
Combinatorial and Computational Geometry
MSRI Publications
Volume 52, 2005

The Carpenter’s Ruler Folding Problem

GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

Abstract. A carpenter’s ruler is a ruler divided into pieces of different
lengths which are hinged where the pieces meet, which makes it possi-
ble to fold the ruler. The carpenter’s ruler folding problem, originally
posed by Hopcroft, Joseph and Whitesides, is to determine the smallest
case (or interval on the line) into which the ruler fits when folded. The
problem is known to be NP-complete. The best previous approximation
ratio achieved, dating from 1985, is 2. We improve this result and pro-
vide a fully polynomial-time approximation scheme for this problem. In
contrast, in the plane, there exists a simple linear-time algorithm which
computes an exact (optimal) folding of the ruler in some convex case of
minimum diameter. This brings up the interesting problem of finding the
minimum area of a convex universal case (of unit diameter) for all rulers
whose maximum link length is one.

1. Introduction

The carpenter’s ruler folding problem is: Given a sequence of rigid rods (links)

of various integral lengths connected end-to-end by hinges, to fold it so that its

overall folded length is minimum. It was first posed in [Hopcroft et al. 1985],

where the authors proved that the problem is NP-complete using a reduction

from the NP-complete problem PARTITION (see [Garey and Johnson 1979;

Cormen et al. 1990]). A simple linear-time factor 2 approximation algorithm,

as well as a pseudo-polynomial O(L2n) time dynamic programming algorithm,

where L is the maximum link length, where presented in [Hopcroft et al. 1985]

(see also [Kozen 1992]). A physical ruler is idealized in the problem, so that the

ruler is allowed to fold onto itself and lie along a line segment whose length is

the size of the case, and thus no thickness results from the segments which lie

on top of each other.

The decision problem can be stated as follows. Given a ruler whose links have

lengths l1, l2, . . . , ln, can it be folded so that its overall folded length is at most

k? Note that different orderings of the links can result in different minimum case

Keywords: approximation scheme, carpenter’s ruler, folding problems, universal case.

155

156 GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

lengths. For example if the ruler has links of lengths 6, 6 and 3 in this order,

the ruler can be folded into a case of length 6, but if the links occur in the order

6, 3 and 6, the optimal case-length is 9.

Our first result (Section 2) improves the 19-year old factor 2 approximation:

Theorem 1. There exists a fully polynomial-time approximation scheme for the

carpenter’s ruler folding problem.

A fully polynomial-time approximation scheme (FPTAS) for a minimization

problem is a family of algorithms Aε, for all ε > 0, such that Aε has run-

ning time polynomial in the size of the instance and 1/ε, and the output of Aε

is at most (1 + ε) times the optimum [Garey and Johnson 1979].

In Section 3, we study a natural, related question: the condition that the

folding must lie on a line is relaxed, by considering foldings in the plane with

the objective of minimizing the diameter of a convex case containing the folded

ruler. Here foldings allow for a free reconfiguration of the joint angles, with the

proviso that each link of the ruler maintains its length (the shape of the case is

unconstrained). In contrast with the problem on the line, this variant admits an

easy exact (optimal) solution which can be computed in linear time, using exact

arithmetic.

This brings up the interesting problem of finding the minimum area of a

convex case (of unit diameter) for all rulers whose maximum link length is one.

A closed curve of unit diameter in the plane is said to be a universal case for

all rulers whose maximum link length is one if each such ruler admits a planar

folding inside the curve. Our results are summarized in:

Theorem 2. There exists an O(n) algorithm for the carpenter’s ruler folding

problem in the plane with lengths l1, l2, . . . , ln, which computes a folding in a

convex case of minimum diameter L = max(l1, . . . , ln). The minimum area A

of a convex universal case (of unit diameter) for all rulers whose maximum link

length is one satisfies

3

8
≤ A ≤ π

3
−

√
3

4
.

The lower bound is 3

8
= 0.375 and the upper bound is ≈ 0.614. We believe the

latter is closer to the truth.

Other folding problems with links allowed to cross have been studied, for ex-

ample in [Hopcroft et al. 1984; Kantabutra 1992; Kantabutra 1997; Kantabutra

and Kosaraju 1986; van Kreveld et al. 1996], while linkage folding problems for

noncrossing links have been investigated for example in [Connelly et al. 2003;

Streinu 2000]. For other universal cover problems, such as the worm problem,

see [Croft et al. 1991; Klee and Wagon 1991] and the references therein.

THE CARPENTER’S RULER FOLDING PROBLEM 157

2. Proof of Theorem 1

We present two approximation schemes: one based on trimming the solution

space and one based on rounding and scaling. We start with notation and

observations which apply to both algorithms.

A folding F of the ruler can be specified by the position on the line of the

first (free) endpoint of the ruler (i.e., the free endpoint of the first link) and a

binary string of length n in which the i-th bit is −1 or 1 depending on whether

the i-th segment is folded to the left or right of its fixed endpoint (view this as

a sequential process). We call this binary string the folding vector.

For a given folding F , let the interval IF = [aF , bF] be the smallest closed

interval which contains it (i.e., it contains all the segments of the ruler). We

refer to it as the folding interval. See also Figure 1.

Figure 1. A carpenter’s ruler with segments of length 1, 3, 2 and 4 folded so that

it fits into a case of length 5 (left). Its folding vector is (−1, 1, 1 − 1). Another

folding into a case of same length (right). Its folding vector is (1,−1, 1 − 1).

Denote by OPT the minimum folded length for a ruler whose lengths are

l1, l2, . . . , ln. A trivial lower bound— on which the 2-approximation algorithm is

based — is OPT ≥ L, where L = max(l1, l2, . . . , ln) is the maximum rod length.

We further exploit this observation and the 2-approximation algorithm given in

[Hopcroft et al. 1985].

Observation 1. An optimal solution can be computed by fixing the first segment

at [0, l1] (with the free endpoint of the first link at 0), and then computing all

foldings that extend it , whose intervals have length at most 2L (thus are included

in the interval [−2L + l1, 2L]).

Proof. Consider an optimal solution. Clearly the first segment can be fixed at

any given position of its free endpoint and at any of the two possible orientations.

Since there exist approximate solutions whose folding intervals have length at

most 2L, foldings with larger intervals do not need to be considered (are not

optimal). ˜

One can also see that the observation can be somewhat strengthened, since in

fact, any of the links can be fixed at a given position and orientation.

Observation 2. An optimal solution can be computed by first fixing one segment

of length L (if more exist , select one arbitrarily) at [0, L] and then computing all

foldings that extend it , whose intervals have length at most 2L (thus are included

in the interval [−L, 2L]).

158 GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

Consider a folding F , whose vector is (ε1, . . . , εn), for a given ruler l1, l2, . . . , ln.

For i = 1, . . . , n, let the partial folding Fi of the ruler l1, l2, . . . , li be that whose

folding vector is (ε1, . . . , εi).

For a folding F whose interval is [a, b], clearly the endpoint x of the last seg-

ment also lies in the same interval, i.e., x ∈ [a, b]. We say that F has parameters

a, b and x, or that F is given by a, b and x.

A FPTAS based on trimming the solution space. We now describe

the first algorithm which we note, has some similarity features with the fully

polynomial-time approximation scheme for the subset-sum problem [Ibarra and

Kim 1975] (see also [Cormen et al. 1990] for a more accessible presentation).

Let ε be the approximation parameter, where 0 < ε < 1. For simplicity as-

sume that m = 8n/ε is an integer. Set δ = Lε/(2n). Consider the parti-

tion of the interval [−2L, 2L] into m elementary intervals of length δ, given by

[−2L + jδ, −2L + (j + 1)δ), for j = 0, . . . ,m− 1, except that the last interval in

this sequence, for j = m−1, is closed at both ends. For simplicity of exposition,

we consider the interval [−2L, 2L] instead of the interval [−2L+l1, 2L] mentioned

in Observation 1 (and then the expression of m above is an overestimate). An

interval triplet denoted (Ia, Ib, Ix), is any of the m3 ordered triples of elementary

intervals.

The algorithm iteratively computes a set of partial foldings Fi of the ruler

l1, l2, . . . , li, for i = 1, . . . , n, so that at most one partial folding per interval

triplet is maintained at the end of the i-th iteration. A partial folding whose

folding interval is [a, b], and the endpoint of the last segment at x is associated

with the interval triplet (Ia, Ib, Ix), where a ∈ Ia, b ∈ Ib and x ∈ Ix. If at step

i more partial foldings per interval triplet are computed, all but one of them

are discarded; the one selected for the next step is chosen arbitrarily from those

computed.

F1 consists of one (partial) folding, given by a′

1 = 0, b′1 = l1, x′

1 = l1. Let

i ≥ 2. In the i-th iteration, the algorithm computes from the set Fi−1 of partial

foldings of the first i − 1 links, all the partial foldings of the first i links that

extend foldings in Fi−1, and whose intervals are included in the interval [−2L, 2L]

(there are at most 2|Fi−1| of these). It then ”trims” this set to obtain Fi, so

that if an interval triplet has more partial foldings associated with it, exactly

one is maintained for the next iteration. Clearly, |Fi| ≤ m3 at the end of the i-th

iteration, for any i = 1, . . . , n. Note that this bound holds during the execution

of each iteration as well. After the last iteration n, the algorithm outputs a

folding of the ruler (one in Fn) whose interval has minimum length.

Let now F be an optimal folding as specified in Observation 1, whose vector

is (ε1, . . . , εn). We have ε1 = 1. For i = 1, . . . , n, let the partial folding Fi have

the (folding) interval [ai, bi] and the endpoint of the last segment at xi ∈ [ai, bi].

We have a1 = 0, b1 = l1 and x1 = l1, and also xi =
∑i

j=1
εj lj , for i = 1, . . . , n.

THE CARPENTER’S RULER FOLDING PROBLEM 159

Lemma 1. For i = 1, . . . , n, the algorithm computes a partial folding F ′

i ∈ Fi

of the ruler l1, l2, . . . , li, whose interval is [a′

i, b
′

i] and the endpoint of the last

segment is at x′

i, so that

(A)

(B)

(X)

|ai − a′

i| ≤ iδ,

|bi − b′i| ≤ iδ,

|xi − x′

i| ≤ iδ.

Proof. We proceed by induction. The basis i = 1 is clear. Let i ≥ 2, and

assume that a partial folding F ′

i−1 of the ruler l1, l2, . . . , li−1, is computed by the

algorithm after i − 1 iterations, as specified. We thus have

|ai−1 − a′

i−1| ≤ (i − 1)δ,

|bi−1 − b′i−1| ≤ (i − 1)δ,

|xi−1 − x′

i−1| ≤ (i − 1)δ.

The partial folding Fi (corresponding to F) has parameters

ai = min(ai−1, xi−1 + εili),

bi = max(bi−1, xi−1 + εili),

xi = xi−1 + εili.

Consider the partial folding F ′′

i obtained from F ′

i−1 (i.e., which extends F ′

i−1)

so that its i-th bit in the folding vector is εi (the same as in Fi). Note that

the algorithm computes F ′′

i in the first part of iteration i (before trimming). Its

parameters are

a′′

i = min(a′

i−1, x
′

i−1 + εili),

b′′i = max(b′i−1, x
′

i−1 + εili),

x′′

i = x′

i−1 + εili.

Let the interval triplet which contains F ′′

i be (Ia, Ib, Ix). The algorithm dis-

cards all but one partial folding in this interval triplet, say F ′

i , with parameters

a′

i, b
′

i, x
′

i. This implies that

|a′

i − a′′

i | ≤ δ,

|b′i − b′′i | ≤ δ,

|x′

i − x′′

i | ≤ δ.

The lemma follows once we show that

(A′)

(B′)

(X′)

|ai − a′′

i | ≤ (i − 1)δ,

|bi − b′′i | ≤ (i − 1)δ,

|xi − x′′

i | ≤ (i − 1)δ,

160 GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

since then, the partial folding F ′

i which is computed by the algorithm, satisfies

the imposed conditions after step i, e.g. for (A),

|ai − a′

i| ≤ |ai − a′′

i | + |a′′

i − a′

i| ≤ (i − 1)δ + δ = iδ.

(B) and (X) follow in a similar way.

We will show that (A′) holds by examining four cases, depending on how the

minimums for ai and for a′′

i are achieved. The proof of (B’) is very similar (with

max taking the place of min) and will be omitted.

To prove (A′), recall that

|a′′

i − ai| = |min(a′

i−1, x
′

i−1 + εili) − min(ai−1, xi−1 + εili)|.

Put ∆ = |a′′

i − ai|. We distinguish four cases.

Case 1: min(a′

i−1, x
′

i−1 +εili) = a′

i−1 and min(ai−1, xi−1 +εili) = ai−1. Then

using the induction hypothesis,

∆ = |a′

i−1 − ai−1| ≤ (i − 1)δ.

Case 2: min(a′

i−1, x
′

i−1 + εili) = x′

i−1 + εili and min(ai−1, xi−1 + εili) =

xi−1 + εili. Similarly, the induction hypothesis yields

∆ = |x′

i−1 − xi−1| ≤ (i − 1)δ.

Case 3: min(a′

i−1, x
′

i−1 + εili) = a′

i−1 and min(ai−1, xi−1 + εili) = xi−1 + εili.

Note that in this case εi = −1. We have two subcases.

Case 3.1: xi−1 − li ≤ a′

i−1. Recall that a′

i−1 ≤ x′

i−1 − li. We have

xi−1 − li ≤ a′

i−1 ≤ x′

i−1 − li.

Then

∆ = |a′

i−1 − (xi−1 − li)| ≤ |x′

i−1 − li − (xi−1 − li)| ≤ (i − 1)δ,

where the last in the chain of inequalities above is implied by the induction

hypothesis.

Case 3.2: a′

i−1 ≤ xi−1 − li. Recall that xi−1 − li ≤ ai−1. We have

a′

i−1 ≤ xi−1 − li ≤ ai−1.

Then

∆ = |a′

i−1 − (xi−1 − li)| ≤ |a′

i−1 − ai−1| ≤ (i − 1)δ,

again by the induction hypothesis.

Case 4: min(a′

i−1, x
′

i−1 + εili) = x′

i−1 + εili and min(ai−1, xi−1 + εili) = ai−1.

Note that in this case εi = −1. Thus x′

i−1 − li ≤ a′

i−1 and ai−1 ≤ xi−1 − li. We

have two subcases.

THE CARPENTER’S RULER FOLDING PROBLEM 161

Case 4.1: x′

i−1 − li ≤ ai−1. Then

∆ = |ai−1 − (x′

i−1 − li)| ≤ |xi−1 − li − (x′

i−1 − li)| ≤ (i − 1)δ.

Case 4.2: ai−1 ≤ x′

i−1 − li. Then

∆ = |(x′

i−1 − li) − ai−1| ≤ |a′

i−1 − ai−1| ≤ (i − 1)δ.

This concludes the proof of (A′).

We also clearly have

|xi − x′′

i | = |(xi−1 + εili) − (x′

i−1 + εili)| = |xi−1 − x′

i−1| ≤ (i − 1)δ,

which proves (X’) and concludes the proof of the lemma. ˜

Lemma 1 for i = n implies that the algorithm computes a folding F ′ of the ruler

whose interval is [a′, b′], so that if F is an optimal folding whose interval is [a, b],

|a − a′| ≤ nδ = Lε/2,

|b − b′| ≤ nδ = Lε/2.

Since the algorithm selects in the end a folding whose interval length is minimum,

it outputs one whose interval length is not more than

|b′ − a′| ≤ |b − a| + εL ≤ (1 + ε)OPT.

The last in the chain of inequalities above follows from the lower bound b− a =

OPT ≥ L.

It takes O(log L) time to compute the three parameters for each partial fold-

ing, and O(log L) space to store this information. Since there are n iterations,

and each takes O(m3 log L) time, the total running time is O(nm3 log L)) =

O(n4(1/ε)3 log L). As each (partial) folding can be stored in O(n log L) space,

the total space is also O(n4(1/ε)3 log L).

Remark 1. Using Observation 2, one can modify the algorithm so that m =

6n/ε (versus m = 8n/ε), which leads to maintaining a somewhat smaller number

of interval triplets.

A FPTAS based on rounding and scaling. We apply the rounding and scal-

ing technique, inspired by the method used to obtain an approximation scheme

for Knapsack (from [Ibarra and Kim 1975]; see also [Garey and Johnson 1979,

pages 135–137]). The algorithm is:

(i) Set

l̄i =
⌊

li
L

4n
1

ε

⌋

.

Call the new instance of the carpenter’s ruler folding problem with lengths l̄i
the reduced instance.

(ii) Use the pseudo-polynomial algorithm in [Hopcroft et al. 1985] to solve ex-

actly the reduced instance. Output the same folding vector.

162 GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

Note that the maximum length of the reduced instance is L̄ = b4n1

ε
c and there-

fore the running time of the algorithm is

O(n log L + L̄2n) = O(n log L + n3(1/ε)2).

We refine the notation as follows: given folding F whose vector is (εF
1 , . . . , εF

n),

set xF
0 = 0 and for i = 1, . . . , n, set xF

i =
∑i

j=1
εF

j lj . As before aF = minn
i=0 xF

i

and bF = maxn
i=0 xF

i , and note that the length of F is bF − aF . Define x̄F
i , āF

and b̄F in the same way using the length function l̄ instead of l. Let

qi :=
li
L

4n
1

ε
−

⌊

li
L

4n
1

ε

⌋

.

Note that 0 ≤ qi < 1 and li = (l̄i + qi)Lε/(4n).

Let A be any folding for the original instance and B be an optimum folding

for the reduced instance. We have:

xB
i =

i
∑

j=1

εB
i li =

i
∑

j=1

εB
i (l̄i + qi)

Lε

4n
=

Lε

4n

(

x̄B
i +

i
∑

j=1

εB
i qi

)

.

Using 0 ≤ qi < 1, we obtain

xB
i ≤ Lε

4n
(x̄B

i + n) ≤ Lε

4n
x̄B

i +
Lε

4
,

and therefore

bB ≤ Lε

4n
b̄B +

Lε

4
.

Similarly we have:

xB
i ≥ Lε

4n
x̄B

i − Lε

4
,

and consequently

aB ≥ Lε

4n
āB − Lε

4
.

Using the fact that B has optimum length for l̄, and the inequality bA−aA ≥ L,

we get:

bB − aB ≤ Lε

4n
(b̄B − āB) +

Lε

2
≤ Lε

4n
(b̄A − āA) +

ε

2
(bA − aA). (2–1)

Further:

x̄A
i =

i
∑

j=1

εA
i l̄i =

i
∑

j=1

εA
i

(

li
L

4n
1

ε
− qi

)

=
4n

Lε
xA

i −
i

∑

j=1

εA
i qi ≤

4n

Lε
xA

i + n,

and therefore

b̄A ≤ 4n

Lε
bA + n. (2–2)

Similarly we have:

x̄A
i =

4n

Lε
xA

i −
i

∑

j=1

εA
i qi ≥

4n

Lε
xA

i − n,

THE CARPENTER’S RULER FOLDING PROBLEM 163

and consequently

āA ≥ 4n

Lε
aA − n. (2–3)

Plugging Equations (2–2) and (2–3) into (2–1) and using again the inequality

bA − aA ≥ L, we obtain

bB − aB ≤ Lε

4n

(

4n

Lε
bA + n −

(

4n

Lε
aA − n

)

)

+
ε

2
(bA − aA) ≤ (bA − aA)(1 + ε).

If we now let A be an optimal folding for the original instance, we find that

bB − aB ≤ (1 + ε)OPT; this completes the second proof of Theorem 1.

3. Folding in the Plane: Proof of Theorem 2

For the purposes of this section, a folding of the ruler is a polygonal chain

of n segments (links), numbered from 1 to n, lying in the plane. Let q0 be the

free endpoint of the first link, and q1 be its other endpoint. Call v1 = q0q1 the

vector of link 1. Inductively define (q2, . . . , qn and) v2, . . . , vn, the vectors of

links 2, . . . , n. The joint angle between links i and i + 1 is the angle ∈ [0, π]

between vi and vi+1. The angle is counterclockwise if it describes a left turn,

and clockwise if it describes a right turn. Angles of 0 and π are considered both

left and right turns.

It is obvious that the diameter of any convex case in which the ruler is folded is

at least L, where L is the maximum link length. The following simple linear-time

algorithm computes a folding of the ruler, so that all joint angles in (0, π] are

clockwise (or counterclockwise). The algorithm is certainly implicit in [Hopcroft

et al. 1985], where an extensive analysis of reconfiguration problems for rulers

confined in discs is made.

Fix arbitrarily a disk D of diameter L, whose boundary is the circle C. Fix

the first free endpoint of the ruler (i.e., the free endpoint of the first link) at

some point p0 of C. For i = 1, . . . , n, iteratively fix the next point of the ruler

(i.e., the next endpoint of its i-th link) at one of the at most two intersection

points of C with the circle with center at pi−1 and radius li. One can also

select the appropriate intersection point at each step, so that all joint angles in

(0, π] are clockwise (or counterclockwise). An illustration appears in Figure 2.

Consider now the closed convex curve R, of unit diameter, obtained from a

Reuleaux triangle, by replacing one of the circular arcs with a straight segment,

as in Figure 3. (A Reuleaux triangle can be obtained from an equilateral triangle

ABC by joining each pair of its vertices by a circular arc whose center is at the

third vertex; see [Yaglom and Boltyanskĭı 1961].) The above algorithm can be

modified to compute a folding of a ruler with maximum link length 1 inside R:

Fix the first free endpoint of the ruler at some point p0 of the circular arc AB.

Iteratively fix the next point of the ruler at some intersection point (it exists!)

with the open curve BAC. The area of R is 1

3
π − 1

4

√
3 ≈ 0.614, as claimed.

164 GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

p0

l1

l2

l3

l4

l5

Figure 2. A carpenter’s ruler with five links folded so that it fits in a circular

case of diameter L, where L = l3 is the maximum link-length. All joint angles

in this folding are counterclockwise (i.e., left turns).

B C

A

l1

l3

l4

l2

Figure 3. The closed curve R obtained from a Reuleaux triangle, and a ruler

with four links folded inside; the length of l3 is 1.

It remains to prove the lower bound in Theorem 2. Consider a 3-link ruler

ABCD with lengths AB = 1, BC = x < 1 and CD = 1, where the choice of

the length x = 1

2
(
√

7 − 1) ≈ 0.8229 of the middle link is explained below. We

will show that the area of any convex case for it is at least 3

8
. In any folding

in which the unit length links do not intersect, the diameter of the case exceeds

one. Assume therefore that they intersect (see Figure 4). The area of BCAD

(i.e., the convex hull of the four endpoints of the links) is

ab sin α

2
+

(1 − a)(1 − b) sin α

2
+

a(1 − b) sin α

2
+

(1 − a)b sin α

2
=

sin α

2
,

where α = \BOD.

For a given x, the area is minimized when either A = D so that the folding

forms an isosceles triangle (small x), or when AD is parallel to BC and AD = 1

THE CARPENTER’S RULER FOLDING PROBLEM 165

A

B C

D

Oa b

1 − a1 − b

x

Figure 4. A ruler with link-lengths 1, x and 1.

(large x). The area of the isosceles triangle is
√

(

1 +
x

2

)(x

2

) (x

2

)(

1 − x

2

)

.

The area of the trapezoid BCAD is

1 + x

2

√

1 −
(

1 + x

2

)2

.

Now choose x to balance the two areas. A routine calculation gives

x =

√
7 − 1

2
,

and the corresponding area is 3/8. This completes the proof of Theorem 2.

We conclude with these questions: Is the curve R a convex universal case of

minimum area? If not, what is the minimum area of such a universal case? Does

convexity of the case make any difference?

Acknowledgement

We thank the anonymous referee (of an earlier version) who suggested the

modification of the Reuleaux triangle in Figure 3.

References

[Connelly et al. 2003] R. Connelly, E. D. Demaine, and G. Rote, “Straightening
polygonal arcs and convexifying polygonal cycles”, Discrete Comput. Geom. 30:2
(2003), 205–239.

[Cormen et al. 1990] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to

algorithms, MIT Press, Cambridge, MA, 1990.

[Croft et al. 1991] H. T. Croft, K. J. Falconer, and R. K. Guy, Unsolved problems in

geometry, Problem Books in Mathematics, Springer, New York, 1991.

[Garey and Johnson 1979] M. R. Garey and D. S. a. Johnson, Computers and in-

tractability, W. H. Freeman and Co., San Francisco, 1979.

[Hopcroft et al. 1984] J. Hopcroft, D. Joseph, and S. Whitesides, “Movement problems
for 2-dimensional linkages”, SIAM J. Comput. 13:3 (1984), 610–629.

166 GRUIA CĂLINESCU AND ADRIAN DUMITRESCU

[Hopcroft et al. 1985] J. Hopcroft, D. Joseph, and S. Whitesides, “On the movement
of robot arms in 2-dimensional bounded regions”, SIAM J. Comput. 14:2 (1985),
315–333.

[Ibarra and Kim 1975] O. H. Ibarra and C. E. Kim, “Fast approximation algorithms for
the knapsack and sum of subset problems”, J. Assoc. Comput. Mach. 22:4 (1975),
463–468.

[Kantabutra 1992] V. Kantabutra, “Motions of a short-linked robot arm in a square”,
Discrete Comput. Geom. 7:1 (1992), 69–76.

[Kantabutra 1997] V. Kantabutra, “Reaching a point with an unanchored robot arm
in a square”, Internat. J. Comput. Geom. Appl. 7:6 (1997), 539–549.

[Kantabutra and Kosaraju 1986] V. Kantabutra and S. R. Kosaraju, “New algorithms
for multilink robot arms”, J. Comput. System Sci. 32:1 (1986), 136–153.

[Klee and Wagon 1991] V. Klee and S. Wagon, Old and new unsolved problems in plane

geometry and number theory, vol. 11, The Dolciani Mathematical Expositions, Math.
Assoc. America, Washington (DC), 1991.

[Kozen 1992] D. C. Kozen, The design and analysis of algorithms, Texts and Mono-
graphs in Computer Science, Springer, New York, 1992.

[van Kreveld et al. 1996] M. van Kreveld, J. Snoeyink, and S. Whitesides, “Folding
rulers inside triangles”, Discrete Comput. Geom. 15:3 (1996), 265–285.

[Streinu 2000] I. Streinu, “A combinatorial approach to planar non-colliding robot
arm motion planning”, pp. 443–453 in 41st Annual Symposium on Foundations

of Computer Science (Redondo Beach, CA, 2000), IEEE Comput. Soc. Press, Los
Alamitos, CA, 2000.

[Yaglom and Boltyanskĭı 1961] I. M. Yaglom and V. G. Boltyanskĭı, Convex figures,
vol. 4, Library of the mathematical circle, Holt, Rinehart and Winston, New York,
1961.

Gruia Călinescu

Department of Computer Science

Illinois Institute of Technology

Chicago, IL 60616

United States

calinesc@iit.edu

Adrian Dumitrescu

Computer Science

University of Wisconsin–Milwaukee

3200 N. Cramer Street

Milwaukee, WI 53211

United States

ad@cs.uwm.edu

