 (c), this is done by constructing an

explicit lift to a rank 2 matrix over K̃.



ON THE RANK OF A TROPICAL MATRIX 231

Lemma 6.2. Let M be a matrix of tropical rank two. Let x be a point in the

tropical convex hull of the columns of M . Let M ′ be the matrix obtained by adding

−x to every column and then normalizing columns to have zero as their minimal

entry . After possibly reordering the rows and columns, M ′ has the following

block structure:

M ′ :=















0 0 0 · · · 0

0 A1 0 · · · 0

0 0 A2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Ak















,

where the matrices Ai have all entries positive and every 2 × 2 minor has the

property that the minimum of its four entries is achieved twice. Each 0 represents

a matrix of zeroes of the appropriate size, and the first row and column blocks

of M ′ may have size zero. Moreover , the tropical convex hull of the columns of

M ′ is the union of the tropical convex hulls of the column vectors of the blocks

augmented by the zero vector 0, and two of these k trees meet only at the point 0.

Proof. First, adjoin the column x to our matrix if it does not already exist;

since x is in the convex hull of M , this will not change the tropical convex hull

of the columns of M . We can then simply remove it at the end, when it is

transformed into a column of all zeroes. Thus, we can assume that one of the

columns of the matrix M ′ consists of all zeroes.

The asserted block decomposition means that any two given columns of M ′

have either equal or disjoint cosupports, where the cosupport of a column is

the set of positions where it does not have a zero. To prove that this holds,

just observe that if it didn’t then M ′ would have the following minor, where +

denotes a strictly positive entry. (Recall that each column has a zero in it.)




0 + +

0 0 +

0 ? 0





But this 3×3-matrix is tropically nonsingular. The assertion of the 2×2 minors

follows from the fact that the nonnegative matrix




0 a b

0 c d

0 0 0





is tropically singular if and only if the minimum of a, b, c and d is achieved twice.

Finally, the assertion about the convex hulls is trivial, since any linear combi-

nation of column vectors from a given block will have all zero entries except in

the coordinates corresponding to that block. Any path joining two such points

from different blocks will pass through the origin. ˜

We next introduce a technical lemma for making a power series lifting sufficiently

generic.
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Lemma 6.3. Let A be a nonnegative matrix with no zero column and suppose

that the smallest entry in A occurs most frequently in the first column. Let Ã be

the matrix
(

0 0

0 A

)

obtained by adjoining a row and a column of zeroes. If Ã has Kapranov rank

two, then Ã has a rank-2 lift F ∈ K̃d×n in which every 2×2 minor is nonsingular

and the i-th column can be written as a linear combination λiu1 + µiu2 of the

first two columns u1 and u2, with deg λi ≥ deg µi = 0.

Proof. Starting with an arbitrary rank-2 lift F̃ of Ã, let F be obtained by

adding to every column a K̃-linear combination of the first column of F̃ with

coefficients of sufficiently high degree (so as to not change the degrees of the

entries) but otherwise generic. This preserves the degree of every entry and thus

the rank of the lift, but makes every 2× 2 minor of F nonsingular; by “generic,”

all we require is that the ratio between the coefficients of two columns is not

equal to the ratio between those two columns if they are scalar multiples of each

other. No column of F̃ is a scalar multiple of its first column since no column of

Ã aside from the first is constant, so no column of F is a scalar multiple of the

first column either.

Since the lift has rank two and the first two columns are linearly independent,

the i-th column of F is now a K̃-linear combination λiu1 + µiu2 of the first two

columns. If the degrees of λi and µi are different, then their minimum must be

zero in order to get a degree zero element in the first entry of column i. But

then deg µi > deg λi = 0 is impossible, because it would make the i-th column

of A all zero. Hence deg λi > deg µi = 0.

If the degrees are equal, then they are nonpositive in order to get degree

zero for the first entry in λiu1 + µiu2. But they cannot be equal and negative,

or otherwise entries of positive degree in u2 would produce entries of negative

degree in ui. Hence, deg λi = deg µi = 0 in this case. ˜

Corollary 6.4. Let A and B be nonnegative matrices. Assume that the two

matrices

Ã :=

(

A 0

0 0

)

and B̃ :=

(

0 0

0 B

)

have Kapranov rank equal to 2. Then, the matrix

M :=





A 0 0

0 0 0

0 0 B





has Kapranov rank equal to 2 as well .

Proof. We may assume that neither A nor B has a zero column. Hence

Lemma 6.3 applies to both of them. We number the rows of M from −k to

k′ and its columns from −l to l′, where k × l and k′ × l′ are the dimensions of
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A and B respectively. In this way, A (respectively B) is the minor of negative

(respectively, positive) indices. The row and column indexed zero consist of all

zeroes. To further exhibit the symmetry between A and B the columns and rows

in Ã will be referred to “in reverse”. That is to say, the first and second columns

of it are the ones indexed 0 and −1 in M .

We now construct a lifting F = (ai,j) ∈ C{{t}}d×n of M . We assume that we

are given rank-2 lifts of Ã and B̃ which satisfy the conditions of the previous

lemma. Furthermore, we assume that the lift of the entry (0, 0) is the same in

both, which can be achieved by scaling the first row in one of them.

We use exactly those lifts of Ã and B̃ for the upper-left and bottom-right

corner minors of M . Our task is to complete that with an entry ai,j for every

i, j with ij < 0, such that deg(ai,j) = 0 and the whole matrix still has rank 2.

We claim that it suffices to choose the entry a−1,1 of degree zero and sufficiently

generic. That this choice fixes the rest of the matrix is easy to see: The entry

a1,−1 is fixed by the fact that the 3 × 3 minor




a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1





needs to have rank 2. All other entries ai,−1 and ai,1 are fixed by the fact that

the entries ai,−1, ai,0 and ai,1 (two of which come from either Ã or B̃) must

satisfy the same dependence as the three columns of the minor above. For each

j = −l, . . . ,−2 (respectively j = 2, . . . , l′), let λj and µj be the coefficients in

the expression of the j-th column of Ã (respectively, of B̃) as λju0 + µju−1

(respectively, λju0 + µju1). Then, ai,j = λjai,0 + µjai,−1 (respectively, ai,j =

λjai,0 + µjai,1).

What remains to be shown is that if a−1,1 is of degree zero and sufficiently

generic, all the new entries are of degree zero too. For this, observe that if

j ∈ {−l′, . . . , 2} then ai,j is of degree zero as long as the coefficient of degree zero

in ai,−1 are different from the degree zero coefficients in the quotient −λjai,0/µj

(here we are using the assumption that deg λj ≥ deg µj ≥ 0). The same is true

for j ∈ {2, . . . , l}, with ai,1 instead of ai,−1. In terms of the choice of a−1,1, this

translates to the following determinant having nonzero coefficient in degree zero:




ai,−1 ai,0 −λjai,0/µj

a−1,−1 a−1,0 a−1,1

a0,−1 a0,0 a0,1



 or





a0,−1 a0,0 a0,1

a1,−1 a1,0 a1,1

−λjai,0/µj ai,0 ai,1



 ,

respectively for j ∈ {−l′, . . . , 2} or j ∈ {2, . . . , l}. That a−1,1 and a1,−1 suffi-

ciently generic imply nonsingularity of these matrices follows from the fact that

the following 2× 2 minors come from the given lifts of Ã and B̃, hence they are

nonsingular:
(

ai,−1 ai,0

a0,−1 a0,0

)

,

(

a0,0 a0,1

ai,0 ai,1

)

. ˜
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Theorem 6.5. Let M be a matrix of tropical rank 2. Then its Kapranov rank

equals 2 as well .

Proof. The Kapranov rank of M is always at least the tropical rank, so we

need only show that the Kapranov rank is less than or equal to 2. If the tropical

convex hull P of the columns of M is a path, then M has Barvinok rank 2

(by Proposition 6.1) and thus Kapranov rank 2. Otherwise, let x be a node of

degree at least three in the tree P . We apply the method of Lemma 6.2. Since

x has degree at least three, it follows that there are at least three blocks Ai. In

particular, M has at least three columns. We induct on the number of columns

of M . If M has exactly three columns, then each block Ai is a single column,

and every row of M has at most one positive entry. It is easy to construct an

explicit lift of rank 2: in each row, lift the positive entry α as −tα and the zero

entries as −1 and 1 + tα. If there are rows of zeroes, lift them as (−1,−1, 2), for

example.

Next, suppose that M has m ≥ 4 columns. The two blocks with the smallest

number of combined columns have at least 2 and at most m−2 rows all together.

Possibly after adding a row and column of zeroes, this provides a decomposition

of our matrix as

M =





0 0 0

0 A 0

0 0 B



 ,

where both A and B have at least two columns (A is the union of these two

blocks, B the union of all other blocks.) It then follows that the minors

(

0 0

0 A

)

and

(

0 0

0 B

)

both have fewer columns than the original matrix. By the inductive hypothesis

they have Kapranov rank 2. Applying Corollary 6.4 completes the inductive step

of the theorem. ˜

In the proof of Lemma 6.3 we again required the ability to pick generic field

elements. Thus, Theorem 6.5 holds over any infinite coefficient field, but it may

fail over finite fields. This is illustrated by the following example. Proposition 4.1

and Theorem 5.5 fail here too, as does the fact that Kapranov rank is invariant

under insertion of a tropical combination of existing columns.

Example 6.6. The matrix

M =





1 0 0

0 1 0

0 0 0



 =





1 0 0

2 1 1

1 0 0



 ⊕





1 2 1

0 1 0

0 1 0



 .

has Barvinok and tropical ranks equal to 2, but Kapranov rank 3 over the two-

element field F2.
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7. Matrices Constructed from Matroids

One of the important properties of rank in usual linear algebra is that it

produces a matroid. Unfortunately, the definitions of tropical rank, Kapranov

rank, and Barvinok rank all fail to do this. Consider the configuration of four

points in the tropical plane TP2 given by the columns of

M =





0 0 0 0

0 0 1 2

1 0 0 −1



 .

By any of our three definitions of rank, the maximal independent sets of columns

are {1, 2}, {1, 3, 4}, and {2, 3, 4}. These do not all have the same size, and so

they cannot be the bases of a matroid. The central obstruction here is that the

sets {1, 2, 3} and {1, 2, 4} are (tropically) collinear, but the set {1, 2, 3, 4} is not.

Despite this failure, there is a strong connection between tropical linear algebra

and matroids.

The results in Sections 5 and 6 imply that any matrix whose tropical and

Kapranov ranks disagree must be at least of size 5 × 5. The smallest example

we know is 7 × 7. It is based on the Fano matroid. To explain the example,

and to show how to construct many others, we prove a theorem about tropical

representations of matroids. The reader is referred to [Oxley 1992] for matroid

basics.

Definition 7.1. Let M be a matroid. The cocircuit matrix of M, denoted

C(M), has rows indexed by the elements of the ground set of M and columns

indexed by the cocircuits of M. It has a 0 in entry (i, j) if the i-th element is in

the j-th cocircuit and a 1 otherwise.

In other words, C(M) is the zero-one matrix whose columns have the cocircuits

of M as supports. (As before, the support of a column is its set of zeroes.) As

an example, the matrix Cn of Section 2 is the cocircuit matrix of the uniform

matroid of rank 2 with n elements. Similarly, the cocircuit matrix of the uniform

matroid Un,r has size n×
(

n
r−1

)

and its columns are all the zero-one vectors with

exactly r − 1 ones. The following results show that its tropical and Kapranov

ranks equal r. The tropical polytopes defined by these matrices are the tropical

hypersimplices studied in [Joswig 2005].

Proposition 7.2. The tropical rank of the cocircuit matrix C(M) is the rank

of the matroid M.

Proof. This is a special case of Proposition 4.3 because the rank of M is the

maximum length of a chain of nonzero covectors, and the supports of covectors

are precisely the unions of supports of cocircuits. Note that C(M) cannot have

a column of ones because every cocircuit is nonempty. ˜
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Theorem 7.3. If the Kapranov rank of C(M) over the ground field k is equal

to the rank of M, then M is representable over k. If k is an infinite field , then

the converse also holds.

Proof. Let M be a matroid of rank r on {1, . . . , d} which has n cocircuits and

suppose that F ∈ K̃d×n is a rank r lift of the cocircuit matrix C(M). For each

row fi of F , let vi ∈ kd be the vector of constant terms in fi ∈ K̃d. We claim that

V = {v1, . . . , vd} is a representation of M. First note that V has rank at most

r since every K̃-linear relation among the vectors fi translates into a k-linear

relation among the vi. Our claim says that {i1, . . . , ir} is a basis of M if and only

if {vi1 , . . . , vir
} is a basis of V . Suppose {i1, . . . , ir} is a basis of M. Then, as in

the proof of Proposition 4.3, we can find a square submatrix of C(M) using rows

i1, . . . , ir with 0’s on and below the diagonal and 1’s above it. This means that

the lifted submatrix of constant terms is lower-triangular with nonzero entries

along the diagonal. It implies that vi1 , . . . , vir
are linearly independent, and,

since rank(V ) ≤ r, they must be a basis. We also conclude rank(V ) = r. If

{i1, . . . , ir} is not a basis in M, there exists a cocircuit containing none of them;

this means that some column of C(M) has all 1’s in rows i1, . . . , ir. Therefore,

fi1 , . . . , fir
all have zero constant term in that coordinate, which means that

vi1 , . . . , vir
are all 0 in that coordinate. Since the cocircuit is not empty, not all

vectors vj have an entry of 0 in that coordinate, and so {vi1 , . . . , vir
} cannot be

a basis. This shows that V represents M over k, which completes the proof of

the first statement in Theorem 7.3.

For the second statement, let us assume that M has no loops. This is no loss

of generality because a loop corresponds to a row of 1’s in C(M), which does not

increase the Kapranov rank because every column has at least a zero. Assume

M is representable over k and fix a d × n-matrix A ∈ kd×n such that the rows

of A represent M and the sets of nonzero coordinates along the columns of A

are the cocircuits of M. Suppose {1, . . . , r} is a basis of M and let A′ be the

submatrix of A consisting of the first r rows. Write

A =

(

Ir

C

)

· A′

where Ir is the identity matrix and C ∈ k(d−r)×r. Observe that A, hence C,

cannot have a row of zeroes (because M has no loops). Since k is an infinite

field, there exists a matrix B′ ∈ kr×n such that all entries of the d × r-matrix
(

Ir

C

)

· B′ are nonzero. We now define

F =

(

Ir

C

)

· (A′ + tB′) ∈ K̃d×n.

This matrix has rank r and deg F = C(M). This completes the proof of Theorem

7.3. ˜
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If k is representable over a finite field, its Kapranov rank (with respect to that

field) may still exceed its tropical rank. It is easy to find examples; for instance,

the matroid represented by {(0, 1), (1, 0), (1, 1), (0, 0)} over F2 will work.

Corollary 7.4. Let M be a matroid which is not representable over a given

field k. Then the Kapranov rank with respect to k of the tropical matrix C(M)

exceeds its tropical rank .

This corollary furnishes many examples of matrices whose Kapranov rank ex-

ceeds their tropical rank. Consider, for example, the Fano and non-Fano ma-

troids, depicted in Figure 2. They both have rank three and seven elements. The

1

23

4

5

6

7

1

23

4

5

6

7

Figure 2. The Fano (left) and non-Fano (right) matroids.

first is only representable over fields of characteristic two, the second only over

fields of characteristic different from two. In particular, Corollary 7.4 applied to

these two matroids implies that over every field there are matrices with tropical

rank equal to three and Kapranov rank larger than that. Also, it shows that the

Kapranov rank of a matrix may be different over different fields k and k′, even

if k and k′ are assumed to be algebraically closed. This is a more significant

discrepancy than that of Example 6.6, which used a finite field.

More explicitly, the cocircuit matrix of the Fano matroid is

C(M) =





















1 1 0 1 0 0 0

0 1 1 0 1 0 0

0 0 1 1 0 1 0

0 0 0 1 1 0 1

1 0 0 0 1 1 0

0 1 0 0 0 1 1

1 0 1 0 0 0 1





















.

This matrix is the smallest known example of a matrix whose Kapranov rank

over C (four) is strictly larger than its tropical rank (three). Put differently,

the seven columns of this matrix (in TP6) have as their tropical convex hull a

two-dimensional cell complex which does not lie in any two-dimensional linear

subspace of TP6, a feature decidedly absent from ordinary geometry.
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Applied to nonrepresentable matroids, such as the Vamos matroid (rank 4,

8 elements, 41 cocircuits) or the non-Pappus matroid (rank 3, 9 elements, 20

cocircuits) [Oxley 1992], Corollary 7.4 yields matrices with different Kapranov

and tropical ranks over every field. One can also get examples in which the

difference of the two ranks is arbitrarily large. Indeed, given matrices A and B,

we can construct the matrix

M :=

(

A ∞

∞′ B

)

,

where ∞ and ∞′ denote matrices of the appropriate dimensions and whose en-

tries are sufficiently large. Appropriate choices of these large values (pick the

extra columns to be points in the tropical convex hull of the columns of A and B

and add large constants to each column) will ensure that the tropical and Kapra-

nov ranks of M are the sums of those of A and of B. The difference between

the Kapranov and tropical ranks of M is equal to the sum of this difference for

A and for B.

The construction in Theorem 7.3 is closely related to the Bergman complex of

the matroid M. Ardila and Klivans [≥ 2005] showed that this complex is trian-

gulated by the order complex of the lattice of flats of M. Since flats correspond

to unions of cocircuits, the following result is easily derived:

Proposition 7.5. The Bergman complex of the matroid M is equal to the

tropical convex hull of the rows of the modified cocircuit matrix C′(M), where

the 1’s in C(M) are replaced by ∞’s.

For the Fano matroid, the Bergman complex is the cone over the incidence graph

of points and lines in the matroid. It consists of 15 vertices, 35 edges and 21

triangles.

8. Related Work and Open Questions

As mentioned in the introduction, our definition of nonsingular square matrix

corresponds to the notion of “strongly regular” in the literature on the max-plus

(or min-plus) algebra. The definition of “regular matrix” in [Butkovič 1995;

Butkovič and Hevery 1985; Cuninghame-Green 1979] is the following one, for

which we prefer to use a different name:

Definition 8.1. A square matrix M is positively tropically regular if, in the

formula for its tropical determinant, the minimum over all even permutations

equals the minimum over odd permutations. The positive tropical rank of a

matrix is the maximum size of a positively tropically regular minor.

The reason for this terminology is that M is positively tropically regular if it

lies outside the positive tropical variety defined by the determinant. For ba-

sics on positive tropical varieties and a detailed study of the positive tropical

Grassmannian see [Speyer and Williams 2003]. The positive tropicalization of
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determinantal varieties leads also to a notion of positive Kapranov rank that

satisfies the inequalities

pos. tropical rank (M) ≤ pos. Kapranov rank (M) ≤ Barvinok rank (M).

Of course, the tropical and Kapranov ranks are less than or equal to their positive

counterparts.

Our notion of tropical rank, however, appears in [Butkovič and Hevery 1985;

Cuninghame-Green 1979] under a different name. Proposition 8.3 below was

previously proved in [Butkovič and Hevery 1985]:

Definition 8.2. The columns of a matrix M ∈ Rd×n are strongly linearly

independent if there is a column vector b ∈ Rd such that the tropical linear

system M � x = b has a unique solution x ∈ Rn. A square matrix is strongly

regular if its columns are strongly linearly independent.

Proposition 8.3. Strongly regular and tropically nonsingular are equivalent ,

for a square matrix .

Proof. Suppose an r×r matrix M is tropically nonsingular; then there is some

(r − 1)-dimensional cell XS in the tropical convex hull of its columns in TPr−1.

After relabeling we have Si = {i} for i = 1, 2, . . . , r. Then taking a point in the

relative interior of XS yields a vector b ∈ Rr for which M � x = b has a unique

solution, each xi being necessarily equal to bi − mii.

Conversely, suppose the columns of an r × r matrix M are strongly linearly

independent. Pick b ∈ Rr such that M � x = b has a unique solution. Then, for

each xj , there exists a bi for which the expression
∑

Mikxk is uniquely minimized

for k = j (otherwise we could increase xj and get the same value for M � x).

This is equivalent to b having type S, where Sj = {i}. ˜

Corollary 8.4. The tropical rank of a matrix equals the largest size of a

strongly linearly independent subset of its columns.

We now discuss some algorithmic issues. Apart from Corollary 8.4, the main

result in [Butkovič and Hevery 1985] is an O(n3) algorithm to check strong (i.e.,

tropical) regularity of an n × n matrix. The key step is to find a permuta-

tion that achieves the minimum in the determinantal tropical sum, which is the

assignment problem in combinatorial optimization [Papadimitriou and Steiglitz

1982]. Similarly, it is shown in [Butkovič 1995] that the problem of testing posi-

tive tropical regularity of square matrices is equivalent to the problem of testing

existence of even cycles in directed graphs.

For the Barvinok rank, we quote some results from [Çela et al. 1998]:

Proposition 8.5. The computation of the Barvinok rank of a matrix M ∈

{0, 1}d×n is an NP-complete problem. Deciding whether a matrix has Barvinok

rank 2 can be done in time O(dn).
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NP-completeness is proved by a reduction to the problem of covering a bipartite

graph by complete bipartite subgraphs. For the case of rank 2, an algorithm

is derived from the fact that matrices of Barvinok rank 2 are permuted Monge

matrices. Çela et al. also prove that a matrix has Barvinok rank 2 if and only

if all its 3 × 3 minors do (our Proposition 6.1) and that the Barvinok rank is

bounded below by the maximum size of a strongly regular minor (i.e., by the

tropical rank).

We finish by listing some open questions, most of them with an algorithmic

flavor:

(1) Singularity of a single minor can be tested in polynomial time. But a naive

algorithm to compute the tropical rank would need to check an exponential

number of them. Can the tropical rank of a matrix be computed in polynomial

time? In other words, is there a tropical analogue of Gauss elimination?

(2) Fix an integer k. The number of square minors of size at most k+1 of a d×n

matrix M is polynomial in dn. Hence, there is a polynomial time algorithm

for deciding whether M has tropical rank smaller or equal to k. Is the same

true for the Barvinok rank? It is even open whether Barvinok rank equal to

3 can be tested in polynomial time.

(3) For a fixed k, a positive answer to either of the following two questions would

imply a positive answer to the previous one:

(i) Is there a number N(k) such that if all minors of M of size at most N(k)

have Barvinok rank at most k then M itself has Barvinok rank at most k?

Proposition 2.2 shows that

N(k) ≥

(

k + 1
⌊

k+1
2

⌋

)

.

(ii) Is there a polynomial time algorithm for the Barvinok rank of matrices

with tropical rank bounded by k? (This is open even for k = 2).

(iii) Can we obtain a bound on the Kapranov rank given the tropical rank?

That is, given a positive integer r, can we find a bound N(r) so that all

matrices of tropical rank r have Kapranov rank at most N(r)? The example

of the classical identity matrix shows that the same cannot be done for

Barvinok rank.

(4) Can the Barvinok rank of a matrix M be defined in terms of the regular

mixed subdivision of n∆d−1 produced by M? Ideally, we would like a “nice

and simple” characterization such as the one given for the tropical rank in

Corollary 5.4. But the question we pose is whether matrices producing the

same mixed subdivision have necessarily the same Barvinok rank.

(5) All the questions above are open for the Kapranov rank, too.

(6) Is there a 5 × 5-matrix having tropical rank 3 but Kapranov rank 4?
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